JPH01155220A - Infrared optical system - Google Patents

Infrared optical system

Info

Publication number
JPH01155220A
JPH01155220A JP62316926A JP31692687A JPH01155220A JP H01155220 A JPH01155220 A JP H01155220A JP 62316926 A JP62316926 A JP 62316926A JP 31692687 A JP31692687 A JP 31692687A JP H01155220 A JPH01155220 A JP H01155220A
Authority
JP
Japan
Prior art keywords
lens
light
housing
mirror
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62316926A
Other languages
Japanese (ja)
Inventor
Osamu Nakamura
理 中村
Yoshio Matsuura
松浦 義雄
Taizo Miyamoto
泰三 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62316926A priority Critical patent/JPH01155220A/en
Publication of JPH01155220A publication Critical patent/JPH01155220A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To reduce the quantity of incident light from the inner surface of a housing to a detection element to a large extent, by providing a reflecting layer having a concave surface on a window side and a mirror wherein a light absorbing layer is formed on a lens side and an aperture iris permitting only converged light to pass is provided on a center optical axis between a lens and a housing. CONSTITUTION:The aperture iris 11 of a mirror 12 permits only infrared beam converged by a lens 1 to pass and the passed beam (a) is detected by an element 3 through a window 7 and a light passing aperture 8. The iris 11 can be arranged so as to become nearer to the lens as compared with the cold shield in a detection container 6 and the aperture diameter of the lens 1 is enlarged to enhance sensitivity. The emitted light from the inner surface of the housing between the lens 1 and the mirror 12 is absorbed by the absorbing layer 10 of the spherical mirror 12 and the light (b) from the part between the mirror 12 and the cold shield 15 is reflected from the reflecting layer 9 on the concave surface of the mirror 12 at an angle not incident to the detection element 3 and the light (c) from the part between a concave mirror and a window is blocked from being incident to the element by the hole 8 of the shield 5. By this constitution, the incident quantity of the infrared rays emitted from the inner surface of the housing to the detection element is reduced to a large extent.

Description

【発明の詳細な説明】 〔概 要〕 赤外線映像装置の赤外線光学系の改造に関し、感度低下
や構造上の性能劣化を発生させることなく、赤外線光学
系のハウジング内面から放射される赤外線の検知素子へ
の入射を防止することができる赤外線光学系を提供する
ことを目的とし、赤外線を受光する端面にレンズを有す
るハウジングと、該ハウジングの他端面にウィンドを有
し、その内部にコールドシールドと検知素子を備えた検
知器容器を収納した赤外線装置において、前記レンズと
検知器容器間のハウジング内の所定位置に、前記検知器
側が光反射層で形成され、前記レンズ側が凸面で光吸収
層で形成され、かつ中心光軸上に前記レンズの収束赤外
線光のみを通過する開口絞りを有する鏡を備えて構成す
る。
[Detailed Description of the Invention] [Summary] An element for detecting infrared rays emitted from the inner surface of the housing of the infrared optical system without causing a decrease in sensitivity or structural performance deterioration in the modification of the infrared optical system of an infrared imaging device. The purpose of the present invention is to provide an infrared optical system that can prevent infrared rays from entering the infrared rays. In an infrared device housing a detector container including an element, the detector side is formed of a light reflecting layer and the lens side is convex and formed of a light absorption layer at a predetermined position in the housing between the lens and the detector container. and a mirror having an aperture diaphragm on the central optical axis that allows only the convergent infrared light from the lens to pass through.

〔産業上の利用分野〕[Industrial application field]

本発明は赤外線映像装置の赤外線光学系に関するもので
ある。
The present invention relates to an infrared optical system for an infrared imaging device.

赤外線映像装置の光学系においてはレンズ等の光学エレ
メントを固定するハウジングからハウジング温度に依存
した赤外線が放射される。この放射赤外線が検知器に入
射するとハウジング温度の変動によって検知器出力が変
動することになり、赤外線装置の映像品質が劣化する。
In the optical system of an infrared imaging device, infrared rays depending on the housing temperature are emitted from a housing that fixes optical elements such as lenses. When this radiated infrared rays enters the detector, the output of the detector will fluctuate due to fluctuations in the housing temperature, and the image quality of the infrared device will deteriorate.

そこでハウジングからの放射赤外線が検知器に入射する
ことを防止することができる光学系が要求されている。
Therefore, there is a need for an optical system that can prevent the infrared rays radiated from the housing from entering the detector.

〔従来の技術〕[Conventional technology]

第3図は従来の赤外線装置の模式図を示しており、レン
ズ1等の光学エレメントを固定する円筒状のハウジング
2と、検知素子3や該検知素子3を冷却する冷却器4お
よび検知素子4への入射光を規制するコールドシールド
5等を収納する円筒状で内部が真空状態に形成された検
知器容器6とより構成されている。
FIG. 3 shows a schematic diagram of a conventional infrared device, which includes a cylindrical housing 2 that fixes an optical element such as a lens 1, a sensing element 3, a cooler 4 that cools the sensing element 3, and the sensing element 4. It consists of a cylindrical detector container 6 which houses a cold shield 5 etc. that regulates incident light to the detector container 6 and is formed in a vacuum state inside.

またコールドシールド5および検知器容器6の前面部に
は光通過孔8およびウィンドウ7が設けられ、レンズl
とハウジング2と検知器容器6とコールドシールド5と
検知素子4の中心部がレンズ1の中心光軸上に直列状に
配設されている。
Further, a light passage hole 8 and a window 7 are provided in the front part of the cold shield 5 and the detector container 6, and a lens l
The housing 2, the detector container 6, the cold shield 5, and the center of the sensing element 4 are arranged in series on the central optical axis of the lens 1.

目標物体からの赤外線光A(実線で示す)はレンズ1で
収束され、ウィンド7を通って検知器容器6内に至り、
更にコールドシールド5の光通過孔8を通って検知素子
3に入射して検知される。
Infrared light A (shown by a solid line) from the target object is converged by a lens 1, passes through a window 7, and enters the detector container 6.
Further, the light passes through the light passage hole 8 of the cold shield 5 and enters the detection element 3 and is detected.

検知素子3は入射赤外光をアナログ電気信号に変換し、
図示しない画像処理装置を介して表示器で目標物体の赤
外画像を表示する。
The detection element 3 converts the incident infrared light into an analog electrical signal,
An infrared image of the target object is displayed on a display via an image processing device (not shown).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の赤外線光学装置においては、第3図の点線Bで示
すように、ハウジング2の内壁からハウジング温度に依
存した赤外線が放射される。この放射赤外線Bが検知素
子3に入射するとハウジング温度の変動によって検知素
子3の出力が変動することになり、赤外線装置の映像品
質が劣化する。
In the above-mentioned infrared optical device, infrared rays are emitted from the inner wall of the housing 2 depending on the housing temperature, as indicated by the dotted line B in FIG. When this radiated infrared ray B enters the sensing element 3, the output of the sensing element 3 will change due to fluctuations in the housing temperature, and the image quality of the infrared device will deteriorate.

そこでこの問題に対処するため、第4図に示す光学系に
おいては、 コールドシールド開口径dの許容dmaには、dmax
 =h/f  (Do +jり −1−・11)有効開
口径  De = f / h Xdmax  ・・(
2)DeとDOの比は次式となる。
Therefore, in order to deal with this problem, in the optical system shown in Fig. 4, the allowable dmax of the cold shield aperture diameter d is dmax
=h/f (Do +jri -1-・11) Effective opening diameter De = f/h Xdmax...(
2) The ratio of De and DO is as follows.

De/DO=1−1/Do  (f/h   1)  
・ ・(3)となり、コールドシールド5の開口径dを
小さくするか又は、コールドシールド5と検知素子3間
の距離りを大きくすることによってハウジング2からの
赤外線が検知素子3に入射することを防止していた。
De/DO=1-1/Do (f/h 1)
・ ・(3) Therefore, by reducing the opening diameter d of the cold shield 5 or increasing the distance between the cold shield 5 and the sensing element 3, it is possible to prevent infrared rays from the housing 2 from entering the sensing element 3. It was being prevented.

この場合、コールドシールド5の開口径dを小さくする
と、レンズlの有効開口径(De )が小さくなり感度
が低下する。またコールドシールド5と検知素子3間の
距!11thを大きくすると検知器熱負荷の増大や耐振
性の低下等があり、構造上の性能劣化が発生する。
In this case, if the aperture diameter d of the cold shield 5 is made smaller, the effective aperture diameter (De) of the lens l becomes smaller and the sensitivity is lowered. Also, the distance between the cold shield 5 and the detection element 3! If 11th is increased, the thermal load on the detector increases, vibration resistance decreases, and structural performance deteriorates.

本発明はこのような点に鑑みて創作されたもので、感度
低下や構造上の性能劣化を発生させることなく、赤外線
光学系のハウジング内面から放射される赤外線の検知素
子への入射を防止することができる赤外線光学系を提供
することを目的としている。
The present invention was created in view of these points, and prevents infrared rays emitted from the inner surface of the housing of an infrared optical system from entering the detection element without causing a decrease in sensitivity or structural performance deterioration. The purpose is to provide an infrared optical system that can

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の赤外線光学系の原理模式図を示してお
り、一方の端面に赤外線を受光するレンズ1を有するハ
ウジング2と、該ハウジング2の他の一方の端面にウィ
ンド7を有し、その内部にコールドシールド5と検知素
子3を備えた検知器容器6を収納した赤外線装置におい
て、前記レンズ1とウィンド7間のハウジング2内の所
定位置に、前記ウィンド側が凹面で光反射層9で形成さ
れ、前記レンズ側が光吸収層10で形成され、かつ中心
光軸上に前記レンズlの収束赤外線光のみ を通過する
開口絞り11を有する鏡12を備えた構成としている。
FIG. 1 shows a schematic diagram of the principle of the infrared optical system of the present invention, which includes a housing 2 having a lens 1 for receiving infrared rays on one end face, and a window 7 on the other end face of the housing 2. , in an infrared device housing a detector container 6 having a cold shield 5 and a detection element 3 therein, a light reflecting layer 9 is provided at a predetermined position in the housing 2 between the lens 1 and the window 7 and has a concave surface on the window side. The mirror 12 is formed of a light absorbing layer 10 on the lens side and has an aperture stop 11 on the central optical axis that allows only the convergent infrared light from the lens I to pass through.

〔作 用〕[For production]

鏡12の開口絞り11はレンズ1で収束された全ての赤
外線光束のみを通過させる。開口絞り11を通過した赤
外線光aはウィンド7と光通過孔8を通って検知素子3
で検知される。
The aperture stop 11 of the mirror 12 allows only all the infrared light beams converged by the lens 1 to pass through. The infrared light a that has passed through the aperture stop 11 passes through the window 7 and the light passage hole 8 and reaches the detection element 3.
detected.

この開口絞り11は検知器容器6内のコールドシールド
5に比較して光学系入射開口面(レンズ1)に対しより
近くに設置できるために光学系有効開口径を拡大でき、
赤外線装置の感度を向上するようにしている。
Since this aperture stop 11 can be installed closer to the optical system entrance aperture surface (lens 1) than the cold shield 5 in the detector container 6, the effective aperture diameter of the optical system can be expanded.
We are trying to improve the sensitivity of infrared devices.

一方、レンズ1と鏡12間のハウジング2の内面から放
射した赤外線光の大部分は球面鏡12の光吸収層IOで
吸収される。
On the other hand, most of the infrared light emitted from the inner surface of the housing 2 between the lens 1 and the mirror 12 is absorbed by the light absorption layer IO of the spherical mirror 12.

また鏡12とコールドシールド5間に存在する部品から
放射される赤外線光すは全て鏡12の凹面に形成された
光反射層9によって検知素子3に入射しない角度で反射
され、コールドシールド5内への入射をなくしてハウジ
ング内部からの赤外線光学系こよる影響をなくしている
In addition, all infrared light emitted from parts existing between the mirror 12 and the cold shield 5 is reflected by the light reflection layer 9 formed on the concave surface of the mirror 12 at an angle that does not enter the detection element 3, and is reflected into the cold shield 5. This eliminates the influence of the infrared optical system from inside the housing.

また凹面鏡12−1とランド7との間のハウジング内面
から放射する赤外線Cはコールドシールド5の光通過孔
8の遮断効果によって検知素子3に入射しないようにし
ている。
Further, infrared rays C emitted from the inner surface of the housing between the concave mirror 12-1 and the land 7 are prevented from entering the detection element 3 by the blocking effect of the light passage hole 8 of the cold shield 5.

〔実施例〕〔Example〕

第2図は本発明の一実施例の赤外線光学系の側面図を示
しており、筒状をなすハウジング2の一端部にレンズ1
が設けられ、他の一端部にはレンズ側が平面で他の一端
側が凹面を形成した凹面鏡12−1と凹面鏡12−2を
設けている。また、凹面鏡12−1の凹面は反射率の高
い材料による光反射層9が形成され、凹面鏡12−2の
一方の面は完全黒体による光吸収層10が形成されてい
るとともに、レンズlで収束された赤外線光束を通過す
る開口絞り11−2および11−1を備えている。
FIG. 2 shows a side view of an infrared optical system according to an embodiment of the present invention, in which a lens 1 is attached to one end of a cylindrical housing 2.
A concave mirror 12-1 and a concave mirror 12-2, each having a flat surface on the lens side and a concave surface on the other end, are provided at the other end. Further, the concave surface of the concave mirror 12-1 is formed with a light reflection layer 9 made of a material with high reflectance, and one surface of the concave mirror 12-2 is formed with a light absorption layer 10 made of a completely black body, and a lens l is formed on one surface of the concave mirror 12-1. It is provided with aperture stops 11-2 and 11-1 that pass the converged infrared light beam.

また、前記ハウジングの他の一端部にはコールドシール
ド5と検知素子3を収納する検知器容器6が設けられた
構造をなしている。
Furthermore, the other end of the housing is provided with a detector container 6 that accommodates the cold shield 5 and the detection element 3.

目標物体から放射された赤外線光Aはレンズ1で収束さ
れる。この収束された赤外線光は凹面鏡12−2と凹面
鏡12−1の開口絞り11−2と11−1内を通過し、
更に検知器容器6のウィンド7とコールドシールド5の
光通過孔8を通って検知素子3に入射する。検知素子3
は入射赤外光をアナログ電気信号に変換し、図示しない
画像処理装置を介して表示器で目標物体の赤外画像を表
示する。
Infrared light A emitted from a target object is converged by a lens 1. This converged infrared light passes through the concave mirror 12-2 and the aperture stops 11-2 and 11-1 of the concave mirror 12-1,
Further, the light passes through the window 7 of the detector container 6 and the light passage hole 8 of the cold shield 5 and enters the detection element 3 . Detection element 3
converts incident infrared light into an analog electrical signal, and displays an infrared image of the target object on a display via an image processing device (not shown).

なお、凹面鏡12−2および凹面鏡12−1の開口絞り
11−2および11−1はレンズlで収束された赤外線
光束のみを通過させる。
Note that the concave mirror 12-2 and the aperture stops 11-2 and 11-1 of the concave mirror 12-1 allow only the infrared light beam converged by the lens l to pass through.

また凹面鏡12−2は完全黒体で形成された光吸収層l
Oによって凹面鏡12−2とレンズ1間のハウジング内
部から放射される赤外線Bを全て吸収する。凹面鏡11
−1は凹面部に高反射率の材料で形成された反射層9に
よって凹面鏡11−1と検知素子3間のコールドシール
ド以外の部品から放射される点線Cで示す全ての赤外線
光を検知素子3面に入射しない方向に反射し、赤外線光
Cが検知素子3に入射しないようにする。これによって
ハウジング内部や検知器容器内等から放射される赤外線
光が検知素子に入射することを完全に防止している。
Further, the concave mirror 12-2 has a light absorption layer l formed of a completely black body.
O absorbs all the infrared rays B emitted from inside the housing between the concave mirror 12-2 and the lens 1. Concave mirror 11
-1 is a reflective layer 9 formed on the concave surface of a material with high reflectance, which allows all infrared light shown by the dotted line C emitted from components other than the cold shield between the concave mirror 11-1 and the detection element 3 to be transmitted to the detection element 3. The infrared light C is reflected in a direction that does not enter the surface to prevent the infrared light C from entering the detection element 3. This completely prevents infrared light emitted from inside the housing, inside the detector container, etc. from entering the sensing element.

同時に凹面鏡11−1.11−2の高反射率の面は、そ
の赤外線放射率が小さいため、該高反射率面から検知素
子に入射する赤外線Ddは極めて小さいものとなる。
At the same time, since the high-reflectance surfaces of the concave mirrors 11-1 and 11-2 have low infrared emissivity, the infrared rays Dd that enter the detection element from the high-reflectance surfaces are extremely small.

また、凹面鏡11−2と凹面鏡11−1を組合わせたこ
とにより、その開口絞りは検知器官B6内のコールドシ
ールド5に比較して光学系入射開口面(レンズ1)によ
り近くに設置できるため、光学系有効開口径を拡大でき
て赤外線装置感度を向上することができる。
Furthermore, by combining the concave mirror 11-2 and the concave mirror 11-1, the aperture stop can be installed closer to the optical system entrance aperture surface (lens 1) than the cold shield 5 in the detection organ B6. The effective aperture diameter of the optical system can be expanded and the sensitivity of the infrared device can be improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ハウジング内面か
らの放射赤外線の検知素子への入射量を大幅に低減する
ことができる。
As explained above, according to the present invention, it is possible to significantly reduce the amount of infrared rays radiated from the inner surface of the housing incident on the detection element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の赤外線光学系の原理模式図、第2図は
一実施例の赤外線光学系の側面図、第3図は従来の赤外
線光学系の模式図、第4図は従来の赤外線光学系の動作
説明図である。 図において、1はレンズ、2はハウジング、3は検知素
子、4は冷却器、5はコールドシールド、6は検知器容
器、7はウィンド、8は光通過孔、9は光反射層、10
は光吸収層、11.1l−Lll−2は開口絞り、12
は鏡、12−1 、12−2は凹面鏡を示している。
Fig. 1 is a schematic diagram of the principle of an infrared optical system of the present invention, Fig. 2 is a side view of an infrared optical system of an embodiment, Fig. 3 is a schematic diagram of a conventional infrared optical system, and Fig. 4 is a schematic diagram of a conventional infrared optical system. FIG. 3 is an explanatory diagram of the operation of the optical system. In the figure, 1 is a lens, 2 is a housing, 3 is a detection element, 4 is a cooler, 5 is a cold shield, 6 is a detector container, 7 is a window, 8 is a light passage hole, 9 is a light reflection layer, 10
is a light absorption layer, 11.1l-Lll-2 is an aperture stop, 12
indicates a mirror, and 12-1 and 12-2 indicate concave mirrors.

Claims (1)

【特許請求の範囲】 赤外線を受光する端面にレンズ(1)を有するハウジン
グ(2)と、該ハウジングの他端面にウインド(7)を
有し、その内部にコールドシールド(5)と検知素子(
3)を備えた検知器容器(6)を収納した赤外線装置に
おいて、 前記レンズと検知器容器間のハウジング内の所定位置に
、前記検知器側が凹面で光反射層(9)で形成され、前
記レンズ側が光吸収層(10)で形成され、かつ中心光
軸上に前記レンズの収束赤外線光のみを通過する開口絞
り(11)を有する鏡(12)を備えたことを特徴とす
る赤外線光学系。
[Claims] A housing (2) having a lens (1) on an end face that receives infrared rays, a window (7) on the other end face of the housing, and a cold shield (5) and a detection element (
3), an infrared device housing a detector container (6) comprising: a light reflecting layer (9) with a concave surface on the detector side formed at a predetermined position in the housing between the lens and the detector container; An infrared optical system comprising a mirror (12) whose lens side is formed of a light absorption layer (10) and which has an aperture stop (11) on the central optical axis that passes only the converged infrared light of the lens. .
JP62316926A 1987-12-14 1987-12-14 Infrared optical system Pending JPH01155220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62316926A JPH01155220A (en) 1987-12-14 1987-12-14 Infrared optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62316926A JPH01155220A (en) 1987-12-14 1987-12-14 Infrared optical system

Publications (1)

Publication Number Publication Date
JPH01155220A true JPH01155220A (en) 1989-06-19

Family

ID=18082460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62316926A Pending JPH01155220A (en) 1987-12-14 1987-12-14 Infrared optical system

Country Status (1)

Country Link
JP (1) JPH01155220A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0723141A1 (en) * 1995-01-17 1996-07-24 Applied Materials, Inc. Sensors for measuring temperature and methods of measuring workpiece temperatures
JP2014225829A (en) * 2013-05-17 2014-12-04 株式会社アピステ Structure of optical system for infrared camera
CN111238659A (en) * 2020-01-20 2020-06-05 武汉高芯科技有限公司 Cold screen and refrigeration type infrared detector with stray light inhibiting function

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0723141A1 (en) * 1995-01-17 1996-07-24 Applied Materials, Inc. Sensors for measuring temperature and methods of measuring workpiece temperatures
US5716133A (en) * 1995-01-17 1998-02-10 Applied Komatsu Technology, Inc. Shielded heat sensor for measuring temperature
JP2014225829A (en) * 2013-05-17 2014-12-04 株式会社アピステ Structure of optical system for infrared camera
CN111238659A (en) * 2020-01-20 2020-06-05 武汉高芯科技有限公司 Cold screen and refrigeration type infrared detector with stray light inhibiting function
CN111238659B (en) * 2020-01-20 2021-09-07 武汉高芯科技有限公司 Cold screen and refrigeration type infrared detector with stray light inhibiting function

Similar Documents

Publication Publication Date Title
US5254858A (en) System having non-imaging concentrators for performing IR transmission spectroscopy
US5022725A (en) Optical sensor
EP0747744B1 (en) Single catadioptric lens
US4820923A (en) Uncooled reflective shield for cryogenically-cooled radiation detectors
US4962311A (en) Device for determining the direction of incident laser radiation
US5820264A (en) Tympanic thermometer arrangement
US5812309A (en) Infrared objective
US4258994A (en) High contrast optical fingerprint recorder
US5479292A (en) Infrared wide-angle single lens for use in an infrared optical system
US4037943A (en) Reflection type image forming optical system having a large angle of view
US4011452A (en) Antinarcissus reflector assembly for infrared detector
US5021657A (en) Thermal imager
JPH01155220A (en) Infrared optical system
US6596997B2 (en) Retro-reflector warm stop for uncooled thermal imaging cameras and method of using the same
US6677588B1 (en) Detector assembly having reduced stray light ghosting sensitivity
US5378892A (en) Angle filter for use in an infrared optical system
JPS62164010A (en) Infrared ray camera
JPH0282122A (en) Infrared image pickup device
US6411445B1 (en) Optical system with center-bored catadioptric imaging lens
JPH0222522A (en) Infrared-ray optical device
JP2760789B2 (en) Infrared lens
EP0408235A2 (en) Thermal imaging systems
JP2531197B2 (en) Compound optical system device
US3163760A (en) Refractive optics infrared scanning system
JP3219797B2 (en) Focus detector