JP2008235490A - 中空構造体の製造方法および中空構造体 - Google Patents
中空構造体の製造方法および中空構造体 Download PDFInfo
- Publication number
- JP2008235490A JP2008235490A JP2007071649A JP2007071649A JP2008235490A JP 2008235490 A JP2008235490 A JP 2008235490A JP 2007071649 A JP2007071649 A JP 2007071649A JP 2007071649 A JP2007071649 A JP 2007071649A JP 2008235490 A JP2008235490 A JP 2008235490A
- Authority
- JP
- Japan
- Prior art keywords
- hollow structure
- resin
- producing
- resin layer
- structure according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
【課題】作業工数を低減することができる中空構造体の製造方法およびそれによって得られた中空構造体を提供する。
【解決手段】中空構造体の製造方法は、第1板状体と第2板状体とを樹脂スペーサー3を介して接合し、第1板状体と第2板状体との間に空隙部101を形成してなる中空構造体の製造方法であって、官能基を有する環状オレフィン系樹脂と、光酸発生剤とを含み、光硬化後に接着性を有する樹脂組成物で構成される樹脂層を第1板状体の表面側に形成する樹脂層形成工程と、前記樹脂層に光を照射して樹脂層を選択的に硬化させる光硬化工程と、前記光硬化工程で前記樹脂層の未硬化の部分を除去して、前記空隙部101を形成するように樹脂スペーサー3を形成する現像工程と、前記樹脂層を形成した第1板状体と、第2板状体とを前記樹脂スペーサー3を介して接合し、熱圧着する熱圧着工程と、を有する。
【選択図】図1
【解決手段】中空構造体の製造方法は、第1板状体と第2板状体とを樹脂スペーサー3を介して接合し、第1板状体と第2板状体との間に空隙部101を形成してなる中空構造体の製造方法であって、官能基を有する環状オレフィン系樹脂と、光酸発生剤とを含み、光硬化後に接着性を有する樹脂組成物で構成される樹脂層を第1板状体の表面側に形成する樹脂層形成工程と、前記樹脂層に光を照射して樹脂層を選択的に硬化させる光硬化工程と、前記光硬化工程で前記樹脂層の未硬化の部分を除去して、前記空隙部101を形成するように樹脂スペーサー3を形成する現像工程と、前記樹脂層を形成した第1板状体と、第2板状体とを前記樹脂スペーサー3を介して接合し、熱圧着する熱圧着工程と、を有する。
【選択図】図1
Description
本発明は、中空構造体の製造方法および中空構造体に関する。
半導体装置の一種であるCCD、CMOSイメージャなどの撮像素子を用いたエリアセンサやリニアセンサなどの撮像装置が様々な分野で実用化されている。撮像装置は、フォトダイオードのような受光部および受光部の出力に基づく電気信号を読み出す読出部などの回路で構成されている。
このような撮像装置として、イメージセンサ部を有する半導体素子と、このイメージセンサ部を覆うように配置された透明基板とを、枠材となる接着剤を介して積層してなる中空構造体が提案されている(例えば特許文献1参照)。このように中空構造体とすることにより、透明基板を積層後の工程において、イメージセンサ部にキズが生じたり、ゴミが付着したりすることを防止することができるものであった。
この撮像装置に用いる接着剤には、枠部分を形成するための感光性と、枠材としての厚さを保持するための厚さ精度と、接着性等が要求されていた。
このような要求を満足させるために、本発明者らは特定のノルボルネン系樹脂を用いた感光性樹脂組成物を提供してきた。この感光性樹脂組成物では、枠部分を形成するために紫外線等を照射すると接着性が低下するために、紫外線照射と現像処理によって形成した枠部分に接着剤を塗布する工程が必要になっていた。
本発明の目的は、作業工数を低減することができる中空構造体の製造方法およびそれによって得られた中空構造体を提供することにある。
本発明の目的は、作業工数を低減することができる中空構造体の製造方法およびそれによって得られた中空構造体を提供することにある。
このような目的は、下記(1)〜(12)に記載の本発明により達成される。
(1)第1板状体と第2板状体とを樹脂スペーサーを介して接合し、第1板状体と第2板状体との間に空隙部を形成してなる中空構造体の製造方法であって、官能基を有する環状オレフィン系樹脂と、光酸発生剤とを含み、光硬化後に接着性を有する樹脂組成物で構成される樹脂層を第1板状体の表面側に形成する樹脂層形成工程と、前記樹脂層に光を照射して樹脂層を選択的に硬化させる光硬化工程と、前記光硬化工程で前記樹脂層の未硬化の部分を除去して、前記空隙部を形成するように樹脂スペーサーを形成する現像工程と、前記樹脂層を形成した第1板状体と、第2板状体とを前記樹脂スペーサーを介して接合し、熱圧着する熱圧着工程と、を有することを特徴とする中空構造体の製造方法。
(2)前記樹脂組成物が、さらに前記光酸発生剤の作用で硬化反応可能な化合物を含むものである上記(1)に記載の中空構造体の製造方法。
(3)前記化合物は、エポキシ基を有する化合物およびオキセタニル基を有する化合物の少なくとも一方を含むものである上記(2)に記載の中空構造体の製造方法。
(4)前記樹脂組成物中の前記化合物の含有量は、前記環状オレフィン系樹脂100重量部に対して2〜100重量部である上記(2)または(3)に記載の中空構造体の製造方法。
(5)前記化合物の重量平均分子量は、1,000以下である上記(2)ないし(4)のいずれかに記載の中空構造体の製造方法。
(6)前記環状オレフィン系樹脂は、ノルボルネン系樹脂である上記(1)ないし(5)のいずれかに記載の中空構造体の製造方法。
(7)前記ノルボルネン系樹脂は、ノルボルネン化合物の付加重合体である上記(5)に記載の中空構造体の製造方法。
(8)前記官能基は、エポキシ基である上記(1)ないし(7)のいずれかに記載の中空構造体の製造方法。
(9)前記第1板状体は、透明基板である上記(1)ないし(8)のいずれかに記載の中空構造体の製造方法。
(10)前記第2板状体は、半導体素子である上記(1)ないし(9)のいずれかに記載の中空構造体の製造方法。
(11)前記中空構造体が、半導体装置である上記(1)ないし(10)のいずれかに記載の中空構造体の製造方法。
(12)上記(1)ないし(11)のいずれかに記載の中空構造体の製造方法で生産されたことを特徴とする中空構造体。
(1)第1板状体と第2板状体とを樹脂スペーサーを介して接合し、第1板状体と第2板状体との間に空隙部を形成してなる中空構造体の製造方法であって、官能基を有する環状オレフィン系樹脂と、光酸発生剤とを含み、光硬化後に接着性を有する樹脂組成物で構成される樹脂層を第1板状体の表面側に形成する樹脂層形成工程と、前記樹脂層に光を照射して樹脂層を選択的に硬化させる光硬化工程と、前記光硬化工程で前記樹脂層の未硬化の部分を除去して、前記空隙部を形成するように樹脂スペーサーを形成する現像工程と、前記樹脂層を形成した第1板状体と、第2板状体とを前記樹脂スペーサーを介して接合し、熱圧着する熱圧着工程と、を有することを特徴とする中空構造体の製造方法。
(2)前記樹脂組成物が、さらに前記光酸発生剤の作用で硬化反応可能な化合物を含むものである上記(1)に記載の中空構造体の製造方法。
(3)前記化合物は、エポキシ基を有する化合物およびオキセタニル基を有する化合物の少なくとも一方を含むものである上記(2)に記載の中空構造体の製造方法。
(4)前記樹脂組成物中の前記化合物の含有量は、前記環状オレフィン系樹脂100重量部に対して2〜100重量部である上記(2)または(3)に記載の中空構造体の製造方法。
(5)前記化合物の重量平均分子量は、1,000以下である上記(2)ないし(4)のいずれかに記載の中空構造体の製造方法。
(6)前記環状オレフィン系樹脂は、ノルボルネン系樹脂である上記(1)ないし(5)のいずれかに記載の中空構造体の製造方法。
(7)前記ノルボルネン系樹脂は、ノルボルネン化合物の付加重合体である上記(5)に記載の中空構造体の製造方法。
(8)前記官能基は、エポキシ基である上記(1)ないし(7)のいずれかに記載の中空構造体の製造方法。
(9)前記第1板状体は、透明基板である上記(1)ないし(8)のいずれかに記載の中空構造体の製造方法。
(10)前記第2板状体は、半導体素子である上記(1)ないし(9)のいずれかに記載の中空構造体の製造方法。
(11)前記中空構造体が、半導体装置である上記(1)ないし(10)のいずれかに記載の中空構造体の製造方法。
(12)上記(1)ないし(11)のいずれかに記載の中空構造体の製造方法で生産されたことを特徴とする中空構造体。
本発明によれば、作業工数を低減することができる中空構造体の製造方法を提供することができる。
また、特定の環状オレフィン系樹脂を用いた場合、樹脂スペーサーの厚さ精度にも特に優れることができる。
また、特定の環状オレフィン系樹脂を用いた場合、樹脂スペーサーの厚さ精度にも特に優れることができる。
以下、本発明の中空構造体およびその製造方法について好適な実施形態に基づいて詳細に説明する。
本発明の中空構造体は、第1板状体と、第2板状体とを樹脂スペーサーを介して接合し、第1板状体と第2板状体との間に空隙部を形成してなるものである。
第1板状体および第2板状体としては、例えばガラス、石英、透明プラスチック等の透明基板、半導体素子(特に、受光部を有する半導体素子が好ましい)、半導体用基板、シリコンウエハー、セラミック基板、アルミニウム基板等が挙げられる。これらの任意の組み合わせにより、中空構造体を得ることができる。
本発明の中空構造体は、第1板状体と、第2板状体とを樹脂スペーサーを介して接合し、第1板状体と第2板状体との間に空隙部を形成してなるものである。
第1板状体および第2板状体としては、例えばガラス、石英、透明プラスチック等の透明基板、半導体素子(特に、受光部を有する半導体素子が好ましい)、半導体用基板、シリコンウエハー、セラミック基板、アルミニウム基板等が挙げられる。これらの任意の組み合わせにより、中空構造体を得ることができる。
以下の説明では、第1板状体が透明基板、第2板状体が半導体素子の場合に得られる中空構造体(半導体装置)に限定して詳細に説明する。図1は、半導体装置の一例を示す断面図である。図2は、半導体装置の製造工程を模式的に示す模式図である。図3は、半導体用ウエハーに感光性樹脂組成物が塗布されている一例を示す上面図である。図4は、半導体素子に樹脂スペーサーが形成されている一例を示す上面図である。
図1に示すように、半導体装置10は、透明基板1と半導体素子2とが樹脂スペーサー3を介して接合されている。樹脂スペーサー3は、図1中下面の透明基板1の縁部に沿って配置され、透明基板1と半導体素子2との間に空隙部(中空部)101が形成されるようになっている。これにより、製造工程で受光部にキズが生じたり、ゴミが付着したりすることを防止することが容易になる。
このような半導体装置10の製造方法を、図2を用いて詳細に説明する。
(樹脂層形成工程)
半導体用ウエハー21の機能面側(図2中の上側)にスピンコーターを用いて、官能基を有する環状オレフィン系樹脂と、光酸発生剤とを含み、光硬化後に接着性を有する樹脂組成物を塗布し、乾燥して樹脂層31を形成する(図2(a))。
(樹脂層形成工程)
半導体用ウエハー21の機能面側(図2中の上側)にスピンコーターを用いて、官能基を有する環状オレフィン系樹脂と、光酸発生剤とを含み、光硬化後に接着性を有する樹脂組成物を塗布し、乾燥して樹脂層31を形成する(図2(a))。
前記樹脂組成物は、官能基を有する環状オレフィン系樹脂を含む。これにより、耐湿、耐薬品性を向上することができる。
前記官能基を有する環状オレフィン系樹脂を構成する環状オレフィン系樹脂としては、一般的には、シクロヘキセン、シクロオクテン等の単環体モノマーの重合体、ノルボルネン、ノルボルナジエン、ジシクロペンタジエン、ジヒドロジシクロペンタジエン、テトラシクロドデセン、トリシクロペンタジエン、ジヒドロトリシクロペンタジエン、テトラシクロペンタジエン、ジヒドロテトラシクロペンタジエン等の多環体モノマーの重合体等が挙げられる。これらの中でも多環体モノマーの重合体の中から選ばれる1種以上の環状オレフィン系樹脂が好ましい。これにより、樹脂の耐熱性を向上することができる。なお、重合形態としては、ランダム重合、ブロック重合等の公知の形態を適用することができる。重合の具体例としては、ノルボルネン型モノマ−の(共)重合体、ノルボルネン型モノマ−とα−オレフィン類などの共重合可能な他のモノマ−との共重合体、およびこれらの共重合体の水素添加物などが具体例に該当する。これら環状オレフィン樹脂は、公知の重合法により製造することが可能であり、その重合方法には付加重合法と開環重合法とがあり、前述の中でも付加重合法で得られる環状オレフィン系樹脂(特にノルボルネン系樹脂)が好ましい(すなわち、ノルボルネン系化合物の付加重合体)。
前記官能基を有する環状オレフィン系樹脂を構成する環状オレフィン系樹脂としては、一般的には、シクロヘキセン、シクロオクテン等の単環体モノマーの重合体、ノルボルネン、ノルボルナジエン、ジシクロペンタジエン、ジヒドロジシクロペンタジエン、テトラシクロドデセン、トリシクロペンタジエン、ジヒドロトリシクロペンタジエン、テトラシクロペンタジエン、ジヒドロテトラシクロペンタジエン等の多環体モノマーの重合体等が挙げられる。これらの中でも多環体モノマーの重合体の中から選ばれる1種以上の環状オレフィン系樹脂が好ましい。これにより、樹脂の耐熱性を向上することができる。なお、重合形態としては、ランダム重合、ブロック重合等の公知の形態を適用することができる。重合の具体例としては、ノルボルネン型モノマ−の(共)重合体、ノルボルネン型モノマ−とα−オレフィン類などの共重合可能な他のモノマ−との共重合体、およびこれらの共重合体の水素添加物などが具体例に該当する。これら環状オレフィン樹脂は、公知の重合法により製造することが可能であり、その重合方法には付加重合法と開環重合法とがあり、前述の中でも付加重合法で得られる環状オレフィン系樹脂(特にノルボルネン系樹脂)が好ましい(すなわち、ノルボルネン系化合物の付加重合体)。
このような環状オレフィン系樹脂が有する官能基としては、エポキシ基、ヒドロキシル基、ビニル基、オキセタニル基、アミノ基、カルボニル基、エステル基、アクリル基、スルホニル基などが挙げられる。これらの中でもエポキシ基、オキセタニル基の中から選ばれる1種以上の官能基が好ましい。これにより、光解像性、機械強度を向上することができる。
前記官能基を有する環状オレフィン系樹脂の官能基の含有量は、特に限定されないが、前記官能基を有する環状オレフィン系樹脂全体の20〜80モル%が好ましく、特に30〜70モル%が好ましい。官能基含有量が前記範囲内であると、特に光解像性に優れる。
前記樹脂組成物は、光酸発生剤を含む。
前記光酸発生剤は、光照射によって酸を発生し、前記官能基を有する環状オレフィン系樹脂を重合する機能を有する。
この光酸発生剤としては、オニウム塩、ハロゲン化合物、硫酸塩やそれらの混合物等が挙げられる。例えばオニウム塩としては、ジアゾニウム塩、アンモニウム塩、ヨードニウム塩、スルフォニウム塩、リン酸塩、アルソニウム塩、オキソニウム塩等が挙げられる。前記のオニウム塩とカウンターアニオンを作ることができる化合物である限り、カウンターアニオンの制限はない。カウンターアニオンの例としては、ホウ酸、アルソニウム酸、リン酸、アンチモニック酸、硫酸塩、カルボン酸とそれらのハロゲン置換体等が挙げられる。
前記光酸発生剤は、光照射によって酸を発生し、前記官能基を有する環状オレフィン系樹脂を重合する機能を有する。
この光酸発生剤としては、オニウム塩、ハロゲン化合物、硫酸塩やそれらの混合物等が挙げられる。例えばオニウム塩としては、ジアゾニウム塩、アンモニウム塩、ヨードニウム塩、スルフォニウム塩、リン酸塩、アルソニウム塩、オキソニウム塩等が挙げられる。前記のオニウム塩とカウンターアニオンを作ることができる化合物である限り、カウンターアニオンの制限はない。カウンターアニオンの例としては、ホウ酸、アルソニウム酸、リン酸、アンチモニック酸、硫酸塩、カルボン酸とそれらのハロゲン置換体等が挙げられる。
オニウム塩の光酸発生剤としては、具体的にトリフェニルスルフォニウムテトラフルオロボレート、トリフェニルスルフォニウムヘキサフルオロボレート、トリフェニルスルフォニウムテトラフルオロアルセナート、トリフェニルスルフォニウムテトラフルオロフォスフェート、トリフェニルスルフォニウムテトラフルオロサルフェート、4−チオフェノキシジフェニルスルフォニウムテトラフルオロボレート、4−チオフェノキシジフェニルスルフォニウムテトラフルオロアンチモネート、4−チオフェノキシジフェニルスルフォニウムテトラフルオロアーセナート、4−チオフェノキシジフェニルスルフォニウムテトラフルオロフォスフェート、4−チオフェノキシジフェニルスルフォニウムテトラフルオロスルフォネート、トリス(t−ブチルフェニル)スルフォニムテトラキス(ペンタフルオロフェニル)ボレート、4−t−ブチルフェニルジフェニルスルフォニウムテトラフルオロボレート、4−t−ブチルフェニルジフェニルスルフォニウムテトラフルオロスルフォニウム、4−t−ブチルフェニルジフェニルスルフォニウムテトラフルオロアンチモネート、4−t−ブチルフェニルジフェニルスルフォニウムトリフルオロフォスフォネート、4−t−ブチルフェニルジフェニルスルフォニウムトリフルオスルフォネート、トリス(4−メチルフェニル)スルフォニウムトリフルオロボレート、4,4’,4“−トリス(t−ブチルフェニル)スルフォニウムトリフレート、トリス(4−メチルフェニル)スルフォニウムテトラフルオロボレート、トリス(4−メチルフェニル)スルフォニウムヘキサフルオロアーセネート、トリス(4−メチルフェニル)スルフォニウムヘキサフルフォスフェート、トリス(4−メチルフェニル)スルフォニウムヘキサフルオロスルフォネート、トリス(4−メトキシフェニル)スルフォニウムテトラフルオロボレート、トリス(4−メチルフェニル)スルフォニウムヘキサフルオアンチモネート、トリス(4−メチルフェニル)スルフォニウムヘキサフルオフォスフェート、トリス(4−メチルフェニル)スルフォニウムトリフルオロスフォネート、トリフェニルスルフォニウムジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルヨードニウムテトラフルオロボレート、トリフェニルヨードニウムヘキサフルオロアンチモネート、トリフェニルヨードニウムヘキサフルオロアーセネート、トリフェニルヨードニウムヘキサフルオロフォスフェート、トリフェニルヨードニウムトリフルオロスルフォネート、3,3−ジニトロジフェニルヨードニウムテトラフルオロボレート、3,3−ジニトロジフェニルヨードニウムヘキサフルオロアンチモネート、3,3−ジニトロジフェニルヨードニウムヘキサフルオロアーセネイト、3,3−ジニトロジフェニルヨードニウムトリフルオロサルフォネート、4,4‘−ジ−t−ブチルフェニルヨードニウムトリフレート、4,4‘−ジ−t−ブチルフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、4,4−ジニトロジフェニルヨードニウムテトラフルオロボレート、4,4−ジニトロジフェニルヨードニウムヘキサフルオロアンチモネート、4,4−ジニトロジフェニルヨードニウムヘキサフルオロアーセネイト、4,4−ジニトロジフェニルヨードニウムトリフルオロサルフォネート、(4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられ、これらを単独で使用しても混合して使用しても良い。
ハロゲンを含有している光酸発生剤としては、具体的に2,4,6−トリス(トリクロロメチル)トリアジン、2−アリル−4,6−ビス(トリクロロメチル)トリアジン、α,β,α−トリブロモメチルフェニルスルフォン、α、α―2,3,5,6−ヘキサクロロキシレン、2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロキシレン、1,1,1−トリス(3,5−ジブロモ−4−ヒドロキシフェニル)エタン等が挙げられ、これらを単独で使用しても混合して使用しても良い。
スルフォネート系の光酸発生剤としては、具体的に2−ニトロベンジルトシレート、2,6−ジニトロベンジルトシレート、2,4−ジニトロベンジルトシレート、2−ニトロベンジルメチルスフォネート、2−ニトロベンジルアセテート、9,10−ジメトキシアントラセン−2−スルフォネート、1,2,3−トリス(メタンスルフォニルロキシ)ベンゼン、1,2,3−トリス(エタンスルフォニルロキシ)ベンゼン、1,2,3−トリス(プロパンスルフォニルロキシ)ベンゼン等が挙げられ、これらを単独で使用しても混合して使用しても良い。
前述のような光酸発生剤の中でも、4,4‘−ジ−t−ブチルフェニルヨードニウムトリフレート、4,4’,4“−トリス(t−ブチルフェニル)スルフォニウムトリフレート、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルフォニウムジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、4,4‘−ジ−t−ブチルフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、トリス(t−ブチルフェニル)スルフォニムテトラキス(ペンタフルオロフェニル)ボレート、(4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート単体またはそれらの混合物の中から選ばれる1種以上が好ましい。これにより、前記官能基を有する環状オレフィン系樹脂の架橋を行うと共に基板との密着性を向上することができる。
前記光酸発生剤の含有量は、特に限定されないが、前記官能基を有する環状オレフィン系樹脂100重量部に対して0.1〜100重量部が好ましく、特に1〜10重量部が好ましい。含有量が前記範囲内であると、特に光解像後の開口形状、および感度に優れる。
前記樹脂組成物は、光硬化後に接着性を有するものである。これにより、光硬化により樹脂層31をパターニングした後においても第1板状体と第2板状体とを接着することができる。
このように、光硬化後に接着性を付与する方法としては、前記樹脂組成物に粘着性を有する化合物を添加する方法、粘着性を有する化合物をベース樹脂骨格に導入する方法等が挙げられる。
これらの中でも前記樹脂組成物に粘着性を有する化合物を添加する方法が好ましい。これにより、前記樹脂組成物に接着性を付与することが容易となる。
このように、光硬化後に接着性を付与する方法としては、前記樹脂組成物に粘着性を有する化合物を添加する方法、粘着性を有する化合物をベース樹脂骨格に導入する方法等が挙げられる。
これらの中でも前記樹脂組成物に粘着性を有する化合物を添加する方法が好ましい。これにより、前記樹脂組成物に接着性を付与することが容易となる。
前記粘着性を有する化合物としては、例えばエポキシ化合物、オキセタン化合物、ビニル化合物、アクリル化合物、ポリオール、フェノール化合物等が挙げられる。これらの中でもエポキシ化合物、オキセタン化合物の中から選ばれる1種以上の粘着性を有する化合物が好ましい。これにより、光硬化させた後であっても樹脂組成物に接着性を付与することができる。
前記エポキシ化合物としては、例えばジシクロペンタンジメタノールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、ビスフェノールA型エポキシ樹脂等が挙げられ、これらを単独で使用しても混合して使用しても良い。
前記オキセタン化合物としては、例えば1,4−ビス{[(3−エチル−3−オキセタニル)メトキシ]メチル}ベンゼン、4,4−ビス[(3−エチル−3−オキセタニル)メトキシ]ビフェニル、3−エチル−3−[(2−エチルヘキシロキシ)メチル]オキセタン等が挙げられ、これらを単独で使用しても混合して使用しても良い。
前記エポキシ化合物としては、例えばジシクロペンタンジメタノールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、ビスフェノールA型エポキシ樹脂等が挙げられ、これらを単独で使用しても混合して使用しても良い。
前記オキセタン化合物としては、例えば1,4−ビス{[(3−エチル−3−オキセタニル)メトキシ]メチル}ベンゼン、4,4−ビス[(3−エチル−3−オキセタニル)メトキシ]ビフェニル、3−エチル−3−[(2−エチルヘキシロキシ)メチル]オキセタン等が挙げられ、これらを単独で使用しても混合して使用しても良い。
前記粘着性を有する化合物の重量平均分子量は、特に限定されないが、1,000以下であることが好ましく、特に100〜600であることが好ましい。重量平均分子量が前記範囲内であると、特に熱時の流動性に優れる。
前記粘着性を付与する化合物の含有量は、特に限定されないが、前記官能基を有する環状オレフィン系樹脂100重量部に対して2〜100重量部が好ましく、特に5〜50重量部が好ましい。含有量が前記範囲内であると、特に光解像性および熱時のフローに優れる。
前記樹脂組成物は、上述の成分以外に増感剤、酸補足剤、レベリング剤、酸化防止剤、難燃剤、可塑剤、シランカップリング剤等を含んでいても良い。
このような樹脂組成物で構成される樹脂層31の厚さは、特に限定されないが、5〜500μmが好ましく、特に10〜100μmが好ましい。厚さが前記範囲内であると、特に光解像性および厚さの均一性に優れる。
(光硬化工程)
次に、樹脂層31を所定のマスクパターン(ここでは、格子状のマスクパターン)を有するフォトマスク4で覆い、光照射する(図2(b))。光照射する照射線としては、X線、電子線、紫外線、可視光線等が使用できるが、200〜700nmの波長のものが好ましい。これにより、樹脂層31が選択的に光硬化される。すなわち、フォトマスク4で覆われていない部分311の樹脂層31が光硬化する。一方、フォトマスク4で覆われている部分の樹脂層31は、未硬化のままである。
次に、樹脂層31を所定のマスクパターン(ここでは、格子状のマスクパターン)を有するフォトマスク4で覆い、光照射する(図2(b))。光照射する照射線としては、X線、電子線、紫外線、可視光線等が使用できるが、200〜700nmの波長のものが好ましい。これにより、樹脂層31が選択的に光硬化される。すなわち、フォトマスク4で覆われていない部分311の樹脂層31が光硬化する。一方、フォトマスク4で覆われている部分の樹脂層31は、未硬化のままである。
(現像工程)
次に、樹脂層31を現像して、フォトマスク4で覆われている部分の樹脂層31を除去する(図2(c))。これにより、半導体用ウエハー21に樹脂層31が格子状に残存するようになる(図3)。この格子状に残存する部分が、後に樹脂スペーサー3となる。
次に、樹脂層31を現像して、フォトマスク4で覆われている部分の樹脂層31を除去する(図2(c))。これにより、半導体用ウエハー21に樹脂層31が格子状に残存するようになる(図3)。この格子状に残存する部分が、後に樹脂スペーサー3となる。
(ダイシング工程)
次に、この半導体用ウエハー21(図3)をダイシング(個片化)して半導体素子2を得る(図4)。半導体素子2の縁部には、樹脂スペーサー3が形成されている。
次に、この半導体用ウエハー21(図3)をダイシング(個片化)して半導体素子2を得る(図4)。半導体素子2の縁部には、樹脂スペーサー3が形成されている。
(熱圧着工程)
次に、樹脂スペーサー3に接するように、透明基板1を接合する。この際、樹脂スペーサー3は、光硬化後も接着性を有する樹脂組成物で構成されているので透明基板1と、半導体素子2とを樹脂スペーサー3を介して熱圧着して接合することができる。これにより、半導体装置10(中空構造を有する半導体装置)を得ることができる(図1)。このように、中空構造とすることにより、受光部(イメージセンサ部)に傷が生じたり、ごみが付着したりするのを防止することができる。
次に、樹脂スペーサー3に接するように、透明基板1を接合する。この際、樹脂スペーサー3は、光硬化後も接着性を有する樹脂組成物で構成されているので透明基板1と、半導体素子2とを樹脂スペーサー3を介して熱圧着して接合することができる。これにより、半導体装置10(中空構造を有する半導体装置)を得ることができる(図1)。このように、中空構造とすることにより、受光部(イメージセンサ部)に傷が生じたり、ごみが付着したりするのを防止することができる。
この透明基板1と、半導体素子2とを樹脂スペーサー3を介して熱圧着する条件は、特に限定されないが、50〜300℃×10秒〜60分間、圧力0.01〜10MPaで圧着することが好ましく、特に120〜250℃×1〜30分間、圧力0.1〜5MPaで圧着することが好ましい。これにより、密着強度を向上することができる。
樹脂スペーサー3の高さ(空隙部の高さ)は、特に限定されないが、1〜500μmが好ましく、特に10〜100μmが好ましい。高さが前記範囲内であると、特に膜の厚さ(樹脂スペーサーの高さ)の均一性に優れる。
このようにして図1に示すように、透明基板1と、半導体素子2とが樹脂スペーサー3を介して接合され、空隙部101が設けられている半導体装置10を得ることができる。この半導体装置10は、官能基を有する環状オレフィン系樹脂と、光硬化剤とを含み、光硬化後に接着性を有する樹脂組成物で構成される樹脂スペーサー3を有しているので、厚さ精度に優れているものである。また、耐湿性にも優れているものである。
なお、本実施形態では、半導体素子2、すなわち半導体用ウエハー21に樹脂組成物を塗布したが、これに限定されず、基板、すなわち透明基板1に樹脂組成物を塗布しても良い。
また、本実施形態では、樹脂組成物を塗布する方法を用いたが、これに限定されず、樹脂組成物を含むフィルムを用いても良い。
また、本実施形態では、第1板状体として透明基板、第2板状体として半導体素子を用いたが、これに限定されず、他の組み合わせであっても良い
また、本実施形態では、樹脂組成物を塗布する方法を用いたが、これに限定されず、樹脂組成物を含むフィルムを用いても良い。
また、本実施形態では、第1板状体として透明基板、第2板状体として半導体素子を用いたが、これに限定されず、他の組み合わせであっても良い
以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。
(実施例1)
1. 樹脂ワニス(樹脂組成物)の調製
環状オレフィン系樹脂として、デシルノルボルネン/グリシジルメチルノルボルネン/フェネチルノルボルネン=55/30/15の共重合体を使用した。該樹脂の合成方法を示す。
すべてのガラス機器を60℃、0.1Torr下で18時間乾燥した。その後、ガラス機器をグローボックス内に備え付けた。次に、エチルアセテート(917g)、シクロヘキサン(917g)、デシルノルボルネン(129g、0.55mol)、グリシジルメチルエーテルノルボルネン(177g、0.30mol)、フェネチルノルボルネン(29.7g、0.15mol)を反応フラスコに加えた。その反応フラスコをグローボックスから取り出し、その溶液中に窒素ガスを30分間通して脱気した。次に、グローボックス中で触媒であるビストルエンビスパーフルオロフェニルニッケル9.36g(19.5mmol)をトルエン15mlに溶解し、25mlのシリンジに入れ、グローボックスから取り出し、反応フラスコに加えた。その後、20℃で5時間攪拌して反応させ、さらに、過酢酸溶液(975mmol)を加え18時間攪拌した。攪拌を止め、水層と溶媒層に分離した後、水層を取り除いた。残った溶液に1lの蒸留水を加え、20分間攪拌した後、分離した水層を取り除いた。この洗浄工程を3回行った。その洗浄された反応溶液をメタノールに投入し、沈殿物を濾集し、水で充分洗浄した後、真空下で乾燥した。乾燥後309g(収率92%)のポリマーを回収した。得られたポリマーの分子量はGPCによりMw=30,000、Mn=68,000、Mw/Mn=2.3であった。ポリマー組成はH−NMRからデシルノルボルネンが54モル%、エポキシノルボルネンが31モル%、フェネチルノルボルネンが15モル%であった。
上記で得られたポリマー100重量部と、光酸発生剤として(4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート(ローディア社製、Rhodorsil Photoinitiator 2074)2重量部と、光酸発生剤の作用で硬化反応可能な化合物としてジシクロペンタンジメタノールジグリシジルエーテル(ADEKA社製、EP−4088S、重量平均分子量308)50重量部と、1−クロロ−4−プロポロキシ−9H−チオキサントン(Lambson社製、CPTX)0.6重量部とフェノチアジン(関東化学社製)0.1重量部、3,5−ジt−ブチル−4−ヒドロキシヒドロシンナメート(チバ・スペシャルティケミカルズ社製、Irganox1076)1.5重量部とを2−ヘプタノンに溶解して樹脂ワニスを得た。
(実施例1)
1. 樹脂ワニス(樹脂組成物)の調製
環状オレフィン系樹脂として、デシルノルボルネン/グリシジルメチルノルボルネン/フェネチルノルボルネン=55/30/15の共重合体を使用した。該樹脂の合成方法を示す。
すべてのガラス機器を60℃、0.1Torr下で18時間乾燥した。その後、ガラス機器をグローボックス内に備え付けた。次に、エチルアセテート(917g)、シクロヘキサン(917g)、デシルノルボルネン(129g、0.55mol)、グリシジルメチルエーテルノルボルネン(177g、0.30mol)、フェネチルノルボルネン(29.7g、0.15mol)を反応フラスコに加えた。その反応フラスコをグローボックスから取り出し、その溶液中に窒素ガスを30分間通して脱気した。次に、グローボックス中で触媒であるビストルエンビスパーフルオロフェニルニッケル9.36g(19.5mmol)をトルエン15mlに溶解し、25mlのシリンジに入れ、グローボックスから取り出し、反応フラスコに加えた。その後、20℃で5時間攪拌して反応させ、さらに、過酢酸溶液(975mmol)を加え18時間攪拌した。攪拌を止め、水層と溶媒層に分離した後、水層を取り除いた。残った溶液に1lの蒸留水を加え、20分間攪拌した後、分離した水層を取り除いた。この洗浄工程を3回行った。その洗浄された反応溶液をメタノールに投入し、沈殿物を濾集し、水で充分洗浄した後、真空下で乾燥した。乾燥後309g(収率92%)のポリマーを回収した。得られたポリマーの分子量はGPCによりMw=30,000、Mn=68,000、Mw/Mn=2.3であった。ポリマー組成はH−NMRからデシルノルボルネンが54モル%、エポキシノルボルネンが31モル%、フェネチルノルボルネンが15モル%であった。
上記で得られたポリマー100重量部と、光酸発生剤として(4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート(ローディア社製、Rhodorsil Photoinitiator 2074)2重量部と、光酸発生剤の作用で硬化反応可能な化合物としてジシクロペンタンジメタノールジグリシジルエーテル(ADEKA社製、EP−4088S、重量平均分子量308)50重量部と、1−クロロ−4−プロポロキシ−9H−チオキサントン(Lambson社製、CPTX)0.6重量部とフェノチアジン(関東化学社製)0.1重量部、3,5−ジt−ブチル−4−ヒドロキシヒドロシンナメート(チバ・スペシャルティケミカルズ社製、Irganox1076)1.5重量部とを2−ヘプタノンに溶解して樹脂ワニスを得た。
2.半導体装置の製造
上述の樹脂ワニスを、8インチの半導体ウエハーにスピンコート法で塗布した後、ホットプレートにて110℃で5分乾燥し、膜厚約40μmの塗膜を得た。この塗膜にブロードバンドステッパー露光機(ウルトラテック社製)によりレチクルを通して1,500mJ/cm2でダムを形成する部分の露光を行った。その後ホットプレートにて90℃で4分間、露光部の架橋反応を促進させるため加熱した。次にシクロペンタノンに30秒間浸漬することによって未露光部を溶解除去した後、プロピレングリコールモノメチルエーテルアセテートで20秒間リンスした。その結果、受光素子を囲むようにダムが成形された。次に形成されたダムの上にガラス基板を乗せ、1.0MPaの圧力をかけながら170℃、5分間で圧着し、半導体基板とガラス基板を接着した。次にオーブンにて170℃、1時間で硬化した。この硬化膜の吸水率は0.2%であった。
上述の樹脂ワニスを、8インチの半導体ウエハーにスピンコート法で塗布した後、ホットプレートにて110℃で5分乾燥し、膜厚約40μmの塗膜を得た。この塗膜にブロードバンドステッパー露光機(ウルトラテック社製)によりレチクルを通して1,500mJ/cm2でダムを形成する部分の露光を行った。その後ホットプレートにて90℃で4分間、露光部の架橋反応を促進させるため加熱した。次にシクロペンタノンに30秒間浸漬することによって未露光部を溶解除去した後、プロピレングリコールモノメチルエーテルアセテートで20秒間リンスした。その結果、受光素子を囲むようにダムが成形された。次に形成されたダムの上にガラス基板を乗せ、1.0MPaの圧力をかけながら170℃、5分間で圧着し、半導体基板とガラス基板を接着した。次にオーブンにて170℃、1時間で硬化した。この硬化膜の吸水率は0.2%であった。
(実施例2)
光酸発生剤の作用で硬化反応可能な化合物として、以下のものを用いた以外は、実施例1と同様にした。
光酸発生剤の作用で硬化反応可能な化合物として、1,4−ビス{[(3−エチル−3−オキセタニル)メトキシ]メチル}ベンゼン(東亜合成工業社製、OXT−121、重量平均分子量334)50重量部を用いた。
光酸発生剤の作用で硬化反応可能な化合物として、以下のものを用いた以外は、実施例1と同様にした。
光酸発生剤の作用で硬化反応可能な化合物として、1,4−ビス{[(3−エチル−3−オキセタニル)メトキシ]メチル}ベンゼン(東亜合成工業社製、OXT−121、重量平均分子量334)50重量部を用いた。
(実施例3)
光酸発生剤の作用で硬化反応可能な化合物として、以下のものを用いた以外は、実施例1と同様にした。
光酸発生剤の作用で硬化反応可能な化合物として、エポキシ変性シロキサン(東レ・ダウコーニング社製、BY16−115、重量平均分子量1,500)10重量部を用いた。
光酸発生剤の作用で硬化反応可能な化合物として、以下のものを用いた以外は、実施例1と同様にした。
光酸発生剤の作用で硬化反応可能な化合物として、エポキシ変性シロキサン(東レ・ダウコーニング社製、BY16−115、重量平均分子量1,500)10重量部を用いた。
(実施例4)
光酸発生剤の作用で硬化反応可能な化合物の含有量を以下のようにして、全体の配合を以下のようにした以外は、実施例1と同様にした。
光酸発生剤の作用で硬化反応可能な化合物としてジシクロペンタンジメタノールジグリシジルエーテル(ADEKA社製、EP−4088S、重量平均分子量308)5重量部を配合した。
光酸発生剤の作用で硬化反応可能な化合物の含有量を以下のようにして、全体の配合を以下のようにした以外は、実施例1と同様にした。
光酸発生剤の作用で硬化反応可能な化合物としてジシクロペンタンジメタノールジグリシジルエーテル(ADEKA社製、EP−4088S、重量平均分子量308)5重量部を配合した。
(実施例5)
光酸発生剤の作用で硬化反応可能な化合物の含有量を以下のようにして、全体の配合を以下のようにした以外は、実施例1と同様にした。
光酸発生剤の作用で硬化反応可能な化合物としてジシクロペンタンジメタノールジグリシジルエーテル(ADEKA社製、EP−4088S、重量平均分子量308)80重量部を配合した。
光酸発生剤の作用で硬化反応可能な化合物の含有量を以下のようにして、全体の配合を以下のようにした以外は、実施例1と同様にした。
光酸発生剤の作用で硬化反応可能な化合物としてジシクロペンタンジメタノールジグリシジルエーテル(ADEKA社製、EP−4088S、重量平均分子量308)80重量部を配合した。
(実施例6)
環状オレフィン系樹脂として、以下のものを用いた以外は、実施例1と同様にした。
環状オレフィン系樹脂として、デシルノルボルネン/グリシジルメチルノルボルネン=76/24の共重合体を使用した。この樹脂の合成は、次のように行った。
2−ノルボルネン45重量部と5−デシル−2−ノルボルネン15重量部をシクロヘキサン200重量部に溶解し、分子量調節剤として1−ヘキセンを1重量部添加した。この溶液に重合触媒としてトリエチルアルミニウムの15%シクロヘキサン溶液10重量部、トリエチルアミン5重量部、及び四塩化チタンの20%シクロヘキサン溶液10重量部を添加して、30℃で開環重合を開始した。重合開始30分後の単量体から重合体への転化率85%の時点で六塩化タングステンの5%シクロヘキサン溶液を添加し、さらに30分間攪拌した結果、単量体から重合体への転化率は100%になった。
この重合体のシクロヘキサン溶液に対してイソプロピルアルコール0.9重量部とイオン交換水7重量部を順次添加して、80℃で1時間還流した。この結果、重合触媒は加水分解して重合体溶液と不均一成分となり、800メッシュのケイソウ土(ラジオライト#800、昭和化学社製)を濾過層として加圧濾過して除去し、無色透明な溶液を得た。
次に、活性アルミナを担体として不均一系触媒1g当りニッケル0.35g、酸化ニッケル0.2gを担持した細孔容積0.8cm3/g、比表面積300m2/gの不均一系触媒を150メッシュでふるい分けし、大きいものを選択して、最小粒径0.2μm以上の触媒を得た。前記の開環重合で得た重合体の20%シクロヘキサン溶液を耐圧反応容器に入れ、上記触媒を重合体に対して2重量%添加し、水素圧力45kg/cm2、温度230℃で3時間水素添加反応を行った後、800メッシュのケイソウ土(ラジオライト#800)と300メッシュのケイソウ土(ラジオライト#300、昭和化学社製)を積層して反応液を濾過し、0.5μmのカートリッジフィルターで濾過、さらに0.2μmのカートリッジフィルターで濾過して、触媒を除去した。次いで、縦置円筒型濃縮器にて揮発成分を除去し、ノルボルネン系重合体水素添加物を得た。
上記で得られたノルボルネン系共重合体28重量部、5,6−エポキシ1−ヘキセン10重量部およびジクミルペルオキシド2重量部をt−ブチルベンゼン130重量部に溶解し、140℃で6時間反応を行った。得られた反応生成物溶液を300重量部のメタノール中に注ぎ、反応生成物を凝固させた。凝固したエポキシ変性重合体を100℃で20時間真空乾燥し、エポキシ変性ノルボルネン系共重合体26重量部を得た。
環状オレフィン系樹脂として、以下のものを用いた以外は、実施例1と同様にした。
環状オレフィン系樹脂として、デシルノルボルネン/グリシジルメチルノルボルネン=76/24の共重合体を使用した。この樹脂の合成は、次のように行った。
2−ノルボルネン45重量部と5−デシル−2−ノルボルネン15重量部をシクロヘキサン200重量部に溶解し、分子量調節剤として1−ヘキセンを1重量部添加した。この溶液に重合触媒としてトリエチルアルミニウムの15%シクロヘキサン溶液10重量部、トリエチルアミン5重量部、及び四塩化チタンの20%シクロヘキサン溶液10重量部を添加して、30℃で開環重合を開始した。重合開始30分後の単量体から重合体への転化率85%の時点で六塩化タングステンの5%シクロヘキサン溶液を添加し、さらに30分間攪拌した結果、単量体から重合体への転化率は100%になった。
この重合体のシクロヘキサン溶液に対してイソプロピルアルコール0.9重量部とイオン交換水7重量部を順次添加して、80℃で1時間還流した。この結果、重合触媒は加水分解して重合体溶液と不均一成分となり、800メッシュのケイソウ土(ラジオライト#800、昭和化学社製)を濾過層として加圧濾過して除去し、無色透明な溶液を得た。
次に、活性アルミナを担体として不均一系触媒1g当りニッケル0.35g、酸化ニッケル0.2gを担持した細孔容積0.8cm3/g、比表面積300m2/gの不均一系触媒を150メッシュでふるい分けし、大きいものを選択して、最小粒径0.2μm以上の触媒を得た。前記の開環重合で得た重合体の20%シクロヘキサン溶液を耐圧反応容器に入れ、上記触媒を重合体に対して2重量%添加し、水素圧力45kg/cm2、温度230℃で3時間水素添加反応を行った後、800メッシュのケイソウ土(ラジオライト#800)と300メッシュのケイソウ土(ラジオライト#300、昭和化学社製)を積層して反応液を濾過し、0.5μmのカートリッジフィルターで濾過、さらに0.2μmのカートリッジフィルターで濾過して、触媒を除去した。次いで、縦置円筒型濃縮器にて揮発成分を除去し、ノルボルネン系重合体水素添加物を得た。
上記で得られたノルボルネン系共重合体28重量部、5,6−エポキシ1−ヘキセン10重量部およびジクミルペルオキシド2重量部をt−ブチルベンゼン130重量部に溶解し、140℃で6時間反応を行った。得られた反応生成物溶液を300重量部のメタノール中に注ぎ、反応生成物を凝固させた。凝固したエポキシ変性重合体を100℃で20時間真空乾燥し、エポキシ変性ノルボルネン系共重合体26重量部を得た。
(比較例1)
環状オレフィン系樹脂として、以下のものを用いた以外は、実施例1と同様にした。
環状オレフィン系樹脂として、フェネチルノルボルネン/デシルノルボルネン=50/50の共重合体を使用した。
環状オレフィン系樹脂として、以下のものを用いた以外は、実施例1と同様にした。
環状オレフィン系樹脂として、フェネチルノルボルネン/デシルノルボルネン=50/50の共重合体を使用した。
(比較例2)
光酸発生剤の作用で硬化反応可能な化合物の含有量を0にした以外は、実施例1と同様にした。
光酸発生剤の作用で硬化反応可能な化合物の含有量を0にした以外は、実施例1と同様にした。
(比較例3)
半導体装置の製造において、ダムとガラス基板の間に接着剤を使用した以外は、比較例2と同様にした。半導体装置の製造方法は以下の通りで行った。
比較例2で得られた樹脂ワニスを、8インチの半導体ウエハーにスピンコート法で塗布した後、ホットプレートにて110℃で5分間乾燥し、膜厚約40μmの塗膜を得た。この塗膜にブロードバンドステッパー露光機(ウルトラテック社製)によりレチクルを通して1500mJ/cm2でダムを形成する部分の露光を行った。その後ホットプレートにて90℃で4分間、露光部の架橋反応を促進させるため加熱した。次に、シクロペンタノンに30秒間浸漬することによって未露光部を溶解除去した後、プロピレングリコールモノメチルエーテルアセテートで20秒間リンスした。その結果、受光素子を囲むようにダムが成形された。次にオーブンにて170℃、1時間で硬化した。この硬化膜の吸水率は0.2%であった。次に形成されたダムの上に接着剤をディスペンス法により塗布した後、ガラス基板を乗せ、0.1MPaの圧力をかけながら150℃、5分間で圧着し、半導体基板とガラス基板を接着した。次にオーブンにて150℃、30分間で接着剤を硬化した。
半導体装置の製造において、ダムとガラス基板の間に接着剤を使用した以外は、比較例2と同様にした。半導体装置の製造方法は以下の通りで行った。
比較例2で得られた樹脂ワニスを、8インチの半導体ウエハーにスピンコート法で塗布した後、ホットプレートにて110℃で5分間乾燥し、膜厚約40μmの塗膜を得た。この塗膜にブロードバンドステッパー露光機(ウルトラテック社製)によりレチクルを通して1500mJ/cm2でダムを形成する部分の露光を行った。その後ホットプレートにて90℃で4分間、露光部の架橋反応を促進させるため加熱した。次に、シクロペンタノンに30秒間浸漬することによって未露光部を溶解除去した後、プロピレングリコールモノメチルエーテルアセテートで20秒間リンスした。その結果、受光素子を囲むようにダムが成形された。次にオーブンにて170℃、1時間で硬化した。この硬化膜の吸水率は0.2%であった。次に形成されたダムの上に接着剤をディスペンス法により塗布した後、ガラス基板を乗せ、0.1MPaの圧力をかけながら150℃、5分間で圧着し、半導体基板とガラス基板を接着した。次にオーブンにて150℃、30分間で接着剤を硬化した。
各実施例および各比較例で得られた感光性樹脂組成物について、以下の評価を行った。評価項目を内容と共に示す。得られた結果を表1に示す。
1.作業性
比較例3の作業工数を基準(100)として、他の実施例等の作業性を評価した。なお、比較例1については、現像できなかったために、評価できなかった。
1.作業性
比較例3の作業工数を基準(100)として、他の実施例等の作業性を評価した。なお、比較例1については、現像できなかったために、評価できなかった。
2.厚さ精度
厚さ精度は、スピンコート法で塗布、ホットプレートで乾燥した膜の厚さを非接触型干渉膜厚計で測定し、同一ウエハー面内における膜の厚さのバラツキ幅で評価した。各符号は、以下の通りである。
◎:厚さのバラツキ幅が3%未満であった。
○:厚さのバラツキ幅が、3%以上、5%未満であった。
△:厚さのバラツキ幅が、5%以上、10%未満であった。
×:厚さのバラツキ幅が、10%以上であった。
厚さ精度は、スピンコート法で塗布、ホットプレートで乾燥した膜の厚さを非接触型干渉膜厚計で測定し、同一ウエハー面内における膜の厚さのバラツキ幅で評価した。各符号は、以下の通りである。
◎:厚さのバラツキ幅が3%未満であった。
○:厚さのバラツキ幅が、3%以上、5%未満であった。
△:厚さのバラツキ幅が、5%以上、10%未満であった。
×:厚さのバラツキ幅が、10%以上であった。
3.接着強度
接着強度は、以下の工程を通して試験片を作成し、せん断強度測定で評価した。
樹脂ワニスを、8インチのウエハーにスピンコート法で塗布した後、ホットプレートにて110℃で5分間乾燥し、膜厚約40μmの塗膜を得た。この塗膜にブロードバンドステッパー露光機(ウルトラテック社製)により全面露光を行った。その後ホットプレートにて90℃で4分間、露光部の架橋反応を促進させるため加熱した。次に、シクロペンタノンに30秒間浸漬した後、プロピレングリコールモノメチルエーテルアセテートで20秒間リンスした。
次に、比較例3以外は前記のシリコンウエハーをダイシングにより小片化し、得られた半導体チップを該半導体チップより大きいサイズのガラスの上に乗せ、5分間加圧(1.0MPa)接着し、その後、オーブンにて170℃、1時間で硬化し、密着強度の試験片とした。また、比較例3においては、前記のシリコンウエハーをオーブンにて170℃、1時間で硬化した後、ダイシングにより小片化した。得られた半導体チップに接着剤を塗布し、該半導体チップより大きいサイズのガラスの上に乗せ、5分間加圧(0.1MPa)接着し、その後、オーブンにて150℃、30分間で硬化し、密着強度試験片とした。1水準当たり試験片を5個成形した。その後、自動せん断強度測定装置(DAGE社製、PC2400)を用いて、チップとチップとのせん断強度とその破壊状態を測定した。各符号は、以下の通りである。
◎:接着強度が10MPa以上で、破壊状態が材料破壊であった。
○:接着強度が10MPa以上で、破壊状態が界面剥離であった。
△:接着強度が1MPa以上、10MPa未満であった。
×:接着強度が測定できなかった。
接着強度は、以下の工程を通して試験片を作成し、せん断強度測定で評価した。
樹脂ワニスを、8インチのウエハーにスピンコート法で塗布した後、ホットプレートにて110℃で5分間乾燥し、膜厚約40μmの塗膜を得た。この塗膜にブロードバンドステッパー露光機(ウルトラテック社製)により全面露光を行った。その後ホットプレートにて90℃で4分間、露光部の架橋反応を促進させるため加熱した。次に、シクロペンタノンに30秒間浸漬した後、プロピレングリコールモノメチルエーテルアセテートで20秒間リンスした。
次に、比較例3以外は前記のシリコンウエハーをダイシングにより小片化し、得られた半導体チップを該半導体チップより大きいサイズのガラスの上に乗せ、5分間加圧(1.0MPa)接着し、その後、オーブンにて170℃、1時間で硬化し、密着強度の試験片とした。また、比較例3においては、前記のシリコンウエハーをオーブンにて170℃、1時間で硬化した後、ダイシングにより小片化した。得られた半導体チップに接着剤を塗布し、該半導体チップより大きいサイズのガラスの上に乗せ、5分間加圧(0.1MPa)接着し、その後、オーブンにて150℃、30分間で硬化し、密着強度試験片とした。1水準当たり試験片を5個成形した。その後、自動せん断強度測定装置(DAGE社製、PC2400)を用いて、チップとチップとのせん断強度とその破壊状態を測定した。各符号は、以下の通りである。
◎:接着強度が10MPa以上で、破壊状態が材料破壊であった。
○:接着強度が10MPa以上で、破壊状態が界面剥離であった。
△:接着強度が1MPa以上、10MPa未満であった。
×:接着強度が測定できなかった。
4.光解像性
光解像性は、以下の工程を通してパターンを形成し、そのパターンの形状および開口部の残渣で評価した。
パターン形成の工程としては、樹脂ワニスを、8インチのウエハーにスピンコート法で塗布した後、ホットプレートにて110℃で5分間乾燥し、膜厚約40μmの塗膜を得た。この塗膜にブロードバンドステッパー露光機(ウルトラテック(株)製)によりレチクルを通して1,500mJ/cm2でダムを形成する部分の露光を行った。その後ホットプレートにて90℃で4分間、露光部の架橋反応を促進させるため加熱した。次に、シクロペンタノンに30秒間浸漬することによって未露光部を溶解除去した後、プロピレングリコールモノメチルエーテルアセテートで20秒間リンスし、所望のパターンを成形した。各符号は、以下の通りである。
◎:スカムが無く、外観も良好であった。
○:スカムが一部発生または外観が一部不良であった。
△:ダムに剥離が生じた。
×:現像できなかった。
光解像性は、以下の工程を通してパターンを形成し、そのパターンの形状および開口部の残渣で評価した。
パターン形成の工程としては、樹脂ワニスを、8インチのウエハーにスピンコート法で塗布した後、ホットプレートにて110℃で5分間乾燥し、膜厚約40μmの塗膜を得た。この塗膜にブロードバンドステッパー露光機(ウルトラテック(株)製)によりレチクルを通して1,500mJ/cm2でダムを形成する部分の露光を行った。その後ホットプレートにて90℃で4分間、露光部の架橋反応を促進させるため加熱した。次に、シクロペンタノンに30秒間浸漬することによって未露光部を溶解除去した後、プロピレングリコールモノメチルエーテルアセテートで20秒間リンスし、所望のパターンを成形した。各符号は、以下の通りである。
◎:スカムが無く、外観も良好であった。
○:スカムが一部発生または外観が一部不良であった。
△:ダムに剥離が生じた。
×:現像できなかった。
表1から明らかなように、実施例1〜6の作業性が向上していることが確認された。
また、実施例1〜6は、樹脂スペーサーの厚さ精度にも優れていた。
また、実施例1、2および6は、接着強度にも特に優れていた。
また、実施例1、2、4および6は、光解像性にも優れていた。
また、実施例1〜6は、樹脂スペーサーの厚さ精度にも優れていた。
また、実施例1、2および6は、接着強度にも特に優れていた。
また、実施例1、2、4および6は、光解像性にも優れていた。
1 透明基板
2 半導体素子
21 半導体ウエハー
3 樹脂スペーサー
31 樹脂層
311 フォトマスクで覆われていない部分
4 フォトマスク
10 半導体装置
101 空隙部
2 半導体素子
21 半導体ウエハー
3 樹脂スペーサー
31 樹脂層
311 フォトマスクで覆われていない部分
4 フォトマスク
10 半導体装置
101 空隙部
Claims (12)
- 第1板状体と第2板状体とを樹脂スペーサーを介して接合し、第1板状体と第2板状体との間に空隙部を形成してなる中空構造体の製造方法であって、
官能基を有する環状オレフィン系樹脂と、光酸発生剤とを含み、光硬化後に接着性を有する樹脂組成物で構成される樹脂層を第1板状体の表面側に形成する樹脂層形成工程と、
前記樹脂層に光を照射して樹脂層を選択的に硬化させる光硬化工程と、
前記光硬化工程で前記樹脂層の未硬化の部分を除去して、前記空隙部を形成するように樹脂スペーサーを形成する現像工程と、
前記樹脂層を形成した第1板状体と、第2板状体とを前記樹脂スペーサーを介して接合し、熱圧着する熱圧着工程と、を有することを特徴とする中空構造体の製造方法。 - 前記樹脂組成物が、さらに前記光酸発生剤の作用で硬化反応可能な化合物を含むものである請求項1に記載の中空構造体の製造方法。
- 前記化合物は、エポキシ基を有する化合物およびオキセタニル基を有する化合物の少なくとも一方を含むものである請求項2に記載の中空構造体の製造方法。
- 前記樹脂組成物中の前記化合物の含有量は、前記環状オレフィン系樹脂100重量部に対して2〜100重量部である請求項2または3に記載の中空構造体の製造方法。
- 前記化合物の重量平均分子量は、1,000以下である請求項2ないし4のいずれかに記載の中空構造体の製造方法。
- 前記環状オレフィン系樹脂は、ノルボルネン系樹脂である請求項1ないし5のいずれかに記載の中空構造体の製造方法。
- 前記ノルボルネン系樹脂は、ノルボルネン化合物の付加重合体である請求項5に記載の中空構造体の製造方法。
- 前記官能基は、エポキシ基である請求項1ないし7のいずれかに記載の中空構造体の製造方法。
- 前記第1板状体は、透明基板である請求項1ないし8のいずれかに記載の中空構造体の製造方法。
- 前記第2板状体は、半導体素子である請求項1ないし9のいずれかに記載の中空構造体の製造方法。
- 前記中空構造体が、半導体装置である請求項1ないし10のいずれかに記載の中空構造体の製造方法。
- 請求項1ないし11のいずれかに記載の中空構造体の製造方法で生産されたことを特徴とする中空構造体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007071649A JP2008235490A (ja) | 2007-03-19 | 2007-03-19 | 中空構造体の製造方法および中空構造体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007071649A JP2008235490A (ja) | 2007-03-19 | 2007-03-19 | 中空構造体の製造方法および中空構造体 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008235490A true JP2008235490A (ja) | 2008-10-02 |
Family
ID=39907957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007071649A Pending JP2008235490A (ja) | 2007-03-19 | 2007-03-19 | 中空構造体の製造方法および中空構造体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008235490A (ja) |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010126606A (ja) * | 2008-11-26 | 2010-06-10 | Sumitomo Bakelite Co Ltd | 樹脂組成物および半導体装置 |
US20160126196A1 (en) | 2014-11-03 | 2016-05-05 | Rf Micro Devices, Inc. | Printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer |
US9583414B2 (en) | 2013-10-31 | 2017-02-28 | Qorvo Us, Inc. | Silicon-on-plastic semiconductor device and method of making the same |
US9613831B2 (en) | 2015-03-25 | 2017-04-04 | Qorvo Us, Inc. | Encapsulated dies with enhanced thermal performance |
US9812350B2 (en) | 2013-03-06 | 2017-11-07 | Qorvo Us, Inc. | Method of manufacture for a silicon-on-plastic semiconductor device with interfacial adhesion layer |
US9824951B2 (en) | 2014-09-12 | 2017-11-21 | Qorvo Us, Inc. | Printed circuit module having semiconductor device with a polymer substrate and methods of manufacturing the same |
US20170358511A1 (en) | 2016-06-10 | 2017-12-14 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with thermal additive and process for making the same |
US20180019184A1 (en) | 2016-07-18 | 2018-01-18 | Qorvo Us, Inc. | Thermally enhanced semiconductor package having field effect transistors with back-gate feature |
US20180044177A1 (en) | 2016-08-12 | 2018-02-15 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US9960145B2 (en) | 2015-03-25 | 2018-05-01 | Qorvo Us, Inc. | Flip chip module with enhanced properties |
US10020405B2 (en) | 2016-01-19 | 2018-07-10 | Qorvo Us, Inc. | Microelectronics package with integrated sensors |
US10038055B2 (en) | 2015-05-22 | 2018-07-31 | Qorvo Us, Inc. | Substrate structure with embedded layer for post-processing silicon handle elimination |
US20180228030A1 (en) | 2014-10-01 | 2018-08-09 | Qorvo Us, Inc. | Method for manufacturing an integrated circuit package |
US10062583B2 (en) | 2016-05-09 | 2018-08-28 | Qorvo Us, Inc. | Microelectronics package with inductive element and magnetically enhanced mold compound component |
US10068831B2 (en) | 2016-12-09 | 2018-09-04 | Qorvo Us, Inc. | Thermally enhanced semiconductor package and process for making the same |
US10090339B2 (en) | 2016-10-21 | 2018-10-02 | Qorvo Us, Inc. | Radio frequency (RF) switch |
US10109550B2 (en) | 2016-08-12 | 2018-10-23 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US10109502B2 (en) | 2016-09-12 | 2018-10-23 | Qorvo Us, Inc. | Semiconductor package with reduced parasitic coupling effects and process for making the same |
US20190013255A1 (en) | 2017-07-06 | 2019-01-10 | Qorvo Us, Inc. | Wafer-level packaging for enhanced performance |
US20190074271A1 (en) | 2017-09-05 | 2019-03-07 | Qorvo Us, Inc. | Microelectronics package with self-aligned stacked-die assembly |
US20190074263A1 (en) | 2017-09-05 | 2019-03-07 | Qorvo Us, Inc. | Microelectronics package with self-aligned stacked-die assembly |
US10276495B2 (en) | 2015-09-11 | 2019-04-30 | Qorvo Us, Inc. | Backside semiconductor die trimming |
US10486963B2 (en) | 2016-08-12 | 2019-11-26 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US20200235054A1 (en) | 2019-01-23 | 2020-07-23 | Qorvo Us, Inc. | Rf devices with enhanced performance and methods of forming the same |
US10749518B2 (en) | 2016-11-18 | 2020-08-18 | Qorvo Us, Inc. | Stacked field-effect transistor switch |
US10773952B2 (en) | 2016-05-20 | 2020-09-15 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US10784149B2 (en) | 2016-05-20 | 2020-09-22 | Qorvo Us, Inc. | Air-cavity module with enhanced device isolation |
US10804246B2 (en) | 2018-06-11 | 2020-10-13 | Qorvo Us, Inc. | Microelectronics package with vertically stacked dies |
US10964554B2 (en) | 2018-10-10 | 2021-03-30 | Qorvo Us, Inc. | Wafer-level fan-out package with enhanced performance |
US11069590B2 (en) | 2018-10-10 | 2021-07-20 | Qorvo Us, Inc. | Wafer-level fan-out package with enhanced performance |
US20210296199A1 (en) | 2018-11-29 | 2021-09-23 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with at least one heat extractor and process for making the same |
US11152363B2 (en) | 2018-03-28 | 2021-10-19 | Qorvo Us, Inc. | Bulk CMOS devices with enhanced performance and methods of forming the same utilizing bulk CMOS process |
US20220108938A1 (en) | 2019-01-23 | 2022-04-07 | Qorvo Us, Inc. | Rf devices with enhanced performance and methods of forming the same |
US20220139862A1 (en) | 2019-01-23 | 2022-05-05 | Qorvo Us, Inc. | Rf devices with enhanced performance and methods of forming the same |
US11387157B2 (en) | 2019-01-23 | 2022-07-12 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US11646289B2 (en) | 2019-12-02 | 2023-05-09 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
WO2023190837A1 (ja) * | 2022-03-31 | 2023-10-05 | 株式会社カネカ | 固体撮像装置及びその製造方法 |
US11923238B2 (en) | 2019-12-12 | 2024-03-05 | Qorvo Us, Inc. | Method of forming RF devices with enhanced performance including attaching a wafer to a support carrier by a bonding technique without any polymer adhesive |
US12046483B2 (en) | 2019-01-23 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US12046535B2 (en) | 2018-07-02 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US12046505B2 (en) | 2018-04-20 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same utilizing localized SOI formation |
US12062701B2 (en) | 2018-04-04 | 2024-08-13 | Qorvo Us, Inc. | Gallium-nitride-based module with enhanced electrical performance and process for making the same |
US12062571B2 (en) | 2021-03-05 | 2024-08-13 | Qorvo Us, Inc. | Selective etching process for SiGe and doped epitaxial silicon |
US12074086B2 (en) | 2019-11-01 | 2024-08-27 | Qorvo Us, Inc. | RF devices with nanotube particles for enhanced performance and methods of forming the same |
US12125825B2 (en) | 2019-11-08 | 2024-10-22 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006040986A1 (ja) * | 2004-10-13 | 2006-04-20 | Sumitomo Bakelite Co., Ltd. | 受光装置 |
JP2006114757A (ja) * | 2004-10-15 | 2006-04-27 | Sumitomo Bakelite Co Ltd | 樹脂封止型半導体装置 |
-
2007
- 2007-03-19 JP JP2007071649A patent/JP2008235490A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006040986A1 (ja) * | 2004-10-13 | 2006-04-20 | Sumitomo Bakelite Co., Ltd. | 受光装置 |
JP2006114757A (ja) * | 2004-10-15 | 2006-04-27 | Sumitomo Bakelite Co Ltd | 樹脂封止型半導体装置 |
Cited By (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010126606A (ja) * | 2008-11-26 | 2010-06-10 | Sumitomo Bakelite Co Ltd | 樹脂組成物および半導体装置 |
US10134627B2 (en) | 2013-03-06 | 2018-11-20 | Qorvo Us, Inc. | Silicon-on-plastic semiconductor device with interfacial adhesion layer |
US9812350B2 (en) | 2013-03-06 | 2017-11-07 | Qorvo Us, Inc. | Method of manufacture for a silicon-on-plastic semiconductor device with interfacial adhesion layer |
US10062637B2 (en) | 2013-10-31 | 2018-08-28 | Qorvo Us, Inc. | Method of manufacture for a semiconductor device |
US9583414B2 (en) | 2013-10-31 | 2017-02-28 | Qorvo Us, Inc. | Silicon-on-plastic semiconductor device and method of making the same |
US9824951B2 (en) | 2014-09-12 | 2017-11-21 | Qorvo Us, Inc. | Printed circuit module having semiconductor device with a polymer substrate and methods of manufacturing the same |
US10492301B2 (en) | 2014-10-01 | 2019-11-26 | Qorvo Us, Inc. | Method for manufacturing an integrated circuit package |
US20180228030A1 (en) | 2014-10-01 | 2018-08-09 | Qorvo Us, Inc. | Method for manufacturing an integrated circuit package |
US10085352B2 (en) | 2014-10-01 | 2018-09-25 | Qorvo Us, Inc. | Method for manufacturing an integrated circuit package |
US10199301B2 (en) | 2014-11-03 | 2019-02-05 | Qorvo Us, Inc. | Methods of manufacturing a printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer |
US10121718B2 (en) | 2014-11-03 | 2018-11-06 | Qorvo Us, Inc. | Printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer |
US10109548B2 (en) | 2014-11-03 | 2018-10-23 | Qorvo Us, Inc. | Printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer |
US20160126196A1 (en) | 2014-11-03 | 2016-05-05 | Rf Micro Devices, Inc. | Printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer |
US10020206B2 (en) | 2015-03-25 | 2018-07-10 | Qorvo Us, Inc. | Encapsulated dies with enhanced thermal performance |
US9960145B2 (en) | 2015-03-25 | 2018-05-01 | Qorvo Us, Inc. | Flip chip module with enhanced properties |
US9613831B2 (en) | 2015-03-25 | 2017-04-04 | Qorvo Us, Inc. | Encapsulated dies with enhanced thermal performance |
US10038055B2 (en) | 2015-05-22 | 2018-07-31 | Qorvo Us, Inc. | Substrate structure with embedded layer for post-processing silicon handle elimination |
US10276495B2 (en) | 2015-09-11 | 2019-04-30 | Qorvo Us, Inc. | Backside semiconductor die trimming |
US10020405B2 (en) | 2016-01-19 | 2018-07-10 | Qorvo Us, Inc. | Microelectronics package with integrated sensors |
US10090262B2 (en) | 2016-05-09 | 2018-10-02 | Qorvo Us, Inc. | Microelectronics package with inductive element and magnetically enhanced mold compound component |
US10062583B2 (en) | 2016-05-09 | 2018-08-28 | Qorvo Us, Inc. | Microelectronics package with inductive element and magnetically enhanced mold compound component |
US10773952B2 (en) | 2016-05-20 | 2020-09-15 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US10784149B2 (en) | 2016-05-20 | 2020-09-22 | Qorvo Us, Inc. | Air-cavity module with enhanced device isolation |
US10882740B2 (en) | 2016-05-20 | 2021-01-05 | Qorvo Us, Inc. | Wafer-level package with enhanced performance and manufacturing method thereof |
US20170358511A1 (en) | 2016-06-10 | 2017-12-14 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with thermal additive and process for making the same |
US10103080B2 (en) | 2016-06-10 | 2018-10-16 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with thermal additive and process for making the same |
US20180197803A1 (en) | 2016-06-10 | 2018-07-12 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with thermal additive and process for making the same |
US10262915B2 (en) | 2016-06-10 | 2019-04-16 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with thermal additive and process for making the same |
US20180019184A1 (en) | 2016-07-18 | 2018-01-18 | Qorvo Us, Inc. | Thermally enhanced semiconductor package having field effect transistors with back-gate feature |
US10079196B2 (en) | 2016-07-18 | 2018-09-18 | Qorvo Us, Inc. | Thermally enhanced semiconductor package having field effect transistors with back-gate feature |
US10468329B2 (en) | 2016-07-18 | 2019-11-05 | Qorvo Us, Inc. | Thermally enhanced semiconductor package having field effect transistors with back-gate feature |
US20180044177A1 (en) | 2016-08-12 | 2018-02-15 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US10804179B2 (en) | 2016-08-12 | 2020-10-13 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US10109550B2 (en) | 2016-08-12 | 2018-10-23 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US10486963B2 (en) | 2016-08-12 | 2019-11-26 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US10486965B2 (en) | 2016-08-12 | 2019-11-26 | Qorvo Us, Inc. | Wafer-level package with enhanced performance |
US10985033B2 (en) | 2016-09-12 | 2021-04-20 | Qorvo Us, Inc. | Semiconductor package with reduced parasitic coupling effects and process for making the same |
US10109502B2 (en) | 2016-09-12 | 2018-10-23 | Qorvo Us, Inc. | Semiconductor package with reduced parasitic coupling effects and process for making the same |
US10090339B2 (en) | 2016-10-21 | 2018-10-02 | Qorvo Us, Inc. | Radio frequency (RF) switch |
US10749518B2 (en) | 2016-11-18 | 2020-08-18 | Qorvo Us, Inc. | Stacked field-effect transistor switch |
US20180342439A1 (en) | 2016-12-09 | 2018-11-29 | Qorvo Us, Inc. | Thermally enhanced semiconductor package and process for making the same |
US10790216B2 (en) | 2016-12-09 | 2020-09-29 | Qorvo Us, Inc. | Thermally enhanced semiconductor package and process for making the same |
US10068831B2 (en) | 2016-12-09 | 2018-09-04 | Qorvo Us, Inc. | Thermally enhanced semiconductor package and process for making the same |
US10490471B2 (en) | 2017-07-06 | 2019-11-26 | Qorvo Us, Inc. | Wafer-level packaging for enhanced performance |
US20190013255A1 (en) | 2017-07-06 | 2019-01-10 | Qorvo Us, Inc. | Wafer-level packaging for enhanced performance |
US10755992B2 (en) | 2017-07-06 | 2020-08-25 | Qorvo Us, Inc. | Wafer-level packaging for enhanced performance |
US10784233B2 (en) | 2017-09-05 | 2020-09-22 | Qorvo Us, Inc. | Microelectronics package with self-aligned stacked-die assembly |
US10366972B2 (en) | 2017-09-05 | 2019-07-30 | Qorvo Us, Inc. | Microelectronics package with self-aligned stacked-die assembly |
US20190074263A1 (en) | 2017-09-05 | 2019-03-07 | Qorvo Us, Inc. | Microelectronics package with self-aligned stacked-die assembly |
US20190074271A1 (en) | 2017-09-05 | 2019-03-07 | Qorvo Us, Inc. | Microelectronics package with self-aligned stacked-die assembly |
US11152363B2 (en) | 2018-03-28 | 2021-10-19 | Qorvo Us, Inc. | Bulk CMOS devices with enhanced performance and methods of forming the same utilizing bulk CMOS process |
US12062700B2 (en) | 2018-04-04 | 2024-08-13 | Qorvo Us, Inc. | Gallium-nitride-based module with enhanced electrical performance and process for making the same |
US12062701B2 (en) | 2018-04-04 | 2024-08-13 | Qorvo Us, Inc. | Gallium-nitride-based module with enhanced electrical performance and process for making the same |
US12046505B2 (en) | 2018-04-20 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same utilizing localized SOI formation |
US11063021B2 (en) | 2018-06-11 | 2021-07-13 | Qorvo Us, Inc. | Microelectronics package with vertically stacked dies |
US10804246B2 (en) | 2018-06-11 | 2020-10-13 | Qorvo Us, Inc. | Microelectronics package with vertically stacked dies |
US12046535B2 (en) | 2018-07-02 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US11069590B2 (en) | 2018-10-10 | 2021-07-20 | Qorvo Us, Inc. | Wafer-level fan-out package with enhanced performance |
US10964554B2 (en) | 2018-10-10 | 2021-03-30 | Qorvo Us, Inc. | Wafer-level fan-out package with enhanced performance |
US11942389B2 (en) | 2018-11-29 | 2024-03-26 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with at least one heat extractor and process for making the same |
US11646242B2 (en) | 2018-11-29 | 2023-05-09 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with at least one heat extractor and process for making the same |
US20210296199A1 (en) | 2018-11-29 | 2021-09-23 | Qorvo Us, Inc. | Thermally enhanced semiconductor package with at least one heat extractor and process for making the same |
US11961813B2 (en) | 2019-01-23 | 2024-04-16 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US20200235054A1 (en) | 2019-01-23 | 2020-07-23 | Qorvo Us, Inc. | Rf devices with enhanced performance and methods of forming the same |
US11923313B2 (en) | 2019-01-23 | 2024-03-05 | Qorvo Us, Inc. | RF device without silicon handle substrate for enhanced thermal and electrical performance and methods of forming the same |
US12112999B2 (en) | 2019-01-23 | 2024-10-08 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US11710680B2 (en) | 2019-01-23 | 2023-07-25 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US12062623B2 (en) | 2019-01-23 | 2024-08-13 | Qorvo Us, Inc. | RF device without silicon handle substrate for enhanced thermal and electrical performance and methods of forming the same |
US12046483B2 (en) | 2019-01-23 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US11387157B2 (en) | 2019-01-23 | 2022-07-12 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US12046570B2 (en) | 2019-01-23 | 2024-07-23 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US20220139862A1 (en) | 2019-01-23 | 2022-05-05 | Qorvo Us, Inc. | Rf devices with enhanced performance and methods of forming the same |
US12057374B2 (en) | 2019-01-23 | 2024-08-06 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US20220108938A1 (en) | 2019-01-23 | 2022-04-07 | Qorvo Us, Inc. | Rf devices with enhanced performance and methods of forming the same |
US12074086B2 (en) | 2019-11-01 | 2024-08-27 | Qorvo Us, Inc. | RF devices with nanotube particles for enhanced performance and methods of forming the same |
US12125825B2 (en) | 2019-11-08 | 2024-10-22 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US11646289B2 (en) | 2019-12-02 | 2023-05-09 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same |
US11923238B2 (en) | 2019-12-12 | 2024-03-05 | Qorvo Us, Inc. | Method of forming RF devices with enhanced performance including attaching a wafer to a support carrier by a bonding technique without any polymer adhesive |
US12062571B2 (en) | 2021-03-05 | 2024-08-13 | Qorvo Us, Inc. | Selective etching process for SiGe and doped epitaxial silicon |
WO2023190837A1 (ja) * | 2022-03-31 | 2023-10-05 | 株式会社カネカ | 固体撮像装置及びその製造方法 |
US12125739B2 (en) | 2023-01-06 | 2024-10-22 | Qorvo Us, Inc. | RF devices with enhanced performance and methods of forming the same utilizing localized SOI formation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008235490A (ja) | 中空構造体の製造方法および中空構造体 | |
JP5040432B2 (ja) | 感光性樹脂組成物 | |
KR102475583B1 (ko) | 반도체 장치, 적층형 반도체 장치, 밀봉 후 적층형 반도체 장치 및 이들의 제조 방법 | |
KR102172939B1 (ko) | 무수나드산 중합체 및 그로부터 유래한 감광성 조성물 | |
TWI443783B (zh) | 用於晶片堆疊,晶片及晶圓結合之方法及材料 | |
JP4760713B2 (ja) | 受光装置 | |
KR101024157B1 (ko) | 수광 장치의 제조 방법 | |
JP2020128545A (ja) | 感光性接着剤組成物および半導体装置 | |
JP5176589B2 (ja) | 樹脂組成物 | |
JP5656349B2 (ja) | チップを積層するために、そしてチップ及びウェハを接合させるために有用な方法及び材料 | |
JP2006114757A (ja) | 樹脂封止型半導体装置 | |
JP5304592B2 (ja) | 樹脂封止型半導体装置 | |
JP2007157792A (ja) | ウェハースケール半導体パッケージの製造方法 | |
JP2020071280A (ja) | 感光性樹脂組成物および電子デバイスの製造方法 | |
JP2013048295A (ja) | 樹脂封止型半導体装置 | |
JP2010126606A (ja) | 樹脂組成物および半導体装置 | |
JP7447252B2 (ja) | 感光性組成物およびその用途 | |
JP5153204B2 (ja) | 樹脂組成物 | |
JP4325531B2 (ja) | 樹脂封止型半導体装置 | |
JPWO2008155895A1 (ja) | 電子装置の製造方法 | |
KR20170117103A (ko) | 광염기 발생제를 함유하는 광이미지화 가능한 조성물 | |
JP2010077363A (ja) | 樹脂組成物および半導体装置 | |
SG174368A1 (en) | Spacer formation film, semiconductor wafer and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121127 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130319 |