JP2008224606A - X線検査装置およびx線検査装置を用いたx線検査方法 - Google Patents

X線検査装置およびx線検査装置を用いたx線検査方法 Download PDF

Info

Publication number
JP2008224606A
JP2008224606A JP2007067043A JP2007067043A JP2008224606A JP 2008224606 A JP2008224606 A JP 2008224606A JP 2007067043 A JP2007067043 A JP 2007067043A JP 2007067043 A JP2007067043 A JP 2007067043A JP 2008224606 A JP2008224606 A JP 2008224606A
Authority
JP
Japan
Prior art keywords
ray
inspection
detection
target
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007067043A
Other languages
English (en)
Inventor
Masayuki Masuda
真之 益田
Takeshi Matsunami
剛 松波
Haruyuki Koizumi
治幸 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2007067043A priority Critical patent/JP2008224606A/ja
Priority to TW097108598A priority patent/TW200902965A/zh
Priority to EP08152634A priority patent/EP1970934A3/en
Priority to US12/048,852 priority patent/US7522709B2/en
Priority to CNA200810086172XA priority patent/CN101266218A/zh
Publication of JP2008224606A publication Critical patent/JP2008224606A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • H01J35/30Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof by deflection of the cathode ray
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4021Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot
    • A61B6/4028Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot resulting in acquisition of views from substantially different positions, e.g. EBCT
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting

Abstract

【課題】ターゲット面を効率よく使用できるX線検査装置を提供する。
【解決手段】X線検査装置100は、センサベース22を回転させることで各X線センサ23の位置を変更し、位置を変更した後の各X線センサ23にX線が入射するように、改めてX線焦点位置となるX線の放射の起点位置を設定する。走査型X線源10は、電子ビームを偏向させることにより、電子ビームがX線源のターゲットに衝突する位置を任意の場所に容易に変更することができる。これにより、ターゲットへの累積照射時間に応じて容易に電子ビームの照射位置を移動させることができる。従って、X線検査を中断させることなくターゲットのメンテナンスを行なうことができる。
【選択図】図1

Description

本発明は、X線検査装置およびX線検査装置を用いたX線検査方法に関する。
近年、サブミクロンの微細加工技術によりLSI(Large-Scale Integration)の高集積化が進み、従来複数のパッケージに分かれていた機能をひとつのLSIに積め込むことができるようになった。従来のQFP(Quad Flat Package)やPGA(Pin Grid Array)では、ワンパッケージに必要な機能を組み込むことによるピン数の増加に対応できなくなったため、最近では、特に、BGA(Ball Grid Array)やCSP(Chip Size Package)パッケージのLSIが使用される。また、携帯電話機などの超小型化が必要なものでは、ピン数がそれほど必要なくてもBGAパッケージが使用されている。
LSIのBGAやCSPパッケージは超小型化には大いに貢献する反面、半田部分等がアセンブリ後には外観からは目に見えないという特徴がある。そこで、BGAやCSPパッケージを実装したプリント基板等を検査する際は、検査対象品にX線を照射して得られた透過画像を分析することで、品質の良否判定が行なわれてきた。たとえば、特許文献1では、透過X線を検出するのにX線平面センサを用いることで、鮮明なX線画像を得ることができるX線断層面検査装置が開示されている。
このようなX線検査装置では、電子ビームをタングステンなどのターゲットに衝突させてX線を放射する。電子ビームをターゲットに衝突させると、ターゲットが損傷する。このため、ターゲットの同じ位置に所定時間以上電子ビーム衝突させるとターゲットの劣化がおこる。
X線検査装置のX線源には、電子ビームをターゲットに衝突させる位置が固定されている方式(固定焦点方式)や、所定の位置に離散的に繰り返して電子ビームを衝突させる方式がある。後者の方式は、固定焦点方式よりも長寿命化が期待されるが、同様にターゲットの劣化がおこる。
ターゲットの劣化がおこると、照射X線量が減少してX線画像が暗くなったり、画質が低下したりして、検査効率が悪くなるため、ターゲットのメンテナンスが必要となる。ターゲットの劣化は電子ビームの当たるわずかな部分に限られるため、ユーザは、ターゲット面を回転させてターゲットのメンテナンスを行なう。これにより、電子ビームが衝突する位置は劣化位置をずれ、新しいターゲットと同等の特性を得ることができる。
たとえば、浜松ホトニクス株式会社製マイクロフォーカスX線源L9191を使用してX線検査を行なう際は、ユーザは手動でターゲット面を回転させてターゲットのメンテナンスを行なう。
特開2000−46760号公報
一般的に、透過型X線源のターゲットの寿命は300時間から500時間程度である。分析装置のように使用頻度が少ない場合は、ターゲットの劣化が生じるまでの期間は長くなるため、ターゲットのメンテナンスに要する手間は問題とならない。しかしながら、インライン検査装置のように長時間稼動する場合、ターゲットの劣化が生じるまでの期間が短くなるため、ターゲットのメンテナンスが簡便であることが重要である。
手動でターゲット面を回転させてメンテナンスする方法では、保守員の慣れが必要であり、作業に時間を要する。また、ターゲットのどの位置にX線をどれぐらい照射したか等のメンテナンスのための情報を管理しておく必要がある。
また、走査型X線源において、ターゲットの所定の位置を離散的に繰り返し使用する方式では、複数の位置に電子ビームを衝突させるため、上記のようなメンテナンスのための情報は膨大な量となり、ユーザが管理するのは困難である。
本発明は、上記のような問題を解決するためになされたものであって、その目的は、ターゲット面を効率よく使用できるX線検査装置および当該X線検査装置のX線撮影方法を適用したX線検査装置を用いたX線検査方法を提供することである。
本発明の他の目的は、同一のターゲットのターゲット面を均一に使用することで、X線源のメンテナンスに要する手間を低減することが可能なX線検査装置および当該X線検査装置のX線撮影方法を適用したX線検査装置を用いたX線検査方法を提供することである。
本発明の1つの局面に従えば、所定の位置のうちから指定された位置に設定され、入射されるX線の強度分布を検出するための検出面と、ターゲット面におけるX線焦点位置を移動させてX線を発生させることが可能なX線源と、ターゲット面の位置についてX線焦点位置としてX線を発生させた履歴情報を記憶する記憶装置とを備える、X線照射によって対象物の検査部分を検査するためのX線検査装置を用いたX線検査方法であって、複数の第1の所定位置のうち指定された検出面の位置と、検査部分とに応じたX線焦点位置を設定するステップと、記憶装置の履歴情報に基づき、設定されたX線焦点位置から発生させたX線量が所定量を超えたことを検知するステップと、検知結果に応じて、複数の第1の所定位置とは異なる、複数の第2の所定位置のうちのいずれかに検出面の指定位置を変更して設定するステップと、変更された検出面に応じて再設定された位置に、X線焦点位置を移動させて、X線を発生させるステップと、検出面において、検査部分を透過したX線の強度分布を検出するステップとを備える。
好ましくは、X線焦点位置を設定するステップは、X線が検査部分を透過して検出面に対して入射するように、ターゲット面におけるX線焦点位置を決定するステップを含む。
好ましくは、指定位置を変更して設定するステップは、複数の第2の所定位置のうちから、X線を検出するための複数の検出面をそれぞれ指定するステップを含み、X線を発生させるステップは、複数の検出面について、X線が検査部分を透過して複数の検出面に対してそれぞれ入射するように、ターゲット面における複数のX線焦点位置をそれぞれ決定するステップと、決定された各X線焦点位置に、X線源の電子ビームを照射する照射位置を移動させて、X線を発生させるステップとを含み、検出した強度分布のデータに基づき、検査部分の画像データを再構成するステップをさらに備える。
好ましくは、X線量が所定量を超えたことを検知するステップは、設定されたX線焦点位置について、少なくともX線を発生させた累積時間が所定時間を経過したことを検知するステップを含む。
好ましくは、複数のX線焦点位置をそれぞれ決定するステップは、X線焦点位置を、所定時間を超えて電子ビームが照射された位置を除いて決定するステップを含む。
好ましくは、複数のX線焦点位置をそれぞれ決定するステップは、X線焦点位置を、所定時間を超えて電子ビームが照射された位置から、X線焦点のサイズに応じたエリア係数に基づいて決定される範囲を除いて決定するステップを含む。
好ましくは、X線を発生させるステップは、電子ビームを偏向させることで、電子ビームをターゲット面に照射する照射位置を変更して、X線焦点位置を移動させるステップを含む。
本発明の他の局面に従うと、X線によって対象物の検査部分を検査するX線検査装置であって、X線を検出するために複数の検出面を有するX線検出手段を備え、X線検出手段は、複数の検出面の位置を、複数の第1の所定位置から、複数の第1の所定位置とは異なる複数の第2の所定位置にそれぞれ変更する検出位置変更手段を含み、X線の出力処理を制御するための出力制御手段をさらに備え、出力制御手段は、複数の検出面について、X線が対象物の検査部分を透過して各検出面に対して入射するようにX線の放射の起点位置を各々設定する起点設定手段と、各起点位置と、各起点位置からX線を放射した履歴情報とを対応付けて記憶する記憶手段と、記憶手段の履歴情報に基づき、設定された起点位置について、累積照射時間が所定時間を経過したことを検知すると、検出位置変更手段による変更を行なうために、検知結果を出力する検知手段とを含み、起点設定手段は、検出位置変更手段による変更が行われた場合、起点位置の各々を再設定し、各起点位置にX線源のX線焦点位置を移動させて、X線を発生させるX線出力手段と、複数の検出面で検出した、検査部分を透過したX線の強度分布のデータに基づき、検査部分の画像データを再構成する再構成手段とをさらに備える。
好ましくは、X線出力手段は、電子ビームを偏向させてターゲット面への照射位置を移動させることにより、X線焦点位置を移動させる手段を含む。
好ましくは、検出位置変更手段は、所定の軸を中心とする円周上に複数の検出面が配置された回転台と、軸を中心として回転台を回転させる回転手段とを含み、検知手段の検知結果に応じて、回転台を一定の角度だけ回転させることにより、複数の検出面の位置を、複数の第1の所定位置から、複数の第2の所定位置にそれぞれ変更する。
好ましくは、起点設定手段は、履歴情報に基づき、所定時間を経過した照射時間と対応付けられた位置を除いて起点位置の各々を設定する。
好ましくは、出力手段は、対象物の検査部分を指定する指定手段をさらに含む。
本発明に係るX線検査装置およびX線検査装置の検査方法によれば、ターゲット面を効率よく使用できる。
以下、図面を参照しつつ本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについては詳細な説明は繰り返さない。
(1.本発明の構成)
図1は、本発明に係るX線検査装置100の概略ブロック図である。
図1を参照して、本発明に係るX線検査装置100について説明する。ただし、以下で記載されている構成、寸法、形状、その他の相対配置などは、特定的な記載がない限りは
、この発明の範囲をそれらのみに限定する趣旨のものではない。
X線検査装置100は、X線を出力する走査型X線源10と、複数のX線センサ23が取り付けられ、回転軸21を中心に回転する回転台であるセンサベース22とを備える。また、走査型X線源10とセンサベース22との間には検査対象20が配置される。さらに、X線検査装置100は、センサベース22の回転軸周りの回転角やX線センサ23からの画像データの取得を制御するための画像取得制御機構30と、ユーザからの指示入力等を受け付けるための入力部40と、測定結果等を外部に出力するための出力部50とを備える。また、X線検査装置100は、走査X線源制御機構60と、演算部70と、メモリ90とをさらに備える。このような構成において、演算部70は、メモリ90に格納された図示しないプログラムを実行して各部を制御し、また、所定の演算処理を実施する。
走査型X線源10は、走査X線源制御機構60によって制御され、検査対象20に対しX線を照射する。
図2は、走査型X線源10の構成を示す断面図である。
図2を参照して、走査型X線源10においては、電子ビーム制御部62によって制御された電子銃15から、タングステンなどのターゲット11に対し電子ビーム16が照射される。そして、電子ビーム16がターゲットに衝突した場所(X線焦点位置17)からX線18が発生し、放射(出力)される。なお、電子ビーム系は、真空容器9の中に収められている。真空容器9の内部は、真空ポンプ14によって真空に保たれており、電子銃15から高圧電源13によって加速された電子ビーム16が発射される。
また、走査型X線源10においては、偏向ヨーク12によって電子ビーム16を偏向することにより、電子ビーム16がターゲット11に衝突する場所を任意に変更することができる。たとえば、偏向ヨーク12によって偏向された電子ビーム16aはターゲット11に衝突し、X線焦点位置17aからX線18aが出力される。また、同様に、偏向ヨーク12によって偏向された電子ビーム16bはターゲット11に衝突し、X線焦点位置17bからX線18bが出力される。なお、本発明において、走査型X線源10は透過型であり、また、後に説明するように、検査対象物の検査対象部分に応じて設定されるX線の放射の起点となるべき位置(以下、「X線の放射の起点位置」と呼ぶ)からX線を発生させるにあたり、その位置の設定の自由度を高めることができるよう、リング状ではなく、連続面のターゲットであることが望ましい。また、以下の説明では、特に位置を区別して記載しない場合は、総称として、単にX線焦点位置17と示す。
なお、X線焦点位置を、上述したX線の放射の各起点位置に移動させるには、たとえば、X線源自体の位置を、その都度、機械的に移動させることも可能である。ただし、図2に示すような構成であれば、X線焦点位置を、X線発生の起点位置に移動させるにあたり、一定の範囲内であれば、X線源を機械的に移動させることを必要とせず、保守性や信頼性に優れたX線検査装置を実現できる。なお、X線源を複数個設けておき、起点位置に応じて、切り替えて使用することも可能である。
また、電子ビーム16がターゲット11に衝突するX線焦点のサイズは、一般的にサブミクロンから数百ミクロンである。このため、ターゲット11の同じ位置に所定時間以上電子ビームが衝突すると、その位置および当該位置を中心とする所定範囲内が熱損傷等により劣化することとなる。X線焦点位置が劣化すると、照射X線量が減少してX線画像が暗くなったり、画質の低下が発生したりして検査効率が悪くなる。
画質の低下等を防ぐため、従来方法においては、ターゲット11自体を回転等させることでX線焦点位置のターゲットを新しいターゲットと同等の特性となるようにしていた。
しかし、この方法では、回転作業に時間がかかり、X線検査を中断する必要がある。
そこで、本発明では、各X線センサ23の位置を変更し、位置を変更した後の各X線センサ23にX線が入射するように、改めてX線焦点位置17となるX線の放射の起点位置を設定する。本発明に係る走査型X線源10は、電子ビーム16を偏向させることにより、電子ビーム16がターゲット11に衝突する位置を任意の場所に容易に変更することができるため、ターゲット11への累積照射時間に応じて電子ビームの照射位置を移動させ、X線検査を中断させることなくターゲットのメンテナンスを行なうことができる。
図1に戻って、走査X線源制御機構60は、電子ビームの出力を制御する電子ビーム制御部62を含む。電子ビーム制御部62は、演算部70から、X線焦点位置、X線エネルギー(管電圧、管電流)の指定をうける。X線エネルギーは、検査対象の構成によって異なる。
検査対象20は、走査型X線源10とX線センサ23(センサベース22)との間に配置される。検査対象20は、X−Y−Zステージで任意の位置に移動するようにしてもよいし、ベルトコンベアのように一方向に移動することにより検査のための位置に配置するようにしてもよい。検査対象がプリント実装基板のように小さい場合、走査型X線源10とセンサベース22とは固定で検査対象を移動させるが、ガラス基板など検査対象が大面積で、検査対象側を任意に移動させることが困難な場合は、走査型X線源10とセンサベース22との相対的な位置は固定したまま、走査型X線源10およびセンサベース22を移動させてもよい。
X線センサ23は、走査型X線源10から出力され、検査対象20を透過したX線を検出して画像化する2次元センサである。たとえば、CCD(Charge Coupled Device)カメラ、I.I.(Image Intensifier)管などである。本発明では、センサベース22に複数のX線センサを配置することから、スペース効率のよいFPD(フラットパネルディテクタ)が望ましい。また、インライン検査で使うことができるように高感度であることが望ましく、CdTeを使った直接変換方式のFPDであることが特に望ましい。なお、以下の説明では、特にセンサを区別して記載しない場合は、総称として、単にX線センサ23と示す。
センサベース22においては、走査型X線源10側の回転台の円周上に複数のX線センサ23が取り付けられている。また、センサベース22は、回転台の回転軸21を中心に回転することができる。実際には、回転可能な範囲は1回転以下でよく、たとえば、センサベース22の円周上に、N個のX線センサが配置されていた場合、隣り合うX線センサとセンサベース回転中心のなす角度が360/N程度回転すればよい。もちろん、前式は一具体例に過ぎず、回転角度はこの式に縛られるものではない。センサベース22の回転角はセンサ(図示しない)によって知ることができ、入力部40を介して演算部70に取り込むことができる。
また、センサベース22は、拡大率を調整するために上下に昇降できることが望ましい。この場合、センサベース22の上下方向の位置をセンサ(図示しない)により知ることができ、入力部40を介して演算部70に取り込むことができる。また、センサベース22を上下に昇降すると、X線センサ23に入射するX線の角度が変わるため、X線センサ23のセンサベース22に対する傾斜角度を制御できるようにしておくのが望ましい。
画像取得制御機構30は、演算部70より指定された角度にセンサベースを回転するよう制御するための回転角制御部32と、演算部70から指定されたX線センサ23の画像データを取得するための画像データ取得部34とを含む。なお、演算部70から指定され
るX線センサは1個でも複数でもかまわない。
入力部40は、ユーザの入力を受け付けるための操作入力機器である。
出力部50は、演算部70で構成されたX線画像やターゲットの保守のための情報を表示するためのディスプレイである。
すなわち、ユーザは、入力部40を介して様々な入力を実行することができ、演算部70の処理によって得られる種々の演算結果が出力部50に表示される。出力部50に表示される画像は、ユーザによる目視の良否判定のために出力されてもよいし、あるいは、後で説明する良否判定部78の良否判定結果として出力されてもよい。
演算部70は、走査X線源制御部72と、画像取得制御部74と、3D画像再構成部76と、良否判定部78と、ステージ制御部80と、X線焦点位置計算部82と、撮像条件設定部84と、保守情報管理部86とを含む。
走査X線源制御部72は、X線焦点位置、X線エネルギーを決定し、走査X線源制御機構60に指令を送る。
画像取得制御部74は、センサベース22の回転角、画像を取得するX線センサ23を決定し、画像取得制御機構30に指令を送る。また、画像取得制御機構30から、画像データを取得する。
3D画像再構成部76は、画像取得制御部74により取得された複数の画像データから3次元データを再構成する。
良否判定部78は、3D画像再構成部76により再構成された3Dの画像データあるいは、透視データをもとに検査対象の良否を判定する。たとえば、半田ボールの形状を認識し、当該形状が予め定められた許容範囲内であるか否かを判定する等により良否判定を行なう。なお、良否判定を行なうアルゴリズム、あるいは、アルゴリズムへの入力情報は、検査対象によって異なるため撮像条件情報94から入手する。
ステージ制御部80は、検査対象20を移動させる機構(図示しない)を制御する。
X線焦点位置計算部82は、検査対象物20のある検査エリアを検査する際に、その検査エリアに対するX線焦点位置や照射角などを計算する。なお、詳細は後述する。
撮像条件設定部84は、検査対象20に応じて、走査型X線源10からX線を出力する際の条件を設定する。たとえば、X線管に対する印加電圧、撮像時間等である。
保守情報管理部86は、ターゲット面に電子ビームを照射した時間を累積し、累積した照射時間が所定の閾値(ターゲットの寿命を表わす時間)を経過したX線焦点位置を、X線の放射の起点位置として使用できない焦点位置と判断する。この場合、出力部50を介してアラーム表示等によりユーザにターゲットの寿命を通知する。
本実施の形態では、ターゲットの寿命を、一例として、電子ビームの照射時間で判断するものとしているが、ユーザが透視像を見て判断してもよいし、より一般的には、X線発生量から判断してもよい。
X線発生量からターゲットの寿命を判断するには、たとえば、X線の強度をX線のフォトンの集団として捕らえる方法や、あるいは、X線フォトン数とそのエネルギーを分析する方法がある。
X線の強度をフォトンの集団として捕らえる方法では、電離箱などの線量計を用いて、線量(積算線量μSV、時間あたりの線量μSv/h)の減少率で判定すればよい。
また、X線フォトン数とエネルギーを分析する方法では、半導体X線検出器などを使って、望ましい(寿命に至っていない)ターゲット状態でのX線発生量のプロファイルを求めておき(たとえば、横軸がX線のフォトンのエネルギー、縦軸がフォトンの数)、そのプロファイルの変化から判定すればよい。たとえば、ずれ量がある閾値を超えた場合や、検査に重要なX線エネルギーの強度(フォトン数)の減少率が閾値を超えた場合に寿命がきたと判断する。
メモリ90は、保守情報管理部86によって与えられる情報が格納されるX線ターゲット保守情報91と、X線焦点位置計算部82によって計算されたX線焦点位置に関する情報が格納されるX線焦点位置情報92と、撮像条件設定部84によって設定された撮像条件や、良否判定を行なうアルゴリズムなどが格納される撮像条件情報94とを含む。
X線ターゲット保守情報91は、現在、撮像で使用しているX線焦点位置と、そのX線焦点位置に電子ビームを照射した時間を累積した累積X線照射時間を対応付けた現在使用ターゲット保守情報と、過去に撮像で使用していたX線焦点位置と、そのX線焦点位置の累積X線照射時間とを対応付けた過去使用ターゲット保守情報と、X線焦点位置として使用できないターゲット面の位置を示すNGターゲット保守情報とを含む。
また、X線ターゲット保守情報91には、X線焦点のサイズに応じたエリア係数Dが含まれる。X線焦点のサイズは、上述したように、一般的にはサブミクロンから数百ミクロンであるが、実際には、焦点サイズの周囲も熱損傷などのダメージを受けている。このため、エリア係数Dを設定する。これにより、保守情報管理部86は、X線焦点位置を中心に直径Dまたは対角線Dの範囲がターゲットにおいてダメージを受けた部分であり、X線の焦点位置として使えない(寿命)と判断する。
X線焦点位置情報92は、各検査エリアについて、X線焦点位置計算部82が計算した計算結果(各X線センサ23に対する、焦点位置、照射角、センサ撮像角、センサ配置角、センサ傾斜角等)が対応付けられている。詳しくは後述する。
また、メモリ90は、データを蓄積することができればよく、RAM(Random Access Memory)やEEPROM(Electrically Erasable and Programmable Read-Only Memory)等の記憶装置により構成される。
図3は、センサベース22を走査型X線源10側から見た図である。特に、図3(a)はX線センサ23を同一半径で配置した図であり、図3(b)はX線センサ23を異なる半径で配置した図である。
図3を参照して、センサベース22について説明する。
センサベース22には、X線センサ23にデータ処理などを行なう機構部品を複合化したX線センサモジュール25が複数取り付けられている。たとえば、図3(a)に示すように、X線センサ23がセンサベース回転中心を中心とする円の同一半径の円周上にX線センサモジュール25を配置してもよいし、図3(b)に示すように、異なる半径の円周上に配置されてもよい。また、センサベース22の中心にもセンサモジュール25が配置されることが望ましい。さらに、X線センサモジュール25は、スライダ24を介して、半径方向に自由に移動できるように制御されることが望ましい。これにより、検査対象の様々な角度から見た撮像データを取得することができる。
図4は、X線センサモジュール25を示した側面図である。なお、X線センサ23については、X線受光部26側から見た図も併せて示す。
図4を参照して、X線センサモジュール25について説明する。
X線センサモジュール25は、X線を電気信号に変換するX線受光部26と、電気信号をデータ化し、データケーブル27を通じて画像データ取得部34にデータを送信するデータ処理部29とを備える。なお、X線センサモジュール25には、電源ケーブル28を介して外部より電力が供給される。また、X線センサモジュール25は、スライダ24を介して半径方向に自由に移動させることができるが、位置を固定していてもよい。
X線センサ23は、センサベース22に対して、一定角度(センサ傾斜角α)傾いている。図4では、センサ傾斜角αは固定であるが、画像取得制御機構30からの制御により角度調整できるようになっていても構わない。
X線センサモジュール25は、センサベース22に複数取り付けられるが、それぞれは着脱可能である。したがって、故障したX線センサモジュールのみを交換するということができる。
図5は、撮像系を横から見た概念図である。
図5を参照して、撮像系について説明する。なお、図5においては、X線センサ23a,23bは、対向する位置関係にあれば、どのX線センサ23であってもよい。また、図5では、X線センサ23a、23bは、センサベース22に対し、それぞれ一定角度(センサ傾斜角αA,αB)傾いている。なお、走査型X線源10のターゲット面から検査対象20までの距離Z1、検査対象20からX線センサ23の中心140までの距離Z2とする。
図5では、ワーク130はセンサベース22の回転軸上にある。ワーク130を撮像する際には、走査型X線源10から各X線センサ23に対して出力されるX線の焦点位置(電子ビームの照射位置)の設定されるべき位置(X線の放射の起点位置)が決められる。たとえば、X線センサ23aに対するX線焦点位置17aは、X線センサ23aのセンサ中心140とワーク(検査エリア)130の中心を結ぶ直線と走査型X線源10のターゲット面との交点に設定される。なお、センサ中心140には、ワークの透視像142が検出される。すなわち、X線の放射の起点位置は、対応するX線センサの検出面について、X線がワークを透過して、この検出面に対して入射するように設定される。したがって、X線センサ23aのセンサ中心140とワーク130の中心とX線焦点位置17aとが一直線上に並ぶことが望ましいが、検出面の一定範囲内にX線が入射する限り、このような配置に限定されるわけではない。
ここで、X線センサ23とX線焦点位置17とを結ぶ直線と走査型X線源10のターゲット面のなす角を照射角θとする。たとえば、X線センサ23a,23bに対しては、照射角θA,θBとする。なお、各照射角を特に区別しない場合は、単に照射角θと示す。
図5の示すように、ワークがセンサベースの回転中心の鉛直線上に存在する場合は、全てのX線センサ23に関する照射角θは全て等しくなる。本発明では、ワークをセンサベースの回転中心にする必要はないので、各照射角は全て等しいとは限らない。
図6は、センサ配置角とセンサベース基準角を説明するための図である。特に、図6(a)はセンサベースの回転前を示す図であり、図6(b)はセンサベースをθs回転した後を示す図である。
図6を参照して、センサ配置角とセンサベース基準角について説明する。なお、図6において、X線センサ23a,23b,23cは、センサベース22の円周上にX線センサ23bと隣接するようにX線センサ23a,23bが配置されている関係にあれば、どのX線センサ23であってもよい。
図6(a)に示すように、センサベース22には、X線センサ23同士の位置関係を示す際の基準となるセンサベース基準軸140が定められている。ここでは、X線センサ23aとセンサベース22とを結ぶ軸をセンサベース基準軸140とする。
ここで、X線センサ23とセンサベース基準軸140とのなす角をセンサ配置角γとする。たとえば、X線センサ23b,23cに対しては、センサ配置角γB,γCとなる。なお、各センサ配置角を特に指定しない場合は、単にセンサ配置角γと示す。
図6(b)に示すように、図6(a)でのセンサベース基準軸140の位置に対応する軸を基準座標軸142とする。基準座標軸142は、センサベース22を撮像のために回転させる際に基準となる軸である。ここで、基準座標軸142とセンサベース基準軸140とのなす角をセンサベース基準角θsとする。なお、図6(a)の場合、センサベース基準角は0度となる。
図7は、ターゲット保守角を説明するための図である。特に、図7(a)は機械座標系に対して基準座標軸をθm回転した後を示す図であり、図7(b)は基準座標軸に対してセンサベース基準軸をθs回転した後を示す図である。
図7を参照して、ターゲット保守角について説明する。
図7(a)に示すように、センサベース22には、各X線センサ23の絶対的な位置を示す際に用いられる、センサベース22に固定された座標系である機械座標系141が定められている。ターゲット11におけるX線焦点位置をずらすためにセンサベース22を回転させる際は、機械座標系141を基準とする。ここで、基準座標軸142と機械座標系141とのなす角をターゲット保守角θmとする。
図7(b)に示すように、ターゲット保守角のθm回転した後に、撮像のためにセンサベース22を回転する際は、基準座標軸142に対し、センサベース基準軸140を回転させる。上述したように、基準座標軸142とセンサベース基準軸140とのなす角がセンサベース基準角θsである。
図8は、センサベース22を回転させた際のイメージを示した、撮像系を上および横から見た概念図である。なお、走査型X線源10については、センサベース22側から見た図も併せて示す。
図8を参照して、センサベース22を回転させた際のX線センサの位置とX線焦点位置との関係について説明する。
図8に示すように、センサベース22を回転させる前の、X線センサ23aに対するX線焦点位置をA0、X線センサ23bに対するX線焦点位置をB0とする。この場合、センサベース22を上から見ると、X線センサ23a,23bはAP0,BP0の位置にある。
センサベース22をターゲット保守角のθm回転した場合、センサベース22を上から見ると、X線センサ23a,23bはAP1,BP1の位置にある。
ここで、センサベース22の回転後、AP1の位置にあるX線センサ23aに対し、図5で説明したようにして、改めて設定されたX線焦点位置はA1、BP1の位置にあるX線センサ23bに対し、改めて設定されたX線焦点位置はB1となる。
このように、センサベース22が回転することにより、X線センサ23の位置が変更され、X線センサ23に対するX線焦点位置も変更される。
図9は、現在使用ターゲット情報を示す図である。
図9を参照して、X線ターゲット保守情報91に含まれる現在使用ターゲット保守情報について説明する。
現在使用ターゲット保守情報200では、現在において、撮像で使用しているX線の焦点位置を示すX線焦点位置202と、そのX線焦点位置に電子ビームを照射した時間の累積を示す累積X線照射時間204とが対応付けられている。
図10は、過去使用ターゲット保守情報を示す図である。
図10を参照して、X線ターゲット保守情報91に含まれる過去使用ターゲット保守情報について説明する。
過去使用ターゲット保守情報210では、過去において、撮像で使用したX線の焦点位置を示すX線焦点位置212と、そのX線焦点位置に電子ビームを照射した時間の累積を示す累積X線照射時間214とが対応付けられている。
検査対象、あるいは検査エリアを変更した場合は、現在使用ターゲット保守情報で示される現在のX線焦点位置の情報は、過去使用ターゲット情報に格納される。
図11は、NGターゲット保守情報を示す図である。
図11を参照して、NGターゲット保守情報について説明する。
NGターゲット保守情報220では、ターゲット面においてX線焦点位置として使用できない位置を示すX線焦点位置222と、そのX線焦点位置に電子ビームを照射した時間の累積を示す累積X線照射時間224と、NGターゲットを自動で判断したかどうかを示す自動判定フラグ226とが対応付けられている。
自動判定フラグ226では、演算部70の保守情報管理部86によって、累積X線照射時間が所定の閾値を超えたことによって寿命と判断されたX線焦点位置については「ON」と示される。一方、ユーザが、たとえば、透視像などに基づいて寿命と判断したX線焦点位置については「OFF」と示される。
以上のような構成のX線検査装置100を用いて、次節で述べるX線検査処理を行なう。
(2.X線検査処理の流れ)
本実施の形態に係るX線検査装置100は、以下に示すX線検査処理を行なう際に、ターゲット面の焦点位置の寿命判定も行なう。
図12は、X線検査装置100のX線検査処理の概略を示すフローチャートである。
図12を参照して、X線検査処理の概略を説明する。なお、ステップS100,102,104,112の詳細については後述する。また、このフローチャートは、X線検査処
理の一例に過ぎず、たとえば、ステップを入れ替えて実行するなどしてもよい。
まず、ステップS100において、検査対象について検査エリアを設定し、X線焦点位置情報を算出する。検査エリアは、ユーザが入力部40を介して任意に設定してもかまわないし、予め設定された検査エリアの情報を参照しても構わない。ここでは、検査エリアを複数設定することもできる。そして、演算部70は、X線焦点位置情報を算出する。
次いで、ステップS102において、X線焦点位置情報に基づき、撮像を行なう。ここでは、各X線センサ23に対する全ての撮像処理を完了してからステップS104の処理に進む場合や、撮像された画像データを順次ステップS104の処理に進める、ステップS102と104とを並行に行なう場合がある。
続いて、ステップS104において、CTアルゴリズムに従い、撮像された複数のデータから三次元再構成空間に逆投影して再構成データを生成し、CT画像を得る。
そして、ステップS106において、再構成データをもとに検査を行なう。なお、検査は、再構成データをディスプレイなどに表示させてユーザが行なう場合や、再構成データから自動的に判断する場合などがある。
次いで、ステップS108において、演算部70は、ステップS100で設定した全ての検査エリアの撮像が終了したかどうかを判定する。全ての検査エリアの撮像を終了していないと判断すれば(ステップS108において、NO)、ステップS110において、撮像する検査エリアを、設定された次の検査エリアに変更し、ステップS102の処理に戻る。
全ての検査エリアの撮像を終了したと判断すれば(ステップS108において、YES)、ステップS112において、演算部70は、現在、撮像で使用しているX線焦点位置のターゲットの寿命を判断し、処理を終了する。
なお、ターゲットの寿命を判断するタイミングは、X線検査装置を使用している際であればいつでもよく、必ずしもステップS108の後で行なう必要はない。
図13は、図12のステップS100における処理を説明するためのフローチャートである。
図13を参照して、図12のステップS100における処理の詳細について説明する。
ステップS120において、入力部40は、ユーザによる検査エリアの設定を受け付ける。そして、X線焦点位置計算部82に検査エリアの場所(たとえば、位置座標)を与える。
次いで、ステップS122において、入力部40は、ユーザによる撮像枚数の設定を受け付ける。そして、X線焦点位置計算部82に撮像枚数を与える。撮像枚数は、検査対象、検査項目により撮像条件設定部84が自動的に設定する場合や、ユーザが任意に設定する場合がある。なお、本実施の形態では、撮像枚数は、センサベースの円周上に取り付けられたX線センサの数の整数倍とする。
続いて、ステップS124において、X線焦点位置計算部82は、設定された撮像枚数が、センサベースの円周上に取り付けられたX線センサの数より多いかどうかを判定する。
撮像枚数がX線センサの数よりも多いと判断すれば(ステップS124において、YES)、ステップS126において、X線焦点位置計算部82は、センサベースを回転する際のセンサベース基準角を計算する。
ここで、X線センサ23がn個であって、撮像枚数がn×m(ただし、mは2以上の整数)枚の場合、m個のセンサベース基準角を計算する。具体的には、センサベース基準角は、0度、360/n/m度、…、(360/n/m)×x度(x=1,…,m−1)である。
たとえば、n=18、m=10の場合を例に挙げる。この場合、撮像枚数は18×10=180枚である。また、2番目のセンサベース基準角は、360/18/10=2度であり、最後のセンサベース基準角は、(360/18/10)×9=18度である。
一方、撮像枚数がX線センサの数よりも少ないと判断すれば(ステップS124において、NO)、ステップS128の処理に進む。
ステップS128において、X線焦点位置計算部82は、センサベース基準角に対する各X線センサに関する情報(X線焦点位置、センサ照射角、センサ撮像角)を計算する。具体的には、次のような計算を行なう。
X線焦点位置計算部82は、各X線センサに対応するX線焦点位置を計算する。たとえば、X線センサ中心と検査エリア中心とを結ぶ直線と、ターゲット面との交点をX線焦点位置とする。
X線焦点位置計算部82は、X線焦点位置に基づき、センサ照射角を計算する。
X線焦点位置計算部82は、X線焦点位置に基づき、センサ撮像角βを計算する。なお、センサ撮像角βとは、ワーク130とX線センサ23の中心とを結ぶ直線と、X線センサ23のなす角のことをいう。
以上のようにして、X線焦点位置情報が計算される。なお、本実施の形態において、センサ傾斜角α、センサ配置角γは予め設定されているため、X線焦点位置ごとに、再計算する必要はない。
続いて、ステップS130において、X線焦点位置計算部82は、全てのセンサベース基準角に対して計算が終了したかどうかを判定する。
全てのセンサベース基準角に対して計算が終了していないと判断すれば(ステップS130において、NO)、ステップS128の処理に戻る。
一方、全てのセンサベース基準角に対して計算が終了したと判断すれば(ステップS130において、YES)、ステップS131において、X線焦点位置計算部82は、ステップS128で計算したX線焦点位置がNGターゲット保守情報に格納されているX線焦点位置についてエリア係数Dの範囲で重複しているかどうかを判定する。
重複していると判断すれば(ステップS131において、YES)、ステップS134において、X線焦点位置計算部82は、基準座標軸の回転限度を超えているかを判断する。たとえば、センサベース22の円周上に、N個のX線センサが配置されていた場合、回転限度は360/N程度であるが、回転限度はこれに限られず、他の式で表わされていてもよいし、予め設定していてもよい。
回転限度を超えていないと判断すれば(ステップS134において、NO)、ステップS136において、回転角制御部32は、センサベース22を回転限度以下の所定の角度(センサベース保守角θm)回転させて、X線センサ23の位置を変更させ、ステップS128の処理に戻る。センサベース保守角θmは予め設定されていてもよいし、センサ配置角γに基づいて決定されてもよい。
回転限度を超えていると判断すれば(ステップS134において、YES)、処理を終了する。
一方、計算したX線焦点位置がNGターゲット保守情報と重複していないと判断すれば(ステップS131において、NO)、ステップS132において、X線焦点位置計算部82は、X線焦点位置計算部82は、焦点位置に関する計算結果をX線焦点位置情報92に格納し記憶する。つまり、設定された検査エリアについて、ステップS128でX線焦点位置計算部82が計算した、各X線センサ23に対する、X線焦点位置、照射角θ、センサ傾斜角α、センサ撮像角β、センサ配置角γをX線焦点位置情報として記憶する。
以上のようにして、X線焦点位置計算部82はX線焦点位置情報を計算する処理(図12のステップS100)を行なう。
図14は、図12のステップS102における処理を説明するためのフローチャートである。
図14を参照して、図12のステップS102における処理の詳細について説明する。
まず、ステップS150において、走査X線源制御部72は、X線焦点位置情報92を参照する。
次いで、ステップS152において、走査X線源制御部72は、電子ビーム制御部62に対し、X線センサに対応するX線焦点位置に電子ビームの照射位置を変更する制御をおこなうよう走査型X線源10に指示する。
続いて、ステップS154において、画像取得制御部74は、画像データ取得部34に対し、検査エリアを透過したX線を検出したX線センサから撮像データを取得するよう指示する。
そして、ステップS156において、画像取得制御部74は、センサベース基準角に対応する撮像データを全て取得したかどうかを判定する。
全て取得していないと判断すれば(ステップS156において、NO)、ステップS152の処理に戻る。
全て取得したと判断すれば(ステップS156において、YES)、ステップS158において、画像取得制御部76は、全てのセンサベース基準角に対する撮像データを取得したかを判定する。
全てのセンサベース基準角に対して撮像データを取得していないと判断すれば(ステップS158において、NO)、ステップS160において、画像取得制御部74は、回転角制御部32に対し、センサベース22を未だ回転させていないセンサベース基準角になるように回転する制御を行なうよう指示し、ステップS152の処理に進む。
一方、全てのセンサベース基準角に対して撮像データを取得したと判断すれば(ステッ
プS158において、YES)、撮像処理を終了する。
以上のようにして、撮像処理(図12のステップS102)を行なう。
図15は、図12のステップS104における処理を説明するためのフローチャートである。
図15を参照して、図12のステップS104における処理(CTアルゴリズム)の詳細について説明する。
まず、ステップS170において、3D画像再構成部76は、取得した撮像データから投影データ(吸収係数画像)を計算する。
ここで、投影データについて簡単に説明する。
一般的に、X線が検査対象物を透過する場合、X線量は、検査対象物を構成する部品等のそれぞれが有する固有のX線吸収係数に相当する分だけ、以下の式(1)に示すような指数関数で示されるように減衰する。
I=IExp(−μL) …(1)
ただし、Lは透過経路長、μはX線吸収係数、IはX線空気データ値、IはX線センサ撮像データである。なお、X線空気データ値は、検査対象物を置かずに撮像されたX線センサの撮像データであり、一般に白画像と呼ばれる。
式(1)により、次の式(2)で計算される投影データ(μL)を求める。
μL=log(I/I) …(2)
また、投影データ、あるいは、投影データを計算する前のX線撮像データに対して、各種補正を行なう場合もある。たとえば、ノイズを除去するためにメディアンフィルタをかけたり、X線センサで画素ごとに特性・感度が異なる場合にはキャリブレーションを行なったりする。
次いで、ステップS172において、3D画像再構成部76は、ステップS170で計算した複数の投影データから、X線焦点位置情報92に格納されているデータを用いて、画像データの再構成を行なう。再構成方法としては、「ディジタル画像処理」(監修:ディジタル画像処理編集委員会、発行所:財団法人画像情報教育振興協会(CG−ARTS協会)、第2版、2006年3月発行)の149頁から154頁で示されているように、フーリエ変換法など様々な手法が提案されている。本実施の形態では、再構成方法としてコンボリュージョン逆投影法を用いる。これは、ボケを低減するために投影データにShepp−Loganなどのフィルタ関数をコンボリュージョンして逆投影する方法である。
ここで、逆投影について簡単に説明する。
図16は、逆投影について説明するための図である。
図16を参照して、再構成領域302のボクセルデータSを逆投影する場合を例にあげて説明する。
この場合、X線源300とボクセルデータSとを結ぶ直線とX線センサ304の交わる点(X線センサ304の画素)Pの投影データの値をボクセルデータSの値とする。この際、ボクセルの位置(座標)によってX線強度が異なるため、センサ傾斜角、センサ撮像角、照射角、センサ配置角、センサベース基準角等を基にFDK法のような強度補正を行なってもよい。また、画素Pを求める際は、X線焦点位置情報92に格納された
情報や、図5で示したような、ターゲット面から検査対象までの距離Z1、検査対象からX線センサの中心までの距離Z2の値により幾何学的に算出できる。
図15に戻って、最後にステップS174において、3D画像再構成部76は、全ての撮像データに対する処理が完了したかどうかを判定する。
完了していないと判断すれば(ステップS174において、NO)、ステップS170の処理に戻る。
一方、完了したと判断すれば(ステップS174において、YES)、処理を終了する。
図17は、図12のステップS112における処理を説明するためのフローチャートである。
図17を参照して、図12のステップS112における処理(寿命判定)の詳細について説明する。
まず、ステップS180において、保守情報管理部86は、現在、撮像の際に使用しているX線焦点位置に対応付けられている累積X線照射時間に電子ビームの照射時間を加算する。撮像時には、X線センサの露光時間あるいはX線照射時間が設定されるため、保守情報管理部86は、これらの設定に基づいて累積X線照射時間を計算し、現在使用ターゲット保守情報を更新する。なお、上記のように設定された時間に基づいて累積X線照射時間を計算してもよいが、実際の照射時間をカウントして累積時間を測定してもよい。
次いで、ステップS182において、保守情報管理部86は、現在使用しているX線焦点位置の累積X線照射時間がターゲット寿命を示す閾値を超えたかどうかを判定する。
閾値を超えていないと判断すれば(ステップS182において、NO)、寿命判定の処理を終了する。
一方、閾値を越えていると判断すれば(ステップS182において、YES)、ステップS184において、保守情報管理部86は、出力部50に対し、累積X線照射時間が所定の閾値を超えている旨の通知を行なうよう指示する。たとえば、アラームをオンにして、表示灯の点灯やディスプレイでの表示などによって、ユーザが分かるようにする。
続いて、ステップS186において、保守情報管理部86は、ターゲットの保守が自動か否かを判定する。ここで、自動保守とは、自動でX線の焦点位置、センサベース位置を変更し、X線検査装置の連続稼動が可能となるモードである。手動保守は、自動保守で行なう処理をユーザが確認しながら行なうモードである。なお、手動保守時には、X線検査を行なうことはできない。ユーザは入力部40を介して、自動保守についての設定を予め行なうことができる。
自動保守でないと判断すれば(ステップS186において、NO)、保守情報管理部86は処理を終了する。この場合、ステップS188〜198の各処理をユーザが確認しながら行なう。つまり、ユーザ自身は各処理自体を行なう必要はなく、たとえば、演算部70に実行させた各ステップの結果を確認して処理を進めればよい。
一方、自動保守であると判断すれば(ステップS186において、YES)、X線焦点位置計算部86は、X線焦点位置を計算する。この詳細については後述する。
ステップS190において、保守情報管理部86は、ステップS188において使用可能なX線焦点位置が求められたか否かを判定する。
ステップS188において使用可能なX線焦点位置が計算されていないと判断すれば(ステップS190において、NO)は、ターゲットを交換する必要があり、保守情報管理部86は寿命判定の処理を終了する。
一方、使用可能なX線焦点位置が計算されたと判断すれば(ステップS190において、YES)、ステップS192において、X線焦点位置計算部86は、計算結果をX線焦点位置情報92に格納する。電子ビーム制御部62は、X線焦点位置情報92を読み取り、X線焦点位置を変更する。
次いで、ステップS194において、保守情報管理部86は、過去使用ターゲット保守情報に使用していたターゲットの情報を書き込むとともに、現在使用ターゲット保守情報にX線焦点位置情報92を書き込んで、X線ターゲット保守情報91を更新する。
続いて、ステップS196において、回転角制御部32は、ステップS188で計算したターゲット保守角になるようにセンサベース22を回転させる。以後、撮像の際は、回転後のセンサベースが基準(基準座標軸)となる。
最後に、ステップS198において、保守情報管理部86は、アラームをオフにして処理を終了する。
図18は、図17のステップS188における処理を説明するためのフローチャートである。
図18を参照して、図17のステップS188における処理の詳細について説明する。
まず、ステップS200において、X線焦点位置計算部82は、ターゲット保守角θmに予め設定されている所定の角度(Δθ)を加えて更新する。ここでは、ターゲット保守角の計算を行なうだけで、実際にセンサベース22を回転させるわけではない。
次いで、ステップS202において、X線焦点位置計算部82は、ターゲット保守角が限度角を超えたかどうかを判定する。たとえば、センサベース22の円周上に、N個のX線センサが配置されていた場合、ターゲット保守角の限度角は360/N程度であるが、限度角はこれに限られず、他の式で表わされていてもよいし、予め設定していてもよい。
ターゲット保守角が限度角を超えていると判断すれば(ステップS202において、YES)、ステップS216において、X線焦点位置計算部82は、使用可能なX線焦点位置を計算できないと判断し、処理を終了する。
一方、ターゲット保守角が限度角を超えていないと判断すれば(ステップS202において、NO)、ステップS204において、X線焦点位置計算部82は、センサベース基準角θsを求める。ここでは、図13のステップS124,126で説明したように、設定された撮像枚数が、センサベースの円周上に取り付けられたX線センサの数より多いかどうかを判定し、撮像枚数がX線センサの数よりも多いと判断すれば、センサベース基準角を計算する。計算方法については、説明が重複するため省略する。
続いて、ステップS206において、X線焦点位置計算部82は、あるセンサベース基準角θsにおける各X線センサ23の機械座標系での角度を求める。絶対座標を示す機械
座標系に対し、ターゲット保守角θmだけ、センサベース22が回転しており、さらに、そこを基準として、いくつかのセンサベース基準角θsが存在する。したがって、機械座標系におけるセンサベース基準角は、(θm+θs)となる。つまり、機械座標系における各X線センサ23の位置は、(θm+θs)に各X線センサ23のセンサ配置角γを足したもの(θm+θs+γ)となる。
そして、ステップS208において、X線焦点位置計算部82は、ステップS206で求めた機械座標系における各X線センサ23の角度に基づき、撮像系の幾何学的配置より、各X線センサ23に対するX線焦点位置を求める。
次いで、ステップS210において、X線焦点位置計算部82は、最後のセンサベース基準角について、各X線センサ23に対するX線焦点位置を計算したかどうかを判定する。ここでは、ステップS204においてセンサベース基準角θsを複数計算した場合に、各センサベース基準角について、順次、X線焦点位置を計算していき、最後のセンサベース基準角についてX線焦点位置を計算したかどうかを判定する。
最後のセンサベース基準角について計算していないと判断すれば(ステップS210において、NO)、次のセンサベース基準角について、ステップS206以降の処理を行なう。
一方、最後のセンサベース基準角について計算したと判断すれば(ステップS210において、YES)、ステップS212において、X線焦点位置計算部82は、計算したX線焦点位置と、X線ターゲット保守情報91とを比較する。ここでは、X線ターゲット保守情報91に含まれるNGターゲット保守情報で示されるX線焦点位置と計算したX線焦点位置が、エリア係数Dを直径または対角線とする範囲で重複していないかどうかを比較する。
続いて、ステップS214において、X線焦点位置計算部82は、ステップS212で比較した結果、NGターゲットのX線焦点位置と重複があるかどうかを判定する。
重複があると判断すれば(ステップS214において、YES)、新しくX線焦点位置を計算し直すため、ステップS200の処理に戻る。
一方、重複がないと判断すれば(ステップS214において、NO)、処理を終了する。
以上のように、本発明に係るX線検査装置および当該X線検査装置のX線撮影方法を適用したX線検査装置を用いたX線検査方法によれば、電子ビームを照射したターゲット面のX線焦点位置での照射時間を記憶する。そして、所定時間経過したと判断すれば、X線センサの位置を変更し、ターゲット上のX線焦点位置を移動させる。これにより、ユーザは、X線源に触れることなく、コンピュータ等からX線検査装置の保守を管理することができる。したがって、保守に時間を要することなく、検査を継続することができる。
また、X線源のターゲットのメンテナンスを自動的に行なうことができるため、X線検査装置を簡便に使用することができる。
また、電子ビームを移動させて1つのX線焦点位置にかかる照射時間を短くするため、ターゲットのメンテナンスまでの時間を長くすることができる。これにより、ターゲットのメンテナンスの頻度を減らすことができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明に係るX線検査装置100の概略ブロック図である。 走査型X線源10の構成を示す断面図である。 センサベース22を走査型X線源10側から見た図である。 X線センサモジュール25を示した側面図である。 撮像系を横から見た概念図である。 センサ配置角とセンサベース基準角を説明するための図である。 ターゲット保守角を説明するための図である。 センサベース22を回転させた際のイメージを示した、撮像系を上および横から見た概念図である 現在使用ターゲット情報を示す図である。 過去使用ターゲット保守情報を示す図である。 NGターゲット保守情報を示す図である。 X線検査装置100のX線検査処理の概略を示すフローチャートである。 図12のステップS100における処理を説明するためのフローチャートである。 図12のステップS102における処理を説明するためのフローチャートである。 図12のステップS104における処理を説明するためのフローチャートである。 逆投影について説明するための図である。 図12のステップS112における処理を説明するためのフローチャートである。 図17のステップS188における処理を説明するためのフローチャートである。
符号の説明
10 走査型X線源、11 ターゲット、12 偏向ヨーク、13 高圧電源、14 真空ポンプ、15 電子銃、16 電子ビーム、17 X線焦点位置、18 X線、20
検査対象、22 センサベース、23 X線センサ、24 スライダ、25 X線モジュール、26 X線受光部、27 データケーブル、28 電源ケーブル、29 データ処理部、30 画像取得制御機構、32 回転角制御部、34 画像データ取得部、40
入力部、50 出力部、60 走査X線源制御機構、62 電子ビーム制御部、70 演算部、72 走査X線源制御部、74 画像取得制御部、76 3D画像再構成部、78 良否判定部、80 ステージ制御部、82 X線焦点位置計算部、84 撮像条件設定部、86 保守情報管理部、90 メモリ、91 X線ターゲット保守情報、92 X線焦点位置情報、94 撮像条件情報、100 X線検査装置。

Claims (12)

  1. 所定の位置のうちから指定された位置に設定され、入射されるX線の強度分布を検出するための検出面と、ターゲット面におけるX線焦点位置を移動させて前記X線を発生させることが可能なX線源と、前記ターゲット面の位置について前記X線焦点位置としてX線を発生させた履歴情報を記憶する記憶装置とを備える、X線照射によって対象物の検査部分を検査するためのX線検査装置を用いたX線検査方法であって、
    複数の第1の所定位置のうち指定された前記検出面の位置と、前記検査部分とに応じた前記X線焦点位置を設定するステップと、
    前記記憶装置の前記履歴情報に基づき、設定された前記X線焦点位置から発生させたX線量が所定量を超えたことを検知するステップと、
    前記検知結果に応じて、前記複数の第1の所定位置とは異なる、複数の第2の所定位置のうちのいずれかに前記検出面の指定位置を変更して設定するステップと、
    変更された前記検出面に応じて再設定された位置に、前記X線焦点位置を移動させて、前記X線を発生させるステップと、
    前記検出面において、前記検査部分を透過した前記X線の強度分布を検出するステップとを備える、X線検査方法。
  2. 前記X線焦点位置を設定するステップは、前記X線が前記検査部分を透過して前記検出面に対して入射するように、前記ターゲット面における前記X線焦点位置を決定するステップを含む、請求項1記載のX線検査方法。
  3. 前記指定位置を変更して設定するステップは、前記複数の第2の所定位置のうちから、前記X線を検出するための複数の検出面をそれぞれ指定するステップを含み、
    前記X線を発生させるステップは、
    前記複数の検出面について、前記X線が前記検査部分を透過して前記複数の検出面に対してそれぞれ入射するように、前記ターゲット面における複数の前記X線焦点位置をそれぞれ決定するステップと、
    決定された各前記X線焦点位置に、前記X線源の電子ビームを照射する照射位置を移動させて、前記X線を発生させるステップとを含み、
    前記検出した強度分布のデータに基づき、前記検査部分の画像データを再構成するステップをさらに備える、請求項1記載のX線検査方法。
  4. 前記X線量が所定量を超えたことを検知するステップは、前記設定された前記X線焦点位置について、少なくとも前記X線を発生させた累積時間が所定時間を経過したことを検知するステップを含む、請求項3記載のX線検査方法。
  5. 前記複数の前記X線焦点位置をそれぞれ決定するステップは、前記X線焦点位置を、前記所定時間を超えて前記電子ビームが照射された位置を除いて決定するステップを含む、請求項4記載のX線検査方法。
  6. 前記複数の前記X線焦点位置をそれぞれ決定するステップは、前記X線焦点位置を、前記所定時間を超えて前記電子ビームが照射された位置から、X線焦点のサイズに応じたエリア係数に基づいて決定される範囲を除いて決定するステップを含む、請求項4記載のX線検査方法。
  7. 前記X線を発生させるステップは、電子ビームを偏向させることで、前記電子ビームを前記ターゲット面に照射する照射位置を変更して、前記X線焦点位置を移動させるステップを含む、請求項1記載のX線検査方法。
  8. X線によって対象物の検査部分を検査するX線検査装置であって、
    前記X線を検出するために複数の検出面を有するX線検出手段を備え、
    前記X線検出手段は、前記複数の検出面の位置を、複数の第1の所定位置から、前記複数の第1の所定位置とは異なる複数の第2の所定位置にそれぞれ変更する検出位置変更手段を含み、
    前記X線の出力処理を制御するための出力制御手段をさらに備え、
    前記出力制御手段は、
    前記複数の検出面について、前記X線が前記対象物の検査部分を透過して各前記検出面に対して入射するように前記X線の放射の起点位置を各々設定する起点設定手段と、
    各前記起点位置と、各前記起点位置から前記X線を放射した履歴情報とを対応付けて記憶する記憶手段と、
    前記記憶手段の前記履歴情報に基づき、設定された前記起点位置について、累積照射時間が所定時間を経過したことを検知すると、前記検出位置変更手段による変更を行なうために、前記検知結果を出力する検知手段とを含み、
    前記起点設定手段は、前記検出位置変更手段による変更が行われた場合、前記起点位置の各々を再設定し、
    各前記起点位置にX線源のX線焦点位置を移動させて、前記X線を発生させるX線出力手段と、
    複数の前記検出面で検出した、前記検査部分を透過したX線の強度分布のデータに基づき、前記検査部分の画像データを再構成する再構成手段とをさらに備える、X線検査装置。
  9. 前記X線出力手段は、電子ビームを偏向させて前記ターゲット面への照射位置を移動させることにより、前記X線焦点位置を移動させる手段を含む、請求項8記載のX線検査装置。
  10. 前記検出位置変更手段は、
    所定の軸を中心とする円周上に前記複数の検出面が配置された回転台と、
    前記軸を中心として前記回転台を回転させる回転手段とを含み、
    前記検知手段の検知結果に応じて、前記回転台を一定の角度だけ回転させることにより、前記複数の検出面の位置を、前記複数の第1の所定位置から、前記複数の第2の所定位置にそれぞれ変更する、請求項8に記載のX線検査装置。
  11. 前記起点設定手段は、前記履歴情報に基づき、前記所定時間を経過した照射時間と対応付けられた前記位置を除いて前記起点位置の各々を設定する、請求項8記載のX線検査装置。
  12. 前記出力手段は、前記対象物の検査部分を指定する指定手段をさらに含む、請求項8記載のX線検査装置。
JP2007067043A 2007-03-15 2007-03-15 X線検査装置およびx線検査装置を用いたx線検査方法 Pending JP2008224606A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007067043A JP2008224606A (ja) 2007-03-15 2007-03-15 X線検査装置およびx線検査装置を用いたx線検査方法
TW097108598A TW200902965A (en) 2007-03-15 2008-03-12 X ray inspecting device and X ray inspecting method using same
EP08152634A EP1970934A3 (en) 2007-03-15 2008-03-12 X-ray examination apparatus and X-ray examination method using the same
US12/048,852 US7522709B2 (en) 2007-03-15 2008-03-14 X-ray examination apparatus and x-ray examination method using the same
CNA200810086172XA CN101266218A (zh) 2007-03-15 2008-03-17 X射线检查装置及使用x射线检查装置的x射线检查方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067043A JP2008224606A (ja) 2007-03-15 2007-03-15 X線検査装置およびx線検査装置を用いたx線検査方法

Publications (1)

Publication Number Publication Date
JP2008224606A true JP2008224606A (ja) 2008-09-25

Family

ID=39592742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067043A Pending JP2008224606A (ja) 2007-03-15 2007-03-15 X線検査装置およびx線検査装置を用いたx線検査方法

Country Status (5)

Country Link
US (1) US7522709B2 (ja)
EP (1) EP1970934A3 (ja)
JP (1) JP2008224606A (ja)
CN (1) CN101266218A (ja)
TW (1) TW200902965A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036575A (ja) * 2007-07-31 2009-02-19 Omron Corp X線検査装置およびx線検査方法
WO2010029862A1 (ja) * 2008-09-10 2010-03-18 オムロン株式会社 X線検査装置およびx線検査方法
JP2013253969A (ja) * 2012-05-22 2013-12-19 Aribex Inc 3d散乱撮像に用いるハンドヘルドx線システム
KR101567828B1 (ko) * 2015-04-30 2015-11-11 주식회사 디메디 감마디텍터 기반의 이동형 암검진 장치
JP2018063183A (ja) * 2016-10-13 2018-04-19 オムロン株式会社 被曝量管理装置及び被曝量管理方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050742A1 (en) 2010-10-15 2012-04-19 American Science And Engineering, Inc. Remotely-aligned arcuate detector array for high energy x-ray imaging
US8913784B2 (en) * 2011-08-29 2014-12-16 Raytheon Company Noise reduction in light detection and ranging based imaging
EP2828877A1 (en) * 2012-03-19 2015-01-28 Koninklijke Philips N.V. Gradual x-ray focal spot movements for a gradual transition between monoscopic and stereoscopic viewing
TWI483282B (zh) * 2014-02-20 2015-05-01 財團法人金屬工業研究發展中心 輻射產生設備
TWI480912B (zh) * 2014-02-20 2015-04-11 Metal Ind Res & Dev Ct 輻射產生設備
WO2016125289A1 (ja) * 2015-02-05 2016-08-11 株式会社島津製作所 X線発生装置
JP6485410B2 (ja) * 2016-06-13 2019-03-20 オムロン株式会社 X線検査装置およびx線検査方法
JP6954232B2 (ja) * 2018-06-08 2021-10-27 株式会社島津製作所 X線検査装置およびx線検査装置におけるx線管のターゲットの消耗度判定方法
JP6763059B1 (ja) * 2019-05-16 2020-09-30 Ckd株式会社 検査装置、包装機及び包装体の検査方法
CN111399072B (zh) * 2020-03-24 2023-07-04 苏州柒影医疗科技有限公司 X光投影优化成像方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4143490C2 (de) * 1991-07-22 1999-04-15 Siemens Ag Verfahren zum Betrieb einer Röntgenröhre
JP2885398B2 (ja) * 1997-04-01 1999-04-19 株式会社東芝 X線装置
JP2000046760A (ja) 1998-05-29 2000-02-18 Shimadzu Corp X線断層面検査装置
GB9906886D0 (en) * 1999-03-26 1999-05-19 Bede Scient Instr Ltd Method and apparatus for prolonging the life of an X-ray target
JP4127742B2 (ja) * 1999-06-16 2008-07-30 浜松ホトニクス株式会社 X線検査装置
JP4227369B2 (ja) * 2002-07-23 2009-02-18 浜松ホトニクス株式会社 X線検査装置
JP4309176B2 (ja) * 2003-06-03 2009-08-05 株式会社東芝 X線装置
US6983035B2 (en) * 2003-09-24 2006-01-03 Ge Medical Systems Global Technology Company, Llc Extended multi-spot computed tomography x-ray source

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036575A (ja) * 2007-07-31 2009-02-19 Omron Corp X線検査装置およびx線検査方法
WO2010029862A1 (ja) * 2008-09-10 2010-03-18 オムロン株式会社 X線検査装置およびx線検査方法
US8254519B2 (en) 2008-09-10 2012-08-28 Omron Corporation X-ray inspection apparatus and X-ray inspection method
JP5104956B2 (ja) * 2008-09-10 2012-12-19 オムロン株式会社 X線検査装置およびx線検査方法
JP2013253969A (ja) * 2012-05-22 2013-12-19 Aribex Inc 3d散乱撮像に用いるハンドヘルドx線システム
KR101567828B1 (ko) * 2015-04-30 2015-11-11 주식회사 디메디 감마디텍터 기반의 이동형 암검진 장치
JP2018063183A (ja) * 2016-10-13 2018-04-19 オムロン株式会社 被曝量管理装置及び被曝量管理方法

Also Published As

Publication number Publication date
US7522709B2 (en) 2009-04-21
EP1970934A3 (en) 2010-03-24
TW200902965A (en) 2009-01-16
CN101266218A (zh) 2008-09-17
EP1970934A2 (en) 2008-09-17
US20080226035A1 (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP2008224606A (ja) X線検査装置およびx線検査装置を用いたx線検査方法
JP2008224448A (ja) X線検査方法およびx線検査装置
JP5104956B2 (ja) X線検査装置およびx線検査方法
US8391581B2 (en) X-ray inspecting apparatus and X-ray inspecting method
US20110255660A1 (en) X-ray inspection method and x-ray inspection apparatus
JP2007309687A (ja) 断層撮影装置
US20110249795A1 (en) X-ray inspection method and x-ray inspection apparatus
JP5167810B2 (ja) X線検査装置
JP7461102B2 (ja) 医用画像処理装置およびx線ct装置
JP7224829B2 (ja) 医用画像処理装置および方法
JP5125297B2 (ja) X線検査装置およびx線検査方法
JP5569061B2 (ja) X線検査方法、x線検査装置およびx線検査プログラム
JP5263204B2 (ja) X線検査装置およびx線検査方法
TW201312102A (zh) X光檢查裝置、x光檢查裝置之控制方法、用於控制x光檢查裝置之程式及儲存該程式之記錄媒體
JP6930932B2 (ja) 傾斜型ct撮影装置
JP6918487B2 (ja) X線画像診断装置、及びx線画像診断装置の制御方法
JP5115574B2 (ja) X線検査装置およびx線検査方法
JP2004340630A (ja) コンピュータ断層撮像方法及び装置
JP7055614B2 (ja) X線ct装置
JP2023045891A (ja) X線透視像撮像装置
JP5167882B2 (ja) X線検査装置およびx線検査方法
CN116033099A (zh) 静态ct曝光控制方法及静态ct成像系统
JP2012137315A (ja) X線断層撮像装置
JP2011058983A (ja) 放射線断層撮影装置の撮影方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027