JP2008223069A - High-strength, high-conductivity copper alloy and its manufacturing method - Google Patents

High-strength, high-conductivity copper alloy and its manufacturing method Download PDF

Info

Publication number
JP2008223069A
JP2008223069A JP2007061720A JP2007061720A JP2008223069A JP 2008223069 A JP2008223069 A JP 2008223069A JP 2007061720 A JP2007061720 A JP 2007061720A JP 2007061720 A JP2007061720 A JP 2007061720A JP 2008223069 A JP2008223069 A JP 2008223069A
Authority
JP
Japan
Prior art keywords
conductivity
copper alloy
hardness
tensile strength
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007061720A
Other languages
Japanese (ja)
Inventor
Itsuo Eguchi
逸夫 江口
Shigeru Kuramoto
繁 藏本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYOSHI GOKIN KOGYO KK
Original Assignee
MIYOSHI GOKIN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYOSHI GOKIN KOGYO KK filed Critical MIYOSHI GOKIN KOGYO KK
Priority to JP2007061720A priority Critical patent/JP2008223069A/en
Publication of JP2008223069A publication Critical patent/JP2008223069A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an inexpensive high-strength, high-conductivity copper alloy in which mechanical strengths represented by tensile strength and hardness are improved to values higher than those in JIS Z 3234 type III standard without deteriorating physical properties and the additive quantity of expensive Ni is reduced and which is free of Be and has ≥820 N/mm<SP>2</SP>tensile strength, ≥244 hardness by HB (10/3000) and ≥35% IACS electrical conductivity. <P>SOLUTION: This copper alloy has a composition which consists of, by weight, 3.30 to 6.0% Ni, 0.8 to 1.7% Si, 0.5 to 1.5% Cr, 0.1 to 0.3% Sn and the balance Cu excluding inevitable impurities and in which the value of Ni/Si by weight ratio ranges from 3 to 4. The copper alloy has ≥820 N/mm<SP>2</SP>tensile strength, ≥244 hardness by HB (10/3000) and ≥35% IACS electrical conductivity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、機械強度と導電性、耐熱性を必要とする抵抗溶接用銅合金電極材料及びその関連冶具、クロムケイ化物・ニッケルケイ化物を生かした熱伝導性と耐摩耗性が要求される摺動材、その他機械強度・熱伝導性・耐熱性が要求される高強度高導電性銅合金及びその製造方法に係るものである。   The present invention relates to a copper alloy electrode material for resistance welding that requires mechanical strength, electrical conductivity, and heat resistance, and related jigs, sliding that requires thermal conductivity and wear resistance utilizing chrome silicide / nickel silicide. The present invention relates to a high-strength, high-conductivity copper alloy that requires mechanical strength, thermal conductivity, and heat resistance, and a method for producing the same.

近年、抵抗溶接用銅合金電極材料の規格であるJIS Z 3234第3種規格相当品として、特許文献1に示す如く、有害の懸念のあるBeを含まない電極材料が開発されている。この材料は現在電極材のみならず、合金のマトリックス中に形成されたケイ化物が摩擦係数の低下に作用するとして摺動部材に利用されるとともに、耐熱性・熱伝導性が良好であるとして、耐熱性・良好な熱伝導性を必要とする機械部品にも利用されている。   In recent years, as a JIS Z 3234 type 3 standard product that is a standard for resistance-welding copper alloy electrode materials, as shown in Patent Document 1, an electrode material that does not contain Be, which is harmful, has been developed. This material is used not only for electrode materials but also for sliding members because the silicide formed in the matrix of the alloy acts to lower the friction coefficient, and also has good heat resistance and thermal conductivity. It is also used for machine parts that require heat resistance and good thermal conductivity.

しかしながら、特許文献1に記載の材料には、Niを3%までしか含有していないため、引張強さ及び硬さで表される機械的強度に限界がある。そこで、特許文献1に記載の材料よりも上記機械的強度に優れた材料として、バルク材として一般的にBeCu25合金が主として使用されている。   However, since the material described in Patent Document 1 contains only Ni up to 3%, there is a limit to the mechanical strength expressed by tensile strength and hardness. Therefore, as a material superior in mechanical strength to the material described in Patent Document 1, a BeCu25 alloy is generally mainly used as a bulk material.

上記BeCu25合金は、一つの例としてロボットに組み付けた抵抗溶接のガンアームに使用されている。このガンアームは、JIS Z 3234第3種規格品よりも導電率は多少低くても、強度が高い材料でなければ、ロボットに組み付ける抵抗溶接のガンアームとして適さない。また、このBeCu25合金は、熱伝導性と機械的性質が良好であるためプラスチック成型用金型部品としても使用されるとともに、ダイカストのプランジャーチップ等にも使用されている。   The BeCu25 alloy is used, for example, in a resistance welding gun arm assembled to a robot. This gun arm is not suitable as a resistance-welding gun arm to be assembled to a robot, even if it has a slightly lower electrical conductivity than JIS Z 3234 Type 3 standard product, unless it is a high strength material. Further, this BeCu25 alloy has good thermal conductivity and mechanical properties, so that it is used not only as a mold part for plastic molding but also as a die-cast plunger tip.

また、BeCu25合金はBeを含有しているため、人体や環境に悪影響を及ぼす懸念がある。そこで、Beを含んでいない特許文献1に記載の銅合金をプラスチック成型用の金型部品として使用した場合、硬度不足でありHB(10/3000)で244以上、又はロックウエル硬度HRC24以上の硬さを満たすことができない。以上の理由により、金型部品として使用する場合やロボットに組み付ける抵抗溶接用ガンアーム等に使用する場合、Beフリーであるとともに、機械強度と熱伝導性に優れた材料が求められている。   Moreover, since the BeCu25 alloy contains Be, there is a concern that it adversely affects the human body and the environment. Therefore, when the copper alloy described in Patent Document 1 that does not contain Be is used as a mold part for plastic molding, the hardness is insufficient and the hardness of HB (10/3000) is 244 or higher, or the Rockwell hardness HRC is 24 or higher. Can't meet. For these reasons, there is a demand for a material that is Be-free and has excellent mechanical strength and thermal conductivity when used as a die part or a resistance welding gun arm to be assembled to a robot.

上記の要求条件を満たし、機械強度の優れた材料で、しかもBeを含まないものとして、特許文献2に記載の銅合金の存在が知られている。特許文献2に記載の銅合金は、実施例に示す如くNiの含有量が8.5wt%〜11.5wt%、Ni/Si重量比が3.4〜4.5、Crが0.50wt%〜2.00wt%、残部がCuからなるとともに、ロックウェルC30以上の硬度及びIACS24%以上の導電率を有するものである。
特許第3563311号公報 特開平4−247839号公報
The presence of the copper alloy described in Patent Document 2 is known as a material that satisfies the above-mentioned requirements, has excellent mechanical strength, and does not contain Be. The copper alloy described in Patent Document 2 has a Ni content of 8.5 wt% to 11.5 wt%, a Ni / Si weight ratio of 3.4 to 4.5, and Cr of 0.50 wt% as shown in the examples. ˜2.00 wt%, the balance being made of Cu, having a hardness of Rockwell C30 or higher and a conductivity of IACS of 24% or higher.
Japanese Patent No. 356311 JP-A-4-247839

しかしながら、特許文献2に記載の銅合金は、高価なNiを8.5wt%〜11.5wt%含有するとともにNi/Si重量比が3.4〜4.5であるため、合金材料として析出硬化させた場合、マトリックスに形成されるケイ化物が多くなり、熱処理の途中で内部応力による割れが発生しやすく、また、熱間塑性加工も難しいものとなっている。   However, the copper alloy described in Patent Document 2 contains 8.5 wt% to 11.5 wt% of expensive Ni and has a Ni / Si weight ratio of 3.4 to 4.5. In this case, the amount of silicide formed in the matrix increases, cracking due to internal stress is likely to occur during the heat treatment, and hot plastic working is difficult.

本発明は上述の如き課題を解決しようとするものであって、物理的性質を損なうことなく、機械的強度として表される引張強さ及び硬さをJIS Z 3234第3種規格品よりも向上させるとともに、高価なNiの添加量を抑え、Beフリーで引張強さが820N/mm2以上、硬さがHB(10/3000)で244以上、導電率がIACSで35%以上の高強度高導電性で廉価な銅合金を得ようとするものである。 The present invention is intended to solve the above-described problems, and improves the tensile strength and hardness expressed as mechanical strength over the JIS Z 3234 Type 3 standard product without impairing physical properties. In addition, the amount of expensive Ni added is suppressed, Be-free, tensile strength is 820 N / mm 2 or more, hardness is 244 or more for HB (10/3000), and conductivity is 35% or more for IACS. It is intended to obtain a conductive and inexpensive copper alloy.

上述の如き課題を解決するため、本願の第1発明は、Ni3.30〜6.0wt%、Si0.8〜1.7wt%、Cr0.5〜1.5wt%、Sn0.1〜0.3wt%を含有し、且つ残部が不可避的な不純物を除くCuよりなり、Ni/Si重量比が3〜4であるとともに、引張強さが820N/mm2以上、硬さがHB(10/3000)で244以上、導電率がIACSで35%以上のものである。 In order to solve the above-described problems, the first invention of the present application is Ni 3.30 to 6.0 wt%, Si 0.8 to 1.7 wt%, Cr 0.5 to 1.5 wt%, Sn 0.1 to 0.3 wt%. %, The balance is made of Cu excluding inevitable impurities, the Ni / Si weight ratio is 3 to 4, the tensile strength is 820 N / mm 2 or more, and the hardness is HB (10/3000) 244 or more and conductivity is 35% or more in IACS.

また、本願の第2発明は、Ni3.30〜6.0wt%、Si0.8〜1.7wt%、Cr0.5〜1.5wt%、Sn0.1〜0.3wt%を含有するとともに、Mg、Mnのうちの一種類、又は両方を0.01〜0.1wt%含有し、且つ残部が不可避的な不純物を除くCuよりなり、Ni/Si重量比が3〜4であるとともに、引張強さが820N/mm2以上、硬さがHB(10/3000)で244以上、導電率がIACSで35%以上のものである。尚、Mg、Mnはいずれもマトリックスに酸化物発生抑止剤として使用するものである。 In addition, the second invention of the present application contains Ni 3.30 to 6.0 wt%, Si 0.8 to 1.7 wt%, Cr 0.5 to 1.5 wt%, Sn 0.1 to 0.3 wt%, and Mg , One or both of Mn are contained in an amount of 0.01 to 0.1 wt%, and the balance is made of Cu excluding inevitable impurities, the Ni / Si weight ratio is 3 to 4, and the tensile strength Is 820 N / mm 2 or more, the hardness is 244 or more in HB (10/3000), and the conductivity is 35% or more in IACS. Mg and Mn are both used as an oxide generation inhibitor in the matrix.

また、本願の第3発明は、Ni3.30〜6.0wt%、Si0.8〜1.7wt%、Cr0.5〜1.5wt%、Sn0.1〜0.3wt%を含有し、且つ残部が不可避的な不純物を除くCuよりなるとともに、Ni/Si重量比が3〜4である銅合金を、溶体化処理温度850℃〜950℃の範囲で溶体化処理した後、冷間加工率が元の材料の断面積に対して10〜40%となるよう冷間加工を施し、その後処理温度400〜500℃で時効処理を行って製造し、引張強さを820N/mm2以上、硬さをHB(10/3000)で244以上、導電率をIACSで35%以上としたものである。 The third invention of the present application contains Ni 3.30 to 6.0 wt%, Si 0.8 to 1.7 wt%, Cr 0.5 to 1.5 wt%, Sn 0.1 to 0.3 wt%, and the balance Is made of Cu excluding unavoidable impurities, and after a solution treatment of a copper alloy having a Ni / Si weight ratio of 3 to 4 at a solution treatment temperature range of 850 ° C. to 950 ° C., the cold working rate is It is cold-worked to 10 to 40% of the cross-sectional area of the original material, and then subjected to an aging treatment at a treatment temperature of 400 to 500 ° C., with a tensile strength of 820 N / mm 2 or more, hardness The HB (10/3000) is 244 or more, and the conductivity is IACS 35% or more.

また、本願の第4発明は、Ni3.30〜6.0wt%、Si0.8〜1.7wt%、Cr0.5〜1.5wt%、Sn0.1〜0.3wt%を含有するとともに、Mg、Mnのうちの一種類、又は両方を0.01〜0.1wt%含有し、且つ残部が不可避的な不純物を除くCuよりなるとともに、Ni/Si重量比が3〜4である銅合金を、溶体化処理温度850℃〜950℃の範囲で溶体化処理した後、冷間加工率が元の材料の断面積に対して10〜40%となるよう冷間加工を施し、その後処理温度400〜500℃で時効処理を行って製造し、引張強さを820N/mm2以上、硬さをHB(10/3000)で244以上、導電率をIACSで35%以上としたものである。 The fourth invention of the present application contains Ni 3.30 to 6.0 wt%, Si 0.8 to 1.7 wt%, Cr 0.5 to 1.5 wt%, Sn 0.1 to 0.3 wt%, and Mg. A copper alloy containing 0.01 to 0.1 wt% of one or both of Mn and the balance being made of Cu excluding inevitable impurities and having a Ni / Si weight ratio of 3 to 4. After the solution treatment at a solution treatment temperature in the range of 850 ° C. to 950 ° C., the cold work is performed so that the cold work rate becomes 10 to 40% with respect to the cross-sectional area of the original material, and then the treatment temperature 400 It is manufactured by aging treatment at ˜500 ° C., tensile strength is 820 N / mm 2 or more, hardness is 244 or more in HB (10/3000), and conductivity is 35% or more in IACS.

本発明は上述の如く構成したものであって、高価なNiの添加量を抑えるとともに、Ni及びSiの添加量を調整することにより、機械的強度として表される引張強さと硬さをJIS Z 3234第3種規格品よりも向上させるとともに、物理的性質を損なうことなく、環境に有害の懸念のあるBeを使用せずに、機械的強度及び導電率の高い高強度高導電性銅合金を廉価に得ることができる。   The present invention is configured as described above, and the tensile strength and hardness expressed as mechanical strength can be expressed as JIS Z by suppressing the addition amount of expensive Ni and adjusting the addition amounts of Ni and Si. A high strength, high conductivity copper alloy with high mechanical strength and high electrical conductivity, without using Be, which is not harmful to the environment, without damaging the physical properties, while improving the 3234 type 3 standard product. It can be obtained inexpensively.

発明者は、特許文献1に記載の材料よりも機械的強度を高めるとともにこれに近い導電率を有し、しかも特許文献2に記載の高価なNiの配合比率が高い銅合金よりも、Ni添加量を少なくしながら、引張強さ及び硬さがJIS Z 3234第3種規格の引張強さ及び硬さよりも優れるとともに、伸び、及び導電率にも優れた銅合金を開発するための目標規格を設定した。また、導電率に関しては、引張強さや硬さを良好なものとした場合、低下する傾向にある。そこで、上記の如く引張強さや硬さを良好なものとした本発明の材料について実験を行った結果、35%以上の導電率を確保することができることが明らかとなったため、目標規格を35%以上とした。   The inventor increases the mechanical strength as compared with the material described in Patent Document 1 and has a conductivity close to this, and the addition of Ni is higher than that of a copper alloy having a high compounding ratio of expensive Ni described in Patent Document 2. The target standard for developing a copper alloy that is superior in tensile strength and hardness to the tensile strength and hardness of JIS Z 3234 type 3 standard, but also excellent in elongation and conductivity, while reducing the amount. Set. Further, the electrical conductivity tends to decrease when the tensile strength and hardness are good. Therefore, as a result of experiments on the material of the present invention having good tensile strength and hardness as described above, it has become clear that a conductivity of 35% or more can be secured. It was above.

引張強さ 820N/mm2以上
硬さ(HB(10/3000)) 244以上
導電率(IACS) 35%以上
尚、ロボットに組み付ける抵抗溶接用ガンアーム等の製品に使用する場合に、上記の如く引張強さや硬さを良好に保ちながら製品の破損等を防止するには、7%以上の伸びを達成することが望ましい。
Tensile strength 820N / mm 2 or more
Hardness (HB (10/3000)) 244 or more
Conductivity (IACS) 35% or more In order to prevent damage to the product while maintaining good tensile strength and hardness as described above when used for products such as resistance welding gun arms to be assembled on robots, 7 It is desirable to achieve an elongation of at least%.

また、特許文献1に記載の銅合金を生産する上で、機械的性質に関係する添加元素としてNiが一番重要な元素であることが判明している。そこで、上記目標規格を満足させるとともに、高価なNiをできるだけ増やさないことを考慮して、まずNiを3.30〜6.0wt%含有させることを検討した。尚、Niの含有量が3.30wt%よりも少ないと、目標とする機械的性質が出ず、6.0wt%よりも多いと、高価なNiの添加量が多くなるため製造コストが高くなるばかりでなく、他の添加元素と相まって熱間塑性加工性が悪くなり、析出硬化するための熱処理での内部応力ひずみも多くなるため、割れが発生しやすい。   Further, it has been found that Ni is the most important element as an additive element related to mechanical properties in producing the copper alloy described in Patent Document 1. Then, considering satisfying the above-mentioned target standard and not increasing the expensive Ni as much as possible, first, it was examined to contain 3.30 to 6.0 wt% of Ni. If the Ni content is less than 3.30 wt%, the target mechanical properties will not be obtained, and if it is more than 6.0 wt%, the amount of expensive Ni added will increase and the manufacturing cost will increase. In addition to the other additive elements, the hot plastic workability deteriorates and the internal stress strain in the heat treatment for precipitation hardening increases, so that cracking is likely to occur.

次に、SiはNiと化合してNiケイ化物をマトリックス中に形成し、強度の向上と同時に摺動部材に使用する場合には、摩擦係数を低くすることが可能となる。尚、NiとSiの化合物としてはNi2Siが考えられる。また、少し多めの余分なSi添加は、以下に述べるCrと共に化合物としてのNiケイ化物のほかに、Crケイ化物を形成し、析出強化と耐摩耗性に貢献する。尚、CrとSiの化合物としてはCr5Si3等が考えられる。 Next, Si combines with Ni to form a Ni silicide in the matrix, and when used as a sliding member at the same time as improving the strength, the friction coefficient can be lowered. Ni 2 Si can be considered as a compound of Ni and Si. In addition, a little extra Si addition forms Cr silicide in addition to Ni silicide as a compound together with Cr described below, and contributes to precipitation strengthening and wear resistance. As a compound of Cr and Si, Cr 5 Si 3 or the like can be considered.

以上を考慮して検討した結果、強度の向上、摩擦係数の低減、析出強化、耐摩耗性の観点から、Niに対するSi添加量としてはNi/Si重量比は3〜4が望ましいことが明らかとなった。尚、Ni/Si重量比が3未満であると、靭性が低下するとともに機械的性質の引張強さが低下する。また、Ni/Si重量比が4よりも大きいと、Niケイ化物とCrケイ化物のどちらかが不足して析出強化に影響するとともに、バルク材として使用する場合、機械的性質の向上が望めない。     As a result of considering the above, it is clear that the Ni / Si weight ratio is preferably 3 to 4 as the amount of Si added to Ni from the viewpoints of strength improvement, reduction of friction coefficient, precipitation strengthening, and wear resistance. became. If the Ni / Si weight ratio is less than 3, the toughness decreases and the tensile strength of mechanical properties decreases. Further, when the Ni / Si weight ratio is larger than 4, either Ni silicide or Cr silicide is insufficient, which affects precipitation strengthening, and when used as a bulk material, improvement in mechanical properties cannot be expected. .

また、本発明の合金に、大気溶解でCrを添加する場合、このCrは最も酸化しやすいため歩留まりの変動に気をつけなければならない。但し、以下の含有範囲内であれば、歩留まりが多少上下しても析出強化方法の熱処理さえ間違えなければ、あまり問題にならないことが判明している。そこで、本発明では、Crの含有量を0.5〜1.5wt%としている。そして、含有量が0.5wt%未満であれば、Siとの化合物形成が少なくなりNi添加量との関係で導電率が低下するとともに析出強化に貢献しない。また、含有量が1.5%よりも多い場合は、酸化物が増えて材質に影響を及ぼすとともに材料費が上昇するため不経済である。     In addition, when Cr is added to the alloy of the present invention by atmospheric dissolution, since this Cr is most easily oxidized, attention must be paid to yield fluctuations. However, it has been found that if the content is within the following range, even if the yield rises or falls slightly, it does not matter much if the heat treatment of the precipitation strengthening method is not mistaken. Therefore, in the present invention, the Cr content is 0.5 to 1.5 wt%. And if content is less than 0.5 wt%, compound formation with Si will decrease, electrical conductivity will fall in relation to Ni addition amount, and it will not contribute to precipitation strengthening. On the other hand, when the content is more than 1.5%, the oxides increase to affect the material, and the material cost increases, which is uneconomical.

また、Snは、固溶強化を促進するとともにCu−Sn化合物を形成することにより、引張強さ及び硬さにて表される機械的性質を向上させて、以下の含有範囲内であれば導電率も低下させないことから補助添加元素として重要である。そこで、本発明ではSn含有率を0.1wt%〜0.3wt%としている。そして、含有量が0.1wt%未満であると、上記効果が得にくくなり、0.3wt%より多いと、他の添加元素との影響により導電率が低下し、目標規格を満足できないものとなる。   Moreover, Sn improves the mechanical properties represented by tensile strength and hardness by promoting solid solution strengthening and forming a Cu-Sn compound. Since the rate is not lowered, it is important as an auxiliary additive element. Therefore, in the present invention, the Sn content is set to 0.1 wt% to 0.3 wt%. When the content is less than 0.1 wt%, the above effect is difficult to obtain. When the content is more than 0.3 wt%, the conductivity decreases due to the influence of other additive elements, and the target standard cannot be satisfied. Become.

また、他の添加元素としてMg、Mnを微量添加することにより、余分な酸化物を吸収してMgO2、MnO2を形成し、Crの酸化物生成を抑止するものとなる。また、Mg、Mnの含有量は、0.01wt%〜0.1wt%の範囲であって、Mg、Mnの含有量が0.01wt%未満であると、溶湯の酸化に気をつけて溶解しないとCr酸化物発生を抑止できない。また、0.1wt%より多いと、機械的性質が低下するとともに導電率も悪くなる。また、本発明の銅合金は、有害の懸念があるBeを含まないため、本材料について過酷な切削加工及び溶接等を行ってもBeヒューム等の心配のない安全な製品を得ることが可能となる。 Further, by adding a small amount of Mg and Mn as other additive elements, excess oxide is absorbed to form MgO 2 and MnO 2 , thereby suppressing generation of Cr oxides. In addition, the content of Mg and Mn is in the range of 0.01 wt% to 0.1 wt%, and if the content of Mg and Mn is less than 0.01 wt%, the molten metal is carefully dissolved and dissolved. Otherwise, the generation of Cr oxide cannot be suppressed. On the other hand, when the content is more than 0.1 wt%, the mechanical properties are deteriorated and the conductivity is also deteriorated. In addition, since the copper alloy of the present invention does not contain Be, which has harmful concerns, it is possible to obtain a safe product free from concerns such as Be fume even if severe cutting and welding are performed on this material. Become.

そして、以上の元素をできるだけ酸化させずに溶融させて鋳塊を作り(但し、真空溶解の必要はない)、熱間塑性加工後に850〜950℃の範囲で固溶させたものを、元の断面積に対し10〜40%冷間加工を行い、この冷間加工により引張強さの向上に寄与する。その後、400℃〜500℃で時効処理を行うことにより、上記目標規格を満足させることができた。   Then, the above elements are melted without being oxidized as much as possible to make an ingot (however, vacuum melting is not necessary), and after the hot plastic working, the solid solution in the range of 850 to 950 ° C. is used. Cold work is performed on the cross-sectional area by 10 to 40%, and this cold work contributes to the improvement of tensile strength. Then, the target specification was able to be satisfied by performing an aging treatment at 400 ° C. to 500 ° C.

また、本発明の銅合金及び上記加工方法は、バルク材の製造を本来の目的としているが、本発明の含有範囲内で添加元素を調節することにより、圧延して薄板を製造することも可能である。また、冷間加工する際に、1回の加工において元の断面積に対し40%以内の加工を施し、その後熱処理を行う前に加工熱処理(焼鈍と冷間圧延を繰り返す処理)を行い、その後溶体化処理を施す。溶体化処理後、表面酸化物を除去して仕上げ、冷間加工を行い(冷間加工は10%以上行うこと)、時効処理を施すことにより上記の目標規格を満足させた薄板に加工することができる。   Moreover, although the copper alloy of the present invention and the above processing method are originally intended for the production of bulk materials, it is also possible to produce a thin plate by rolling by adjusting the additive elements within the content range of the present invention. It is. In addition, when performing cold working, perform processing within 40% of the original cross-sectional area in one processing, and then perform processing heat treatment (processing that repeats annealing and cold rolling) before performing heat treatment, and then Apply solution treatment. After solution treatment, finish by removing surface oxides, perform cold working (cold working should be 10% or more), and process to a thin plate that satisfies the above target standards by applying aging treatment Can do.

第1〜第4発明における各実施例について以下に詳細に説明する。まず、各実施例及び比較例の成分分析値を下記の表1に示す。尚、実施例1〜実施例5、及び実施例10は、Ni含有量を、本発明のNi含有範囲(3.30〜6.0wt%)の中間値に近い値とした実施例である。また、実施例1〜実施例5は、Ni/Si重量比を本発明のNi/Si重量比範囲(3〜4)の上限値に近い値としている。   Each embodiment in the first to fourth inventions will be described in detail below. First, the component analysis values of each Example and Comparative Example are shown in Table 1 below. In addition, Example 1- Example 5 and Example 10 are Examples which made Ni content the value close | similar to the intermediate value of Ni content range (3.30-6.0 wt%) of this invention. In Examples 1 to 5, the Ni / Si weight ratio is close to the upper limit of the Ni / Si weight ratio range (3 to 4) of the present invention.

また、実施例6及び実施例7は、Ni含有量を下限値に近い値とした実施例であり、実施例8及び実施例9は、Ni含有量を上限値に近い値としたものである。また、実施例11はNi含有量を本発明のNi含有範囲の中間値よりもやや低い値とするとともに、Ni/Si重量比を本発明のNi/Si重量比範囲(3〜4)の下限値に近い値としたものである。     In addition, Example 6 and Example 7 are examples in which the Ni content is a value close to the lower limit value, and Example 8 and Example 9 are values in which the Ni content is a value close to the upper limit value. . In Example 11, the Ni content was set to a value slightly lower than the intermediate value of the Ni content range of the present invention, and the Ni / Si weight ratio was the lower limit of the Ni / Si weight ratio range (3 to 4) of the present invention. The value is close to the value.

また、比較例1〜4は実施例よりもNi含有量の多い銅合金であり、比較例1は比較例2〜4よりもNi/Si重量比を低くしたものである。尚、Siの添加量を多くするとケイ化物が多くなるため、MgとMnを微量添加して酸化物の発生を抑え、靭性が出るように心がけた。   Moreover, Comparative Examples 1-4 are copper alloys with more Ni content than an Example, and the comparative example 1 makes Ni / Si weight ratio lower than Comparative Examples 2-4. In addition, since the amount of silicide increases when the amount of Si added is increased, a small amount of Mg and Mn is added to suppress the generation of oxides and to ensure toughness.

また、比較例2はNi、Si、Cr、Cuの4元素のみから成り、このうちSiの量を比較例1よりも低く抑えたものである。また、比較例3は、Ni、Si、Crの配合比を上記比較例2とほぼ同一とするとともに、更にMg、Znを微量添加したものである。また、比較例4は、Ni、Crの添加量を比較例1〜3よりも低く抑えるとともに、Snを微量添加したものである。また、比較例5〜9は、従来より市販されている特許文献1に記載の材料であって、量産品からランダムに抜き取ったものである。また、比較例10は、Ni、Si、Cr、Sn、Cuの各元素の含有量を、本発明の含有範囲内とするとともに、Ni/Si重量比を本発明のNi/Si重量比範囲の上限値よりも高い4.40としたものである。     Further, Comparative Example 2 is composed of only four elements of Ni, Si, Cr, and Cu, and among these, the amount of Si is suppressed to be lower than that of Comparative Example 1. In Comparative Example 3, the mixing ratio of Ni, Si, and Cr is substantially the same as that in Comparative Example 2, and a small amount of Mg and Zn are further added. In Comparative Example 4, the addition amount of Ni and Cr is kept lower than those of Comparative Examples 1 to 3, and a small amount of Sn is added. Comparative Examples 5 to 9 are materials described in Patent Document 1 that have been commercially available, and are randomly extracted from mass-produced products. In Comparative Example 10, the content of each element of Ni, Si, Cr, Sn, and Cu is within the content range of the present invention, and the Ni / Si weight ratio is within the Ni / Si weight ratio range of the present invention. It is 4.40 which is higher than the upper limit.

Figure 2008223069
Figure 2008223069

そして、表1に示す実施例1〜11、及び比較例1〜10の試料を製造するため、Ni、Si、Cr、Sn、Mg、Mn、Zn、Cuを用意した。尚、Niは電解Niを、SiはCu−Si(10%)母合金を、CrはCu−Cr(10%)母合金を、Snは電解Snを用意した。また、微量添加成分のMgはCu−Mg(50%)母合金を、MnはCu−Mn(30%)母合金を、Znは電解Znを各々用意した。   And in order to manufacture the samples of Examples 1-11 shown in Table 1, and Comparative Examples 1-10, Ni, Si, Cr, Sn, Mg, Mn, Zn, and Cu were prepared. Here, Ni was prepared as electrolytic Ni, Si as a Cu—Si (10%) master alloy, Cr as a Cu—Cr (10%) master alloy, and Sn as an electrolytic Sn. Further, Mg as a minor additive was prepared as a Cu—Mg (50%) master alloy, Mn as a Cu—Mn (30%) master alloy, and Zn as electrolytic Zn.

また、実施例1〜11及び比較例1〜4、10は、1チャージあたり合計25kgの原料を各々用意して製造した。また、比較例5〜9は、1チャージ当たり800kgの製品より試料を採取した。   Examples 1 to 11 and Comparative Examples 1 to 4 and 10 were prepared by preparing a total of 25 kg of raw material per charge. In Comparative Examples 5 to 9, samples were collected from 800 kg of product per charge.

そして、実施例1〜11及び比較例1〜4、10は、黒鉛るつぼを用意して高周波炉にて各々適量のフラックスと木炭を用意し、ダービル法にて各々鋳塊を製造した。そして、その鋳塊の押湯部分を除き外周を機械加工にて面削し、傷がないことを確認して次工程に供した。そして、熱間鍛造にてΦ40mmに鍛伸し、以下の表2に示す溶体化温度で固溶させて素早く水冷し、溶体化処理を施した。その後、外周をΦ37mmに面削を行い、冷間引抜加工と時効処理工程に供した。各試料の時効処理温度を以下の表2に示す。   In Examples 1 to 11 and Comparative Examples 1 to 4 and 10, graphite crucibles were prepared, appropriate amounts of flux and charcoal were prepared in a high frequency furnace, and ingots were produced by the Darville method. Then, the outer periphery of the ingot was chamfered by machining to confirm that there was no scratch, and the next step was used. Then, it was forged to 40 mm by hot forging, dissolved at the solution temperature shown in Table 2 below, quickly cooled with water, and subjected to solution treatment. Thereafter, the outer periphery was chamfered to Φ37 mm, and was subjected to cold drawing and aging treatment steps. The aging temperature for each sample is shown in Table 2 below.

Figure 2008223069
Figure 2008223069

また、比較例5〜9は、Φ275mmの鋳塊から熱間押出によりΦ55mmに加工し、表2に示す溶体化温度で固溶させて素早く水冷し、溶体化処理を施した。その後、研磨工程を経てΦ40mmに冷間加工を行った後、時効処理工程他に供した。そして、上記の如く加工した各々の材料を切断し、JIS4号試験片と硬さ及び導電率を測定するテストピースを採取して、各々の試験に供した。   In Comparative Examples 5 to 9, a Φ275 mm ingot was processed into Φ55 mm by hot extrusion, dissolved at the solution temperature shown in Table 2 and quickly cooled with water, and subjected to a solution treatment. Then, after performing a cold working to Φ40 mm through a polishing process, it was subjected to an aging treatment process and the like. And each material processed as mentioned above was cut | disconnected, the test piece which measures a JIS4 test piece and hardness and electrical conductivity was extract | collected, and it used for each test.

上記の如く各試料について溶体化処理、冷間加工、時効処理を行った結果を以下に説明する。実施例1では、時効処理時間を少し短くすることにより、引張強さ及び硬さが目標規格を満足した。また、実施例2では、溶体化処理温度を850℃〜950℃の中間の900℃とするとともに、時効処理温度を実施例1よりも10℃下げて時効処理時間を長くした。その結果、実施例1と比較して引張強さは多少低下したが、導電率は高くなった。   The results of solution treatment, cold working, and aging treatment for each sample as described above will be described below. In Example 1, the tensile strength and hardness satisfied the target standard by slightly shortening the aging treatment time. In Example 2, the solution treatment temperature was set to 900 ° C., which is an intermediate between 850 ° C. and 950 ° C., and the aging treatment temperature was lowered by 10 ° C. compared to Example 1 to increase the aging treatment time. As a result, the tensile strength was somewhat reduced as compared with Example 1, but the conductivity was high.

また、実施例3は溶体化処理温度を上記実施例2よりも更に10℃下げるとともに、溶体化処理時間を長くした。その結果、実施例1及び実施例2と比較して引張強さ、0.2%耐力、及び硬さは低下したが、伸びと導電率は実施例1及び実施例2を上回った。また、実施例4は、上記実施例1〜3よりも冷間加工率を下げるとともに時効処理温度を実施例1よりも10℃上げ、最適温度及び最適時間でピーク時効処理を行った。尚、ピーク時効処理とは、その材質の最高強度を得るために、時効処理を最適温度・最適時間で行うことを言う。その結果、引張強さ、0.2%耐力、及び硬さは実施例3よりも高い値を示すとともに、導電率は実施例1よりも高い値を示した。     In Example 3, the solution treatment temperature was further lowered by 10 ° C. compared to Example 2 above, and the solution treatment time was lengthened. As a result, the tensile strength, 0.2% proof stress, and hardness decreased as compared with Example 1 and Example 2, but the elongation and conductivity exceeded those of Example 1 and Example 2. In Example 4, the cold working rate was lowered as compared with Examples 1 to 3 above, and the aging treatment temperature was increased by 10 ° C. from Example 1, and peak aging treatment was performed at the optimum temperature and optimum time. The peak aging treatment means that the aging treatment is performed at the optimum temperature and the optimum time in order to obtain the maximum strength of the material. As a result, the tensile strength, 0.2% proof stress, and hardness were higher than those in Example 3, and the conductivity was higher than that in Example 1.

また、実施例5では、上記実施例4よりも冷間加工率を多少下げてピーク時効処理を行った。その結果、伸び、硬さの値はさほど上昇しなかったが、引張強さは実施例2及び3よりも高い値を、また0.2%耐力は実施例2〜4よりも高い値を、更に導電率は実施例1よりも高い値を示した。また、実施例6では、NiとSiの添加量を下げて冷間加工率を上記実施例5と同一とした他は、実施例1の時効処理条件と同一としたものである。実施例1と比較して機械的強度は若干劣るものの、伸びと導電率は高い値を示した。   Further, in Example 5, the peak aging treatment was performed with the cold working rate somewhat lower than in Example 4. As a result, the elongation and hardness values did not increase so much, but the tensile strength was higher than those in Examples 2 and 3, and the 0.2% proof stress was higher than those in Examples 2 to 4. Further, the conductivity was higher than that of Example 1. Further, Example 6 is the same as the aging treatment conditions of Example 1 except that the addition amounts of Ni and Si are reduced and the cold working rate is the same as that of Example 5. Although the mechanical strength was slightly inferior to that of Example 1, the elongation and conductivity showed high values.

また、実施例7はNi及びSiの添加量を少なくするとともに冷間加工率を上記実施例5と同一とした他は、実施例2の時効処理条件と同一としたものである。その結果、実施例2と比較して引張強さ、0.2%耐力、及び硬さはやや低下したが、伸びと導電率は高くなった。また、実施例8及び実施例9は、Ni、Siの含有量が多いため、冷間加工率は15%が限度であった。その結果、伸びは実施例2、3、5〜7と比較して低かったが、引張強さは実施例2、3、6、7と比較して高い値を示すとともに、0.2%耐力は実施例2、3、6、7と比較して高い値を示した。   Further, Example 7 is the same as the aging treatment conditions of Example 2 except that the addition amount of Ni and Si is reduced and the cold working rate is the same as that of Example 5. As a result, the tensile strength, 0.2% proof stress, and hardness were slightly decreased as compared with Example 2, but the elongation and conductivity were increased. Moreover, since Example 8 and Example 9 had much content of Ni and Si, the cold work rate was a limit of 15%. As a result, the elongation was low compared to Examples 2, 3, and 5-7, but the tensile strength was higher than that of Examples 2, 3, 6, and 7, and 0.2% proof stress. Was higher than those of Examples 2, 3, 6, and 7.

また、実施例10はNi、Siの含有量を本発明のNi、Siの含有範囲、即ちNiは3.30〜6.0wt%、Siは0.8〜1.7wt%のほぼ中間値とするとともに、Mg、Mnを微量添加したものである。上記Mg、及びMnは、酸化防止剤としての役割を果たすものであり、また、これらを添加することにより溶解がしやすくなり鋳塊の欠陥が発生しにくいものとなる。そして、溶体化処理温度を中間値である900℃として、時効処理時間を最適時効処理時間より少し長めに設定した。     Further, in Example 10, the Ni and Si contents are within the range of the Ni and Si content of the present invention, that is, Ni is 3.30 to 6.0 wt%, and Si is approximately an intermediate value of 0.8 to 1.7 wt%. In addition, a small amount of Mg and Mn are added. Mg and Mn serve as antioxidants, and by adding these, dissolution becomes easy and defects in the ingot are less likely to occur. The solution treatment temperature was set to 900 ° C., which is an intermediate value, and the aging treatment time was set slightly longer than the optimum aging treatment time.

その結果、MgやMnの添加によって銅合金の添加元素は多くなるが、機械的性質や導電率は低下しないことが明らかとなった。尚、コルソン系合金の溶体化処理温度は、温度さえ間違えなければ時間が多少ずれても機械的性質及び導電率への影響は軽微であるが、時効処理に関しては、温度、時間により機械的性質及び導電率への影響が大きい材料である。     As a result, it has been clarified that the addition of Mg and Mn increases the additive elements of the copper alloy, but the mechanical properties and conductivity do not decrease. In addition, the solution treatment temperature of Corson-based alloy is not affected even if the temperature is not wrong, even if the time is slightly shifted, the effect on the mechanical properties and conductivity is slight, but regarding the aging treatment, the mechanical properties depend on the temperature and time. In addition, it is a material having a great influence on conductivity.

また、実施例11は上記の如くNi/Si重量比を、本発明のNi/Si重量比の下限値に近い3.13とするとともに、冷間加工率や、熱処理条件を実施例6と同一としたものである。尚、熱処理条件とは、溶体化処理温度、溶体化処理時間、時効処理温度、時効処理時間等をいう。その結果、伸びは本目標規格の下限値に近い値であったが、引張強さ、硬さ、導電率に関しては本目標規格を十分に満足している。以上の結果より、実施例1〜11では、機械的強度、伸び、及び導電率の値が、目標規格として上記に掲げた機械的強度、伸び、及び導電率の値を全て上回る結果となった。   In Example 11, the Ni / Si weight ratio was set to 3.13 close to the lower limit of the Ni / Si weight ratio of the present invention as described above, and the cold working rate and heat treatment conditions were the same as in Example 6. It is what. The heat treatment conditions refer to solution treatment temperature, solution treatment time, aging treatment temperature, aging treatment time, and the like. As a result, the elongation was close to the lower limit value of the target standard, but the target standard was sufficiently satisfied with respect to tensile strength, hardness, and conductivity. From the above results, in Examples 1 to 11, the mechanical strength, elongation, and conductivity values all exceeded the mechanical strength, elongation, and conductivity values listed above as target standards. .

次に、比較例の結果について以下に述べる。尚、比較例1〜10の溶体化処理温度は、上記実施例1〜4の結果から、特に引張強さ、0.2%耐力、及び伸びにおいて良好な値を得ることができた920℃とした。また、比較例1〜4は硬度が高いため、冷間加工を施すことができなかった。また、比較例1〜4の時効処理温度については、特許文献2の記載に基づき470℃〜480℃とした。   Next, the result of the comparative example will be described below. In addition, the solution treatment temperature of Comparative Examples 1 to 10 was 920 ° C., which was able to obtain good values particularly in tensile strength, 0.2% proof stress, and elongation from the results of Examples 1 to 4 above. did. Moreover, since Comparative Examples 1-4 was high in hardness, it was not possible to perform cold working. Moreover, about the aging treatment temperature of Comparative Examples 1-4, it was set as 470 degreeC-480 degreeC based on the description of the patent document 2. FIG.

その結果、表2に示す如く、比較例1〜3については、引張強さ、及び0.2%耐力は良好であったが導電率は前記目標規格を達成することができなかった。また、比較例1及び2は、伸びについても前記目標規格を達成することができなかった。また、硬さに関しては、上記各実施例とほぼ同等であったが、このことは、時効処理温度の関係と、冷間加工を施していないことが、多少関係していると思われる。   As a result, as shown in Table 2, in Comparative Examples 1 to 3, the tensile strength and the 0.2% proof stress were good, but the conductivity could not achieve the target standard. Moreover, Comparative Examples 1 and 2 could not achieve the target standard for elongation. Further, the hardness was almost the same as that in each of the above-described examples, but this seems to be somewhat related to the relationship between the aging treatment temperature and the absence of cold working.

また、比較例4は、比較例1〜3と比べてNiの含有量を低くしたものを試みた。しかし、溶体化処理までは割れていなかったが、熱間加工に問題があったため時効処理後には内部応力による割れが発見された。そのため、引張強さ、0.2%耐力、伸びについての測定を行うことができなかった。尚、Ni含有量の多い製品の熱間加工は難しいため、Mg、Mn、Znをそれぞれ微量添加して試みたが、伸びと導電率については本目標規格に達することができなかった。     Moreover, the comparative example 4 tried what made content of Ni low compared with Comparative Examples 1-3. However, it was not cracked until the solution treatment, but cracking due to internal stress was found after the aging treatment because of a problem in hot working. Therefore, measurement about tensile strength, 0.2% proof stress, and elongation could not be performed. In addition, since hot working of a product with a high Ni content is difficult, attempts were made by adding a small amount of Mg, Mn, and Zn, respectively, but the elongation and conductivity could not reach this target standard.

また、比較例5〜9は、全て量産製造をしており、その製造は問題なく行える。しかしながら、Ni、Siの添加量が本実施例のものより低いため、当然のことながら、導電率と伸びは高いものの、引張強さ、硬さについては本目標規格に達していない。   In addition, Comparative Examples 5 to 9 are all mass-produced and can be produced without problems. However, since the addition amounts of Ni and Si are lower than those of the present example, it is natural that although the electrical conductivity and elongation are high, the tensile strength and hardness do not reach the target standards.

また、比較例10は、Ni、Si、Cr、Snの含有量を本発明の含有範囲内とするとともに、冷間加工率及び熱処理条件を実施例6と同一としたが、Ni/Si重量比が4.4であるためか、伸び、導電率以外の機械的性質は目標規格の下限に達していない。   In Comparative Example 10, the content of Ni, Si, Cr, and Sn was within the content range of the present invention, and the cold working rate and heat treatment conditions were the same as in Example 6, but the Ni / Si weight ratio The mechanical properties other than elongation and electrical conductivity do not reach the lower limit of the target standard because of the value of 4.4.

以上の結果より、実施例1〜11は、上記に掲げた目標規格を十分に達成し得ることが明らかとなった。従って、本発明の銅合金は、環境に有害の懸念のあるBeを含まず、且つ特許文献1の製品よりも機械的性質が良好であるとともに、高価なNi添加量を抑えてNi及びSi添加量を調整することにより、物理的性質を損なうことなく引張強さ及び硬さにより表される機械的強度、及び導電率の高いものであることが判明した。   From the above results, it was revealed that Examples 1 to 11 can sufficiently achieve the target standards listed above. Therefore, the copper alloy of the present invention does not contain Be, which is harmful to the environment, has better mechanical properties than the product of Patent Document 1, and suppresses the expensive Ni addition amount and adds Ni and Si. By adjusting the amount, it was found that the mechanical strength represented by the tensile strength and the hardness and the electrical conductivity were high without impairing the physical properties.

Claims (4)

Ni3.30〜6.0wt%、Si0.8〜1.7wt%、Cr0.5〜1.5wt%、Sn0.1〜0.3wt%を含有し、且つ残部が不可避的な不純物を除くCuよりなり、Ni/Si重量比が3〜4であるとともに、引張強さが820N/mm2以上、硬さがHB(10/3000)で244以上、導電率がIACSで35%以上であることを特徴とする高強度高導電性銅合金。 From Cu containing Ni 3.30 to 6.0 wt%, Si 0.8 to 1.7 wt%, Cr 0.5 to 1.5 wt%, Sn 0.1 to 0.3 wt%, and the balance excluding inevitable impurities The Ni / Si weight ratio is 3 to 4, the tensile strength is 820 N / mm 2 or more, the hardness is 244 or more in HB (10/3000), and the conductivity is 35% or more in IACS. High strength and high conductivity copper alloy. Ni3.30〜6.0wt%、Si0.8〜1.7wt%、Cr0.5〜1.5wt%、Sn0.1〜0.3wt%を含有するとともに、Mg、Mnのうちの一種類、又は両方を0.01〜0.1wt%含有し、且つ残部が不可避的な不純物を除くCuよりなり、Ni/Si重量比が3〜4であるとともに、引張強さが820N/mm2以上、硬さがHB(10/3000)で244以上、導電率がIACSで35%以上であることを特徴とする高強度高導電性銅合金。 Ni 3.30 to 6.0 wt%, Si 0.8 to 1.7 wt%, Cr 0.5 to 1.5 wt%, Sn 0.1 to 0.3 wt%, and one kind of Mg and Mn, or Both are comprised of 0.01 to 0.1 wt% and the balance is made of Cu excluding inevitable impurities, the Ni / Si weight ratio is 3 to 4, and the tensile strength is 820 N / mm 2 or more, hard A high-strength, high-conductivity copper alloy characterized by having an HB (10/3000) of 244 or more and a conductivity of IACS of 35% or more. Ni3.30〜6.0wt%、Si0.8〜1.7wt%、Cr0.5〜1.5wt%、Sn0.1〜0.3wt%を含有し、且つ残部が不可避的な不純物を除くCuよりなるとともに、Ni/Si重量比が3〜4である銅合金を、溶体化処理温度850℃〜950℃の範囲で溶体化処理した後、冷間加工率が元の材料の断面積に対して10〜40%となるよう冷間加工を施し、その後処理温度400〜500℃で時効処理を行って製造し、引張強さを820N/mm2以上、硬さをHB(10/3000)で244以上、導電率をIACSで35%以上としたことを特徴とする高強度高導電性銅合金の製造方法。 From Cu containing Ni 3.30 to 6.0 wt%, Si 0.8 to 1.7 wt%, Cr 0.5 to 1.5 wt%, Sn 0.1 to 0.3 wt%, and the balance excluding inevitable impurities At the same time, after the copper alloy having a Ni / Si weight ratio of 3 to 4 is subjected to a solution treatment at a solution treatment temperature of 850 ° C. to 950 ° C., the cold work rate is relative to the cross-sectional area of the original material. It is cold-worked to 10 to 40%, and then subjected to aging treatment at a treatment temperature of 400 to 500 ° C., and has a tensile strength of 820 N / mm 2 or more and a hardness of 244 in HB (10/3000). As described above, the method for producing a high-strength, high-conductivity copper alloy characterized in that the conductivity is 35% or more by IACS. Ni3.30〜6.0wt%、Si0.8〜1.7wt%、Cr0.5〜1.5wt%、Sn0.1〜0.3wt%を含有するとともに、Mg、Mnのうちの一種類、又は両方を0.01〜0.1wt%含有し、且つ残部が不可避的な不純物を除くCuよりなるとともに、Ni/Si重量比が3〜4である銅合金を、溶体化処理温度850℃〜950℃の範囲で溶体化処理した後、冷間加工率が元の材料の断面積に対して10〜40%となるよう冷間加工を施し、その後処理温度400〜500℃で時効処理を行って製造し、引張強さを820N/mm2以上、硬さをHB(10/3000)で244以上、導電率をIACSで35%以上としたことを特徴とする高強度高導電性銅合金の製造方法。 Ni 3.30 to 6.0 wt%, Si 0.8 to 1.7 wt%, Cr 0.5 to 1.5 wt%, Sn 0.1 to 0.3 wt%, and one kind of Mg and Mn, or A copper alloy containing 0.01 to 0.1 wt% of both and the balance being made of Cu excluding inevitable impurities and having a Ni / Si weight ratio of 3 to 4, is subjected to a solution treatment temperature of 850 ° C. to 950 ° C. After solution treatment in the range of ° C., cold work is performed so that the cold work rate is 10 to 40% with respect to the cross-sectional area of the original material, and then aging treatment is performed at a treatment temperature of 400 to 500 ° C. Manufactured and manufactured a high-strength, high-conductivity copper alloy characterized by a tensile strength of 820 N / mm 2 or more, a hardness of 244 or more in HB (10/3000), and a conductivity of 35% or more in IACS Method.
JP2007061720A 2007-03-12 2007-03-12 High-strength, high-conductivity copper alloy and its manufacturing method Pending JP2008223069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007061720A JP2008223069A (en) 2007-03-12 2007-03-12 High-strength, high-conductivity copper alloy and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007061720A JP2008223069A (en) 2007-03-12 2007-03-12 High-strength, high-conductivity copper alloy and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008223069A true JP2008223069A (en) 2008-09-25

Family

ID=39842025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007061720A Pending JP2008223069A (en) 2007-03-12 2007-03-12 High-strength, high-conductivity copper alloy and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008223069A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106332A (en) * 2008-10-31 2010-05-13 Furukawa Electric Co Ltd:The Copper alloy material for structural member of resistance welding machine
WO2012147780A1 (en) * 2011-04-25 2012-11-01 千住金属工業株式会社 Sliding material, alloy for bearing, and multilayer metal material for bearing
CN107090553A (en) * 2017-04-26 2017-08-25 宝鸡文理学院 A kind of high-strength high elasticity copper alloy and preparation method thereof
JP6310538B1 (en) * 2016-12-14 2018-04-11 古河電気工業株式会社 Copper alloy wire rod and method for producing the same
JP2018076580A (en) * 2016-11-11 2018-05-17 三芳合金工業株式会社 Precipitation hardening type copper alloy and manufacturing method therefor
WO2020014582A1 (en) * 2018-07-12 2020-01-16 Materion Corporation Copper-nickel-silicon alloys with high strength and high electrical conductivity
JP2020041207A (en) * 2018-09-13 2020-03-19 三芳合金工業株式会社 Copper alloy for ultra low temperature member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258945A (en) * 1984-06-05 1985-12-20 Kobe Steel Ltd Lead for ceramic package ic
JPH02166249A (en) * 1988-12-20 1990-06-26 Kobe Steel Ltd Electrode material for resistance welding
JPH02228440A (en) * 1989-03-02 1990-09-11 Ohara Kk Copper alloy castings
JPH0397818A (en) * 1989-09-11 1991-04-23 Kobe Steel Ltd Electrode material for resistance welding
JP2003193158A (en) * 2001-12-28 2003-07-09 Miyoshi Gokin Kogyo Kk Electrode material for resistance welding and production method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258945A (en) * 1984-06-05 1985-12-20 Kobe Steel Ltd Lead for ceramic package ic
JPH02166249A (en) * 1988-12-20 1990-06-26 Kobe Steel Ltd Electrode material for resistance welding
JPH02228440A (en) * 1989-03-02 1990-09-11 Ohara Kk Copper alloy castings
JPH0397818A (en) * 1989-09-11 1991-04-23 Kobe Steel Ltd Electrode material for resistance welding
JP2003193158A (en) * 2001-12-28 2003-07-09 Miyoshi Gokin Kogyo Kk Electrode material for resistance welding and production method therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106332A (en) * 2008-10-31 2010-05-13 Furukawa Electric Co Ltd:The Copper alloy material for structural member of resistance welding machine
WO2012147780A1 (en) * 2011-04-25 2012-11-01 千住金属工業株式会社 Sliding material, alloy for bearing, and multilayer metal material for bearing
JP2018076580A (en) * 2016-11-11 2018-05-17 三芳合金工業株式会社 Precipitation hardening type copper alloy and manufacturing method therefor
JP2018095928A (en) * 2016-12-14 2018-06-21 古河電気工業株式会社 Copper alloy wire rod material and method for producing the same
JP6310538B1 (en) * 2016-12-14 2018-04-11 古河電気工業株式会社 Copper alloy wire rod and method for producing the same
WO2018110037A1 (en) * 2016-12-14 2018-06-21 古河電気工業株式会社 Copper alloy wire rod material and production method therefor
CN109844147A (en) * 2016-12-14 2019-06-04 古河电气工业株式会社 Copper alloy wire bar and its manufacturing method
KR20190095251A (en) * 2016-12-14 2019-08-14 후루카와 덴키 고교 가부시키가이샤 Copper alloy rods and its manufacturing method
KR102349545B1 (en) 2016-12-14 2022-01-10 후루카와 덴키 고교 가부시키가이샤 Copper alloy wire rod and manufacturing method thereof
CN107090553A (en) * 2017-04-26 2017-08-25 宝鸡文理学院 A kind of high-strength high elasticity copper alloy and preparation method thereof
WO2020014582A1 (en) * 2018-07-12 2020-01-16 Materion Corporation Copper-nickel-silicon alloys with high strength and high electrical conductivity
CN112823215A (en) * 2018-07-12 2021-05-18 万腾荣公司 Copper-nickel-silicon alloy with high strength and high electrical conductivity
JP2020041207A (en) * 2018-09-13 2020-03-19 三芳合金工業株式会社 Copper alloy for ultra low temperature member
JP7126656B2 (en) 2018-09-13 2022-08-29 三芳合金工業株式会社 Copper alloy for cryogenic parts

Similar Documents

Publication Publication Date Title
JP5085908B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP2008223069A (en) High-strength, high-conductivity copper alloy and its manufacturing method
CN106065443B (en) Copper alloy and method for producing same
CN103589903B (en) A kind of high-strength wear-resistant copper alloy and manufacture method thereof
JP5305323B2 (en) Zinc alloy for die casting and method for producing die cast member using Zn alloy for die casting
JP2011202283A (en) Aluminum alloy, aluminum alloy foil, container and method of preparing aluminum alloy foil
CN105525134A (en) High-strength alloy and preparation method thereof
RU2695852C2 (en) α-β TITANIUM ALLOY
CN1314956A (en) Iron modified tin brass
CN111118336B (en) Corrosion-resistant high-elasticity copper alloy plug bush material and preparation method thereof
JP2007126739A (en) Copper alloy for electronic material
EP3436616B1 (en) Aluminum alloys having improved tensile properties
JP5887449B2 (en) Copper alloy, cold-rolled sheet and method for producing the same
CN101921926B (en) Low-calcium and easy-cutting silicon brass alloy and preparation method thereof
CN103667823A (en) High-strength aluminum-zinc-magnesium alloy material as well as preparation method and application thereof
JP5688744B2 (en) High strength and high toughness copper alloy forging
TWI539016B (en) High strength copper alloy forged material
CN103589904B (en) A kind of high-strength wear-resistant copper alloy and pipe-making method thereof
JP4293580B2 (en) Corson alloy for metal mold and manufacturing method thereof
JP3563311B2 (en) Copper alloy electrode material for resistance welding and method for producing the same
JP2010280984A (en) Method for producing copper alloy used as sliding material for motor
JPS6140291B2 (en)
JPH08225869A (en) Copper alloy for electrical and electronic parts excellent in strength and punching property
KR100444291B1 (en) High strength phosphorous copper with fine grain structure
KR102617997B1 (en) Manufacturing method of die casting Al alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101216