JPH0397818A - Electrode material for resistance welding - Google Patents

Electrode material for resistance welding

Info

Publication number
JPH0397818A
JPH0397818A JP23532089A JP23532089A JPH0397818A JP H0397818 A JPH0397818 A JP H0397818A JP 23532089 A JP23532089 A JP 23532089A JP 23532089 A JP23532089 A JP 23532089A JP H0397818 A JPH0397818 A JP H0397818A
Authority
JP
Japan
Prior art keywords
electrode
welding
electrode material
content
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23532089A
Other languages
Japanese (ja)
Other versions
JPH0723518B2 (en
Inventor
Motohisa Miyato
宮藤 元久
Isao Hosokawa
功 細川
Tetsuzo Ogura
小倉 哲造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1235320A priority Critical patent/JPH0723518B2/en
Publication of JPH0397818A publication Critical patent/JPH0397818A/en
Publication of JPH0723518B2 publication Critical patent/JPH0723518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the heat resistance, high temp. strength and electrical conductivity in the electrode material by specifying the content of Ni, Si, Cr, Mg, B, Ti and Cu. CONSTITUTION:The electrode material for resistance welding is formed from the compsn. constituted of, by weight, 1 to 5% Ni, 0.2 to 1.5% Si and 0.001 to 1.5% Cr, furthermore of one or more kinds selected from 0.01 to 1% Mg, 0.001 to 0.1% B and 0.01 to 0.2% Ti and the balance Cu. The electrode material energizing the body to be welded under pressure has excellent heat resistance, high temp. strength and electrical conductivity. Furthermore, the deposition with the material to be welded is hard to occur, and the service life as an electrode material can be prolonged.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被溶接体に加圧力を加えるとともに、通電を
行う抵抗溶接用電極材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrode material for resistance welding that applies pressure to a welded object and also conducts electricity.

[従来の技術] 一般に、スポット溶接あるいはシーム溶接などにおける
抵抗溶接用電極には短時間とはいえ大電流が流れ、抵抗
発熱とともに溶接部に投入した熱量の多くは電極に逃げ
るため、電極先端部の温度は400℃〜700℃にも達
する。従って抵抗溶接用電極材料としては耐熱性、高温
強度、高導電性などが要求されており、Cu−Cr合金
が従来から広く使用されている。しかし、Cu−Cr合
金は、導電性が特に優れているものの、400℃〜70
0℃における耐熱性、高温強度の点において必要な特性
を十分満たしているとはいえない。
[Prior Art] In general, a large current flows through resistance welding electrodes during spot welding or seam welding, etc., albeit for a short period of time, and much of the heat input to the welding part escapes to the electrode as the resistance heats up. The temperature reaches as high as 400°C to 700°C. Therefore, resistance welding electrode materials are required to have heat resistance, high temperature strength, high conductivity, etc., and Cu-Cr alloys have been widely used. However, although Cu-Cr alloy has particularly excellent conductivity, it
It cannot be said that it sufficiently satisfies the necessary properties in terms of heat resistance at 0°C and high temperature strength.

従って、溶接回数の増加にともなって、電極先端部が変
形し、正常なナゲットを形成しなくなる。
Therefore, as the number of welding increases, the tip of the electrode deforms and a normal nugget is no longer formed.

その結果、溶接部の強度が低下し、必要な強度が得られ
なくなった場合には、新しい電極に取り替えなければな
らない。
As a result, the strength of the welded part decreases, and if the required strength is no longer obtained, the electrode must be replaced with a new one.

また、近年、電気・電子部品、自動車部品の高信頼性の
要求が高まっており、それにともないSnめつき、Zn
めっきなどの表面処理を施した材料が用いられる頻度が
高まっている。このような材料を溶接すると、溶接回数
の増加にともない、電極先端部にSnまたはZnとCu
との合金層が形成される。その結果、電極と被溶接材が
溶接時に接着して離れ難くなる現象(溶着現象)が発生
する。この溶着の程度が大きくなると溶接が不可能とな
り新しい電極に取り替えなければならない。
In addition, in recent years, demands for high reliability of electric/electronic parts and automobile parts have increased, and with this, Sn plating, Zn plating, etc.
Materials with surface treatments such as plating are increasingly being used. When such materials are welded, as the number of welding increases, Sn or Zn and Cu are added to the electrode tip.
An alloy layer is formed. As a result, a phenomenon occurs (welding phenomenon) in which the electrode and the material to be welded adhere to each other during welding and become difficult to separate. If the degree of this welding increases, welding becomes impossible and the electrode must be replaced with a new one.

抵抗溶接は、自動車や家庭電器製品をはじめとして、電
子部品においてもその組み立て工程で広く利用されてい
る.従って、電極の寿命が短かければ、電極材のコスト
が高くなるだけでなく、電極の取り付けや取り外しのた
めに多大な時間と労力とを資すことになる。
Resistance welding is widely used in the assembly process of electronic parts, including automobiles and home appliances. Therefore, if the life of the electrode is short, not only will the cost of the electrode material increase, but also a great deal of time and effort will be required to attach and remove the electrode.

〔発明が解決しようとする課題] この発明は、耐熱性、高温強度および導電性に優れるた
め、抵抗溶接用電極の先端部が変形し難く、かつ被溶接
材料のめつき成分との合金形戊が少なく、従って優れた
寿命を持つ抵抗溶接用電極材料を提供することを目的と
するものである。
[Problems to be Solved by the Invention] The present invention has excellent heat resistance, high-temperature strength, and electrical conductivity, so that the tip of the resistance welding electrode is difficult to deform, and it can be formed into an alloy with the plating component of the material to be welded. The object of the present invention is to provide an electrode material for resistance welding that has a small amount of carbon and therefore has an excellent service life.

[課題を解決するための千段コ 本発明の第1の要旨は、Ni:1.0〜5. 0wt%
,S i : 0.2〜1.5wt%,Cr:o.oo
i〜1.5wt%を含有し、さらに、Mg:0.01〜
1.0wt%,B:001〜O.001〜0.1wt%
,Ti :O.Of〜0.2wt%のうちl種以上を含
み、残部実質的にCuよりなることを特徴とする抵抗溶
接用電極材料に存在する。
[The first gist of the present invention is as follows: Ni: 1.0 to 5. 0wt%
, Si: 0.2 to 1.5 wt%, Cr: o. oo
i~1.5wt%, furthermore, Mg: 0.01~
1.0wt%, B:001~O. 001~0.1wt%
, Ti :O. It is present in a resistance welding electrode material characterized in that it contains l or more of 0.2 wt% of Of and the remainder is substantially made of Cu.

本発明の第2の要旨は、Ni:1.0〜5.0wt%,
S i : 0.2 〜1.5wt%,Cro.ooi
〜1.5wt%を含有し、さらに、F/Ig:0.01
〜1.0wt%,B:0.001〜O.001〜0.1
wt%,Ti :0.01〜0.2wt%のうち1種以
上と、Co:1.0wt%以下およびZr+0.35w
t%以下のうち1種または2種を含み、残部実質的にC
uよりなることを特徴とする抵抗溶接用電極材料に存在
する.し作用] 本発明者は、前述した従来技術の有する課題を解決する
ため、抵抗溶接用電極用としての特性を満足し得る合金
材料の選択を行った.高強度、高導電性の合金としては
、CuにNiとSiを添加した合金(コルソン合金とい
われる)が古くから広く用いられていた。
The second gist of the present invention is that Ni: 1.0 to 5.0 wt%,
Si: 0.2 to 1.5 wt%, Cro. ooi
Contains ~1.5wt%, and furthermore, F/Ig: 0.01
~1.0wt%, B:0.001~O. 001~0.1
wt%, Ti: one or more of 0.01 to 0.2 wt%, Co: 1.0 wt% or less, and Zr+0.35w
t% or less, and the remainder is substantially C.
It exists in a resistance welding electrode material characterized by consisting of u. In order to solve the problems of the prior art mentioned above, the present inventor selected an alloy material that can satisfy the characteristics for resistance welding electrodes. As a high-strength, high-conductivity alloy, an alloy in which Ni and Si are added to Cu (referred to as a Corson alloy) has been widely used for a long time.

しかし、この合金を抵抗溶接用電極に用いる場合、熱間
加工性が悪く、抵抗溶接用電極材料としての使用は困難
であった。
However, when this alloy is used for resistance welding electrodes, its hot workability is poor, making it difficult to use it as a resistance welding electrode material.

そこで、本発明者は、このコンソル合金をベースとして
、幾多の実験を重ねたところ、Ni.Stの量を一定範
囲に限定し、さらに、所定の添加元素を所定量添加した
場合には熱間加工が可能となり、さらに、耐熱性、高温
強度が、抵抗溶接用電極用としても満足すべきほどに向
上することを見い出し、本発明をなすにいたった。
Therefore, the present inventor conducted numerous experiments using this Consol alloy as a base, and found that Ni. If the amount of St is limited to a certain range and furthermore, certain additive elements are added in certain amounts, hot working becomes possible, and the heat resistance and high temperature strength are also satisfactory for resistance welding electrodes. They have discovered that the improvement can be improved to a certain extent, and have come up with the present invention.

本発明に係る抵抗溶接用電極材料の含有成分および含有
割合について説明する。
The components and content ratio of the electrode material for resistance welding according to the present invention will be explained.

(Ni:1.0〜5、0wt%) Niは強度向上に寄与する元素であり、含有量が、1.
0wt%末満ではSiが0.2〜1,5wt%含有され
ていても強度向上効果は少なく、また、5.0wt%を
越えて含有されると効果が飽和し、導電率も低下する。
(Ni: 1.0 to 5.0 wt%) Ni is an element that contributes to improving strength, and the content is 1.0 to 5.0 wt%.
At less than 0 wt%, even if Si is contained in 0.2 to 1.5 wt%, the strength improvement effect is small, and when Si is contained in excess of 5.0 wt%, the effect is saturated and the electrical conductivity decreases.

よって、Ni含有量は1.0〜5.0wt%とする。Therefore, the Ni content is set to 1.0 to 5.0 wt%.

(Si:0.2〜1.5wt%) SiはNiと共に強度向上に寄与する元素であり、含有
量が0.2wt%未満ではNiが1.0〜5.0wt%
含有されていても強度向上効果は少なく、また、1.5
wt%を越えて含有されると導電率が低下すると共に熱
間加工性が悪くなる。よって、Si含有量は0.2〜1
.5wt%とする。
(Si: 0.2 to 1.5 wt%) Si is an element that contributes to improving strength together with Ni, and if the content is less than 0.2 wt%, Ni is 1.0 to 5.0 wt%.
Even if it is contained, the strength improvement effect is small, and 1.5
When the content exceeds wt%, the electrical conductivity decreases and hot workability deteriorates. Therefore, the Si content is 0.2 to 1
.. It is set to 5wt%.

(Cr : 0.00 1〜1.5wt%)Crは、鋳
塊の粒界を強化し、熱間加工性を向上させるとともに、
耐熱性、高温強度の向上に寄与する元素である。含有量
が0.001wt%未満ではこのような効果は少なく、
また、1.5wt%を越えて含有されると巨大な初晶C
rが晶出し、強度向上効果は飽和するとともに導電率も
低下する。よって、Cr含有量は、0.001〜1.5
wt%とする。
(Cr: 0.00 1-1.5wt%) Cr strengthens the grain boundaries of the ingot, improves hot workability, and
It is an element that contributes to improving heat resistance and high-temperature strength. If the content is less than 0.001wt%, this effect is small,
In addition, if the content exceeds 1.5 wt%, huge primary C
When r crystallizes, the strength-improving effect is saturated and the electrical conductivity is also lowered. Therefore, the Cr content is 0.001 to 1.5
Let it be wt%.

Mg,B.Tiは電極とめつきした材料との溶着を低減
する効果を有する. (Mg:0.01〜1.0wt%) Mgは不可避的に混入してくるSを安定したMgとの化
合物MgSとして母相中に固定し、熱間加工性を向上さ
せる元素である。さらに、Sn等をめっきした材料を溶
接する際の電極とめつき材料の溶着を低減する効果があ
る。含有量が0.O001〜0.1wt%未満ではこれ
らの効果は少ない.また、1.0wt%を越えて含有さ
れてもこれらの効果に寄与しないばかりか、鋳造性およ
び熱間加工性が劣化する。よって、Mg含有量は0.0
1〜1.0wt%とする。
Mg,B. Ti has the effect of reducing welding between the electrode and the plated material. (Mg: 0.01 to 1.0 wt%) Mg is an element that fixes unavoidably mixed S into the matrix as a stable compound with Mg, MgS, and improves hot workability. Furthermore, it has the effect of reducing welding between the electrode and the plating material when welding materials plated with Sn or the like. Content is 0. If the amount is less than O001~0.1 wt%, these effects are small. Further, if the content exceeds 1.0 wt%, not only will it not contribute to these effects, but also the castability and hot workability will deteriorate. Therefore, Mg content is 0.0
1 to 1.0 wt%.

(B:0.001〜O.001〜0.1wt%)Bは、
Sn等のめっきした材料を溶接する際の電極とめっき材
料の溶着を低減する効果がある。
(B: 0.001~0.001~0.1wt%) B is
This has the effect of reducing welding between the electrode and the plating material when welding a plated material such as Sn.

含有料が0.001wt%未満ではこれらの効果は少な
い.含有料が0.001〜0.1wt%を越えても、B
は組織中に固溶せずに不均一に偏析し、この効果への寄
与は変わらない。よって、8含有量は0.001〜O.
001〜0.1wt%とする。
These effects are small when the content is less than 0.001 wt%. Even if the content exceeds 0.001 to 0.1 wt%, B
is not solidly dissolved in the structure but segregates heterogeneously, and its contribution to this effect remains unchanged. Therefore, the 8 content is 0.001~O.
001 to 0.1 wt%.

(Ti:0.01〜0.2wt%) TiはSn等のめっきした材料を溶接する際の電極とめ
っき材判の溶着を低減する効果がある。
(Ti: 0.01 to 0.2 wt%) Ti has the effect of reducing welding between the electrode and the plated material when welding plated materials such as Sn.

含有量が0.01wt%未満ではこれらの効果は少ない
。含有量が0.2wt%を越えても、Ni.Si等との
金属間化合物の生成量が増加し、Ni+Si&:よる強
度向上を阻害する。よって、Ti含有量は0.01〜0
.2wt%とする。
If the content is less than 0.01 wt%, these effects are small. Even if the Ni content exceeds 0.2 wt%, the Ni. The amount of intermetallic compounds formed with Si and the like increases, inhibiting the strength improvement due to Ni+Si&:. Therefore, the Ti content is between 0.01 and 0.
.. It is set to 2wt%.

Co,Zrはいずれも強度の向上、耐熱性の向上に寄与
する. (Co : 1.0wt%以下) COはS+との化合物を形成し強度の向上に寄与し、ま
た、導電率の向上にも寄与する.さらに、温度の上昇に
ともなう結晶粒の粗大化を防止して耐・熱性にも寄与す
る.含有量が1.0wt%を越えると上記の効果はある
が、含有量が増える割には効果向上は少なく、かつ高価
となる.よって、CO含有量は、1.0wt%以下とす
る.(Zr:0.35wt%以下) Zrは、Cu中にIff細なCu3Zrとして析出し強
度の向上に寄与し、また、耐熱性の向上にも寄与する。
Co and Zr both contribute to improving strength and heat resistance. (Co: 1.0wt% or less) CO forms a compound with S+ and contributes to improving the strength and also contributes to improving the electrical conductivity. Furthermore, it prevents crystal grains from becoming coarser as the temperature rises, contributing to heat resistance and heat resistance. When the content exceeds 1.0 wt%, the above effects are obtained, but the improvement in the effect is small as the content increases, and it becomes expensive. Therefore, the CO content should be 1.0 wt% or less. (Zr: 0.35 wt% or less) Zr contributes to improving the precipitation strength by precipitating in Cu as fine Cu3Zr, and also contributes to improving heat resistance.

含有量が0.35wt%を越えると、巨大なcu3Zr
が晶出する。この巨大なCu3 Zrは、上記した微細
なCu= Zrの有する特性を有していないばかりでな
く、導電率の低下をまねく。よって、Zr含有量は、0
.35wt%以下とする。
When the content exceeds 0.35wt%, a huge cu3Zr
crystallizes. This giant Cu3Zr not only does not have the characteristics of the fine Cu=Zr described above, but also causes a decrease in electrical conductivity. Therefore, the Zr content is 0
.. The content shall be 35 wt% or less.

なお、上記に説明した必須の含有成分以外に、Znを2
.0wt%まで、Ag.AJ!,In,Mn,Snの1
種または2fi以上を0.2wt%まで、また、Be,
Pの1種または2種以上を0.001〜0.1wt%ま
での含有は、強度、耐熱性を損なうことはなく、導電率
の低下もわずかであるため、上記した戒分の含有量は許
容される.[実施例] 本発明に係る抵抗溶接用電極材料の実施例を説明する。
In addition to the essential ingredients explained above, Zn is
.. Up to 0 wt%, Ag. AJ! , In, Mn, Sn 1
seeds or 2fi or more up to 0.2 wt%, and Be,
The content of one or more types of P up to 0.001 to 0.1 wt% does not impair strength and heat resistance, and there is only a slight decrease in electrical conductivity, so the content of the above precepts is Permissible. [Example] An example of the resistance welding electrode material according to the present invention will be described.

別紙第1表に示す含有成分および含有割合の銅合金をク
リブトル炉において大気中で木炭被覆下に溶解し、傾注
式の鋳鉄性ブックモールドに鋳込み、厚さ50mm,幅
80mm、長さ180mmの鋳塊を製造した。
A copper alloy having the components and proportions shown in Table 1 of the appendix was melted in the atmosphere under charcoal coating in a Kributol furnace, and cast into a tilting cast iron book mold to form a casting of 50 mm thick, 80 mm wide, and 180 mm long. A lump was produced.

そして、これらの鋳塊の表面および裏面を各々2.5m
m面削し、880℃の温度で熱間圧延を行い、厚さ15
mmの板材とした。その後、No.13.14,15,
16.23の合金板材については950℃において、そ
れ以外の合金板材については750℃において30分間
加熱した後、水中冷却した。
Then, the front and back sides of these ingots were each 2.5 m long.
M face milled and hot rolled at a temperature of 880℃ to a thickness of 15 mm.
It was made into a plate material of mm. After that, No. 13.14,15,
The alloy plates No. 16.23 were heated at 950°C, and the other alloy plates were heated at 750°C for 30 minutes, and then cooled in water.

さらに、これらの板材の表面酸化スケールを除去した後
、冷間にて1.67mmまで圧延した。
Furthermore, after removing surface oxidation scale from these plates, they were cold rolled to 1.67 mm.

これらの板材を、450〜500℃で2時間時効焼鈍し
た後、冷間にて1.5mmまで圧延した。
These plates were age-annealed at 450 to 500°C for 2 hours and then cold rolled to a thickness of 1.5 mm.

そして、これらの板材について、常温硬度、高温硬度、
耐熱性、導電率の測定および電極寿命の測定を行った.
なお、高温硬度は500℃において測定した。耐熱性は
、1時間加熱後の硬度が加熱前の硬度の80%に減少す
る温度によって評価した。
For these plate materials, the room temperature hardness, high temperature hardness,
Heat resistance, conductivity, and electrode life were measured.
Note that high temperature hardness was measured at 500°C. Heat resistance was evaluated by the temperature at which the hardness after heating for 1 hour decreased to 80% of the hardness before heating.

電極寿命の測定は、2本の形状の異なる電極A,Bを用
いた通電試験により行った。この状況を第1図に示す。
The electrode life was measured by a current test using two electrodes A and B having different shapes. This situation is shown in Figure 1.

通電条件は加圧力:2.0kgf (電8iA)、3.
5kgf (電極B)、電流+ 1 200A (交流
)とした。電極Aは幅1.1mm,長さ70mmに、電
極Bは幅4,Omm、長さ70mmに各々加工して使用
した。被通電材料として、1μ厚さのSnめっきを施し
た0.2mm厚さ黄銅条を用いた。評価方法としては、
電8iAの溶着が大きくなった時の通電回数をもって電
極寿命とした。No.1〜23の合金についての常温硬
度、高温硬度、耐熱温度、導電率および電極寿命の測定
結果を別紙第2表に示す。
The energizing conditions are pressurizing force: 2.0 kgf (8 iA), 3.
5 kgf (electrode B) and a current of +1 200 A (alternating current). Electrode A was processed to have a width of 1.1 mm and length of 70 mm, and electrode B was processed to have a width of 4.0 mm and a length of 70 mm. A 0.2 mm thick brass strip plated with 1 μm of Sn was used as the current-carrying material. The evaluation method is
The number of times of energization when the welding of 8iA became large was defined as the electrode life. No. The measurement results of room temperature hardness, high temperature hardness, heat resistance temperature, electrical conductivity, and electrode life for alloys Nos. 1 to 23 are shown in Appendix Table 2.

なお、比較合金No.21.22については熱間加工性
が悪いので、これらの特性の評価は省略した。また、N
o.17.20については常温硬度が低く、No、18
.19については導電率が低いため、高温硬度、耐熱温
度、電極寿命の測定は省略した。
In addition, comparative alloy No. Since hot workability was poor for No. 21 and No. 22, evaluation of these properties was omitted. Also, N
o. 17.20 has low hardness at room temperature, No. 18
.. Since the conductivity of No. 19 was low, measurements of high-temperature hardness, allowable temperature limit, and electrode life were omitted.

電極寿命は、溶接時の電極の変形抵抗の他に、電極とS
nめっき被溶接材との溶着し難さに対応すると考えられ
る。すなわち、高温硬度の高い材料に溶着を低減する効
果のあるMg,BおよびTiを添加することにより、高
い電極寿命が得られることが第2表の結果よりわかる。
Electrode life is determined by the deformation resistance of the electrode during welding, as well as the electrode and S
It is thought that this corresponds to the difficulty of welding with the n-plated material to be welded. That is, it can be seen from the results in Table 2 that a long electrode life can be obtained by adding Mg, B, and Ti, which have the effect of reducing welding, to a material with high high temperature hardness.

[発明の効果コ 以上説明したようじ、本発明に係る抵抗溶接用電極材は
、耐熱性、高温硬度、導電性に優れるばかりでなく、被
溶接材との溶着が生じ難い。従って、Snめっき、Zn
めっきなどの表面被覆材料の抵抗溶接用電極材料として
とくに使用寿命が長いという優れた特徴を有している。
[Effects of the Invention] As described above, the electrode material for resistance welding according to the present invention not only has excellent heat resistance, high temperature hardness, and conductivity, but also is difficult to weld with the material to be welded. Therefore, Sn plating, Zn plating
It has an excellent feature of a particularly long service life as an electrode material for resistance welding of surface coating materials such as plating.

4 .4.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例における通電試験状況を示す概念図であ
る。 第 1 図 電極A 電極B Srめっき黄銅(0.2mmt)
FIG. 1 is a conceptual diagram showing the current conduction test situation in the example. Figure 1 Electrode A Electrode B Sr-plated brass (0.2mmt)

Claims (2)

【特許請求の範囲】[Claims] (1)Ni:1.0〜5.0wt%、Si:0.2〜1
.5wt%、Cr:0.001〜1.5wt%を含有し
、さらに、Mg:0.01〜1.0wt%、B:0.0
01〜0.1wt%、Ti:0.01〜0.2wt%の
うち1種以上を含み、残部実質的にCuよりなることを
特徴とする抵抗溶接用電極材料。
(1) Ni: 1.0-5.0wt%, Si: 0.2-1
.. 5 wt%, Cr: 0.001 to 1.5 wt%, and further contains Mg: 0.01 to 1.0 wt%, B: 0.0
An electrode material for resistance welding, characterized in that it contains one or more of Ti: 0.01 to 0.1 wt%, Ti: 0.01 to 0.2 wt%, and the remainder substantially consists of Cu.
(2)Ni:1.0〜5.0wt%、Si:0.2〜1
.5wt%、Cr:0.001〜1.5wt%を含有し
、さらに、Mg:0.01〜1.0wt%、B:0.0
01〜0.1wt%、Ti:0.01〜0.2wt%の
うち1種以上と、Co:1.0wt%以下およびZr:
0.35wt%以下のうち1種または2種を含み、残部
実質的にCuよりなることを特徴とする抵抗溶接用電極
材料。
(2) Ni: 1.0-5.0wt%, Si: 0.2-1
.. 5 wt%, Cr: 0.001 to 1.5 wt%, and further contains Mg: 0.01 to 1.0 wt%, B: 0.0
01 to 0.1 wt%, Ti: 0.01 to 0.2 wt%, Co: 1.0 wt% or less, and Zr:
1. An electrode material for resistance welding, characterized in that it contains one or two of 0.35 wt% or less, and the remainder substantially consists of Cu.
JP1235320A 1989-09-11 1989-09-11 Electrode material for resistance welding Expired - Lifetime JPH0723518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1235320A JPH0723518B2 (en) 1989-09-11 1989-09-11 Electrode material for resistance welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1235320A JPH0723518B2 (en) 1989-09-11 1989-09-11 Electrode material for resistance welding

Publications (2)

Publication Number Publication Date
JPH0397818A true JPH0397818A (en) 1991-04-23
JPH0723518B2 JPH0723518B2 (en) 1995-03-15

Family

ID=16984362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1235320A Expired - Lifetime JPH0723518B2 (en) 1989-09-11 1989-09-11 Electrode material for resistance welding

Country Status (1)

Country Link
JP (1) JPH0723518B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223069A (en) * 2007-03-12 2008-09-25 Miyoshi Gokin Kogyo Kk High-strength, high-conductivity copper alloy and its manufacturing method
JP2010029901A (en) * 2008-07-29 2010-02-12 Nippon Steel Corp Electrode material for resistance welding
JP2014019888A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The High strength copper alloy material, and method of manufacturing the same
JP2014019889A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The Copper alloy material having excellent strength and plating property and production method thereof
CN106001977A (en) * 2016-06-12 2016-10-12 常熟明辉焊接器材有限公司 Manufacturing method of welding electrode material of automobile
CN110653517A (en) * 2019-09-27 2020-01-07 桂林理工大学 Aluminum alloy welding wire containing rare earth elements scandium and erbium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018416187A1 (en) * 2018-03-28 2020-08-06 Nippon Steel Corporation Method for manufacturing flux-cored wire, flux-cored wire and method for manufacturing welded joint

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570494A (en) * 1978-11-18 1980-05-27 Futoshi Matsumura Wire rod for copper welding excelling in electric conductivity, thermal conductivity and welding performance
JPS60211026A (en) * 1984-11-21 1985-10-23 Mitsubishi Metal Corp High strength cu alloy containing dispersed boride and having superior resistance to corrosion by molten metal and its manufacture
JPS61119660A (en) * 1984-11-16 1986-06-06 Nippon Mining Co Ltd Manufacture of copper alloy having high strength and electric conductivity
JPS63149345A (en) * 1986-12-15 1988-06-22 Nippon Mining Co Ltd High strength copper alloy having high electrical conductivity and improved heat resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570494A (en) * 1978-11-18 1980-05-27 Futoshi Matsumura Wire rod for copper welding excelling in electric conductivity, thermal conductivity and welding performance
JPS61119660A (en) * 1984-11-16 1986-06-06 Nippon Mining Co Ltd Manufacture of copper alloy having high strength and electric conductivity
JPS60211026A (en) * 1984-11-21 1985-10-23 Mitsubishi Metal Corp High strength cu alloy containing dispersed boride and having superior resistance to corrosion by molten metal and its manufacture
JPS63149345A (en) * 1986-12-15 1988-06-22 Nippon Mining Co Ltd High strength copper alloy having high electrical conductivity and improved heat resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223069A (en) * 2007-03-12 2008-09-25 Miyoshi Gokin Kogyo Kk High-strength, high-conductivity copper alloy and its manufacturing method
JP2010029901A (en) * 2008-07-29 2010-02-12 Nippon Steel Corp Electrode material for resistance welding
JP2014019888A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The High strength copper alloy material, and method of manufacturing the same
JP2014019889A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The Copper alloy material having excellent strength and plating property and production method thereof
CN106001977A (en) * 2016-06-12 2016-10-12 常熟明辉焊接器材有限公司 Manufacturing method of welding electrode material of automobile
CN106001977B (en) * 2016-06-12 2018-04-13 常熟明辉焊接器材有限公司 The preparation method of automobile welding electrode material
CN110653517A (en) * 2019-09-27 2020-01-07 桂林理工大学 Aluminum alloy welding wire containing rare earth elements scandium and erbium

Also Published As

Publication number Publication date
JPH0723518B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
JP5320541B2 (en) Copper alloy material for electrical and electronic parts
US4191601A (en) Copper-nickel-silicon-chromium alloy having improved electrical conductivity
JP3896422B2 (en) Copper alloy for backing plate and manufacturing method thereof
JP2007126739A (en) Copper alloy for electronic material
JPH0397818A (en) Electrode material for resistance welding
US4260435A (en) Copper-nickel-silicon-chromium alloy having improved electrical conductivity
JP3347001B2 (en) Heat-resistant copper-based alloy
US2311750A (en) Welding electrode
JPS6039140B2 (en) High-strength, highly conductive Cu alloy with excellent resistance to molten metal erosion
JPS5823452B2 (en) Softening resistant copper alloy
US4710349A (en) Highly conductive copper-based alloy
JPH02111829A (en) Copper alloy for lead frame
JPH02166249A (en) Electrode material for resistance welding
JP4293580B2 (en) Corson alloy for metal mold and manufacturing method thereof
JPS62182238A (en) Cu alloy for continuous casting mold
JPS5821018B2 (en) Copper alloy for high strength conductivity with good heat resistance
JPS63230837A (en) Copper alloy for fuse
KR0182223B1 (en) Cu-cr-zr-mg-mischmetal alloy and the heat treatment thereof
JPS59166645A (en) Copper alloy for radiator fin
JPH01162736A (en) High strength and high toughness cu alloy having less characteristic anisotropy
JPH04197597A (en) Resistance welding electrode material
JPH04165039A (en) Copper alloy for packing plate incorporating cr and te
JPS6144930B2 (en)
JPH04165037A (en) Copper alloy for packing plate incorporating cr and sn
JPS62267439A (en) Nickel-base alloy for outer shell material for titanium or titanium alloy