JP2003193158A - Electrode material for resistance welding and production method therefor - Google Patents

Electrode material for resistance welding and production method therefor

Info

Publication number
JP2003193158A
JP2003193158A JP2001401181A JP2001401181A JP2003193158A JP 2003193158 A JP2003193158 A JP 2003193158A JP 2001401181 A JP2001401181 A JP 2001401181A JP 2001401181 A JP2001401181 A JP 2001401181A JP 2003193158 A JP2003193158 A JP 2003193158A
Authority
JP
Japan
Prior art keywords
electrode material
mechanical properties
conductivity
temperature
resistance welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001401181A
Other languages
Japanese (ja)
Inventor
Hideharu Ito
秀晴 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYOSHI GOKIN KOGYO KK
Original Assignee
MIYOSHI GOKIN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYOSHI GOKIN KOGYO KK filed Critical MIYOSHI GOKIN KOGYO KK
Priority to JP2001401181A priority Critical patent/JP2003193158A/en
Publication of JP2003193158A publication Critical patent/JP2003193158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a material which has excellent electrical conductivity, has improved mechanical properties such as tensile strength, an elongation percentage and hardness, and further has excellent heat resistance, excellent machinability, and is suitable as a high strength, high electrical conductive electrode material. <P>SOLUTION: The electrode material has a composition containing, by weight, 2.3 to 5.3% Ni, 0.25 to 0.8% Be, and 0.3 to 1.5% Cr, and the balance Cu with inevitable impurities. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、抵抗溶接用電極材料及
びその製造方法に係るもので、JIS Z3234 第
4種に準じる機械的性質とJIS Z 3234 第3
種の導電率を備えたものを得ようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode material for resistance welding and a method for manufacturing the same, and relates to mechanical properties and JIS Z 3234 No. 3 according to JIS Z3234 No. 4 type.
It seeks to obtain one with a seed conductivity.

【0002】[0002]

【従来の技術】従来より、抵抗溶接用電極材料の規格で
ある、JIS Z 3234 第4種規格に適合する電
極材料として高ベリリウム銅のBeCu25合金が使用
されてきた。この合金は、高強度の抵抗溶接用電極材料
としての機械的性質及び物理的性質を満足させていると
ともに、高温硬さ、焼鈍硬さと言った耐熱性、その他の
材質的な性質も良好で、現在も使用されている。
2. Description of the Related Art Conventionally, BeCu25 alloy of high beryllium copper has been used as an electrode material conforming to JIS Z 3234 Type 4 standard, which is a standard for resistance welding electrode materials. This alloy satisfies the mechanical and physical properties as a high-strength resistance welding electrode material, and also has good high-temperature hardness, heat resistance such as annealing hardness, and other material properties, It is still used today.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記材
料は高い機械的性質を有するため、時効処理後の機械加
工が難しい。そこで、溶体化処理後に、まず粗加工を施
し、時効処理後に仕上げ加工を施している。このように
時効処理後に仕上げ加工を施すのは、時効処理の際、熱
歪みによる反りや変形の問題が発生するためである。従
って、現状では溶体化処理後に粗加工し、仕上げ加工は
時効後にせざるを得ず、二重手間となり作業効率が悪か
った。また、高強度であるだけでなく、更に高い導電率
を必要とする過酷な使用条件では、BeCu25合金の
導電率では、前記要求を満足できない。更に、周知の如
くBeは高価な原料であるため、コストダウンのために
も、BeCu25合金よりもBe添加量の少ない電極材
料の製造が求められている。
However, since the above materials have high mechanical properties, it is difficult to machine them after aging treatment. Therefore, after the solution treatment, the roughing is first performed, and the finishing processing is performed after the aging treatment. The reason why the finishing process is performed after the aging treatment is that a problem of warpage or deformation due to thermal strain occurs during the aging treatment. Therefore, under the present circumstances, it is inevitable to carry out rough processing after solution treatment and finish processing after aging, resulting in double labor and poor work efficiency. Further, under severe operating conditions that require not only high strength but also higher conductivity, the conductivity of the BeCu25 alloy cannot satisfy the above requirement. Further, as is well known, since Be is an expensive raw material, it is required to manufacture an electrode material containing less Be than the BeCu25 alloy in order to reduce the cost.

【0004】そこで、本発明者は、JIS Z 323
4 第4種に準じる機械的性質とJIS Z 3234
第3種の導電率を有する高強度、高導電率の電極材料
を低コストで製造しようと試みた。この試みでは、Cu
−Ni−Be系銅合金に着目し、Ni量とBe量を変化
させて、数種類の銅合金を製造し、各々について機械的
性質及び導電率の試験を行った。その結果、何れの銅合
金に於いても、目標とする引張り強さ、伸び率、硬さ及
び導電率値の全てを満足できなかった。
Therefore, the inventor of the present invention has made JIS Z 323
4 Mechanical properties and JIS Z 3234 according to 4th type
Attempts were made to manufacture a high-strength, high-conductivity electrode material having a third-type conductivity at a low cost. In this attempt, Cu
Focusing on -Ni-Be-based copper alloys, several kinds of copper alloys were manufactured by changing the amount of Ni and the amount of Be, and the mechanical properties and the conductivity of each were tested. As a result, none of the copper alloys could satisfy the target values of tensile strength, elongation, hardness and conductivity.

【0005】本発明は上述の如き課題を解決するため
に、前記Cu−Ni−Be系銅合金に、Crの添加元素
を加えて、引張り強さや伸び率、硬さ等の機械的性質及
び導電率が高く、しかも優れた耐熱性を有するととも
に、機械加工性にも優れた、高強度、高導電率電極材料
としての使用に適した材料を得ようとするものである。
更には、Cu−Ni−Be系銅合金にCrを添加したも
のに、他の添加元素も加えて、より機械的性質と導電率
に優れ、経済的な電極材料を得るものである。
In order to solve the above-mentioned problems, the present invention adds mechanical elements such as tensile strength, elongation and hardness, and conductivity by adding an additive element of Cr to the Cu-Ni-Be system copper alloy. The present invention aims to obtain a material having a high rate, excellent heat resistance, and excellent machinability, which is suitable for use as a high-strength, high-conductivity electrode material.
Furthermore, by adding Cr to a Cu-Ni-Be-based copper alloy, other additive elements are added to obtain an economical electrode material having more excellent mechanical properties and electrical conductivity.

【0006】そして、本発明では、JIS Z 323
4 第4種及び第3種の規格に基づいて、目標とする機
械的性質や導電率の規格は、以下の通りとした。 引張強さ > 850N/mm2 伸び率 > 5% 硬さ(ロックウエル硬さ) > 27HRC 導電率 > 45IACS%
In the present invention, JIS Z 323 is used.
4 Based on the 4th and 3rd standards, the target mechanical properties and conductivity standards are as follows. Tensile strength > 850N / mm 2 Elongation > 5% Hardness (Rockwell hardness) > 27HRC Conductivity > 45IACS%

【0007】[0007]

【課題を解決するための手段】本発明は、上述の如き課
題を解決するため、第1発明は、Ni2.3〜5.3wt
%、Be0.25〜0.8wt%、Cr0.3〜1.5wt%
を含有し、残部が不可避的な不純物を除くCuよりなる
ものである。
In order to solve the above problems, the first invention is Ni 2.3 to 5.3 wt.
%, Be 0.25 to 0.8 wt%, Cr 0.3 to 1.5 wt%
And the balance is Cu excluding unavoidable impurities.

【0008】また、第2発明は、Ni2.3〜5.3wt
%、Be0.25〜0.8wt%、Cr0.3〜1.5wt
%、Zr0.05〜0.5wt%を含有し、残部が不可避的
な不純物を除くCuよりなるものである。
The second invention is Ni 2.3 to 5.3 wt.
%, Be 0.25 to 0.8 wt%, Cr 0.3 to 1.5 wt
%, Zr 0.05 to 0.5 wt%, and the balance being Cu excluding unavoidable impurities.

【0009】また、第3発明は、Ni2.3〜5.3wt
%、Be0.25〜0.8wt%、Cr0.3〜1.5wt
%、Nb0.05〜0.5wt%を含有し、残部が不可避的
な不純物を除くCuよりなるものである。
A third aspect of the present invention is Ni 2.3 to 5.3 wt.
%, Be 0.25 to 0.8 wt%, Cr 0.3 to 1.5 wt
%, Nb 0.05 to 0.5 wt%, the balance being Cu excluding unavoidable impurities.

【0010】また、第4発明は、Ni2.3〜5.3wt
%、Be0.25〜0.8wt%、Cr0.3〜1.5wt
%、Co0.2〜0.9wt%を含有し、残部が不可避的な
不純物を除くCuよりなるものである。
The fourth invention is Ni 2.3 to 5.3 wt.
%, Be 0.25 to 0.8 wt%, Cr 0.3 to 1.5 wt
%, Co 0.2 to 0.9 wt%, and the balance being Cu excluding unavoidable impurities.

【0011】また、第5発明は、Ni2.3〜5.3wt
%、Be0.25〜0.8wt%、Cr0.3〜1.5wt
%、Fe0.2〜0.8wt%を含有し、残部が不可避的な
不純物を除くCuよりなるものである。
The fifth aspect of the present invention is Ni 2.3 to 5.3 wt.
%, Be 0.25 to 0.8 wt%, Cr 0.3 to 1.5 wt
%, Fe 0.2 to 0.8 wt%, and the balance being Cu excluding unavoidable impurities.

【0012】また、第6発明は、Ni2.3〜5.3wt
%、Be0.25〜0.8wt%、Cr0.3〜1.5wt
%、Si0.2〜0.7wt%を含有し、残部が不可避的な
不純物を除くCuよりなるものである。
A sixth aspect of the present invention is Ni 2.3 to 5.3 wt.
%, Be 0.25 to 0.8 wt%, Cr 0.3 to 1.5 wt
%, Si 0.2 to 0.7 wt%, and the balance being Cu excluding unavoidable impurities.

【0013】また、第7発明は、Ni2.3〜5.3wt
%、Be0.25〜0.8wt%、Cr0.3〜1.5wt
%、Sn0.2〜0.7wt%を含有し、残部が不可避的な
不純物を除くCuよりなるものである。
The seventh aspect of the present invention is Ni 2.3 to 5.3 wt.
%, Be 0.25 to 0.8 wt%, Cr 0.3 to 1.5 wt
%, Sn 0.2 to 0.7 wt%, the balance being Cu excluding unavoidable impurities.

【0014】また、第8発明は製造方法で、Ni2.3
〜5.3wt%、Be0.25〜0.8wt%、Cr0.3〜
1.5wt%を含有し、残部が不可避的な不純物を除くC
uよりなる銅合金を、溶体化処理温度900℃〜990
℃で溶体化処理を施し、次に時効処理温度420〜55
0℃で時効処理を施したものである。
The eighth invention is a manufacturing method, wherein Ni2.3 is used.
~ 5.3wt%, Be0.25 ~ 0.8wt%, Cr0.3 ~
C containing 1.5 wt% and the balance excluding unavoidable impurities
A copper alloy made of u is treated at a solution treatment temperature of 900 ° C. to 990.
Solution treatment at ℃, then aging temperature 420 ~ 55
Aged at 0 ° C.

【0015】また、第9発明は製造方法で、Ni2.3
〜5.3wt%、Be0.25〜0.8wt%、Cr0.3〜
1.5wt%、Zr0.05〜0.5wt%を含有し、残部が
不可避的な不純物を除くCuよりなる銅合金を、溶体化
処理温度900℃〜990℃で溶体化処理を施し、次に
時効処理温度420〜550℃で時効処理を施したもの
である。
A ninth aspect of the present invention is a manufacturing method, wherein Ni2.3 is used.
~ 5.3wt%, Be0.25 ~ 0.8wt%, Cr0.3 ~
A copper alloy containing 1.5 wt% and Zr of 0.05 to 0.5 wt% and the balance of Cu excluding inevitable impurities is subjected to solution treatment at a solution treatment temperature of 900 ° C. to 990 ° C. The aging treatment was performed at an aging treatment temperature of 420 to 550 ° C.

【0016】また、第10発明は製造方法で、Ni2.
3〜5.3wt%、Be0.25〜0.8wt%、Cr0.3
〜1.5wt%、Nb0.05〜0.5wt%を含有し、残部
が不可避的な不純物を除くCuよりなる銅合金を、溶体
化処理温度900℃〜990℃で溶体化処理を施し、次
に時効処理温度420〜550℃で時効処理を施したも
のである。
A tenth aspect of the invention is a manufacturing method, wherein Ni2.
3 to 5.3 wt%, Be 0.25 to 0.8 wt%, Cr 0.3
.About.1.5 wt%, Nb 0.05 to 0.5 wt%, and the balance being a copper alloy made of Cu excluding inevitable impurities, subjected to solution treatment at a solution treatment temperature of 900.degree. C. to 990.degree. Is subjected to an aging treatment at an aging treatment temperature of 420 to 550 ° C.

【0017】また、第11発明は製造方法で、Ni2.
3〜5.3wt%、Be0.25〜0.8wt%、Cr0.3
〜1.5wt%、Co0.2〜0.9wt%を含有し、残部が
不可避的な不純物を除くCuよりなる銅合金を、溶体化
処理温度900℃〜990℃で溶体化処理を施し、次に
時効処理温度420〜550℃で時効処理を施したもの
である。
The eleventh aspect of the present invention is a manufacturing method, wherein Ni2.
3 to 5.3 wt%, Be 0.25 to 0.8 wt%, Cr 0.3
-1.5 wt%, Co 0.2-0.9 wt%, the balance is a copper alloy made of Cu excluding unavoidable impurities, subjected to solution treatment at a solution treatment temperature 900 ℃ ~ 990 ℃, Is subjected to an aging treatment at an aging treatment temperature of 420 to 550 ° C.

【0018】また、第12発明は製造方法で、Ni2.
3〜5.3wt%、Be0.25〜0.8wt%、Cr0.3
〜1.5wt%、Fe0.2〜0.8wt%を含有し、残部が
不可避的な不純物を除くCuよりなる銅合金を、溶体化
処理温度900℃〜990℃で溶体化処理を施し、次に
時効処理温度420〜550℃で時効処理を施したもの
である。
The twelfth aspect of the invention is a manufacturing method, wherein Ni2.
3 to 5.3 wt%, Be 0.25 to 0.8 wt%, Cr 0.3
.About.1.5 wt%, Fe 0.2 to 0.8 wt%, the balance being a copper alloy made of Cu excluding inevitable impurities, subjected to solution treatment at a solution treatment temperature of 900.degree. Is subjected to an aging treatment at an aging treatment temperature of 420 to 550 ° C.

【0019】また、第13発明は製造方法で、Ni2.
3〜5.3wt%、Be0.25〜0.8wt%、Cr0.3
〜1.5wt%、Si0.2〜0.7wt%を含有し、残部が
不可避的な不純物を除くCuよりなる銅合金を、溶体化
処理温度900℃〜990℃で溶体化処理を施し、次に
時効処理温度420〜550℃で時効処理を施したもの
である。
The thirteenth invention is a manufacturing method, wherein Ni2.
3 to 5.3 wt%, Be 0.25 to 0.8 wt%, Cr 0.3
.About.1.5 wt%, Si 0.2 to 0.7 wt%, the balance being Cu alloy made of Cu excluding unavoidable impurities, subjected to solution treatment at a solution treatment temperature of 900.degree. C. to 990.degree. Is subjected to an aging treatment at an aging treatment temperature of 420 to 550 ° C.

【0020】また、第14発明は製造方法で、Ni2.
3〜5.3wt%、Be0.25〜0.8wt%、Cr0.3
〜1.5wt%、Sn0.2〜0.7wt%を含有し、残部が
不可避的な不純物を除くCuよりなる銅合金を、溶体化
処理温度900℃〜990℃で溶体化処理を施し、次に
時効処理温度420〜550℃で時効処理を施したもの
である。
A fourteenth aspect of the invention is a manufacturing method, wherein Ni2.
3 to 5.3 wt%, Be 0.25 to 0.8 wt%, Cr 0.3
.About.1.5 wt%, Sn 0.2 to 0.7 wt%, and the balance being a copper alloy made of Cu excluding inevitable impurities, subjected to solution treatment at a solution treatment temperature of 900.degree. C. to 990.degree. Is subjected to an aging treatment at an aging treatment temperature of 420 to 550 ° C.

【0021】[0021]

【作用】本発明は上述の如く構成したもので、Cu−N
i−Be系銅合金にCrを添加することにより、前記J
IS Z 3234 第4種に準ずる機械的性質と、J
IS Z 3234 第3種の導電率を備えた抵抗溶接
用の、高強度で高導電率の銅合金電極材料を得ることが
できる。即ち、従来技術で述べた如く、Cu−Ni−B
e系銅合金だけでは、引張り強さ、伸び率、硬さ及び導
電率の全てを満足できなかった。しかし、本発明の如
く、Crを添加して適切な熱処理を施すことで、Cuと
の析出強化が促進され、機械的性質と導電率の双方を十
分に満足する電極材料を得る事ができる。
The present invention is constructed as described above, and Cu-N
By adding Cr to the i-Be-based copper alloy, the J
IS Z 3234 Mechanical properties according to the 4th kind and J
IS Z 3234 It is possible to obtain a high-strength, high-conductivity copper alloy electrode material for resistance welding having a third-type conductivity. That is, as described in the prior art, Cu-Ni-B
Only the e-based copper alloy could not satisfy all of the tensile strength, elongation, hardness and conductivity. However, as in the present invention, by adding Cr and performing an appropriate heat treatment, precipitation strengthening with Cu is promoted, and an electrode material sufficiently satisfying both mechanical properties and conductivity can be obtained.

【0022】また、Cuに添加する元素は、Ni2.3
〜5.3wt%、Be0.25〜0.8wt%、Cr0.3〜
1.5wt%の配合割合で加える。各添加元素の添加量及
び効用について説明すると、Niは、Cuと溶け合って
機械的性質を向上させるのに役立つ、基本的な添加元素
である。そして、この添加量が、2.3wt%よりも少な
いと、NiBeの形成が少なくなるだけでなく、Niに
よる固溶強化も少なくなり、目標規格の機械的性質を満
足する事ができない。逆に、Niを5.3wt%よりも多
く添加すると、導電率が悪くなる。従って、Niは2.
3〜5.3wt%で添加する。
The element added to Cu is Ni2.3.
~ 5.3wt%, Be0.25 ~ 0.8wt%, Cr0.3 ~
Add at a blending ratio of 1.5 wt%. Explaining the addition amount and effect of each additive element, Ni is a basic additive element which is useful for melting with Cu and improving mechanical properties. If the amount added is less than 2.3 wt%, not only the formation of NiBe decreases, but also the solid solution strengthening by Ni decreases, and the mechanical properties of the target standard cannot be satisfied. On the contrary, if Ni is added in an amount of more than 5.3 wt%, the conductivity becomes poor. Therefore, Ni is 2.
Add at 3 to 5.3 wt%.

【0023】次に、Beは、Niと化合する事によりN
iBeを形成する。そのため、導電率を落とさず機械的
性質、耐熱性を向上させる事ができる。このBeの添加
量が0.25wt%より少ないと、Niとの化合が良好に
行われず、機械的性質を向上させる事ができない。ま
た、電極材料としての使用に見合った導電率も達成でき
ない。また、Beの添加量が0.8%よりも多いと、N
iBeが過剰に形成されるので、銅合金が脆くなり、伸
びが減少するとともに機械的性質の向上も望めない。従
って、Beは0.25%〜0.8wt%で添加する。
Next, Be becomes N by combining with Ni.
Form iBe. Therefore, the mechanical properties and heat resistance can be improved without lowering the conductivity. If the addition amount of Be is less than 0.25 wt%, the compounding with Ni is not carried out favorably and the mechanical properties cannot be improved. Moreover, the electrical conductivity suitable for use as an electrode material cannot be achieved. Further, when the amount of Be added is more than 0.8%, N
Since iBe is excessively formed, the copper alloy becomes brittle, elongation is reduced, and improvement in mechanical properties cannot be expected. Therefore, Be is added at 0.25% to 0.8 wt%.

【0024】また、Crは、Cuと溶け合い熱処理を施
す事により、析出強化を促進するものである。CrとC
uが析出強化する事により、機械的性質を向上させると
ともに、導電率も優れたものとなる。即ち、Crの添加
量が0.3wt%よりも少ないと、十分な析出強化が生じ
ず、機械的性質の向上が望めない。
Further, Cr dissolves in Cu and is subjected to heat treatment to promote precipitation strengthening. Cr and C
By strengthening the precipitation of u, the mechanical properties are improved and the electrical conductivity becomes excellent. That is, if the amount of Cr added is less than 0.3 wt%, sufficient precipitation strengthening does not occur and improvement in mechanical properties cannot be expected.

【0025】また、材料の溶解を経済的な大気溶解で行
う場合、適宜のフラックスを添加して、溶解作用の改善
を行っている。しかしながら、Crの添加量が1.5wt
%よりも多いとCrが粗大化して、析出強化に寄与しな
いとともに、ノロの発生も多くなり、Crの添加歩留も
悪くなるため、不経済である。また、これらが原因で、
結果的に材料の機械的性質も悪くなる。従って、Crは
0.3〜1.5wt%で添加する。
Further, when the material is melted by the economical atmospheric melting, an appropriate flux is added to improve the melting action. However, the amount of Cr added is 1.5 wt.
If it is more than 0.1%, Cr is coarsened, it does not contribute to precipitation strengthening, more slag is generated, and the yield of Cr addition is deteriorated, which is uneconomical. Also, because of these,
As a result, the mechanical properties of the material also deteriorate. Therefore, Cr is added at 0.3 to 1.5 wt%.

【0026】また、第2〜第7発明では、添加元素とし
て、少量の添加量で、より高い機械的性質と安定性があ
り、導電率にも優れ、目標規格を十分満足させるような
添加元素がないかと試みた。すると、溶解方法、熱処理
方法をいろいろ試みて実験した結果、Cu−Ni−Be
系銅合金にCrを添加した銅合金に、添加元素としてZ
r、Nb、Co、Fe、Si、Snの何れか一種を添加
すると、Crのみを添加した場合と比較して、より機械
的性質が安定し、導電率も目標値を満足する電極材料を
得る事ができる。
In addition, in the second to seventh inventions, as an additive element, an additive element which has higher mechanical properties and stability, is excellent in conductivity, and sufficiently satisfies the target standard with a small amount of additive element. I tried to find out. Then, as a result of experimenting various melting methods and heat treatment methods, it was found that Cu-Ni-Be
Z as an additive element to a copper alloy in which Cr is added to a copper alloy
Addition of any one of r, Nb, Co, Fe, Si, and Sn provides an electrode material with more stable mechanical properties and conductivity satisfying the target value as compared with the case of adding only Cr. I can do things.

【0027】上記各添加元素は、Ni2.3〜5.3wt
%、Be0.25〜0.8wt%、Cr0.3〜1.5wt
%、Zr0.05〜0.5wt%、Nb0.05〜0.5wt
%、Co0.2〜0.9wt%、Fe0.2〜0.8wt%、
Si0.2〜0.7wt%、及びSn0.2〜0.7wt%の
配合割合で、何れか一種をCu−Ni−Be系銅合金に
Crを添加した銅合金に添加する。
The above additive elements are Ni 2.3 to 5.3 wt.
%, Be 0.25 to 0.8 wt%, Cr 0.3 to 1.5 wt
%, Zr 0.05 to 0.5 wt%, Nb 0.05 to 0.5 wt
%, Co 0.2 to 0.9 wt%, Fe 0.2 to 0.8 wt%,
One of the two is added to a copper alloy in which Cr is added to a Cu-Ni-Be-based copper alloy, with a compounding ratio of 0.2 to 0.7 wt% of Si and 0.2 to 0.7 wt% of Sn.

【0028】上記ZrはCuと溶け合い熱処理を施す事
により、析出強化を促進するものである。ZrはCuと
化合することにより、Cu4Zrを形成し、導電率を落
とさず、機械的性質の向上に寄与する。また、このZr
の添加量が、0.05wt%よりも少ないと、十分な析出
強化が生じない。しかしながら、0.5wt%よりも多い
と、Zrが粗大化し、析出強化に寄与しないとともに、
ノロの発生も多くなり、Zrの添加歩留も悪くなるた
め、不経済である。また、これらが原因で、結果的に材
料の機械的性質も悪くなる。従って、Zrは0.05〜
0.5wt%で添加する。
The above Zr is a material that dissolves in Cu and is subjected to heat treatment to promote precipitation strengthening. Zr combines with Cu to form Cu 4 Zr, which does not reduce the conductivity and contributes to the improvement of mechanical properties. Also, this Zr
When the addition amount of is less than 0.05 wt%, sufficient precipitation strengthening does not occur. However, if it is more than 0.5 wt%, Zr becomes coarse and does not contribute to precipitation strengthening, and
It is uneconomical because the amount of slag increases and the yield of Zr addition deteriorates. These also result in poor mechanical properties of the material. Therefore, Zr is 0.05-
Add 0.5 wt%.

【0029】また、Nbも同様に、Cuと溶け合い熱処
理を施す事により、析出強化を促進するものである。N
bはCuと析出強化することにより、導電率を落とさ
ず、機械的性質の向上に寄与する。即ち、Nbの添加量
が0.05wt%よりも少ないと、十分な析出強化が生じ
ず、機械的性質が向上しない。しかしながら、0.5wt
%よりも多いと、Nbが粗大化し、析出強化に寄与しな
いとともに、ノロの発生も多くなり、Nbの添加歩留も
悪くなるため、不経済である。また、これらが原因で、
結果的に材料の機械的性質も悪くなる。従って、Nbは
0.05〜0.5wt%で添加する。
Similarly, Nb also dissolves in Cu and is subjected to heat treatment to promote precipitation strengthening. N
By b precipitation strengthening with Cu, b does not lower the conductivity and contributes to the improvement of mechanical properties. That is, when the amount of Nb added is less than 0.05 wt%, sufficient precipitation strengthening does not occur and the mechanical properties are not improved. However, 0.5 wt
When it is more than%, Nb is coarsened, it does not contribute to precipitation strengthening, more slag is generated, and the yield of Nb addition is deteriorated, which is uneconomical. Also, because of these,
As a result, the mechanical properties of the material also deteriorate. Therefore, Nb is added at 0.05 to 0.5 wt%.

【0030】更に、Coも同様に、Cuと溶け合い熱処
理を施す事により、析出強化を促進するものである。C
oはCuと析出強化することにより、導電率を落とさ
ず、機械的性質の向上に寄与する。即ち、Coの添加量
が0.2wt%よりも少ないと、十分な析出強化が生じ
ず、機械的性質が向上しない。しかしながら、0.9wt
%よりも多いと、Coが粗大化し、析出強化に寄与しな
いとともに、ノロの発生も多くなり、Coの添加歩留も
悪くなるため、不経済である。また、これらが原因で、
結果的に材料の機械的性質も悪くなる。従って、Coは
0.2〜0.9wt%で添加量を決定するのが好ましい。
Further, Co similarly promotes precipitation strengthening by being melted with Cu and subjected to heat treatment. C
By strengthening the precipitation of Cu with o, the conductivity of o does not decrease and contributes to the improvement of mechanical properties. That is, if the amount of Co added is less than 0.2 wt%, sufficient precipitation strengthening does not occur and the mechanical properties are not improved. However, 0.9 wt
When the content is more than%, Co coarsens, does not contribute to precipitation strengthening, increases the amount of slag, and deteriorates the addition yield of Co, which is uneconomical. Also, because of these,
As a result, the mechanical properties of the material also deteriorate. Therefore, it is preferable to determine the addition amount of Co at 0.2 to 0.9 wt%.

【0031】また、Feも同様に、Cuと溶け合い熱処
理を施す事により、析出強化を促進するものである。F
eはCuと析出強化することにより、導電率を落とさ
ず、機械的性質の向上に寄与する。即ち、Feの添加量
が0.2wt%よりも少ないと、十分な析出強化が生じ
ず、機械的性質が向上しない。しかしながら、0.8wt
%よりも多いと、Feが粗大化し、析出強化に寄与しな
いとともに、ノロの発生も多くなり、Feの添加歩留も
悪くなるため、不経済である。また、これらが原因で、
結果的に材料の機械的性質も悪くなる。従って、Feは
0.2〜0.8wt%で添加量を決定するのが好ましい。
Similarly, Fe also promotes precipitation strengthening by being melted with Cu and subjected to heat treatment. F
By evaporating and strengthening with Cu, the e does not lower the conductivity and contributes to the improvement of mechanical properties. That is, if the addition amount of Fe is less than 0.2 wt%, sufficient precipitation strengthening does not occur and the mechanical properties are not improved. However, 0.8 wt
When the content is more than%, Fe coarsens, does not contribute to precipitation strengthening, causes more slag, and deteriorates the yield of addition of Fe, which is uneconomical. Also, because of these,
As a result, the mechanical properties of the material also deteriorate. Therefore, it is preferable to determine the addition amount of Fe at 0.2 to 0.8 wt%.

【0032】また、SiはCrと化合する事により、ク
ロムケイ化物を形成する。そのため、導電率を落とさず
機械的性質、耐熱性を向上させることができる。このS
iの添加量が0.2wt%より少ないと、Crとの化合が
良好に行われず、機械的性質を向上させる事ができな
い。また、電極材料としての使用に見合った導電率も達
成できない。また、Siの添加量が0.7wt%よりも多
いと、クロムケイ化物が過剰に形成されるだけでなく、
マトリックス中に固溶されるため、導電率が低下する。
従って、Siは0.2〜0.7wt%で添加する必要があ
る。
Si combines with Cr to form a chrome silicide. Therefore, the mechanical properties and heat resistance can be improved without reducing the conductivity. This S
If the addition amount of i is less than 0.2 wt%, the compounding with Cr is not carried out favorably and the mechanical properties cannot be improved. Moreover, the electrical conductivity suitable for use as an electrode material cannot be achieved. Further, when the amount of Si added is more than 0.7 wt%, not only is chromium silicide excessively formed, but
Since it forms a solid solution in the matrix, the conductivity decreases.
Therefore, Si needs to be added in an amount of 0.2 to 0.7 wt%.

【0033】また、SnはCuと溶け合い、固溶強化を
促進するものである。Snは極端に導電率を落とさず、
耐高温酸化性と機械的性質の向上に寄与する。即ち、S
nの添加量が0.2wt%よりも少ないと、十分な固溶強
化が生じない。しかしながら、0.7wt%よりも多い
と、Snの固溶による導電率の低下が著しくなる。従っ
て、Snは0.2〜0.7wt%で添加する必要がある。
Further, Sn dissolves in Cu and promotes solid solution strengthening. Sn does not drop the conductivity extremely,
It contributes to high temperature oxidation resistance and improvement of mechanical properties. That is, S
If the addition amount of n is less than 0.2 wt%, sufficient solid solution strengthening does not occur. However, when it is more than 0.7 wt%, the conductivity is remarkably lowered due to the solid solution of Sn. Therefore, it is necessary to add Sn at 0.2 to 0.7 wt%.

【0034】尚、前記添加元素は、好ましくはNi2.
3〜4.8wt%、Be0.25〜0.70wt%、Cr0.
3〜1.2wt%の配合割合でCuに添加する。また、N
i2.3〜4.8wt%、Be0.25〜0.70wt%、C
r0.3〜1.2wt%を添加するとともに、Zr0.0
5〜0.4wt%、Nb0.05〜0.4wt%、Co0.3
〜0.8wt%、Fe0.3〜0.7wt%、Si0.2〜
0.6wt%、Sn0.2〜0.6wt%の配合割合で何れか
一種を、Cuに添加する。
The additive element is preferably Ni2.
3 to 4.8 wt%, Be 0.25 to 0.70 wt%, Cr0.
It is added to Cu in a mixing ratio of 3 to 1.2 wt%. Also, N
i 2.3 to 4.8 wt%, Be 0.25 to 0.70 wt%, C
addition of 0.3 to 1.2 wt% and Zr0.0
5 to 0.4 wt%, Nb 0.05 to 0.4 wt%, Co 0.3
~ 0.8wt%, Fe0.3 ~ 0.7wt%, Si0.2 ~
Any one kind is added to Cu at a compounding ratio of 0.6 wt% and Sn 0.2 to 0.6 wt%.

【0035】また、更に好ましくは、Ni2.5〜4.
8wt%、Be0.25〜0.65wt%、Cr0.30〜
1.0wt%の配合割合でCuに添加する。また、Ni
2.5〜4.8wt%、Be0.25〜0.65wt%、Cr
0.30〜1.0wt%を添加するとともに、Zr0.0
5〜0.3wt%、Nb0.05〜0.3wt%、Co0.3
〜0.7wt%、Fe0.3〜0.65wt%、Si0.2〜
0.5wt%、Sn0.2〜0.5wt%の配合割合で何れか
一種を、Cuに添加する。
Further preferably, Ni2.5-4.
8 wt%, Be 0.25 to 0.65 wt%, Cr 0.30
It is added to Cu in a compounding ratio of 1.0 wt%. In addition, Ni
2.5-4.8 wt%, Be 0.25-0.65 wt%, Cr
0.30 to 1.0 wt% is added and Zr0.0
5 ~ 0.3wt%, Nb0.05 ~ 0.3wt%, Co0.3
~ 0.7 wt%, Fe 0.3 ~ 0.65 wt%, Si 0.2 ~
Any one kind is added to Cu in the compounding ratio of 0.5 wt% and Sn0.2-0.5 wt%.

【0036】以上のような組成で、抵抗溶接用の、高強
度で高導電率の銅合金電極材料を製造する方法は、前記
配合割合の組成物を、溶体化処理温度900℃〜990
℃で溶体化処理を施す。この温度が900℃より低い
と、銅合金としての焼き入れ効果が十分ではなく、99
0℃よりも高いと、オーバーヒートにより結晶が粗大化
し易くなる。その後、時効処理温度420〜550℃で
時効処理を施す事により、高強度、高導電率電極材料製
造用の銅合金を形成する事ができる。この時効処理温度
に関しても、420℃よりも低いと、十分な析出ができ
ず、機械的性質が低いものとなり、550℃よりも高い
と、過時効となる。
A method for producing a high-strength, high-conductivity copper alloy electrode material for resistance welding with the above composition is a solution treatment temperature of 900 ° C. to 990 for the composition of the above composition ratio.
Solution treatment is performed at ℃. If this temperature is lower than 900 ° C, the quenching effect as a copper alloy is not sufficient, and
If the temperature is higher than 0 ° C, the crystals are likely to coarsen due to overheating. Then, by performing an aging treatment at an aging treatment temperature of 420 to 550 ° C., a copper alloy for producing a high-strength, high-conductivity electrode material can be formed. Also regarding this aging treatment temperature, if it is lower than 420 ° C., sufficient precipitation cannot be performed and mechanical properties become low, and if it is higher than 550 ° C., overaging occurs.

【0037】上述の如く形成することにより、当初の目
標規格を満足する、機械的性質及び導電率に優れた電極
材料を得ることができる。また、高価なBeの含有量が
少ないので廉価な製品を得ることができる。
By forming as described above, it is possible to obtain an electrode material which satisfies the initial target standard and is excellent in mechanical properties and conductivity. Moreover, since the content of expensive Be is small, a low-priced product can be obtained.

【0038】また、従来品のBeCu25合金は、機械
的性質が高すぎて、時効処理後の機械的加工が困難で、
作業効率が悪かった。しかし、本発明の電極材料は、B
eCu25合金に比べて機械的性質が高すぎず、時効処
理後でも機械加工ができ、作業効率も良く、経済的にも
優れるものである。
Further, the conventional BeCu25 alloy has too high mechanical properties and is difficult to mechanically process after aging treatment.
Work efficiency was poor. However, the electrode material of the present invention is
The mechanical properties are not too high as compared with the eCu25 alloy, it can be machined even after aging treatment, work efficiency is good, and it is economically excellent.

【実施例】【Example】

【0039】本発明の第1〜第17実施例、及び第1〜
第10比較例の銅合金について、各材料及び配合割合を
下記表1に示す。
The first to seventeenth embodiments of the present invention and the first to seventeenth embodiments
Table 1 below shows each material and blending ratio for the copper alloy of the tenth comparative example.

【0040】[0040]

【表1】 [Table 1]

【0041】上記銅合金の製造方法は、まず上記表1に
示す材料を各々用意し、各実施例及び比較例ごとに黒鉛
ルツボに充填した。そして、材料を充填した上面を木炭
でカバーし、黒鉛ルツボを高周波電気炉にセットして溶
解処理を実施した。前記材料のうち、Beに関しては、
Beを4wt%含有するBe−Cu母合金を、Crに関し
ては、Crを10wt%含有するCr−Cu母合金を、Z
rに関しては、Zrを50wt%含有するZr−Cu母合
金を、Nbに関しては、Nbを12wt%含有するNb−
Cu母合金を、Coに関しては、Coを10wt%含有す
るCo−Cu母合金を、Siに関しては、Siを10wt
%含有するSi−Cu母合金を各々使用した。また、添
加元素ごとに、各々有効なフラックスを用いながら、1
200℃以上の温度で溶解処理を実施した。
In the method for producing the copper alloy, first, the materials shown in Table 1 were prepared and filled in a graphite crucible for each of Examples and Comparative Examples. Then, the upper surface filled with the material was covered with charcoal, and the graphite crucible was set in a high-frequency electric furnace to carry out a melting treatment. Among the above materials, with respect to Be,
A Be-Cu master alloy containing 4 wt% of Be and a Cr-Cu master alloy containing 10 wt% of Cr were used as Z.
For r, a Zr-Cu master alloy containing 50 wt% of Zr, and for Nb, Nb-containing 12 wt% of Nb-
A Cu master alloy, a Co—Cu master alloy containing 10 wt% Co for Co, and a Si 10 wt% for Si
% Si-Cu master alloys were used. While using effective flux for each additive element, 1
The dissolution treatment was carried out at a temperature of 200 ° C. or higher.

【0042】次に、前記溶解物を内径φ80mmの金型枠
に注入し、400kg/cm2の圧力を掛けながら、鋳塊を
製作した。そして、出来上がった鋳塊の外周を、機械加
工にて面削を行った後、温度850℃の熱間鍛造にて丸
棒形状に加工した。
Next, the molten material was poured into a metal mold having an inner diameter of 80 mm, and an ingot was manufactured while applying a pressure of 400 kg / cm 2 . Then, after the outer periphery of the finished ingot was machined by chamfering, it was processed into a round bar shape by hot forging at a temperature of 850 ° C.

【0043】そして、上記丸棒に、950℃の温度で溶
体化処理を施した。その後、前記丸棒を電熱熱風炉に挿
入し、480℃の温度で時効処理を行った。
Then, the round bar was subjected to solution treatment at a temperature of 950.degree. Then, the round bar was inserted into an electric hot-air stove, and an aging treatment was performed at a temperature of 480 ° C.

【0044】上述の如く製作した、丸棒形状の銅合金か
ら、JIS4号試験片を製作し、その機械的性質と導電
率を測定した。その試験結果を、下記表2に示す。この
表2には、各実施例及び比較例と目標とする規格も記し
た。この目標規格とは、前述の如く、JIS Z 32
34 第4種に準じる機械的性質とJIS Z 323
4 第3種の導電率を有する、電極材料としての使用を
考慮した数値である。
A JIS No. 4 test piece was produced from the round bar-shaped copper alloy produced as described above, and its mechanical properties and electrical conductivity were measured. The test results are shown in Table 2 below. In Table 2, each example, comparative example and target standard are also described. As described above, the target standard is JIS Z 32.
34 Mechanical properties and JIS Z 323 according to Type 4
4 Numerical value in consideration of use as an electrode material having a third type conductivity.

【0045】[0045]

【表2】 [Table 2]

【0046】また、前記表1の各銅合金より、φ25m
m、L20mmの試験棒を採取して、各所定の温度に保持
した状態で高温硬さ試験を行った。これらの試験は第
1、第2、第4、第5、第8、第10、第12、第1
4、第17実施例と、第1〜第3、第6〜第10比較例
の銅合金に付いて行った。この高温硬さ試験結果を下記
表3に示した。更に、高温硬さ試験を実施した試料を常
温に戻してから硬さ試験を実施した、焼鈍硬さ試験結果
を下記表4に示した。また、表3、表4の各々の測定値
は、ブリネル硬さHB(10/500)で示している。
From the copper alloys in Table 1 above, φ25 m
A high-temperature hardness test was carried out by collecting test rods of m and L20 mm and keeping them at respective predetermined temperatures. These tests are 1st, 2nd, 4th, 5th, 8th, 10th, 12th, 1st.
It carried out about the copper alloys of the 4th, 17th Example, and the 1st-3rd, 6th-10th comparative examples. The results of this high temperature hardness test are shown in Table 3 below. Furthermore, the samples subjected to the high temperature hardness test were returned to room temperature and then subjected to the hardness test. The results of the annealing hardness test are shown in Table 4 below. The measured values in Tables 3 and 4 are shown by Brinell hardness HB (10/500).

【0047】更に、上記焼鈍硬度試験を行った第1、第
2、第4、第5、第8、第10、第12、第14、第1
7実施例と、第1〜第3、第6〜第10比較例について
導電率の測定を行い、その測定結果を下記表5に示し
た。
Furthermore, the first, second, fourth, fifth, eighth, tenth, twelfth, fourteenth, and first tests that have been subjected to the above-mentioned annealing hardness test.
Conductivity was measured for each of the seven examples and the first to third and sixth to tenth comparative examples, and the measurement results are shown in Table 5 below.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【表5】 [Table 5]

【0051】上記各試験結果から、本発明の各実施例の
効果について述べる。まず、表1の成分配合例は、各々
の材料を配合して鋳造された鋳塊より、分析試料を採取
して分析を行った結果の数値である。そのため、鋳造時
のフラックスの混合やノロの発生等により、目標とする
配合割合の値と僅かに誤差が生じている。
From the above test results, the effect of each embodiment of the present invention will be described. First, the composition examples of components in Table 1 are the numerical values of the results obtained by collecting analysis samples from the ingots prepared by mixing the respective materials and performing the analysis. Therefore, due to mixing of the flux during casting, generation of slag, etc., a slight error occurs from the target value of the mixing ratio.

【0052】次に、各試験について詳細に説明する。ま
ず、表2の機械的性質、導電率の試験結果に於いて、第
1、第2比較例は、NiとBeの添加量を変えて試験を
行ったものである。この第1比較例は、導電率のみ目標
値を満足し、その他の機械的性質は目標値を満足してい
ない。また、第2比較例は、硬さは目標値を満足してい
ないが、硬さ以外の機械的性質及び導電率は目標値を満
足している。このように、CuにNiとBeを添加し、
Crを添加しない銅合金では、全ての目標値を満足でき
るものではない。
Next, each test will be described in detail. First, in the test results of the mechanical properties and the conductivity shown in Table 2, the first and second comparative examples were tested by changing the addition amounts of Ni and Be. In this first comparative example, only the conductivity satisfies the target values, and the other mechanical properties do not satisfy the target values. Further, in the second comparative example, the hardness does not satisfy the target value, but the mechanical properties other than the hardness and the electrical conductivity satisfy the target values. In this way, Ni and Be are added to Cu,
A copper alloy containing no Cr cannot satisfy all the target values.

【0053】また、第3比較例、第1〜第3実施例は、
Crを添加する事により、析出強化を促進させようと試
験した例である。第3比較例の如く、Ni量が低いとC
rを添加しても、引張強さ及び硬さの目標値を満足しな
い。これに対して、第1、第2、第3実施例は、Ni
量、Be量及びCr添加量を変化させて、試験を行った
ものであり、Ni、Be及びCr添加量が、Ni2.3
〜5.3wt%、Be0.25〜0.8wt%、Cr0.3〜
1.5wt%の範囲であれば、第1、第2、第3実施例の
如く、機械的性質及び導電率の目標値を十分満足するも
のとなる。
Further, in the third comparative example and the first to third examples,
This is an example of a test for promoting precipitation strengthening by adding Cr. As in the third comparative example, when the Ni content is low, C
Even if r is added, the target values of tensile strength and hardness are not satisfied. On the other hand, in the first, second and third embodiments, Ni is used.
The amount of Ni, Be and Cr added was changed to Ni2.3.
~ 5.3wt%, Be0.25 ~ 0.8wt%, Cr0.3 ~
Within the range of 1.5 wt%, the target values of mechanical properties and conductivity are sufficiently satisfied as in the first, second and third embodiments.

【0054】また、第4比較例、第4〜第6実施例で
は、Zrを添加する事により、更に析出強化を促進させ
ようと試験した例である。第4比較例の如く、Zr添加
量が少な過ぎると、導電率は目標値を満足するものの、
機械的性質は目標値を満足できない。これに対して、Z
r添加量が0.05〜0.5wt%の範囲であれば、第4
〜第6実施例の如く、機械的性質及び導電率の目標値を
満足できる。
Further, the fourth comparative example and the fourth to sixth examples are examples in which the addition of Zr was tested to further promote the precipitation strengthening. As in the fourth comparative example, if the Zr addition amount is too small, the conductivity satisfies the target value,
The mechanical properties cannot meet the target value. On the other hand, Z
If the r addition amount is in the range of 0.05 to 0.5 wt%, the fourth
The target values of mechanical properties and conductivity can be satisfied as in the sixth embodiment.

【0055】また、第5比較例、第7〜第9実施例は、
Nbを添加する事により、更に析出強化を促進させよう
と試験した例である。第5比較例の如く、Nb添加量が
少な過ぎると、導電率は目標値を満足するものの、機械
的性質は目標値を満足できない。これに対して、Nb添
加量が0.05〜0.5wt%の範囲であれば、第7〜第
9実施例の如く、機械的性質及び導電率の目標値を満足
できる。
The fifth comparative example and the seventh to ninth examples are
This is an example of a test for further promoting precipitation strengthening by adding Nb. When the amount of Nb added is too small as in the fifth comparative example, the electrical conductivity satisfies the target value, but the mechanical properties cannot satisfy the target value. On the other hand, if the amount of Nb added is in the range of 0.05 to 0.5 wt%, the target values of mechanical properties and conductivity can be satisfied as in the seventh to ninth examples.

【0056】また、第6比較例、第10、第11実施例
は、Coを添加する事により、更に析出強化を促進させ
ようと試験した例である。第6比較例の如く、Co添加
量が多過ぎると、機械的性質は目標値を満足するもの
の、導電率を低下させて、目標値を満足できなくなる。
これに対して、Co添加量が0.2〜0.9wt%の範囲
であれば、第10、第11実施例の如く、機械的性質及
び導電率の目標値を満足できる。
The sixth comparative example, the tenth example, and the eleventh example are examples in which addition of Co was tested to further promote precipitation strengthening. As in the sixth comparative example, if the amount of Co added is too large, the mechanical properties satisfy the target value, but the electrical conductivity decreases, and the target value cannot be satisfied.
On the other hand, when the amount of Co added is in the range of 0.2 to 0.9 wt%, the target values of mechanical properties and conductivity can be satisfied as in the tenth and eleventh examples.

【0057】また、第7比較例、第12、第13実施例
は、Feを添加する事により、更に析出強化を促進させ
ようと試験した例である。第7比較例の如く、Fe添加
量が多過ぎると、機械的性質は満足するものの、導電率
は目標値を満足できなくなる。これに対して、Fe添加
量が0.2〜0.8wt%の範囲であれば、第12、第1
3実施例の如く、機械的性質及び導電率の目標値を満足
できる。
Further, the seventh comparative example, the twelfth and thirteenth examples are examples in which addition of Fe was tested to further promote precipitation strengthening. As in the seventh comparative example, if the added amount of Fe is too large, the mechanical properties are satisfied, but the electrical conductivity cannot satisfy the target value. On the other hand, if the amount of Fe added is in the range of 0.2 to 0.8 wt%, the twelfth and first
As in Example 3, the target values of mechanical properties and electrical conductivity can be satisfied.

【0058】また、第8比較例、第14、第15実施例
は、Siを添加する事により、クロムケイ化物を形成さ
せ、導電率を落とさず、機械的性質の向上を試験した例
である。しかし、第8比較例の如く、Si添加量が多過
ぎると、機械的性質は目標値を満足するものの、導電率
を著しく低下させる。これに対して、Si添加量が0.
2〜0.7wt%の範囲内であれば、第14、第15実施
例の如く、機械的性質及び導電率の目標値を満足でき
る。
The eighth comparative example, the fourteenth example, and the fifteenth example are examples in which Si is added to form a chrome silicide, and conductivity is not lowered, and improvement of mechanical properties is tested. However, as in the eighth comparative example, if the amount of Si added is too large, the mechanical properties satisfy the target values, but the electrical conductivity is significantly reduced. On the other hand, when the amount of Si added is 0.
Within the range of 2 to 0.7 wt%, the target values of mechanical properties and conductivity can be satisfied as in the 14th and 15th embodiments.

【0059】また、第9比較例、第16、第17実施例
は、Snを添加する事により、固溶強化を促進させよう
と試験した例である。第9比較例の如く、Sn添加量が
多過ぎると、機械的性質は目標値を満足するものの、導
電率を著しく低下させる。これに対して、Sn添加量が
0.2〜0.7wt%の範囲内であれば、第16、第17
実施例の如く、機械的性質及び導電率の目標値を満足で
きる。
The ninth comparative example, the sixteenth example, and the seventeenth example are examples in which the addition of Sn was tested to promote solid solution strengthening. As in the ninth comparative example, if the Sn addition amount is too large, the mechanical properties satisfy the target values, but the electrical conductivity is significantly reduced. On the other hand, if the Sn addition amount is within the range of 0.2 to 0.7 wt%, the 16th and 17th
As in the examples, the target values of mechanical properties and conductivity can be satisfied.

【0060】また、第10比較例は、BeCu25合金
の機械的性質及び導電率を示している。当然、JIS
Z 3234 第4種の機械的性質及び導電率を満足し
ている。しかし、目標規格については、機械的性質は十
分満足しているものの、導電率は目標値より低い。
The tenth comparative example shows the mechanical properties and electrical conductivity of the BeCu25 alloy. Naturally, JIS
Z 3234 Meets the fourth class mechanical properties and electrical conductivity. However, regarding the target standard, the electrical conductivity is lower than the target value although the mechanical properties are sufficiently satisfied.

【0061】上述の如く、表2の機械的性質、導電率の
試験結果では、第1〜第10比較例に対し、本発明の第
1〜第17実施例の銅合金は、機械的性質及び導電率と
も目標規格を十分に満足するものであった。
As described above, according to the test results of the mechanical properties and the electrical conductivity shown in Table 2, the copper alloys of the first to seventeenth examples of the present invention show mechanical properties and conductivity in comparison with the first to tenth comparative examples. Both the electrical conductivity and the target standard were sufficiently satisfied.

【0062】次に、表3の高温硬さの測定試験及び表4
の焼純硬さの測定試験は、電極材料としての耐熱性を調
べるためのものである。そして、この常温硬さと高温硬
さに寄与する添加元素としてはNi、BeとCrがその
役目を殆ど果たしているため、表3に示す如く、本発明
の各実施例では殆ど差がなかった。また、第1〜第3、
第6〜第9比較例では、常温での硬さが異なる試料で
も、実施例と同様の傾向を示した。
Next, the high temperature hardness measurement test of Table 3 and Table 4
The calcination pure hardness measurement test is for examining heat resistance as an electrode material. Since Ni, Be and Cr almost fulfill their roles as additional elements that contribute to the room temperature hardness and the high temperature hardness, as shown in Table 3, there is almost no difference between the examples of the present invention. Also, the first to third,
In the sixth to ninth comparative examples, samples having different hardnesses at room temperature showed the same tendency as in the examples.

【0063】一方、第10比較例のBeCu25合金
は、常温では282と、各実施例の銅合金の230HB
前後より高い値を示す。しかし、350℃では、207
HBと著しく硬さが低下し、450℃以上では、各実施
例の銅合金より低い値になった。この硬さ低下の違い
は、時効温度に基因するもので、第10比較例のBeC
u25合金の時効温度は320℃であり、それ以上の温
度では、過時効となって著しく軟化する。これに対し
て、本発明合金の時効温度は、420〜550℃として
いるため、軟化を生じる温度も高くなる。
On the other hand, the BeCu25 alloy of the tenth comparative example is 282 at room temperature, which is 230HB of the copper alloy of each example.
It shows a higher value than before and after. However, at 350 ° C, 207
The hardness was remarkably lowered to HB, and at 450 ° C. or higher, the value was lower than that of the copper alloys of the respective examples. This difference in hardness decrease is due to the aging temperature. BeC of the 10th comparative example
The aging temperature of the u25 alloy is 320 ° C., and above that temperature, it is overaged and is significantly softened. On the other hand, since the aging temperature of the alloy of the present invention is 420 to 550 ° C, the temperature at which softening occurs is also high.

【0064】また、通常の電極材料は、高温硬さと焼鈍
硬さは関連性があり、高温硬さに優れているものは、焼
純硬さも優れていると言える。そして、表3の常温硬さ
試験結果と表4との焼鈍硬さ試験結果を比較した場合、
同様の結果が得られている。
It can be said that normal electrode materials have a relationship between high temperature hardness and annealing hardness, and that a material having excellent high temperature hardness also has excellent pure hardness. And when comparing the room temperature hardness test result of Table 3 with the annealing hardness test result of Table 4,
Similar results have been obtained.

【0065】また、表5の導電率測定試験は電極材料と
しての通電能力を調べたものである。第1〜第3比較例
の銅合金は、硬さの目標値を満足していなかったもの
の、導電率の目標値以上を示した。一方、第6〜第10
比較例の試料は、導電率の目標値を下回った。これらの
比較例に対して、各実施例の銅合金の導電率は、焼鈍温
度が高くなっても、焼鈍前の導電率である50IACS
%前後を維持するものであった。従って、本発明の銅合
金は、高温に暴露されても導電率が目標値の45IAC
S%以下にならず、通電能力に優れていることが明らか
になった
Further, the conductivity measurement test in Table 5 is to examine the energizing ability as an electrode material. The copper alloys of the first to third comparative examples did not satisfy the target value of hardness, but showed the conductivity of the target value or more. On the other hand, sixth to tenth
The sample of the comparative example was below the target value of conductivity. As compared with these comparative examples, the conductivity of the copper alloy of each example is 50 IACS, which is the conductivity before annealing even when the annealing temperature becomes high.
% Was maintained. Therefore, the copper alloy of the present invention has a target conductivity of 45IAC even when exposed to high temperatures.
It became clear that it did not fall below S% and was excellent in current carrying capacity.

【0066】次に、本発明の第4実施例の銅合金と、機
械加工性に影響する硬さを同等に調整したBeCu25
合金を第11比較例として製造した。この第4実施例及
び第11比較例について行った機械的性質及び導電率測
定結果を、下記表6に示す。
Next, BeCu25 whose hardness affecting the machinability was adjusted to be equal to that of the copper alloy of the fourth embodiment of the present invention.
An alloy was produced as the eleventh comparative example. Table 6 below shows the results of measuring the mechanical properties and the electrical conductivity of the fourth example and the eleventh comparative example.

【0067】[0067]

【表6】 [Table 6]

【0068】上記表6の如く、機械加工性に影響する硬
さを、HRC30に調整すると、本発明銅合金とBeC
u25合金の引張強さと伸びは、ほぼ同等の値を示し
た。しかしながら、導電率は本発明の銅合金の方が高い
値を示した。
As shown in Table 6 above, when the hardness affecting the machinability is adjusted to HRC30, the copper alloy of the present invention and BeC are prepared.
The tensile strength and elongation of the u25 alloy showed almost the same values. However, the electrical conductivity of the copper alloy of the present invention was higher.

【0069】以上、全ての測定結果より、少なくとも、
Ni2.3〜4.8wt%、Be0.25〜0.65wt%、
Cr0.3〜1.0wt%の配合割合でCuに添加するか
又は、これらと同一配合割合のNi、Be、Crととも
に、Zr0.05〜0.3wt%、Nb0.05〜0.3w
t%、Co0.3〜0.7wt%、Fe0.3〜0.65wt
%、Si0.2〜0.5wt%、Sn0.2〜0.5wt%の
配合割合で何れか一種の添加元素をCuに添加すること
により、機械的性質、導電率と耐熱性だけでなく、機械
加工性にも優れた、高強度、高導電率電極材料としての
使用に適した銅合金が得られることがわかった。
From the above measurement results, at least
Ni 2.3-4.8 wt%, Be 0.25-0.65 wt%,
Cr is added to Cu in a mixing ratio of 0.3 to 1.0 wt%, or Zr is 0.05 to 0.3 wt% and Nb is 0.05 to 0.3 w together with Ni, Be and Cr having the same mixing ratio as these.
t%, Co 0.3 to 0.7 wt%, Fe 0.3 to 0.65 wt
%, Si 0.2-0.5 wt%, Sn 0.2-0.5 wt% by adding one kind of additive element to Cu, not only mechanical properties, conductivity and heat resistance, It has been found that a copper alloy having excellent machinability and suitable for use as a high-strength, high-conductivity electrode material can be obtained.

【0070】尚、各添加元素の配合割合は、上記が最も
好ましいが、Ni2.3〜4.8wt%、Be0.25〜
0.7wt%、Cr0.3〜1.2wt%をCuに添加する
か、これらにZr0.05〜0.4wt%、Nb0.05
〜0.4wt%、Co0.3〜0.8wt%、Fe0.3〜
0.7wt%、Si0.2〜0.6wt%、Sn0.2〜0.
6wt%の中から何れか一種を更に添加しても、優れた電
極材料を得る事ができる。更に範囲を広くして、Ni
2.3〜5.3wt%、Be0.25〜0.8wt%、Cr
0.2〜1.5wt%をCuに添加するか、これらにZr
0.05〜0.5wt%、Nb0.05〜0.5wt%、Co
0.2〜0.9wt%、Fe0.2〜0.8wt%、Si0.
2〜0.7wt%、Sn0.2〜0.7wt%の中から何れか
一種を更に添加するものとする事も可能である。
The above-mentioned most preferable compounding ratio of each additive element is Ni 2.3 to 4.8 wt%, Be 0.25 to
0.7wt%, Cr 0.3-1.2wt% is added to Cu, or Zr0.05-0.4wt%, Nb0.05
~ 0.4wt%, Co0.3 ~ 0.8wt%, Fe0.3 ~
0.7 wt%, Si 0.2 to 0.6 wt%, Sn 0.2 to 0.
An excellent electrode material can be obtained by adding any one of 6 wt%. Further widening the range, Ni
2.3-5.3 wt%, Be 0.25-0.8 wt%, Cr
Add 0.2 to 1.5 wt% to Cu or add Zr to these
0.05-0.5 wt%, Nb 0.05-0.5 wt%, Co
0.2-0.9 wt%, Fe 0.2-0.8 wt%, Si0.
It is also possible to further add any one of 2 to 0.7 wt% and Sn 0.2 to 0.7 wt%.

【0071】[0071]

【発明の効果】本発明に於いては、上述の如くCuにN
i、Be、Crを添加する事により、JIS Z 32
34 第4種に準じる機械的性質と、JIS Z 32
34第3種の導電率を満足させるとともに、機械加工性
と電極材料として重要な耐熱性にも優れた銅合金を得る
事ができる。また、電極材料としての最適の条件を備え
た銅合金を、高価なBeの添加量を減らして形成する事
ができる、しかも、このような廉価な電極材料を、容易
な製造方法で得る事ができる。また、CuにNi、B
e、Crを添加するとともに、更にZr、Nb、Co、
Fe、Si、Snの何れか一種を添加する事で、機械的
性質の安定性が得られるとともに、導電率も目標値を満
足する電極材料を得る事ができる。
According to the present invention, as described above, N is added to Cu.
By adding i, Be and Cr, JIS Z 32
34 Mechanical properties according to the 4th type and JIS Z 32
34 It is possible to obtain a copper alloy that satisfies the third type conductivity and has excellent machinability and heat resistance, which is important as an electrode material. Further, a copper alloy having optimum conditions as an electrode material can be formed by reducing the amount of expensive Be added, and such an inexpensive electrode material can be obtained by an easy manufacturing method. it can. In addition, Cu, Ni, B
e, Cr are added, and Zr, Nb, Co,
By adding any one of Fe, Si, and Sn, it is possible to obtain stability of mechanical properties and to obtain an electrode material whose conductivity also satisfies the target value.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 650 C22F 1/00 650A 682 682 691 691B ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) C22F 1/00 650 C22F 1/00 650A 682 682 691 691B

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 Ni2.3〜5.3wt%、Be0.25
〜0.8wt%、Cr0.3〜1.5wt%を含有し、残部が
不可避的な不純物を除くCuよりなる事を特徴とする抵
抗溶接用電極材料。
1. Ni 2.3 to 5.3 wt%, Be 0.25
~ 0.8 wt%, Cr 0.3 ~ 1.5 wt%, the balance is made of Cu excluding unavoidable impurities, the electrode material for resistance welding.
【請求項2】 Ni2.3〜5.3wt%、Be0.25
〜0.8wt%、Cr0.3〜1.5wt%、Zr0.05〜
0.5wt%を含有し、残部が不可避的な不純物を除くC
uよりなる事を特徴とする抵抗溶接用電極材料。
2. Ni 2.3 to 5.3 wt%, Be0.25
~ 0.8wt%, Cr 0.3 ~ 1.5wt%, Zr0.05 ~
C containing 0.5 wt% and the balance excluding inevitable impurities C
An electrode material for resistance welding, characterized by comprising u.
【請求項3】 Ni2.3〜5.3wt%、Be0.25
〜0.8wt%、Cr0.3〜1.5wt%、Nb0.05〜
0.5wt%を含有し、残部が不可避的な不純物を除くC
uよりなる事を特徴とする抵抗溶接用電極材料。
3. Ni 2.3 to 5.3 wt%, Be0.25
~ 0.8wt%, Cr 0.3 ~ 1.5wt%, Nb0.05 ~
C containing 0.5 wt% and the balance excluding inevitable impurities C
An electrode material for resistance welding, characterized by comprising u.
【請求項4】 Ni2.3〜5.3wt%、Be0.25
〜0.8wt%、Cr0.3〜1.5wt%、Co0.2〜
0.9wt%を含有し、残部が不可避的な不純物を除くC
uよりなる事を特徴とする抵抗溶接用電極材料。
4. Ni2.3 to 5.3 wt%, Be0.25
~ 0.8wt%, Cr0.3 ~ 1.5wt%, Co0.2 ~
C containing 0.9 wt% and the balance excluding inevitable impurities C
An electrode material for resistance welding, characterized by comprising u.
【請求項5】 Ni2.3〜5.3wt%、Be0.25
〜0.8wt%、Cr0.3〜1.5wt%、Fe0.2〜
0.8wt%を含有し、残部が不可避的な不純物を除くC
uよりなる事を特徴とする抵抗溶接用電極材料。
5. Ni2.3 to 5.3 wt%, Be0.25
~ 0.8wt%, Cr0.3 ~ 1.5wt%, Fe0.2 ~
C containing 0.8 wt% and the balance excluding unavoidable impurities
An electrode material for resistance welding, characterized by comprising u.
【請求項6】 Ni2.3〜5.3wt%、Be0.25
〜0.8wt%、Cr0.3〜1.5wt%、Si0.2〜
0.7wt%を含有し、残部が不可避的な不純物を除くC
uよりなる事を特徴とする抵抗溶接用電極材料。
6. Ni2.3 to 5.3 wt%, Be0.25
~ 0.8wt%, Cr0.3 ~ 1.5wt%, Si0.2 ~
C containing 0.7 wt% and the balance excluding unavoidable impurities
An electrode material for resistance welding, characterized by comprising u.
【請求項7】 Ni2.3〜5.3wt%、Be0.25
〜0.8wt%、Cr0.3〜1.5wt%、Sn0.2〜
0.7wt%を含有し、残部が不可避的な不純物を除くC
uよりなる事を特徴とする抵抗溶接用電極材料。
7. Ni2.3 to 5.3 wt%, Be0.25
~ 0.8 wt%, Cr 0.3-1.5 wt%, Sn 0.2 ~
C containing 0.7 wt% and the balance excluding unavoidable impurities
An electrode material for resistance welding, characterized by comprising u.
【請求項8】 Ni2.3〜5.3wt%、Be0.25
〜0.8wt%、Cr0.3〜1.5wt%を含有し、残部が
不可避的な不純物を除くCuよりなる銅合金を、溶体化
処理温度900℃〜990℃で溶体化処理を施し、次に
時効処理温度420〜550℃で時効処理を施した事を
特徴とする抵抗溶接用電極材料の製造方法。
8. Ni2.3 to 5.3 wt%, Be0.25
.About.0.8 wt%, Cr 0.3 to 1.5 wt%, and the balance being a copper alloy made of Cu excluding inevitable impurities, subjected to solution treatment at a solution treatment temperature of 900.degree. A method for producing an electrode material for resistance welding, wherein the aging treatment is performed at a temperature of 420 to 550 ° C.
【請求項9】 Ni2.3〜5.3wt%、Be0.25
〜0.8wt%、Cr0.3〜1.5wt%、Zr0.05〜
0.5wt%を含有し、残部が不可避的な不純物を除くC
uよりなる銅合金を、溶体化処理温度900℃〜990
℃で溶体化処理を施し、次に時効処理温度420〜55
0℃で時効処理を施した事を特徴とする抵抗溶接用電極
材料の製造方法。
9. Ni2.3 to 5.3 wt%, Be0.25
~ 0.8wt%, Cr 0.3 ~ 1.5wt%, Zr0.05 ~
C containing 0.5 wt% and the balance excluding inevitable impurities C
A copper alloy made of u is treated at a solution treatment temperature of 900 ° C. to 990.
Solution treatment at ℃, then aging temperature 420 ~ 55
A method for producing an electrode material for resistance welding, which is characterized by being subjected to an aging treatment at 0 ° C.
【請求項10】 Ni2.3〜5.3wt%、Be0.2
5〜0.8wt%、Cr0.3〜1.5wt%、Nb0.05
〜0.5wt%を含有し、残部が不可避的な不純物を除く
Cuよりなる銅合金を、溶体化処理温度900℃〜99
0℃で溶体化処理を施し、次に時効処理温度420〜5
50℃で時効処理を施した事を特徴とする抵抗溶接用電
極材料の製造方法。
10. Ni2.3 to 5.3 wt%, Be0.2
5 to 0.8 wt%, Cr 0.3 to 1.5 wt%, Nb0.05
˜0.5 wt% with the balance being Cu excluding unavoidable impurities, and a solution treatment temperature of 900 ° C. to 99 ° C.
Solution heat treated at 0 ° C, then aging temperature 420-5
A method for producing an electrode material for resistance welding, which is characterized by being subjected to an aging treatment at 50 ° C.
【請求項11】 Ni2.3〜5.3wt%、Be0.2
5〜0.8wt%、Cr0.3〜1.5wt%、Co0.2〜
0.9wt%を含有し、残部が不可避的な不純物を除くC
uよりなる銅合金を、溶体化処理温度900℃〜990
℃で溶体化処理を施し、次に時効処理温度420〜55
0℃で時効処理を施した事を特徴とする抵抗溶接用電極
材料の製造方法。
11. Ni2.3 to 5.3 wt%, Be0.2
5 to 0.8 wt%, Cr 0.3 to 1.5 wt%, Co 0.2 to
C containing 0.9 wt% and the balance excluding inevitable impurities C
A copper alloy made of u is treated at a solution treatment temperature of 900 ° C. to 990.
Solution treatment at ℃, then aging temperature 420 ~ 55
A method for producing an electrode material for resistance welding, which is characterized by being subjected to an aging treatment at 0 ° C.
【請求項12】 Ni2.3〜5.3wt%、Be0.2
5〜0.8wt%、Cr0.3〜1.5wt%、Fe0.2〜
0.8wt%を含有し、残部が不可避的な不純物を除くC
uよりなる銅合金を、溶体化処理温度900℃〜990
℃で溶体化処理を施し、次に時効処理温度420〜55
0℃で時効処理を施した事を特徴とする抵抗溶接用電極
材料の製造方法。
12. Ni 2.3 to 5.3 wt%, Be0.2
5 to 0.8 wt%, Cr 0.3 to 1.5 wt%, Fe 0.2 to
C containing 0.8 wt% and the balance excluding unavoidable impurities
A copper alloy made of u is treated at a solution treatment temperature of 900 ° C to 990.
Solution treatment at ℃, then aging temperature 420 ~ 55
A method for producing an electrode material for resistance welding, which is characterized by being subjected to an aging treatment at 0 ° C.
【請求項13】 Ni2.3〜5.3wt%、Be0.2
5〜0.8wt%、Cr0.3〜1.5wt%、Si0.2〜
0.7wt%を含有し、残部が不可避的な不純物を除くC
uよりなる銅合金を、溶体化処理温度900℃〜990
℃で溶体化処理を施し、次に時効処理温度420〜55
0℃で時効処理を施した事を特徴とする抵抗溶接用電極
材料の製造方法。
13. Ni2.3 to 5.3 wt%, Be0.2
5 to 0.8 wt%, Cr 0.3 to 1.5 wt%, Si 0.2 to
C containing 0.7 wt% and the balance excluding unavoidable impurities
A copper alloy made of u is treated at a solution treatment temperature of 900 ° C. to 990.
Solution treatment at ℃, then aging temperature 420 ~ 55
A method for producing an electrode material for resistance welding, which is characterized by being subjected to an aging treatment at 0 ° C.
【請求項14】 Ni2.3〜5.3wt%、Be0.2
5〜0.8wt%、Cr0.3〜1.5wt%、Sn0.2〜
0.7wt%を含有し、残部が不可避的な不純物を除くC
uよりなる銅合金を、溶体化処理温度900℃〜990
℃で溶体化処理を施し、次に時効処理温度420〜55
0℃で時効処理を施した事を特徴とする抵抗溶接用電極
材料の製造方法。
14. Ni2.3 to 5.3 wt%, Be0.2
5 to 0.8 wt%, Cr 0.3 to 1.5 wt%, Sn 0.2 to
C containing 0.7 wt% and the balance excluding unavoidable impurities
A copper alloy made of u is treated at a solution treatment temperature of 900 ° C. to 990.
Solution treatment at ℃, then aging temperature 420 ~ 55
A method for producing an electrode material for resistance welding, which is characterized by being subjected to an aging treatment at 0 ° C.
JP2001401181A 2001-12-28 2001-12-28 Electrode material for resistance welding and production method therefor Pending JP2003193158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001401181A JP2003193158A (en) 2001-12-28 2001-12-28 Electrode material for resistance welding and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001401181A JP2003193158A (en) 2001-12-28 2001-12-28 Electrode material for resistance welding and production method therefor

Publications (1)

Publication Number Publication Date
JP2003193158A true JP2003193158A (en) 2003-07-09

Family

ID=27605321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001401181A Pending JP2003193158A (en) 2001-12-28 2001-12-28 Electrode material for resistance welding and production method therefor

Country Status (1)

Country Link
JP (1) JP2003193158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223069A (en) * 2007-03-12 2008-09-25 Miyoshi Gokin Kogyo Kk High-strength, high-conductivity copper alloy and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223069A (en) * 2007-03-12 2008-09-25 Miyoshi Gokin Kogyo Kk High-strength, high-conductivity copper alloy and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5085908B2 (en) Copper alloy for electronic materials and manufacturing method thereof
TWI502086B (en) Copper alloy sheet and method for producing same
CN104278171B (en) A kind of CuTi series elastic copper alloy and preparation method thereof
CN109266901B (en) Preparation method of Cu15Ni8Sn high-strength wear-resistant alloy rod/wire
JP2011202283A (en) Aluminum alloy, aluminum alloy foil, container and method of preparing aluminum alloy foil
JP2007126739A (en) Copper alloy for electronic material
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
CN108866378B (en) High-strength high-conductivity copper alloy for high-temperature environment and preparation method thereof
JP5887449B2 (en) Copper alloy, cold-rolled sheet and method for producing the same
JP4253100B2 (en) Low thermal expansion alloy with excellent machinability and manufacturing method thereof
JP2534073B2 (en) Copper alloy for electronic component construction and method for producing the same
CN113046594B (en) High-strength high-thermal-conductivity copper alloy material roller sleeve and preparation method thereof
SE431660B (en) FORMABLE AUSTENITIC Nickel Alloy
JP3563311B2 (en) Copper alloy electrode material for resistance welding and method for producing the same
JP2003193158A (en) Electrode material for resistance welding and production method therefor
KR960001714B1 (en) Method of casting and mold making
JP4158337B2 (en) Method for producing chromium-zirconium-based copper alloy for continuous casting mold
JP4293580B2 (en) Corson alloy for metal mold and manufacturing method thereof
JP4807484B2 (en) Aluminum alloy plate for forming and method for producing the same
KR920006827B1 (en) Stainless maraging steel and the making process
JPH07113133B2 (en) Cu alloy for continuous casting mold
JPH0314896B2 (en)
JP3519863B2 (en) Phosphor bronze with low surface cracking susceptibility and method for producing the same
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JPS6017039A (en) Copper alloy with superior heat resistance, mechanical characteristic, workability and electric conductivity