JP2018076580A - Precipitation hardening type copper alloy and manufacturing method therefor - Google Patents

Precipitation hardening type copper alloy and manufacturing method therefor Download PDF

Info

Publication number
JP2018076580A
JP2018076580A JP2016220996A JP2016220996A JP2018076580A JP 2018076580 A JP2018076580 A JP 2018076580A JP 2016220996 A JP2016220996 A JP 2016220996A JP 2016220996 A JP2016220996 A JP 2016220996A JP 2018076580 A JP2018076580 A JP 2018076580A
Authority
JP
Japan
Prior art keywords
copper alloy
hardening type
precipitation hardening
type copper
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016220996A
Other languages
Japanese (ja)
Other versions
JP6802689B2 (en
Inventor
義仁 小笠原
Yoshihito Ogasawara
義仁 小笠原
逸夫 江口
Itsuo Eguchi
逸夫 江口
源次郎 萩野
Genjiro Hagino
源次郎 萩野
有賀 康博
Yasuhiro Ariga
康博 有賀
元宏 堀口
Motohiro Horiguchi
元宏 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYOSHI GOKIN KOGYO KK
Kobe Steel Ltd
Original Assignee
MIYOSHI GOKIN KOGYO KK
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYOSHI GOKIN KOGYO KK, Kobe Steel Ltd filed Critical MIYOSHI GOKIN KOGYO KK
Priority to JP2016220996A priority Critical patent/JP6802689B2/en
Publication of JP2018076580A publication Critical patent/JP2018076580A/en
Application granted granted Critical
Publication of JP6802689B2 publication Critical patent/JP6802689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method providing a precipitation hardening type copper alloy containing no specific ally in so-called Corson-based alloy containing Ni and Si as alloy components and excellent in corrosion resistance by adding structure control, and the precipitation hardening type copper alloy.SOLUTION: There is provided a manufacturing method of a precipitation hardening type copper alloy having a component composition with, by mass%, Ni of 6.5 to 8.8%, Si of 1.5 to 2.5%, Cr of 0.3 to 1.3%, Ni/Si ratio of 3.3 to 4.8 and the balance Cu with inevitable impurities, and having hardness of 200 Hv or more by dispersing precipitate extending in a <110> direction of a Cu base phase. There is provided a manufacturing method of the precipitation hardening type copper alloy having hardness of 200 Hv or more by an aging heat treatment by quickly solidifying to have average secondary dendrite arm spacing of 20 μm and then holding a temperature in a temperature range of 400 to 500°C at least without heating to 900°C or more.SELECTED DRAWING: Figure 2

Description

本発明は、耐摩耗性に優れる析出硬化型銅合金及びその製造方法に関し、特に、Ni及びSiを合金成分に含み組織制御を与えて得られる析出硬化型銅合金及びその製造方法に関する。   The present invention relates to a precipitation hardening type copper alloy having excellent wear resistance and a method for producing the same, and more particularly, to a precipitation hardening type copper alloy obtained by imparting microstructure control to Ni and Si contained in an alloy component and a method for producing the same.

ベリリウム銅は、機械加工性に優れるとともに耐熱性、耐食性、及び耐疲労強度にも優れ、高い電気伝導性を有することから、コネクタ、スイッチ、リレー等の各種電気部品の接点や端子、ばねなどに広く用いられている。一方で、元素としてのベリリウムの毒性からこれを含まない代替銅合金として、Ni及びSiを添加した銅合金、いわゆるコルソン系合金の開発が行われている。   Beryllium copper has excellent machinability, heat resistance, corrosion resistance, fatigue resistance, and high electrical conductivity, so it can be used as contacts, terminals and springs for various electrical components such as connectors, switches, and relays. Widely used. On the other hand, a copper alloy to which Ni and Si are added, that is, a so-called Corson-based alloy has been developed as an alternative copper alloy not containing this because of the toxicity of beryllium as an element.

例えば、特許文献1では、ベリリウム銅鋳造品並みの引張強さ及び伸びを有するとともに、機械加工性に優れたコルソン系合金を開示している。主成分として、Ni:6.0〜9.0wt%、Si:1.4〜2.4wt%、Cr:0.2〜1.3wt%、Zn:0.5〜10.0wt%をCu中に含有する成分組成を有し、920℃で溶体化処理後、430℃〜490℃の温度範囲で所定時間だけ時効熱処理することで、引張強さが600MPa以上、伸びが2%以上、硬さがHRCで25以上、導電率がIACSで20%以上を得られるとしている。   For example, Patent Document 1 discloses a Corson alloy having a tensile strength and elongation comparable to those of a beryllium copper cast product and excellent in machinability. As main components, Ni: 6.0-9.0 wt%, Si: 1.4-2.4 wt%, Cr: 0.2-1.3 wt%, Zn: 0.5-10.0 wt% in Cu The component composition contained in the composition, after solution treatment at 920 ° C., aging heat treatment for a predetermined time in a temperature range of 430 ° C. to 490 ° C., tensile strength is 600 MPa or more, elongation is 2% or more, hardness The HRC can obtain 25 or more by HRC, and the electrical conductivity can obtain 20% or more by IACS.

ところで、析出硬化型の銅合金では、析出相の分散状態を組織制御することで機械特性を大幅に変化させることができる。上記した特許文献1でも、母相としてのα固溶体中にNi及びCrとSiとの金属間化合物からなる析出相を所定粒径且つ所定アスペクト比で与えて機械強度の向上を図っている。一方で、凝固由来の組織制御による機械特性の制御についても提案されている。   By the way, in the precipitation hardening type copper alloy, the mechanical properties can be significantly changed by controlling the structure of the dispersed state of the precipitated phase. Also in Patent Document 1 described above, the mechanical strength is improved by giving a precipitated phase composed of an intermetallic compound of Ni and Cr and Si to the α solid solution as a matrix phase with a predetermined particle size and a predetermined aspect ratio. On the other hand, control of mechanical properties by coagulation-derived tissue control has also been proposed.

例えば、特許文献2では、(Zr,Hf)からなる群、(Cr,Ni,Mn,Ta)からなる群、(Ti,Al)からなる群のそれぞれから1種又は2種以上の合金元素を組み合わせた析出硬化型銅合金において、急冷凝固によって組織制御したベリリウム銅の代替銅合金を開示している。母合金の急冷凝固と時効処理によって、平均二次デンドライトアーム間隔を2μm以下のCu初晶と、準安定Cu(Zr,Hf)化合物相及びCu相で構成されたラメラ間隔を0.2μm以下とした共晶マトリックスとを形成することで機械加工性に優れるとともに優れた機械強度と高い電気伝導性とを得られるとしている。 For example, in Patent Document 2, one or more alloy elements are selected from each of a group consisting of (Zr, Hf), a group consisting of (Cr, Ni, Mn, Ta), and a group consisting of (Ti, Al). In the combined precipitation hardening type copper alloy, an alternative copper alloy for beryllium copper whose structure is controlled by rapid solidification is disclosed. By rapid solidification and aging treatment of the mother alloy, the lamellar spacing composed of a Cu primary crystal having an average secondary dendrite arm spacing of 2 μm or less, a metastable Cu 5 (Zr, Hf) compound phase, and a Cu phase is 0.2 μm or less. By forming the eutectic matrix, excellent machinability and excellent mechanical strength and high electrical conductivity can be obtained.

特開2009−235557号公報JP 2009-235557 A WO2012/133651号公報WO2012 / 133651

いわゆるコルソン系合金において、耐摩耗性の一層の向上が求められている。これには上記したように、時効処理による析出相の析出形態の制御、例えば、析出母相の組織制御を考慮できる。この点、特許文献2では、ZrやHfがCuに対して負の混合熱を有することを利用して融点を降下させ、初晶としての平均二次デンドライトアーム間隔を狭くする制御を行っている。つまり、かかる方法は、ZrやHfを合金成分に含むことが必須となる。   In so-called Corson alloys, further improvement in wear resistance is required. For this purpose, as described above, control of the precipitation form of the precipitated phase by aging treatment, for example, control of the structure of the precipitated mother phase can be considered. In this regard, in Patent Document 2, Zr and Hf have a negative heat of mixing with respect to Cu, and the melting point is lowered to control the average secondary dendrite arm interval as the primary crystal to be narrowed. . That is, in this method, it is essential that Zr or Hf is included in the alloy component.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、Ni及びSiを合金成分に含むいわゆるコルソン系合金において、特殊な合金元素を含まず、組織制御を与えて耐摩耗性に優れる析出硬化型銅合金を与える製造方法及び析出硬化型銅合金を提供することにある。   The present invention has been made in view of the situation as described above, and the object thereof is a so-called Corson alloy containing Ni and Si as an alloy component, which does not contain a special alloy element, and has a structure control. It is providing the manufacturing method and precipitation hardening type copper alloy which give precipitation hardening type copper alloy which is excellent in abrasion resistance by giving it.

本発明による析出硬化型銅合金は、質量%で、Niを6.5〜8.8%、Siを1.5〜2.5%、Crを0.3〜1.3%、Ni/Si比を3.3〜4.8で残部をCu及び不可避的不純物とした成分組成を有する析出硬化型銅合金であって、Cu母相の<110>方向に伸長した析出物を分散させて200Hv以上の硬さを有することを特徴とする。   The precipitation hardening type copper alloy according to the present invention is mass%, Ni is 6.5 to 8.8%, Si is 1.5 to 2.5%, Cr is 0.3 to 1.3%, Ni / Si It is a precipitation hardening type copper alloy having a component composition in which the ratio is 3.3 to 4.8 and the balance is Cu and inevitable impurities, and the precipitate elongated in the <110> direction of the Cu matrix is dispersed to give 200 Hv It has the above hardness.

かかる発明によれば、特殊な合金元素を含まないコルソン系合金において高い耐摩耗性を得られるのである。   According to this invention, high wear resistance can be obtained in a Corson alloy that does not contain a special alloy element.

また、本発明による析出効果型合金の製造方法によれば、質量%で、Niを6.5〜8.8%、Siを1.5〜2.5%、Crを0.3〜1.3%、Ni/Si比を3.3〜4.8で残部をCu及び不可避的不純物とした成分組成を有する析出硬化型銅合金の製造方法であって、平均二次デンドライトアーム間隔を20μm以下となるように急冷凝固後、少なくとも900℃以上に加熱することなく400〜500℃の温度範囲内の温度で保持する時効熱処理によって200Hv以上の硬さを与えることを特徴とする。   Further, according to the method for producing a precipitation effect type alloy according to the present invention, by mass, Ni is 6.5 to 8.8%, Si is 1.5 to 2.5%, and Cr is 0.3 to 1. A method for producing a precipitation hardening type copper alloy having a composition of 3%, a Ni / Si ratio of 3.3 to 4.8, the remainder being Cu and inevitable impurities, and having an average secondary dendrite arm spacing of 20 μm or less Thus, after rapid solidification, a hardness of 200 Hv or more is given by aging heat treatment that is held at a temperature within a temperature range of 400 to 500 ° C. without heating to at least 900 ° C. or more.

かかる発明によれば、特殊な合金元素を含まず、組織制御を与えて耐摩耗性に優れる析出硬化型銅合金を得られるのである。   According to this invention, it is possible to obtain a precipitation hardening type copper alloy which does not contain a special alloy element and gives a structure control and is excellent in wear resistance.

本発明による析出硬化型銅合金の成分組成を示す表である。It is a table | surface which shows the component composition of the precipitation hardening type copper alloy by this invention. 本発明による製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method by this invention. 急冷又は徐冷の方法を示す断面図である。It is sectional drawing which shows the method of rapid cooling or slow cooling. 実施例及び比較例の平均二次デンドライトアーム間隔、硬さ及び導電率の測定結果の表である。It is a table | surface of the measurement result of the average secondary dendrite arm space | interval of an Example and a comparative example, hardness, and electrical conductivity. 実施例のTEM観察による暗視野像である。It is a dark field image by TEM observation of an Example.

以下に、本発明による析出硬化型銅合金の製造方法の1つの実施例について、図1及び図2を用いて説明する。   Below, one Example of the manufacturing method of the precipitation hardening type copper alloy by this invention is described using FIG.1 and FIG.2.

図1に示すように、本実施例における析出硬化型銅合金は、組織制御を与えることで耐摩耗性を高めた銅合金であって、いわゆるコルソン系合金の一種であり、質量%で、Niを6.5〜8.8%、Siを1.5〜2.5%、Crを0.3〜1.3%、Ni/Si比を3.3〜4.8で残部をCu及び不可避的不純物とした成分組成を有する。   As shown in FIG. 1, the precipitation hardening type copper alloy in this example is a copper alloy whose wear resistance is improved by giving a structure control, and is a kind of so-called Corson alloy, which is Ni Of 6.5 to 8.8%, Si of 1.5 to 2.5%, Cr of 0.3 to 1.3%, Ni / Si ratio of 3.3 to 4.8 and the balance of Cu and inevitable It has a component composition that is regarded as a typical impurity.

図2に示すように、上記した成分組成を与える銅合金の溶湯を準備する(S1)。   As shown in FIG. 2, a molten copper alloy that provides the above-described component composition is prepared (S1).

次いで、合金溶湯を鋳込んで急冷凝固させる(S2)。急冷凝固においては、平均二次デンドライトアーム間隔を20μm以下となるように冷却速度を制御する。つまり、このような冷却速度の急冷凝固を可能とするように、鋳造の方法や鋳型の形状を選択する。例えば、急冷凝固を可能とする連続鋳造などを用いることができる。   Next, molten alloy is cast and rapidly solidified (S2). In the rapid solidification, the cooling rate is controlled so that the average secondary dendrite arm spacing is 20 μm or less. That is, the casting method and the shape of the mold are selected so that rapid solidification at such a cooling rate is possible. For example, continuous casting that enables rapid solidification can be used.

なお、得られた合金は、これ以降、少なくとも900℃以上に加熱されない。通常であれば後述する時効熱処理の前に、例えば920℃程度で溶体化熱処理を行うが、このような高温の熱処理を省略するのである。   The obtained alloy is not heated to at least 900 ° C. or higher thereafter. Usually, a solution heat treatment is performed at about 920 ° C., for example, before the aging heat treatment described later, but such a high temperature heat treatment is omitted.

次いで、時効熱処理を行う(S3)。時効熱処理では、400〜500℃の温度範囲内の所定の温度で保持する。本実施例では470℃で3時間保持し、炉冷した。かかる時効熱処理によって得られた銅合金には、200Hv以上、好ましくは250Hv以上、さらに好ましくは300Hv以上の硬さを与えることができる。このような硬さによって、耐摩耗性に優れるのである。また、得られた銅合金においては、Cu母相の<110>方向に伸長した析出物が分散しており、これによって高い耐摩耗性を得ているものと考えられる。   Next, an aging heat treatment is performed (S3). In the aging heat treatment, it is held at a predetermined temperature within a temperature range of 400 to 500 ° C. In this example, the temperature was maintained at 470 ° C. for 3 hours and the furnace was cooled. The copper alloy obtained by such aging heat treatment can be given a hardness of 200 Hv or higher, preferably 250 Hv or higher, more preferably 300 Hv or higher. This hardness is excellent in wear resistance. Further, in the obtained copper alloy, precipitates elongated in the <110> direction of the Cu matrix phase are dispersed, and it is considered that high wear resistance is obtained thereby.

なお、導電率については、従来の鋳込み時に徐冷して溶体化熱処理及び時効熱処理する方法に比べて若干の低下傾向にあるが、特に、耐摩耗性を必要とする電気部材においても本実施例による析出硬化型合金は有効である。   The electrical conductivity tends to be slightly lower than the conventional methods of annealing and solution heat treatment and aging heat treatment at the time of casting, especially in the case of electrical members that require wear resistance. The precipitation hardening type alloy is effective.

以上述べてきたように、コルソン系合金において、例えばZrやHfのような特殊な合金元素を含まずとも、急冷凝固(S2)させて時効熱処理を行う熱履歴により、すなわち溶体化熱処理を省略しても、必要な硬さを得られる組織制御を与えて、耐摩耗性に優れる析出硬化型銅合金を得ることができる。   As described above, in the Corson alloy, even if it does not contain a special alloy element such as Zr or Hf, for example, it omits the solution heat treatment by the heat history in which it is rapidly solidified (S2) to perform the aging heat treatment. However, it is possible to obtain a precipitation hardening type copper alloy having excellent wear resistance by giving the structure control capable of obtaining the necessary hardness.

上記した製造方法により銅合金を作製するとともに、急冷凝固後の平均二次デンドライトアーム間隔を測定し、時効熱処理後の硬さ及び導電率を測定したのでその結果について図1乃至図5を用いて説明する。   While producing a copper alloy by the above-described manufacturing method, the average secondary dendrite arm interval after rapid solidification was measured, and the hardness and conductivity after aging heat treatment were measured, so the results are shown in FIGS. explain.

図1に示すように、ここでは、質量%で、Niを6.8%、Siを1.83%、Crを0.55%含有するとともに、さらに不可避的不純物としてMnを0.04%、Mgを0.005%含有する銅合金の溶湯を準備した。   As shown in FIG. 1, here, in mass%, Ni is 6.8%, Si is 1.83%, Cr is 0.55%, and Mn is 0.04% as an inevitable impurity, A molten copper alloy containing 0.005% Mg was prepared.

図2に示すように、急冷凝固(S1)においては、上記したように平均二次デンドライトアーム間隔を20μm以下とする冷却速度を得られるように、溶湯を急冷凝固させる。ここで平均二次デンドライトアームは、断面組織についてデンドライト晶の一次枝に垂直な二次枝の先端部をプロットし、その5点の単純算術平均を得たものである。   As shown in FIG. 2, in the rapid solidification (S1), as described above, the molten metal is rapidly solidified to obtain a cooling rate with an average secondary dendrite arm interval of 20 μm or less. Here, the average secondary dendrite arm is obtained by plotting the tip of the secondary branch perpendicular to the primary branch of the dendrite crystal with respect to the cross-sectional structure, and obtaining a simple arithmetic average of the five points.

すなわち、図3(a)に示すように、上部の開口した略円筒形の断熱材2の周囲をCu−Cr合金製の金型1で保持した鋳型に溶湯3を鋳込み、断熱材の開口部にCu−Cr合金製の冷却金型4を載せるとともにプレス5で押さえて溶湯3から熱を急速に奪って冷却させる(急冷)。なお、鋳型の寸法は、内径φ38mm、高さ11mm又は17mmである。   That is, as shown in FIG. 3A, the molten metal 3 is cast into a mold in which the periphery of a substantially cylindrical heat insulating material 2 having an upper opening is held by a mold 1 made of Cu—Cr alloy, and an opening portion of the heat insulating material. A cooling mold 4 made of a Cu—Cr alloy is placed on the metal and pressed by a press 5 to quickly take heat from the molten metal 3 and cool it (rapid cooling). The mold has an inner diameter of 38 mm and a height of 11 mm or 17 mm.

また、図3(b)に示すように、より速い冷却方法として、平板状のCu−Cr合金製の金型1’の上に溶湯3を滴下し、これをプレス5で押さえて溶湯3から熱をさらに急速に奪って冷却させる(最急冷)。   Further, as shown in FIG. 3B, as a faster cooling method, the molten metal 3 is dropped on a flat plate-shaped Cu—Cr alloy mold 1 ′, and this is pressed by a press 5 from the molten metal 3. Heat is taken away more quickly and cooled (rapid cooling).

これに対して、図3(c)に示すように、溶湯を徐冷して凝固させる比較例としての冷却方法では、上部の開口した略円筒形の断熱材2の周囲をCu−Cr合金製の金型1で保持した鋳型に溶湯3を鋳込み、そのまま空冷した(徐冷)。なお、鋳型の寸法は上記した「急冷」と同様である。   On the other hand, as shown in FIG. 3C, in the cooling method as a comparative example in which the molten metal is gradually cooled and solidified, the periphery of the substantially cylindrical heat insulating material 2 having an upper opening is made of a Cu—Cr alloy. The molten metal 3 was poured into a mold held by the mold 1 and air-cooled as it was (slow cooling). The dimensions of the mold are the same as the above-mentioned “rapid cooling”.

図4に示すように、このようにして得た鋳放しの試料について、それぞれ断面組織観察を行い、平均二次デンドライトアーム間隔(DAS II、以降DASと称する)を測定し、記録した。なお、実施例1が「急冷」において鋳型の高さを11mmとしたもの、実施例2が「急冷」において鋳型の高さを17mmとしたもの、実施例3が「最急冷」によるものである。また、参考例として、溶湯3を水槽中に滴下して凝固させた試料についてもDASを測定した。さらに、比較例1が「徐冷」において鋳型の高さを11mmとしたもの、比較例2が「徐冷」において鋳型の高さを17mmとしたものである。ここで、最表層のチル層よりも中心寄りの測定結果を「上部」として、中心部近傍の測定結果を「中心部」としてそれぞれ示した。   As shown in FIG. 4, the as-cast samples thus obtained were each subjected to cross-sectional structure observation, and the average secondary dendrite arm interval (DAS II, hereinafter referred to as DAS) was measured and recorded. In Example 1, the height of the mold was 11 mm in “rapid cooling”, in Example 2, the height of the mold was 17 mm in “quick cooling”, and in Example 3, the “fastest cooling” was performed. . As a reference example, DAS was also measured for a sample obtained by dripping the molten metal 3 into a water bath and solidifying it. Further, Comparative Example 1 is “Slow Cooling” with a mold height of 11 mm, and Comparative Example 2 is “Slow Cooling” with a mold height of 17 mm. Here, the measurement result closer to the center than the outermost chill layer is indicated as “upper part”, and the measurement result near the center part is indicated as “central part”.

図4に示すように、実施例1〜3及び水中に溶湯を滴下した参考例は、いずれも同等程度のDASとなり、冷却速度も同等程度と考えられる。詳細には、DASは「上部」で4.2〜9.5μmであり、「中心部」で9.3〜13.0μmであり、いずれも20μm以下であった。実施例1よりも実施例2においてDASが大きいが、試料の厚さの差によって冷却速度が遅くなったためと考えられる。これに対し、比較例1及び2では、DASが20μmより大きく、「上部」で54.5〜68.1μm、「中心部」で43.3〜61.6μmであった。   As shown in FIG. 4, Examples 1 to 3 and the reference examples in which the molten metal is dropped into water all have the same level of DAS, and the cooling rate is considered to be about the same. Specifically, DAS was 4.2 to 9.5 μm at the “upper part”, 9.3 to 13.0 μm at the “center part”, and both were 20 μm or less. The DAS is larger in Example 2 than in Example 1, but it is considered that the cooling rate was slowed due to the difference in the thickness of the sample. On the other hand, in Comparative Examples 1 and 2, DAS was larger than 20 μm, 54.5 to 68.1 μm at the “upper part”, and 43.3 to 61.6 μm at the “central part”.

なお、DASは冷却速度に依存する。そこで、同一の成分組成の銅合金において冷却速度:x(℃/sec)とDAS:y(μm)を複数回測定して両者の関係を導出したところ、次の式1が得られた。
ln(y)=−0.32×ln(x)+3.9 (式1)
つまり、測定したDASから式1により各試料の冷却速度も推定できる。
Note that DAS depends on the cooling rate. Thus, when a cooling rate: x (° C./sec) and DAS: y (μm) were measured a plurality of times in a copper alloy having the same component composition, the relationship between the two was derived, and the following formula 1 was obtained.
ln (y) = − 0.32 × ln (x) +3.9 (Formula 1)
That is, the cooling rate of each sample can also be estimated from the measured DAS according to Equation 1.

上記した実施例1〜3、比較例1及び2について、さらに、時効熱処理(S3)して、その断面においてビッカース硬さを測定した。時効熱処理においては、470℃で3時間保持し、炉冷した。また、硬さは、最表層のチル層を避けて、上端近傍、中心部近傍、下端近傍のそれぞれ3か所において5回ずつ測定した平均値を得て、3か所の平均値をさらに平均した値を示した。   The above-mentioned Examples 1 to 3 and Comparative Examples 1 and 2 were further subjected to aging heat treatment (S3), and the Vickers hardness was measured in the cross section. In the aging heat treatment, it was kept at 470 ° C. for 3 hours and cooled in the furnace. In addition, the hardness is obtained by obtaining an average value measured five times at each of three locations near the upper end, near the center, and near the lower end, avoiding the outermost chill layer, and further averaging the average values at the three locations. Showed the value.

図4に示すように、実施例1〜3において硬さは307〜316Hvであり、いずれも300Hvを超えていた。これに対し、比較例1及び2ではいずれも硬さは173Hvであり、200Hvを下回った。つまり、鋳込み時にDASを20μm以下とするように急冷することで、徐冷する場合と比べて時効熱処理後の硬さが大きく向上するのである。   As shown in FIG. 4, in Examples 1-3, the hardness was 307-316Hv, and all exceeded 300Hv. On the other hand, in Comparative Examples 1 and 2, the hardness was 173 Hv, which was lower than 200 Hv. That is, by rapidly cooling the DAS to 20 μm or less during casting, the hardness after aging heat treatment is greatly improved as compared with the case of slow cooling.

なお、参考として、時効熱処理前に920℃で3時間保持して水冷する溶体化熱処理を行った場合の硬さについても図4に示した(溶体化あり)。つまり、鋳込み時に徐冷した比較例1及び2の「溶体化あり」については従来通りの製造方法を再現している。実施例1〜3の「溶体化あり」の場合、ビッカース硬さは295〜302Hv、比較例1及び2の「溶体化あり」の場合、ビッカース硬さは286〜291とほぼ同等となり、溶体化熱処理を行わなかった実施例1〜3に比べて若干硬さが低かった。つまり、溶体化熱処理をしてしまうと時効熱処理後の硬さは高いが、徐冷したものと同等となってしまう。なお、実施例3の「溶体化あり」においては、上記した時効熱処理の後にさらに470℃で6時間保持する2回目の時効熱処理をしたものである。   As a reference, FIG. 4 also shows the hardness when solution heat treatment was performed by holding at 920 ° C. for 3 hours and water cooling before aging heat treatment (with solution heat treatment). That is, the conventional manufacturing method is reproduced for “with solution” in Comparative Examples 1 and 2 that were gradually cooled during casting. In the case of “With solution” in Examples 1 to 3, the Vickers hardness is 295 to 302 Hv, and in the case of “With solution” in Comparative Examples 1 and 2, the Vickers hardness is almost equivalent to 286 to 291. The hardness was slightly lower than in Examples 1 to 3 where heat treatment was not performed. That is, if solution heat treatment is performed, the hardness after the aging heat treatment is high, but it is equivalent to that after slow cooling. In the case of “with solution” in Example 3, after the above aging heat treatment, the second aging heat treatment was further held at 470 ° C. for 6 hours.

また、時効熱処理後の導電率について測定した結果、従来と同じ製造方法を再現した比較例1及び2の「溶体化あり」について両者とも29.2%IACSであったが、これに対して実施例1及び2については27.8〜28.3%IACSとなり、ほぼ同等であった。また、実施例3については17.6%IACSとやや低い。つまり、溶湯を急冷凝固させた後に時効熱処理により製造する方法においては、溶湯を徐冷後に溶体化熱処理及び時効熱処理する従来の方法に比べて、導電率を若干低下させる傾向にある。   In addition, as a result of measuring the electrical conductivity after the aging heat treatment, both of the “with solution” in Comparative Examples 1 and 2 reproducing the same production method as before were 29.2% IACS. About Example 1 and 2, it became 27.8 to 28.3% IACS, and was substantially equivalent. Moreover, about Example 3, it is a little low with 17.6% IACS. That is, in the method of manufacturing by aging heat treatment after rapidly solidifying the molten metal, the electrical conductivity tends to be slightly lowered as compared with the conventional method in which the molten metal is slowly cooled and then subjected to solution heat treatment and aging heat treatment.

図5には、実施例1〜3と同じ成分組成の合金溶湯を急冷し、(a)475℃で6時間保持する時効熱処理した試料、及び(b)475℃で48時間保持する時効熱処理した試料、のそれぞれの底面から0.7mm付近の断面(それぞれビッカース硬さ322Hv及び310Hv)において、透過型電子顕微鏡(TEM)による観察を行った顕微鏡写真を示した。なお、<001>方向に電子線を入射させるよう絞りを入れている。これからわかるように、Cu母相の<110>方向に伸長した析出物が分散して観察された。なお、図5(a)の6時間保持した時効熱処理においては析出物の長径が数nm程度であったが、図5(b)の48時間保持した時効熱処理においては析出物の長径が数十nm程度に粗大化していた。   In FIG. 5, the molten alloy having the same composition as in Examples 1 to 3 was rapidly cooled, (a) a sample heat-treated at 475 ° C. for 6 hours, and (b) a heat-treated heat treated at 475 ° C. for 48 hours. The micrograph which observed by the transmission electron microscope (TEM) in the cross section (Vickers hardness 322Hv and 310Hv, respectively) of 0.7 mm vicinity from each bottom face of a sample was shown. A diaphragm is inserted so that an electron beam is incident in the <001> direction. As can be seen, precipitates elongated in the <110> direction of the Cu matrix were dispersed and observed. In the aging heat treatment held for 6 hours in FIG. 5A, the major axis of the precipitate was about several nanometers. However, in the aging heat treatment held for 48 hours in FIG. 5B, the major axis of the precipitate was several tens of nanometers. It was coarsened to about nm.

つまり、溶湯を急冷凝固することで、Siが十分固溶した状態を維持できて、溶体化熱処理を経ずとも時効熱処理において伸長方向を揃えてNiSiを分散析出させて硬さを得ること、すなわち、耐摩耗性を高めることができたものと考えられる。 In other words, by rapidly solidifying the molten metal, it is possible to maintain a sufficiently solid Si state, and to obtain hardness by dispersing and precipitating Ni 2 Si in the aging heat treatment without aligning the solution heat treatment. That is, it is considered that the wear resistance could be improved.

以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。例えば、合金の成分組成については、本発明の本質的な特徴を失わない限りにおいて追加の合金成分を与え、追加の効果を得られるようにし得る。   As mentioned above, although the Example by this invention and the modification based on this were demonstrated, this invention is not necessarily limited to this, A person skilled in the art will deviate from the main point of this invention, or the attached claim. Various alternative embodiments and modifications could be found without doing so. For example, the alloy component composition may be provided with additional alloy components so long as the essential features of the present invention are not lost so that additional effects can be obtained.

1 金型
2 断熱材
3 溶湯
1 Mold 2 Heat insulation material 3 Molten metal

Claims (2)

質量%で、Niを6.5〜8.8%、Siを1.5〜2.5%、Crを0.3〜1.3%、Ni/Si比を3.3〜4.8で残部をCu及び不可避的不純物とした成分組成を有する析出硬化型銅合金であって、Cu母相の<110>方向に伸長した析出物を分散させて200Hv以上の硬さを有することを特徴とする析出硬化型銅合金。   In mass%, Ni is 6.5 to 8.8%, Si is 1.5 to 2.5%, Cr is 0.3 to 1.3%, and Ni / Si ratio is 3.3 to 4.8. It is a precipitation hardening type copper alloy having a component composition with the balance being Cu and inevitable impurities, and having a hardness of 200 Hv or more by dispersing precipitates elongated in the <110> direction of the Cu matrix. Precipitation hardening type copper alloy. 質量%で、Niを6.5〜8.8%、Siを1.5〜2.5%、Crを0.3〜1.3%、Ni/Si比を3.3〜4.8で残部をCu及び不可避的不純物とした成分組成を有する析出硬化型銅合金の製造方法であって、
平均二次デンドライトアーム間隔を20μm以下となるように急冷凝固後、少なくとも900℃以上に加熱することなく400〜500℃の温度範囲内の温度で保持する時効熱処理によって200Hv以上の硬さを与えることを特徴とする析出硬化型銅合金の製造方法。


In mass%, Ni is 6.5 to 8.8%, Si is 1.5 to 2.5%, Cr is 0.3 to 1.3%, and Ni / Si ratio is 3.3 to 4.8. A method for producing a precipitation hardening copper alloy having a component composition in which the balance is Cu and inevitable impurities,
After quenching and solidifying so that the average secondary dendrite arm spacing is 20 μm or less, a hardness of 200 Hv or more is given by aging heat treatment that is maintained at a temperature within a temperature range of 400 to 500 ° C. without heating to at least 900 ° C. or more. A method for producing a precipitation-hardening type copper alloy.


JP2016220996A 2016-11-11 2016-11-11 Precipitation hardening copper alloy and its manufacturing method Active JP6802689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016220996A JP6802689B2 (en) 2016-11-11 2016-11-11 Precipitation hardening copper alloy and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220996A JP6802689B2 (en) 2016-11-11 2016-11-11 Precipitation hardening copper alloy and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018076580A true JP2018076580A (en) 2018-05-17
JP6802689B2 JP6802689B2 (en) 2020-12-16

Family

ID=62148830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220996A Active JP6802689B2 (en) 2016-11-11 2016-11-11 Precipitation hardening copper alloy and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6802689B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158246A (en) * 1979-04-30 1980-12-09 Delta Enfield Metals Precipitation hardenable copper alloy
JPH04247839A (en) * 1989-12-26 1992-09-03 Ampco Metal Mfg Inc Copper based alloy and method of its manufac- ture
JP2008223069A (en) * 2007-03-12 2008-09-25 Miyoshi Gokin Kogyo Kk High-strength, high-conductivity copper alloy and its manufacturing method
JP2009235557A (en) * 2008-03-07 2009-10-15 Miyoshi Gokin Kogyo Kk High-strength and high-conductivity copper alloy, and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158246A (en) * 1979-04-30 1980-12-09 Delta Enfield Metals Precipitation hardenable copper alloy
JPH04247839A (en) * 1989-12-26 1992-09-03 Ampco Metal Mfg Inc Copper based alloy and method of its manufac- ture
JP2008223069A (en) * 2007-03-12 2008-09-25 Miyoshi Gokin Kogyo Kk High-strength, high-conductivity copper alloy and its manufacturing method
JP2009235557A (en) * 2008-03-07 2009-10-15 Miyoshi Gokin Kogyo Kk High-strength and high-conductivity copper alloy, and method for manufacturing the same

Also Published As

Publication number Publication date
JP6802689B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP5367999B2 (en) Cu-Ni-Si alloy for electronic materials
JP2011214088A (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
JP5520533B2 (en) Copper alloy material and method for producing the same
JP5417366B2 (en) Cu-Ni-Si alloy with excellent bending workability
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
WO2016171055A1 (en) Copper alloy material and method for producing same
JP2007056365A (en) Copper-zinc-tin alloy and manufacturing method therefor
JP2010059543A (en) Copper alloy material
JP5539932B2 (en) Cu-Co-Si alloy with excellent bending workability
JP2021523977A (en) Cu-Co-Si-Fe-P copper alloy with excellent bending workability and its manufacturing method
JPWO2012133651A1 (en) Copper alloy and method for producing copper alloy
JP6821290B2 (en) Cu-Ni-Co-Si alloy for electronic components
WO2011152104A1 (en) Cu-co-si-based alloy sheet, and process for production thereof
JP2013095976A (en) Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2007119844A (en) High strength copper alloy material having excellent bending workability and its production method
JP2019094530A (en) Mold material for casting, and copper alloy material
JP2016199808A (en) Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR
JP5952726B2 (en) Copper alloy
JP6246173B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP6802689B2 (en) Precipitation hardening copper alloy and its manufacturing method
JP5638357B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201127

R150 Certificate of patent or registration of utility model

Ref document number: 6802689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250