JP2007119844A - High strength copper alloy material having excellent bending workability and its production method - Google Patents
High strength copper alloy material having excellent bending workability and its production method Download PDFInfo
- Publication number
- JP2007119844A JP2007119844A JP2005313296A JP2005313296A JP2007119844A JP 2007119844 A JP2007119844 A JP 2007119844A JP 2005313296 A JP2005313296 A JP 2005313296A JP 2005313296 A JP2005313296 A JP 2005313296A JP 2007119844 A JP2007119844 A JP 2007119844A
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- alloy material
- precipitates
- heat treatment
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Conductive Materials (AREA)
Abstract
Description
本発明は、曲げ加工性に優れる高強度銅合金材およびその製造方法に関し、特に、端子、コネクタ、リードフレームなどの電気・電子部品に用いられる銅合金材において、高い機械的強度と良好な導電性を持ち、かつ優れた曲げ加工性を併せ持つ銅合金材およびその製造方法に関する。 The present invention relates to a high-strength copper alloy material excellent in bending workability and a method for producing the same, and in particular, in a copper alloy material used for electrical and electronic parts such as terminals, connectors, and lead frames, high mechanical strength and good electrical conductivity. The present invention relates to a copper alloy material having excellent properties and excellent bending workability, and a method for producing the same.
近年、各種の電気・電子機器において、小型・薄型化および軽量化が進行し、そこで使用される部品の小型化が進んでいる。例えば、端子・コネクタ部品には小型で電極間ピッチの狭いものが求められ、リードフレームのリード間距離は縮小する傾向にある。 In recent years, various electric and electronic devices have been reduced in size, thickness and weight, and components used therein have been reduced in size. For example, terminal / connector parts are required to be small and have a narrow pitch between electrodes, and the distance between leads of a lead frame tends to be reduced.
こうした小型化によって、使用される材料もより薄肉になっているが、薄肉であっても接続の信頼性を保つ必要から、高強度で高いばね性を持った材料が要求されている。 Due to such miniaturization, the material used is thinner, but a material having high strength and high spring property is required because it is necessary to maintain connection reliability even if the material is thin.
また、機器の高機能化に伴う電極数の増加や通電電流の増加によって、発生するジュール熱も多大なものになりつつあり、従来以上に導電性の良い材料への要求も強まっている。 In addition, due to the increase in the number of electrodes and the increase in energization current due to the higher functionality of equipment, the generated Joule heat is becoming enormous, and there is an increasing demand for materials having better conductivity than before.
さらに、こうした小型化に伴い、より小型で複雑な形状の部品を一体成形で製作する要求も強くなっており、より厳しい条件の曲げ加工に適用できる材料が強く求められている。 Further, along with such downsizing, there is a strong demand for producing smaller and more complicated parts by integral molding, and a material that can be applied to bending under more severe conditions is strongly demanded.
従来、ばね性を要求される電気・電子部品の材料には、りん青銅が広く使用されているが、りん青銅では、上記要求に十分応えられない問題が生じている。すなわち、りん青銅は導電率が20%IACS程度と低いことから通電電流の増加に対応できず、また、耐マイグレーション性に劣るという欠点もある。マイグレーションとは電極間に結露などが生じた際、陽極側のCuがイオン化して陰極側に析出し、最終的に電極間の短絡に至る現象である。自動車向けのコネクタ部品のように高温高湿環境で使用される場合に問題となるとともに、小型化で電極間ピッチが狭くなっている電気・電子部品でも考慮する必要がある。 Conventionally, phosphor bronze has been widely used as a material for electric and electronic parts that require springiness. However, phosphor bronze has a problem that it cannot sufficiently meet the above requirements. That is, since phosphor bronze has a low conductivity of about 20% IACS, it cannot cope with an increase in energization current and has a disadvantage of poor migration resistance. Migration is a phenomenon in which when dew condensation occurs between electrodes, Cu on the anode side is ionized and deposited on the cathode side, eventually leading to a short circuit between the electrodes. It becomes a problem when used in a high-temperature and high-humidity environment such as a connector part for automobiles, and it is also necessary to consider an electric / electronic part whose size is reduced and the pitch between electrodes is narrow.
そこで、こうした問題を改善する材料として、より高い機械的強度や導電性の要求に低コストで対応できる材料としてCu−Ni−Si系の銅合金材が用いられている(例えば、特許文献1乃至特許文献5参照)。Cu−Ni−Si系の銅合金材では、熱処理によってNiとSiの化合物を材料中に分散析出させることで良好な機械的強度、ばね性、及び導電性の兼備を可能にしている。
しかしながら、上記特性の向上を図るために、NiとSiの化合物を積極的に析出させようとすると、粗大な析出物が発生しやすくなる。その場合、曲げ加工時に粗大析出物を起点とした割れが生じやすくなり、良好な曲げ加工性を維持するのが困難であった。特許文献5に記載の発明においても、このような粗大析出物を含む「介在物」の大きさを10μm以下とし、且つ5〜10μmの大きさの介在物個数を圧延方向に平行な断面で50個/mm2未満に制御することにより曲げ加工性の改善を図っているが、さらなる改善が望まれている。 However, if the Ni and Si compounds are actively precipitated in order to improve the above characteristics, coarse precipitates are likely to be generated. In this case, cracks starting from coarse precipitates are likely to occur during bending, and it is difficult to maintain good bending workability. Also in the invention described in Patent Document 5, the size of “inclusions” including such coarse precipitates is set to 10 μm or less, and the number of inclusions having a size of 5 to 10 μm is 50 in a cross section parallel to the rolling direction. Although the bending workability is improved by controlling to less than pieces / mm 2 , further improvement is desired.
従って、本発明の目的は、従来の銅合金と同等以上の機械的強度(単に「強度」と表記する場合もある。なお、機械的強度には引張強さと耐力を含む。)、ばね性、導電性を維持しながら、複雑な曲げ加工でも割れが生じず、優れた曲げ加工性を併せ持った電気・電子部品用銅合金材およびその製造方法を提供することにある。 Accordingly, the object of the present invention is to provide mechanical strength equivalent to or better than that of conventional copper alloys (sometimes simply referred to as “strength”. Mechanical strength includes tensile strength and proof stress), springiness, An object of the present invention is to provide a copper alloy material for electric and electronic parts and a method for producing the same, which maintains conductivity and does not cause cracking even in complicated bending processes and has excellent bending processability.
本発明は、上記目的を達成するため、Niを1.0〜5.0質量%、Siを0.2〜1.0質量%含有し、残部がCuと不可避的不純物からなる銅合金材で、その圧延方向に垂直な断面にて観察されるNi2Si析出物の分布に関して、前記銅合金材の両表面から厚さ方向に板厚全体の各20%までの部分を範囲とする表面層における粒径0.03〜3μmの前記Ni2Si析出物の数密度をa個/mm2、前記表面層を除いた部分を範囲とする内部層における粒径0.03〜3μmの前記Ni2Si析出物の数密度をb個/mm2としたときのa/bの比率が0.5以下であることを特徴とする銅合金材を提供する。 In order to achieve the above object, the present invention is a copper alloy material containing 1.0 to 5.0% by mass of Ni and 0.2 to 1.0% by mass of Si, with the balance being Cu and inevitable impurities. , Regarding the distribution of Ni 2 Si precipitates observed in a cross section perpendicular to the rolling direction, a surface layer covering a range of up to 20% of the entire plate thickness in the thickness direction from both surfaces of the copper alloy material The number density of the Ni 2 Si precipitates having a particle size of 0.03 to 3 μm in the sample is a number / mm 2 , and the Ni 2 Si precipitates having a particle size of 0.03 to 3 μm in the inner layer in a range excluding the surface layer. Provided is a copper alloy material wherein the ratio of a / b is 0.5 or less when the number density of objects is b pieces / mm 2 .
また、本発明は、上記目的を達成するため、Niを1.0〜5.0質量%、Siを0.2〜1.0質量%含有し、さらにZnとSnの一方もしくは両方を合計5.0質量%以下の範囲で含有し、残部がCuと不可避不純物からなる銅合金材で、その圧延方向に垂直な断面にて観察されるNi2Si析出物の分布に関して、前記銅合金材の両表面から厚さ方向に板厚全体の各20%までの部分を範囲とする表面層における粒径0.03〜3μmの前記Ni2Si析出物の数密度をa個/mm2、前記表面層を除いた部分を範囲とする内部層における粒径0.03〜3μmの前記Ni2Si析出物の数密度をb個/mm2としたときのa/bの比率が0.5以下であることを特徴とする銅合金材を提供する。 In order to achieve the above object, the present invention contains Ni in an amount of 1.0 to 5.0 mass%, Si in an amount of 0.2 to 1.0 mass%, and further includes one or both of Zn and Sn in total 5 About the distribution of Ni 2 Si precipitates observed in a cross section perpendicular to the rolling direction of a copper alloy material that is contained in a range of 0.0 mass% or less and the balance is made of Cu and inevitable impurities, the copper alloy material The number density of the Ni 2 Si precipitates having a particle size of 0.03 to 3 μm in the surface layer in the thickness direction from both surfaces in a range of up to 20% of the entire plate thickness is a number / mm 2 . The ratio of a / b is 0.5 or less when the number density of Ni 2 Si precipitates having a particle size of 0.03 to 3 μm in the inner layer covering the excluded portion is b pieces / mm 2. A copper alloy material is provided.
また、本発明は、上記目的を達成するため、上記本発明の銅合金材の製造方法であって、上記金属組成を有する銅合金を素材として形成した後、前記銅合金素材を700〜900℃に加熱した後、25℃/分以上の速度で300℃以下まで冷却する第1の熱処理を行い、その後300〜500℃で5分〜5時間加熱する第2の熱処理を行い、続いて1パスの加工率を5%以下に規定した圧延を繰り返して合計加工率10%以上の圧延加工を加え、その後550〜700℃で5秒〜5分加熱する第3の熱処理を行うことを特徴とする銅合金材の製造方法を提供する。 In order to achieve the above object, the present invention provides a method for producing a copper alloy material according to the present invention, wherein the copper alloy material is formed at a temperature of 700 to 900 ° C. after the copper alloy having the metal composition is formed as a material. The first heat treatment is performed by cooling to 300 ° C. or less at a rate of 25 ° C./min or more, and then the second heat treatment is performed by heating at 300 to 500 ° C. for 5 minutes to 5 hours, followed by one pass. It is characterized in that rolling with a processing rate of 5% or less is repeated to add a rolling process with a total processing rate of 10% or more, and then a third heat treatment is performed by heating at 550 to 700 ° C. for 5 seconds to 5 minutes. A method for producing a copper alloy material is provided.
本発明によれば、高い機械的強度、ばね性と良好な導電率を兼備し、かつ、優れた曲げ加工性を併せ持った銅合金材を提供できる。 According to the present invention, it is possible to provide a copper alloy material having both high mechanical strength, springiness and good electrical conductivity, and also having excellent bending workability.
〔銅合金材の組成〕
本実施の形態における銅合金材は、その平均組成において、Niを1.0〜5.0質量%、Siを0.2〜1.0質量%含有する銅合金材で、その圧延方向に垂直な断面にて観察されるNi2Si析出物の分布に関して、前記銅合金材の両表面から厚さ方向に板厚全体の各20%までの部分を範囲とする表面層における粒径0.03〜3μmの前記Ni2Si析出物の数密度をa個/mm2、前記表面層を除いた部分を範囲とする内部層における粒径0.03〜3μmの前記Ni2Si析出物の数密度をb個/mm2としたときのa/bの比率が0.5以下であることを特徴とする。
[Composition of copper alloy material]
The copper alloy material in the present embodiment is a copper alloy material containing 1.0 to 5.0% by mass of Ni and 0.2 to 1.0% by mass of Si in the average composition, and perpendicular to the rolling direction. With respect to the distribution of Ni 2 Si precipitates observed in a simple cross section, the particle size in the surface layer is 0.03 in a range from the both surfaces of the copper alloy material to 20% of the total plate thickness in the thickness direction. the Ni 2 Si precipitate the number density a number / mm 2 of ~3Myuemu, the Ni 2 Si precipitates the number density of grain size 0.03~3μm inside layer in the range of parts except the surface layer b pieces / The ratio of a / b when it is 2 mm is 0.5 or less.
より望ましい本実施の形態においては、上記の組成に加えてZnもしくはSnの一方もしくは両方を合計5.0質量%以下の範囲で含有させることを特徴とする。 In a more preferable embodiment mode, one or both of Zn and Sn are contained in a total amount of 5.0% by mass or less in addition to the above composition.
本実施の形態において、銅合金材を構成する合金成分の添加理由と限定理由を以下に説明する。 In this Embodiment, the reason for addition and limitation of the alloy component which comprises a copper alloy material are demonstrated below.
NiとSiは、Ni2Siで表される化合物を作って材料中に分散析出し、それによって材料の機械的強度やばね性が高まると共に良好な導電率を保つことができる。ここで、NiとSiの含有量を上記の範囲に規定することで、より効果的に高い機械的強度とばね性、良好な導電率を両立させることができる。なお、NiとSiの化合物としては、Ni2Siの他にNi5Si2、Ni3Si等も考えられるが、本発明においては実質的にNi2Siと考えてよい。 Ni and Si form a compound represented by Ni 2 Si and are dispersed and precipitated in the material, thereby increasing the mechanical strength and spring property of the material and maintaining good electrical conductivity. Here, by defining the contents of Ni and Si within the above ranges, it is possible to achieve both high mechanical strength, springiness, and good electrical conductivity more effectively. In addition to Ni 2 Si, Ni 5 Si 2 , Ni 3 Si, and the like can be considered as a compound of Ni and Si, but in the present invention, it may be considered substantially Ni 2 Si.
Siの添加量を0.2質量%未満にすると、十分な量のSi化合物を形成することができず、満足できる強度、ばね性が得られない。また、1.0質量%を超えて添加すると、導電性低下の悪影響が出ると共に、鋳造時や熱間加工時にSi化合物の偏析に起因する割れが起こりやすくなる。よって、Siの組成範囲は0.2〜1.0質量%に規定する。より望ましくは、0.4〜0.7質量%に規定する。 If the amount of Si added is less than 0.2% by mass, a sufficient amount of Si compound cannot be formed, and satisfactory strength and springiness cannot be obtained. Moreover, when it adds exceeding 1.0 mass%, while having the bad influence of electroconductivity fall, the crack resulting from the segregation of Si compound at the time of casting or hot processing becomes easy to occur. Therefore, the composition range of Si is defined as 0.2 to 1.0 mass%. More desirably, it is specified to be 0.4 to 0.7% by mass.
このSiの組成範囲に対して効果的に化合物を形成させ高強度と高導電性を両立させるためには、Niの組成範囲を1.0〜5.0質量%に規定する必要がある。Niの含有量が組成範囲の下限を下回る場合、化合物の形成量が不十分になり、強度、ばね性が不足する。また、組成範囲の上限を超える場合は、余剰のNiが銅中に固溶して導電率を低下させる。より望ましくは、Niの組成範囲を2.5〜3.5質量%に規定するここで、NiとSiの添加量の間には最適な比率があり、両者の質量比がNi/Si=4〜10の範囲にあることが望ましい。この場合、化合物を形成しない余剰な合金元素を少なく抑えることができる。より望ましくは、Ni/Si=4〜6の範囲に規定する。 In order to effectively form a compound with respect to the Si composition range and to achieve both high strength and high conductivity, it is necessary to define the Ni composition range to 1.0 to 5.0 mass%. When the Ni content is below the lower limit of the composition range, the amount of compound formation becomes insufficient, and the strength and springiness are insufficient. Moreover, when exceeding the upper limit of a composition range, excess Ni will dissolve in copper and will reduce electrical conductivity. More preferably, the composition range of Ni is defined as 2.5 to 3.5% by mass. Here, there is an optimum ratio between the addition amounts of Ni and Si, and the mass ratio of both is Ni / Si = 4. It is desirable to be in the range of -10. In this case, excessive alloy elements that do not form a compound can be reduced. More desirably, it is defined in the range of Ni / Si = 4-6.
さらに上記の組成に加えてZnもしくはSnの一方もしくは両方を合計5.0質量%以下の範囲で含有させた場合、機械的強度、ばね性をさらに向上させることができると共に、電気・電子部品材料に要求されるめっき密着性やはんだ濡れ性、耐マイグレーション性などを向上させることができる。 Furthermore, when one or both of Zn and Sn in addition to the above composition is contained within a total range of 5.0% by mass or less, the mechanical strength and spring property can be further improved, and electrical / electronic component materials It is possible to improve plating adhesion, solder wettability, migration resistance, etc. required for the above.
Znは、機械的強度、ばね性、耐マイグレーション性の向上とともに、はんだ濡れ性やめっき密着性の改善に大きな効果がある副成分である。Snは、機械的強度、ばね性の向上とともに、高温下での耐応力緩和性(ばね性の耐久性、耐熱性)を大きく向上させる効果を持った副成分である。ただし、これらの含有量が合計5.0質量%を超える場合、導電率を低下させる悪影響が大きくなる。よって、ZnとSnの組成範囲は合計5.0質量%以下に規定する。より望ましくは、0.3〜2.0質量%に規定する。 Zn is a secondary component that has a great effect on improving solder wettability and plating adhesion as well as improving mechanical strength, springiness, and migration resistance. Sn is a secondary component that has the effect of greatly improving the stress relaxation resistance (spring durability and heat resistance) at high temperatures as well as improving mechanical strength and spring properties. However, when these contents exceed 5.0 mass% in total, the adverse effect of lowering the conductivity is increased. Therefore, the composition range of Zn and Sn is specified to be 5.0% by mass or less. More desirably, it is defined as 0.3 to 2.0 mass%.
次に、本実施の形態において、銅合金材の圧延方向に垂直な断面にて観察されるNi2Si析出物の分布について限定する理由を以下に説明する。 Next, the reason for limiting the distribution of Ni 2 Si precipitates observed in the cross section perpendicular to the rolling direction of the copper alloy material in the present embodiment will be described below.
曲げ加工においては材料の表面部分に最も大きな歪みが加わるため、割れは表面近傍部分を起点として発生する。そこで、表面層に存在するNi2Si析出物を選択的に減らすことで曲げ加工性を向上させることができる。ここで表面層の範囲としては、表面から厚さ方向に板厚全体の20%までの部分とすれば十分な効果が期待できる。 In bending, the largest strain is applied to the surface portion of the material, so that cracking occurs from the vicinity of the surface. Therefore, bending workability can be improved by selectively reducing the Ni 2 Si precipitates present in the surface layer. Here, as the range of the surface layer, a sufficient effect can be expected if the portion is up to 20% of the entire plate thickness in the thickness direction from the surface.
粒径0.03μm以上のNi2Si析出物は、応力を集中的に受けて割れの起点として働く可能性が高いため、特に表面層にこうした大きさの析出物が多数存在すると曲げた時に割れが発生しやすく、曲げ加工性を大きく低下させる。一方、機械的強度や導電率を向上させる目的で積極的にNi2Si析出物を形成させたい場合、粒径0.03μm以上の析出物の発生は避けられない。そこで、上述の悪影響を抑えるため、本発明では表面層に存在するNi2Si析出物を選択的に減らす方法をとる。これによって、良好な機械的強度、導電性を確保すると同時に優れた曲げ加工性を兼備した材料を得ることができる。 Ni 2 Si precipitates with a particle size of 0.03 μm or more are highly likely to act as a starting point of cracks due to concentrated stress, so cracking occurs especially when the surface layer has a large number of such precipitates. Is likely to occur and greatly reduces the bending workability. On the other hand, when it is desired to positively form Ni 2 Si precipitates for the purpose of improving mechanical strength and electrical conductivity, the generation of precipitates having a particle size of 0.03 μm or more is inevitable. Therefore, in order to suppress the above-described adverse effects, the present invention adopts a method of selectively reducing Ni 2 Si precipitates present in the surface layer. As a result, it is possible to obtain a material that ensures excellent mechanical strength and electrical conductivity and at the same time has excellent bending workability.
対象とするNi2Si析出物の粒径を0.03〜3μmとするのは、0.03μm未満の析出物については割れの起点として働かないと考えられるため、特にその分布を制御する必要がないからである。また、3μmを超える大きな析出物については、その大部分が銅合金素材の形成時(特に合金鋳造時)に晶出したものであり、かつ、その際の分布を制御することは難しく、また、後工程における加工・熱処理で析出物の粒径や分布を制御することが困難なためである。ただし、こうした大きな(粒径が3μmを超えるような)析出物は、機械的強度低下などの悪影響の原因となりうるため、銅合金素材の形成時に晶出させないことが望ましい。 The reason why the particle size of the target Ni 2 Si precipitates is set to 0.03 to 3 μm is considered not to act as a starting point of cracking for precipitates less than 0.03 μm. Therefore, it is particularly necessary to control the distribution thereof. Because there is no. For large precipitates exceeding 3 μm, most of them are crystallized during the formation of the copper alloy material (particularly during alloy casting), and it is difficult to control the distribution at that time, This is because it is difficult to control the particle size and distribution of precipitates by processing and heat treatment in a subsequent process. However, such a large precipitate (having a particle size exceeding 3 μm) may cause adverse effects such as a decrease in mechanical strength, and therefore it is desirable not to crystallize when forming the copper alloy material.
表面層に存在する析出物の数密度をa個/mm2、内部層に存在する析出物の数密度をb個/mm2としたときのa/bの比率が0.5以下になるように規定するのは、表面層の析出物密度が内部層の半分以下になるように表面層に存在する析出物を減少させた時、本発明の目的である良好な機械的強度と導電性および優れた曲げ加工性を両立させる効果が十分に得られるためである。ここで、Ni2Si析出物の数密度は、銅合金材の圧延方向に垂直な断面に対して、例えば走査型電子顕微鏡を用いて1000〜100000倍程度の倍率で観察し、得られた像を画像解析することで調べることができる。 The ratio of a / b when the number density of precipitates present in the surface layer is a / mm 2 and the number density of precipitates present in the inner layer is b / mm 2 is defined to be 0.5 or less. The object of the present invention is good mechanical strength and conductivity and excellent bending work when reducing the precipitates present in the surface layer so that the precipitate density of the surface layer is less than half of the inner layer This is because the effect of achieving compatibility is sufficiently obtained. Here, the number density of Ni 2 Si precipitates is observed at a magnification of about 1000 to 100000 times using a scanning electron microscope, for example, with respect to a cross section perpendicular to the rolling direction of the copper alloy material, and the obtained image is an image. It can be examined by analyzing.
〔銅合金材の製造方法〕
図1は、本発明の実施の形態に係る銅合金材の製造工程のフローを示す図である。上記本実施の形態の銅合金材は、上記の平均組成を有する銅合金を素材として形成した後、形成した銅合金素材を700〜900℃に加熱した後、25℃/分以上の速度で300℃以下まで冷却する第1の熱処理を行い、その後300〜500℃で5分〜5時間加熱する第2の熱処理を行い、続いて1パスの加工率を5%以下に規定した圧延を繰り返して合計加工率10%以上の圧延加工を加え、その後550〜700℃で5秒〜5分加熱する第3の熱処理を行うことにより製造される。なお、銅合金素材の形成工程は、合金鋳造工程と鋳造後の熱間加工工程からなる工程が1例として挙げられる。
[Method for producing copper alloy material]
FIG. 1 is a diagram showing a flow of a manufacturing process of a copper alloy material according to an embodiment of the present invention. The copper alloy material of the present embodiment is formed by using a copper alloy having the above average composition as a material, and then heating the formed copper alloy material to 700 to 900 ° C., and then at a rate of 25 ° C./min or more. The first heat treatment is performed to cool to below ℃, then the second heat treatment is performed at 300 to 500 ℃ for 5 minutes to 5 hours, and then rolling with a processing rate of 1 pass defined as 5% or less is repeated. It is manufactured by applying a rolling process with a total processing rate of 10% or more and then performing a third heat treatment at 550 to 700 ° C. for 5 seconds to 5 minutes. In addition, the process which consists of an alloy casting process and the hot working process after casting is mentioned as an example for the formation process of a copper alloy raw material.
(第1の熱処理)
第1の熱処理においては、形成した銅合金素材をまず700〜900℃に加熱した後、25℃/分以上の速度で300℃以下まで冷却する。より望ましくは、770〜860℃に加熱昇温後、300℃以下まで150℃/分以上の速度で冷却する。加熱昇温時の保持時間は特に規定されないが、生産性の観点からは短い方が好ましく、実質的に当該温度領域に1秒以上保持されれば良い。第1の熱処理の目的は、制御された析出状態を得るための事前準備として、高温に加熱することで粗大な晶出物を形成した合金元素を十分に固溶させることにある。ここで、加熱温度が700℃未満では目的とする晶出物の固溶が十分に起こらず、900℃を超える温度では結晶粒が粗大化(過度の再結晶)して機械的特性(曲げ加工性)の低下を引き起こす。また、冷却速度が25℃/分より遅い場合、冷却途中の段階で析出物が生成、成長するため、目的とする制御された析出状態を得ることができなくなる。
(First heat treatment)
In the first heat treatment, the formed copper alloy material is first heated to 700 to 900 ° C. and then cooled to 300 ° C. or less at a rate of 25 ° C./min or more. More desirably, after heating to 770-860 ° C., cooling is performed at a rate of 150 ° C./min or more to 300 ° C. or less. Although the holding time at the time of heating and heating is not particularly defined, a shorter one is preferable from the viewpoint of productivity, and it is sufficient that the holding time is substantially held in the temperature range for 1 second or more. The purpose of the first heat treatment is to sufficiently dissolve the alloy element that has formed a coarse crystallized product by heating to a high temperature as a preliminary preparation for obtaining a controlled precipitation state. Here, when the heating temperature is less than 700 ° C., the target crystallized product does not sufficiently dissolve, and when the heating temperature exceeds 900 ° C., the crystal grains become coarse (excessive recrystallization) and mechanical properties (bending processing) Cause a decrease in sex). On the other hand, when the cooling rate is lower than 25 ° C./min, precipitates are generated and grow in the course of cooling, so that the intended controlled precipitation state cannot be obtained.
(第2の熱処理)
第2の熱処理においては、300〜500℃で5分〜5時間加熱して、NiとSiの化合物を材料の全面に十分に析出させる。より望ましくは、400〜470℃で1〜4時間加熱する。第2の熱処理の目的は、NiとSiの化合物を析出させることにある。この処理によって材料の全面にNiとSiの化合物が十分に析出し、良好な機械的強度、ばね性、導電性を実現することができる。ここで、加熱温度が300℃未満では十分な析出が起こらず、500℃を超える温度では析出物が粗大になりすぎる問題が生じる。なお、第1の熱処理後に冷間加工を加え、その後に第2の熱処理を施すことも有効である。この場合、冷間加工によって材料中に導入された格子欠陥(例えば転位)が析出物発生の起点となるため、より効果的に析出を進行させることができる(格子欠陥部には核生成し易い)。
(Second heat treatment)
In the second heat treatment, heating is performed at 300 to 500 ° C. for 5 minutes to 5 hours to sufficiently precipitate a compound of Ni and Si on the entire surface of the material. More desirably, heating is performed at 400 to 470 ° C. for 1 to 4 hours. The purpose of the second heat treatment is to precipitate a compound of Ni and Si. By this treatment, a compound of Ni and Si is sufficiently deposited on the entire surface of the material, and good mechanical strength, springiness, and conductivity can be realized. Here, if the heating temperature is less than 300 ° C., sufficient precipitation does not occur, and if the heating temperature exceeds 500 ° C., the precipitate becomes too coarse. Note that it is also effective to add cold working after the first heat treatment and then perform the second heat treatment. In this case, since lattice defects (for example, dislocations) introduced into the material by cold working become the starting point of precipitate generation, precipitation can be more effectively advanced (nucleation is likely to occur in lattice defect portions). ).
(圧延加工)
第2の熱処理後の圧延加工においては、1パスの加工度を5%以下に限定した圧延を繰り返して合計加工度10%以上の圧延加工を加える。この圧延加工の目的は、表面層に集中的に塑性変形を与えることにある。1パスの加工率を低くすると、材料の内部層に比べて表面層が集中的に引き延ばされる。これによって、表面層にある不安定な析出物は再固溶して消失するとともに、安定な析出物にも変形が加わって、より細かい析出物に分断されたり、再固溶しやすい状態に変化させることができる。ここで、表面層に集中的に塑性変形を与える目的を達成するためには1パスの加工度を5%以下にする必要があり、それを超える加工度で圧延した場合、内部層にも表面層と同様の塑性変形が加わってしまう。また、合計加工度を10%以上にすることにより表面層の析出物に十分な変形を加えることができ、次の熱処理で再固溶しやすい状態を作ることができる。
(Rolling process)
In the rolling process after the second heat treatment, a rolling process with a total processing degree of 10% or more is added by repeating rolling in which the processing degree of one pass is limited to 5% or less. The purpose of this rolling process is to give plastic deformation to the surface layer in a concentrated manner. If the processing rate of one pass is lowered, the surface layer is intensively stretched compared to the inner layer of the material. As a result, unstable precipitates in the surface layer disappear after re-dissolving, and the stable precipitates are also deformed and broken into finer precipitates or changed to a state where they are easily re-dissolved. Can be made. Here, in order to achieve the purpose of intensively applying plastic deformation to the surface layer, it is necessary to reduce the workability of one pass to 5% or less. The same plastic deformation as the layer is added. Further, when the total degree of processing is set to 10% or more, the surface layer precipitates can be sufficiently deformed, and a state in which they are easily re-dissolved by the next heat treatment can be created.
(第3の熱処理)
第3の熱処理においては、550〜700℃で5秒〜5分加熱して表面層にある析出物を再固溶によって減少させる。より望ましくは、580〜650℃で30秒〜3分加熱する。第3の熱処理の目的は、不安定な状態にした表面層の析出物を再固溶させることにある。この処理によって表面層の析出物が再固溶によって消失し、内部層の析出物を残したまま、表面層の析出物のみ選択的に減少させることができる。ここで、加熱温度が550℃未満では再固溶が進行せず、700℃を超える温度では内部層にある析出物の再固溶も進行するため機械的強度や導電性が低下してしまう。
(Third heat treatment)
In the third heat treatment, heating is performed at 550 to 700 ° C. for 5 seconds to 5 minutes to reduce precipitates in the surface layer by re-dissolution. More desirably, heating is performed at 580 to 650 ° C. for 30 seconds to 3 minutes. The purpose of the third heat treatment is to re-dissolve the precipitate in the surface layer that has been made unstable. By this treatment, the precipitate on the surface layer disappears by re-dissolution, and only the precipitate on the surface layer can be selectively reduced while leaving the precipitate on the inner layer. Here, when the heating temperature is less than 550 ° C., the re-solution does not proceed, and when the heating temperature exceeds 700 ° C., the re-solution of the precipitate in the inner layer also proceeds, so that the mechanical strength and the conductivity are lowered.
以上のような製造方法を採ることにより、目的の析出物分布を持った材料を得ることができる。 By adopting the manufacturing method as described above, a material having a target precipitate distribution can be obtained.
〔実施の形態の効果〕
上記の本発明の実施の形態によれば、下記の効果を奏する。
(1)700N/mm2を超える高い引張強さと40%IACSを超える良好な導電率を兼備し、かつ、複雑な曲げ加工でも割れが生じず優れた曲げ加工性を併せ持った電気・電子部品用銅合金材を得ることができる。
(2)銅合金材の性質上、引張強さを高めることで材料の耐力も高い値を実現することができ、その結果、十分なばね性も確保できる。
(3)上記(1)および(2)の優れた性質を併せ持つため、小型化が進む電気・電子部品において、その設計の自由度を大幅に広げることができる。
(4)上記(1)および(2)の優れた性質を兼備するにもかかわらず、従来材と同等のコストで製造することができる。
[Effect of the embodiment]
According to the above embodiment of the present invention, the following effects can be obtained.
(1) For electrical and electronic parts that have both high tensile strength exceeding 700 N / mm 2 and good electrical conductivity exceeding 40% IACS, and excellent bending workability without cracking even in complicated bending work. A copper alloy material can be obtained.
(2) Due to the nature of the copper alloy material, it is possible to realize a high value of the proof stress of the material by increasing the tensile strength, and as a result, it is possible to ensure a sufficient spring property.
(3) Since it has the excellent properties of (1) and (2) above, it is possible to greatly expand the degree of design freedom in electrical and electronic parts that are becoming smaller.
(4) Despite combining the excellent properties of (1) and (2) above, it can be produced at the same cost as conventional materials.
以下、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these.
〔実施例1〜2、比較例1〜11〕
表1に示す合金組成からなる試料No.1〜No.2(実施例1〜2)、および試料No.3〜No.13(比較例1〜11)を、表3に示す製造条件にて製造し、それらの特性の評価を行なった。以下、各々について説明する。なお、表1において、不可避不純物はCuに含めて表記した。
[Examples 1 and 2, Comparative Examples 1 to 11]
Sample No. having the alloy composition shown in Table 1 1-No. 2 (Examples 1 and 2) and Sample No. 3-No. 13 (Comparative Examples 1 to 11) were produced under the production conditions shown in Table 3, and their characteristics were evaluated. Each will be described below. In Table 1, inevitable impurities are included in Cu.
(実施例1)
Ni:3.0質量%、Si:0.7質量%を含有し、残部がCuと不可避不純物からなる銅合金を高周波溶解炉で溶製し、直径30mm、長さ250mmのインゴットに鋳造した。
Example 1
A copper alloy containing 3.0% by mass of Ni and 0.7% by mass of Si, with the balance being Cu and inevitable impurities was melted in a high-frequency melting furnace and cast into an ingot having a diameter of 30 mm and a length of 250 mm.
このインゴットを850℃に加熱して押出加工(熱間加工)し、幅20mm、厚さ8mmの板状にした後、厚さ0.5mmまで冷間圧延した(第1の冷間圧延)。次に、冷間圧延した材料を800℃に加熱して10分間保持した後、水中に投入して約300℃/分の速度で室温(約20℃)まで冷却する熱処理を行った(第1の熱処理)。次に、冷却した材料を450℃で2時間保持する熱処理を行い(第2の熱処理)、引き続いて1パスの加工率が5%を超えないようなパススケジュールで厚さ0.3mmまで冷間圧延した(第2の冷間圧延)。その後、これに600℃で1分保持する熱処理を行った(第3の熱処理)(試料No.1)。 The ingot was heated to 850 ° C. and extruded (hot processing) to form a plate having a width of 20 mm and a thickness of 8 mm, and then cold-rolled to a thickness of 0.5 mm (first cold rolling). Next, after the cold-rolled material was heated to 800 ° C. and held for 10 minutes, it was put into water and subjected to heat treatment to cool to room temperature (about 20 ° C.) at a rate of about 300 ° C./min (first Heat treatment). Next, a heat treatment is performed to hold the cooled material at 450 ° C. for 2 hours (second heat treatment). Subsequently, a cold process is performed to a thickness of 0.3 mm with a pass schedule such that the processing rate of one pass does not exceed 5%. Rolled (second cold rolling). Then, the heat processing hold | maintained at 600 degreeC for 1 minute was performed to this (3rd heat processing) (sample No. 1).
以上のようにして製造した試料No.1について、引張強さおよび導電率を測定した。測定方法に関して、引張強さについてはJIS Z 2241に、導電率についてはJIS H 0505に規定された方法に準拠した。測定した結果を表2に示す。 Sample No. manufactured as described above was obtained. For 1, the tensile strength and conductivity were measured. Regarding the measurement method, the tensile strength was in accordance with JIS Z 2241 and the conductivity was in accordance with the method defined in JIS H 0505. Table 2 shows the measurement results.
表2に示した通り、試料No.1は、鋳塊割れがなく、引張強さ720N/mm2、導電率42%IACSという良好な特性を持つ材料が得られたことが判る。 As shown in Table 2, sample no. No. 1 indicates that a material having good properties of no ingot cracking, tensile strength of 720 N / mm 2 and conductivity of 42% IACS was obtained.
また、圧延方向に垂直な断面において、表面から厚さ方向に0.06mm(板厚の20%)までの両表面層および表面から0.06mmを超える内部層からそれぞれ任意に10視野ずつを選択して走査型電子顕微鏡による観察を行い、画像解析装置を用いて観察像中の粒径0.03〜3μmの析出物の数を測定した。その結果から求めた表面層の平均析出物密度(a個/mm2)と内部層の平均析出物密度(b個/mm2)の比(a/b)は0.35であった。結果を表4に示す。 In addition, in the cross section perpendicular to the rolling direction, 10 fields of view are arbitrarily selected from both surface layers from the surface to the thickness direction of 0.06 mm (20% of the plate thickness) and from the inner layer exceeding 0.06 mm from the surface. Then, observation with a scanning electron microscope was performed, and the number of precipitates having a particle size of 0.03 to 3 μm in the observed image was measured using an image analysis apparatus. The ratio of the average precipitate density of the average precipitate density Results obtained surface layer (a number / mm 2) Internal layer (b pieces / mm 2) (a / b ) was 0.35. The results are shown in Table 4.
さらに、この試料No.1の曲げ加工性を評価するため、JIS Z2248のVブロック法に準じて曲げ加工試験を行った。曲げ軸を圧延平行方向(Bad way方向)にとり、試料表面に割れが発生する最小曲げ半径r(mm)を測定した結果、このrと試料の厚さt(mm)との比r/tの値は0.50となった。結果を表4に示す。ここで、r/tの値が1以下であれば通常の曲げ加工において不具合が発生することは少なく、曲げ加工性は良好であるといえる。 Further, this sample No. In order to evaluate the bending workability of No. 1, a bending work test was performed according to the V block method of JIS Z2248. As a result of measuring the minimum bending radius r (mm) at which the bending axis is parallel to the rolling direction (Bad way direction) and cracking occurs on the sample surface, the ratio r / t of this r to the thickness t (mm) of the sample The value was 0.50. The results are shown in Table 4. Here, if the value of r / t is 1 or less, there are few problems in normal bending, and it can be said that bending workability is good.
(実施例2)
Ni:3.0質量%、Si:0.7質量%に加えて、Zn:1.5質量%、Sn:0.3質量%を含有し、残部がCuと不可避不純物からなる銅合金を高周波溶解炉で溶製し、直径30mm、長さ250mmのインゴットに鋳造した。
(Example 2)
In addition to Ni: 3.0% by mass, Si: 0.7% by mass, Zn: 1.5% by mass, Sn: 0.3% by mass, with the balance being Cu and inevitable impurities, a copper alloy containing high frequency It was melted in a melting furnace and cast into an ingot having a diameter of 30 mm and a length of 250 mm.
このインゴットを実施例1(試料No.1)と同じ工程で加工・熱処理することで製造した試料No.2について、引張強さおよび導電率を実施例1と同様に測定した。その結果、引張強さ732N/mm2、導電率41%IACSという良好な特性が得られ、ZnとSnの添加によって試料No.1に比べてさらに良好な引張強さを得ることができた。また、鋳塊割れもなかった。結果を表2に示す。 Sample No. manufactured by processing and heat-treating this ingot in the same process as Example 1 (Sample No. 1). For 2, the tensile strength and conductivity were measured in the same manner as in Example 1. As a result, good properties of a tensile strength of 732 N / mm 2 and a conductivity of 41% IACS were obtained. As compared with 1, it was possible to obtain a better tensile strength. There was no ingot cracking. The results are shown in Table 2.
この試料No.2についても上記と同様に析出物の数を測定した結果、表面層と内部層の析出物密度の比(a/b)は0.35であった。同様に曲げ加工試験を行った結果、r/tの値は0.67となった。この場合も、曲げ加工性は良好であるといえる。結果を表4に示す。 This sample No. Also for No. 2, the number of precipitates was measured in the same manner as described above. As a result, the ratio of the precipitate density of the surface layer to the inner layer (a / b) was 0.35. Similarly, as a result of the bending test, the value of r / t was 0.67. Also in this case, it can be said that the bending workability is good. The results are shown in Table 4.
(比較例1〜5)
本発明の材料について、その合金組成の限定理由を、比較例を挙げて説明する。表1の比較例1〜5に示す合金組成の銅合金を高周波溶解炉で溶製し、直径30mm、長さ250mmのインゴットに鋳造した。
(Comparative Examples 1-5)
The reason for limiting the alloy composition of the material of the present invention will be described with reference to a comparative example. Copper alloys having the alloy compositions shown in Comparative Examples 1 to 5 in Table 1 were melted in a high frequency melting furnace and cast into ingots having a diameter of 30 mm and a length of 250 mm.
このインゴットを実施例1(試料No.1)と同じ工程で加工・熱処理することで製造した試料No.3〜No.7について、引張強さおよび導電率を実施例1、2と同様に測定した。鋳塊割れの有無と共に、測定結果を表2に示す。 Sample No. manufactured by processing and heat-treating this ingot in the same process as Example 1 (Sample No. 1). 3-No. For No. 7, the tensile strength and conductivity were measured in the same manner as in Examples 1 and 2. The measurement results are shown in Table 2 together with the presence or absence of ingot cracking.
試料No.3およびNo.4は、Niの含有量が規定範囲から外れた例である。Niが過剰になると導電率の値が悪くなり、Niが不足すると引張強さが不十分になる。 Sample No. 3 and no. No. 4 is an example in which the Ni content is out of the specified range. When Ni is excessive, the conductivity value is deteriorated, and when Ni is insufficient, the tensile strength is insufficient.
試料No.5およびNo.6は、Siの含有量が規定範囲から外れた例である。Siが過剰になると鋳塊に割れが発生して加工が困難になる。また、Siが不足すると導電率、引張強さの両方が不十分になる。 Sample No. 5 and no. 6 is an example in which the Si content is out of the specified range. When Si is excessive, the ingot is cracked and processing becomes difficult. Moreover, when Si is insufficient, both conductivity and tensile strength become insufficient.
試料No.7は、Zn、Snを過剰に添加した場合の例である。これらの副成分が過剰になった場合、引張強さは高いものの導電率が不十分になる。 Sample No. 7 is an example when Zn and Sn are added excessively. When these subcomponents become excessive, the tensile strength is high but the conductivity is insufficient.
(比較例6〜11)
次に、本発明の銅合金材の製造条件についての限定理由を、比較例を挙げて説明する。実施例1の試料No.1と同じ組成の銅合金について、実施例1と同様の工程で鋳造・加工した後、第1および第2の熱処理の各加熱条件、第2の冷間圧延における1パスの加工率、および第3の熱処理の加熱条件を表3に示す条件で加工・熱処理を行い、試料No.8〜No.13を製造した。
(Comparative Examples 6-11)
Next, the reason for limitation about the manufacturing conditions of the copper alloy material of the present invention will be described using a comparative example. Sample No. 1 of Example 1 For a copper alloy having the same composition as No. 1, after casting and working in the same process as in Example 1, the heating conditions of the first and second heat treatments, the processing rate of one pass in the second cold rolling, and the first No. 3 was processed and heat-treated under the conditions shown in Table 3, and sample No. 8-No. 13 was produced.
得られた各試料について引張強さと導電率を測定した。また、実施例1の試料No.1と同様の方法で表面層と内部層の析出物密度の比率を測定するとともに、曲げ加工性の評価を行った。測定した結果を表4に示す。 Tensile strength and electrical conductivity were measured for each obtained sample. In addition, sample No. The ratio of the precipitate density of the surface layer and the inner layer was measured by the same method as 1 and the bending workability was evaluated. Table 4 shows the measurement results.
試料No.8は、第1の熱処理温度が規定範囲から外れた例である。温度が低すぎると強度が不十分になるとともに、曲げ加工性の低下が生じている。 Sample No. 8 is an example in which the first heat treatment temperature is out of the specified range. If the temperature is too low, the strength becomes insufficient and bending workability is deteriorated.
試料No.9およびNo.10は、第2の熱処理温度が規定範囲から外れた例である。温度が低すぎる場合は析出が不十分となり、引張強さや導電性が低くなっている。また、温度が高すぎる場合は析出物が粗大になるため、引張強さ不足と曲げ加工性の低下が生じている。 Sample No. 9 and no. 10 is an example in which the second heat treatment temperature is out of the specified range. When the temperature is too low, the precipitation is insufficient, and the tensile strength and conductivity are low. On the other hand, when the temperature is too high, the precipitate becomes coarse, resulting in insufficient tensile strength and a decrease in bending workability.
試料No.11は、圧延加工における1パスの加工率が5%を超えた場合の例である。この場合、表面層と内部層の析出物密度の差が小さく、曲げ加工性が低下している。 Sample No. 11 is an example when the processing rate of one pass in the rolling process exceeds 5%. In this case, the difference in precipitate density between the surface layer and the inner layer is small, and the bending workability is lowered.
試料No.12およびNo.13は、第3の熱処理温度が規定範囲から外れた例である。温度が低すぎると曲げ加工性が低下し、温度が高すぎる場合は引張強さ、導電性が低くなる。 Sample No. 12 and no. 13 is an example in which the third heat treatment temperature is out of the specified range. If the temperature is too low, the bending workability will decrease, and if the temperature is too high, the tensile strength and conductivity will be low.
Claims (3)
請求項1又は請求項2に示す組成を有する銅合金を素材として形成した後、前記銅合金素材を700〜900℃に加熱した後、25℃/分以上の速度で300℃以下まで冷却する第1の熱処理を行い、その後300〜500℃で5分〜5時間加熱する第2の熱処理を行い、続いて1パスの加工率を5%以下に規定した圧延を繰り返して合計加工率10%以上の圧延加工を加え、その後550〜700℃で5秒〜5分加熱する第3の熱処理を行うことを特徴とする銅合金材の製造方法。
It is a manufacturing method of the copper alloy material according to claim 1 or 2,
After the copper alloy having the composition shown in claim 1 or 2 is formed as a raw material, the copper alloy raw material is heated to 700 to 900 ° C, and then cooled to 300 ° C or lower at a rate of 25 ° C / min or higher. No. 1 heat treatment, followed by a second heat treatment at 300 to 500 ° C. for 5 minutes to 5 hours, followed by repeated rolling with a 1 pass processing rate of 5% or less, resulting in a total processing rate of 10% or more. A method for producing a copper alloy material is characterized in that a third heat treatment is performed by heating at 550 to 700 ° C. for 5 seconds to 5 minutes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005313296A JP4556841B2 (en) | 2005-10-27 | 2005-10-27 | High strength copper alloy material excellent in bending workability and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005313296A JP4556841B2 (en) | 2005-10-27 | 2005-10-27 | High strength copper alloy material excellent in bending workability and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007119844A true JP2007119844A (en) | 2007-05-17 |
JP4556841B2 JP4556841B2 (en) | 2010-10-06 |
Family
ID=38143989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005313296A Active JP4556841B2 (en) | 2005-10-27 | 2005-10-27 | High strength copper alloy material excellent in bending workability and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4556841B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007231364A (en) * | 2006-03-01 | 2007-09-13 | Dowa Holdings Co Ltd | High strength copper alloy sheet material having excellent bending workability and its production method |
JP2010100890A (en) * | 2008-10-23 | 2010-05-06 | Hitachi Cable Ltd | Copper alloy strip for connector |
JP2012122114A (en) * | 2010-12-10 | 2012-06-28 | Mitsubishi Shindoh Co Ltd | Cu-Ni-Si-BASED COPPER ALLOY SHEET HAVING EXCELLENT DEEP DRAWABILITY AND FATIGUE RESISTANCE, AND METHOD FOR PRODUCING THE SAME |
JP5189708B1 (en) * | 2011-12-22 | 2013-04-24 | 三菱伸銅株式会社 | Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same |
JP2014019880A (en) * | 2012-07-12 | 2014-02-03 | Jx Nippon Mining & Metals Corp | Corson alloy and method for producing the same |
JP2017014624A (en) * | 2016-09-05 | 2017-01-19 | Jx金属株式会社 | Corson alloy and manufacturing method therefor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61143564A (en) * | 1984-12-13 | 1986-07-01 | Nippon Mining Co Ltd | Manufacture of high strength and highly conductive copper base alloy |
JPS61250154A (en) * | 1985-04-26 | 1986-11-07 | Nippon Mining Co Ltd | Production of copper alloy having excellent stress relief resistant characteristic |
JPS63247320A (en) * | 1987-04-02 | 1988-10-14 | Kobe Steel Ltd | Manufacture of copper alloy for electrical and electronic parts |
JPH0641660A (en) * | 1992-07-28 | 1994-02-15 | Mitsubishi Shindoh Co Ltd | Cu alloy steel having fine structure for electric and electronic parts |
JPH0790520A (en) * | 1993-09-27 | 1995-04-04 | Mitsubishi Shindoh Co Ltd | Production of high-strength cu alloy sheet bar |
JP2005048262A (en) * | 2003-07-31 | 2005-02-24 | Nikko Metal Manufacturing Co Ltd | Cu-Ni-Si BASED ALLOY HAVING EXCELLENT FATIGUE PROPERTY |
JP2005213611A (en) * | 2004-01-30 | 2005-08-11 | Nikko Metal Manufacturing Co Ltd | Material for electronic parts with excellent press blanking property |
-
2005
- 2005-10-27 JP JP2005313296A patent/JP4556841B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61143564A (en) * | 1984-12-13 | 1986-07-01 | Nippon Mining Co Ltd | Manufacture of high strength and highly conductive copper base alloy |
JPS61250154A (en) * | 1985-04-26 | 1986-11-07 | Nippon Mining Co Ltd | Production of copper alloy having excellent stress relief resistant characteristic |
JPS63247320A (en) * | 1987-04-02 | 1988-10-14 | Kobe Steel Ltd | Manufacture of copper alloy for electrical and electronic parts |
JPH0641660A (en) * | 1992-07-28 | 1994-02-15 | Mitsubishi Shindoh Co Ltd | Cu alloy steel having fine structure for electric and electronic parts |
JPH0790520A (en) * | 1993-09-27 | 1995-04-04 | Mitsubishi Shindoh Co Ltd | Production of high-strength cu alloy sheet bar |
JP2005048262A (en) * | 2003-07-31 | 2005-02-24 | Nikko Metal Manufacturing Co Ltd | Cu-Ni-Si BASED ALLOY HAVING EXCELLENT FATIGUE PROPERTY |
JP2005213611A (en) * | 2004-01-30 | 2005-08-11 | Nikko Metal Manufacturing Co Ltd | Material for electronic parts with excellent press blanking property |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007231364A (en) * | 2006-03-01 | 2007-09-13 | Dowa Holdings Co Ltd | High strength copper alloy sheet material having excellent bending workability and its production method |
JP2010100890A (en) * | 2008-10-23 | 2010-05-06 | Hitachi Cable Ltd | Copper alloy strip for connector |
JP2012122114A (en) * | 2010-12-10 | 2012-06-28 | Mitsubishi Shindoh Co Ltd | Cu-Ni-Si-BASED COPPER ALLOY SHEET HAVING EXCELLENT DEEP DRAWABILITY AND FATIGUE RESISTANCE, AND METHOD FOR PRODUCING THE SAME |
JP5189708B1 (en) * | 2011-12-22 | 2013-04-24 | 三菱伸銅株式会社 | Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same |
WO2013094061A1 (en) * | 2011-12-22 | 2013-06-27 | 三菱伸銅株式会社 | Cu-Ni-Si BASED COPPER ALLOY SHEET HAVING HIGH DIE ABRASION RESISTANCE AND GOOD SHEAR PROCESSABILITY AND METHOD FOR PRODUCING SAME |
CN104011236A (en) * | 2011-12-22 | 2014-08-27 | 三菱伸铜株式会社 | Cu-Ni-Si Based Copper Alloy Sheet Having High Die Abrasion Resistance And Good Shear Processability And Method For Producing Same |
EP2796577A4 (en) * | 2011-12-22 | 2015-12-02 | Mitsubishi Shindo Kk | Cu-Ni-Si BASED COPPER ALLOY SHEET HAVING HIGH DIE ABRASION RESISTANCE AND GOOD SHEAR PROCESSABILITY AND METHOD FOR PRODUCING SAME |
US10253405B2 (en) | 2011-12-22 | 2019-04-09 | Mitsubishi Shindoh Co., Ltd. | Cu—Ni—Si-based copper alloy sheet having excellent mold abrasion resistance and shear workability and method for manufacturing same |
JP2014019880A (en) * | 2012-07-12 | 2014-02-03 | Jx Nippon Mining & Metals Corp | Corson alloy and method for producing the same |
JP2017014624A (en) * | 2016-09-05 | 2017-01-19 | Jx金属株式会社 | Corson alloy and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP4556841B2 (en) | 2010-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4655834B2 (en) | Copper alloy material for electrical parts and manufacturing method thereof | |
JP4596493B2 (en) | Cu-Ni-Si alloy used for conductive spring material | |
JP5117604B1 (en) | Cu-Ni-Si alloy and method for producing the same | |
JP5441876B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
KR102126731B1 (en) | Copper alloy sheet and method for manufacturing copper alloy sheet | |
TWI422692B (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
TWI429768B (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
JPWO2010016429A1 (en) | Method for producing copper alloy material for electric / electronic parts | |
KR101917416B1 (en) | Copper-cobalt-silicon alloy for electrode material | |
JPWO2010016428A1 (en) | Copper alloy material for electrical and electronic parts | |
JP2006233314A (en) | High-strength copper alloy | |
TW201736615A (en) | Copper foil for electronic material having suitable 0.2% yielding strength and conductivity and capable of enhancing dimensional stability during stamping processing | |
JP4556841B2 (en) | High strength copper alloy material excellent in bending workability and manufacturing method thereof | |
JP6222885B2 (en) | Cu-Ni-Si-Co based copper alloy for electronic materials | |
JP4556842B2 (en) | High strength copper alloy material excellent in shear workability and method for producing the same | |
JP2010100890A (en) | Copper alloy strip for connector | |
JP2013104082A (en) | Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME | |
JP4254815B2 (en) | Copper alloy material for terminals and connectors | |
JP6246454B2 (en) | Cu-Ni-Si alloy and method for producing the same | |
JP2016183418A (en) | Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
TW201714185A (en) | Cu-Co-Ni-Si Alloy for Electronic Components | |
JP4987155B1 (en) | Cu-Ni-Si alloy and method for producing the same | |
JP2011190469A (en) | Copper alloy material, and method for producing the same | |
JP2017071812A (en) | Cu-Co-Ni-Si ALLOY FOR ELECTRONIC COMPONENT | |
TWI529255B (en) | Cu-ni-si alloy and method of producing the alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100629 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100712 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4556841 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |