JPS60258945A - Lead for ceramic package ic - Google Patents

Lead for ceramic package ic

Info

Publication number
JPS60258945A
JPS60258945A JP11529884A JP11529884A JPS60258945A JP S60258945 A JPS60258945 A JP S60258945A JP 11529884 A JP11529884 A JP 11529884A JP 11529884 A JP11529884 A JP 11529884A JP S60258945 A JPS60258945 A JP S60258945A
Authority
JP
Japan
Prior art keywords
conductivity
content
alloy
strength
deteriorates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11529884A
Other languages
Japanese (ja)
Inventor
Motohisa Miyato
宮藤 元久
Akitoshi Saito
斎藤 明敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11529884A priority Critical patent/JPS60258945A/en
Publication of JPS60258945A publication Critical patent/JPS60258945A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To eliminate the damage of ceramic substrates, and to improve the strength, conductivity, and thermal conductivity after brazing, by using Cu containing a specific amount of Ni, Si, Zn, Sn, and Cr. CONSTITUTION:As the material of the lead for a ceramic package IC, substance containing Ni 1.0-5.0wt%, Si 0.2-1.5wt%, Zn 0.05-5.0wt%, Sn 0.1-2.0wt%, and Cr 0.02-0.5wt% and made of Cu in the remaining and inevitable impurities is used. Ni and Si improve the strength; however, an excess in Ni content above 5.0wt% deteriorates the conductivity, and an excess in Si content above 1.5wt% deteriorates the hot-workability. Zn improves the thermal exfoliation-resistance of a plated layer, but an excess in its content above 5.0wt% deteriorates the solderability. Sn improves the strength and the elongation, but an excess in its content above 2.0wt% decreases the conductivity. A Cr content of less than 0.002wt% shows a small effect in improvement of the heat workability, and its content more than 0.5wt% causes the oxidation of the molten metal and deteriorates the castability.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明はセラミックパンケージIC用リード線に関し、
さらに詳しくは、800〜900′Cの加熱下にろう付
は接合されて入出力端子となし、かつ、ろう付は後のビ
アカース硬度が少なくとも130である銅合金よりなる
プラグ・イン・)〈ツケーノIC1或いはピン・グリッ
ド・アレイlCといわれる集積回路用のセラミックス・
ンケーノIC用リード線に関する。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to a lead wire for a ceramic pancage IC;
More specifically, the brazing terminals are joined under heating at 800 to 900'C to form input/output terminals, and the brazing terminals are connected to plug-in terminals made of a copper alloy with a later via cast hardness of at least 130. Ceramics for integrated circuits called IC1 or pin grid array IC.
This invention relates to lead wires for IC.

[従来技術1 一般に、ビン・グリッド・アレイICの基盤はセラミッ
クスからなり、基盤の表面には数個のIC素子が塔載さ
れ、基盤の電極とIC素子の電極がボンディングワイヤ
を介して結線され、抵抗等が付加されて回路が形成され
、また、裏面は表面の各電極に対応した入出力用のリー
ド線から構成されている。そして、これらのリード線は
、銀ろら付けによりメタライズされた電極に接合されて
いる。
[Prior art 1] Generally, the base of a bin grid array IC is made of ceramics, several IC elements are mounted on the surface of the base, and the electrodes of the base and the electrodes of the IC elements are connected via bonding wires. , resistors, etc. are added to form a circuit, and the back side is composed of input/output lead wires corresponding to each electrode on the front side. These lead wires are then joined to metalized electrodes by silver fertilization.

このようなり−Vaとしては、Co Ni−Fe合金(
ASTM規格のF−15合金)或いはFe−42Ni合
金(ASTM規格のF−30合金)が使用されてbてい
る。
In this way, -Va is a Co Ni-Fe alloy (
F-15 alloy of ASTM standard) or Fe-42Ni alloy (F-30 alloy of ASTM standard) is used.

このF−15合金お上びF−30合金は、セラミックス
と近似の熱膨張係数を有しているので、800〜900
℃の温度で銀ろう付は後、常温まで冷却する際にセラミ
ックス基盤に熱応力が加わらず、破損が起ないという理
由から使用されてきた。また、F−15合金およびF−
30合金は80 o〜9 fl 1’) ’Cの温度に
おけるろう付け後においてもビッカース硬度は13(1
以上であるという長所を有している。
These F-15 alloy and F-30 alloy have a coefficient of thermal expansion similar to that of ceramics, so it is 800 to 900.
Silver brazing at a temperature of 30°F (°C) has been used because it does not apply thermal stress to the ceramic substrate when it is cooled down to room temperature, so it does not cause damage. Also, F-15 alloy and F-
30 alloy has a Vickers hardness of 13 (1') even after brazing at a temperature of 80 o - 9 fl 1')'C.
It has the advantage of being above.

しかしなから、F−15合金或いはF−30合金は、導
電率が3%I A CSと小さく、従って、熱伝導率小
さいのでIC用リード線としてはジュール熱が発生し易
く、がっ、IC素子内部で発生する熱量の放散性も不充
分である。殊に、最近のIC素子の高密度化に伴ない、
IC素子内部で発生する熱量が増加するようになり、P
−]5合金或いはF−30合金は熱量の放散性、が悪い
ということが指摘され、これらの合金に代る材料が要望
されている。
However, F-15 alloy or F-30 alloy has a low electrical conductivity of 3% IACS, and therefore has a low thermal conductivity, so it is easy to generate Joule heat when used as an IC lead wire. The ability to dissipate the amount of heat generated inside the element is also insufficient. In particular, with the recent increase in the density of IC elements,
The amount of heat generated inside the IC element increases, and P
It has been pointed out that the heat dissipation properties of the -]5 alloy and the F-30 alloy are poor, and there is a demand for materials that can replace these alloys.

この要望に対して、銅合金が挙げられるが、一般的に銅
合金は8()0〜900℃の温度での銀ろう付は時の加
熱により軟化し強度が失なわれるという問題があり、ま
た、強度および耐熱性が良好な銅合金は、F−15合金
或いはF−30合金と同様に導電率が小さいという欠、
αを有している。
Copper alloys can be used to meet this demand, but copper alloys generally have the problem that silver brazing at temperatures of 8 () 0 to 900°C softens and loses strength due to heating. Copper alloys with good strength and heat resistance also have the disadvantage of low electrical conductivity, similar to F-15 alloy or F-30 alloy.
It has α.

1−発明が解決しようとする問題点1 本発明は上記に説明したような従来技術に鑑みなされた
ものであり、F−15合金或いはF−30合金よりも熱
膨張の天外い銅合金を使用し、銀ろう付は後の冷却過程
においてセラミックス基盤が破損することなく、また、
800〜900°Cの温度での銀ろう付は後においても
、強度、導電率および熱伝導率等に優れた、プラグ・イ
ン・パッケージIC或いはビン・グリッド・アレイIC
等のセラミックパッケージIC用リード線を提供するも
のである。
1-Problem to be Solved by the Invention 1 The present invention has been made in view of the prior art as explained above, and uses a copper alloy that has a higher thermal expansion than F-15 alloy or F-30 alloy. However, silver brazing does not damage the ceramic base during the subsequent cooling process, and
Even after silver brazing at temperatures of 800-900°C, plug-in package ICs or bin grid array ICs with excellent strength, electrical conductivity, and thermal conductivity can be manufactured.
The present invention provides lead wires for ceramic packaged ICs such as the following.

[問題点を解決するための手段1 本発明に係るセラミックパッケージIC用リード線の特
徴とするところは、 Ni1.0〜5,01%、Si0.2〜1.5、Zn 
O,05−5,Ou+t%、Sn O,1−2,0wt
%、Cr O,002−0,5u+t% を含有し、残部Cuおよび不可避不純物からなるもので
ある。
[Means for Solving the Problems 1] The characteristics of the ceramic package IC lead wire according to the present invention are as follows: Ni 1.0-5.01%, Si 0.2-1.5, Zn.
O, 05-5, Ou+t%, Sn O, 1-2, 0wt
%, CrO,002-0.5u+t%, and the remainder consists of Cu and inevitable impurities.

本発明に係るセラミックパッケージIC用リード線につ
いて以下詳細に説明する。
The lead wire for ceramic package IC according to the present invention will be explained in detail below.

3− 先ス、本発明に係るセラミックパッケージIC用リード
線の含有成分および成分割合について説明する。
3- First, the components and component ratios of the lead wire for ceramic package IC according to the present invention will be explained.

N1、Siは強度を向」ニさせる元素であり、Ni1、
Ou+t%未満、Si0.2iut%未満では充分な強
度が得られず、また、Ni、Si含有量を増加すると8
00〜900℃の温度でのろう付は後においても充分な
強度が得られると共に導電率も向上するが、Ni含有量
が5,0wt%を越えるとこのような効果が飽和すると
同時に導電率が悪くなり、81含有量が1.5+uL%
を越えると熱間加工性が劣化する。よって、Ni含有量
は1.0〜5.0LIlt%とし、S1含有量は0.2
〜]、5u+t%とする。
N1 and Si are elements that improve the strength, and Ni1,
If the Ou+t% or Si is less than 0.2iut%, sufficient strength cannot be obtained, and if the Ni and Si contents are increased, the
Brazing at a temperature of 00 to 900°C provides sufficient strength and improves electrical conductivity, but when the Ni content exceeds 5.0 wt%, these effects are saturated and at the same time the electrical conductivity decreases. becomes worse, and the 81 content is 1.5+uL%
If it exceeds 100%, hot workability deteriorates. Therefore, the Ni content is 1.0 to 5.0 LIlt%, and the S1 content is 0.2
], 5u+t%.

Znはリード線の表面に施した錫めっき或いは錫合金め
っき層の熱的な耐剥離性を改善するために必須の元素で
あり、0.05u+t%未満ではこの効果は少なく、ま
た、5.Ou+t%を越えて含有されるとはんだ付は性
が劣化する。よって、Zn含有量は、0.05〜5.0
田t%とする。
Zn is an essential element for improving the thermal peeling resistance of the tin plating or tin alloy plating layer applied to the surface of the lead wire, and if it is less than 0.05u+t%, this effect will be small; If the content exceeds Ou+t%, the soldering properties will deteriorate. Therefore, the Zn content is 0.05 to 5.0
t%.

SnはCu中に固溶して強度を向上させ、かつ、4− 伸びを向上させる元素であり、特に、800〜900℃
の温度でのろう付は後においても、少なくとも3回のリ
ード線曲げ試験回数を満足させるために必要であり、含
有量がO,1ust%未満ではリード線曲げ試験回数の
規格を満足できず、また、2、Ou+t%を越えて含有
されるとこの規格は満足するけれども導電性が低下する
。よって、Sn含有量は、0.1〜2.Ou+t%とす
る。
Sn is an element that dissolves in Cu to improve strength and elongation, especially at temperatures of 800 to 900°C.
Even after brazing at a temperature of 3, it is necessary to satisfy at least three lead wire bending tests, and if the content is less than 1 ust%, the lead wire bending test number cannot be satisfied. Moreover, if the content exceeds 2.0+t%, this standard is satisfied, but the conductivity decreases. Therefore, the Sn content is 0.1 to 2. Let Ou+t%.

Crは鋳塊の粒界が強化され、熱間加工性を向上させる
元素であり、含有量が0,002wt%未満ではこの効
果は少なく、また、0.5+++t%を越えて含有され
ると溶湯が酸化し鋳造性が劣化する。よって、Cr含有
量は0.002−0.5u+t%とする。
Cr is an element that strengthens the grain boundaries of the ingot and improves hot workability.If the content is less than 0,002 wt%, this effect will be small, and if the content exceeds 0.5+++t%, the molten metal will deteriorate. is oxidized and castability deteriorates. Therefore, the Cr content is set to 0.002-0.5u+t%.

なお、上記に説明した元素以外に、Fe、 Mn、Co
は単独或いは2種以上で0.2u+t%までおよびMg
、Zr、Tiは単独或いは2種以上でO,1ust%ま
での含有は、銀ろう付は牲、引張強さ、導電性およびリ
ード線曲げ試験回数等の特性を問題なく維持するので上
記含有量までは許容される。
In addition to the elements explained above, Fe, Mn, Co
up to 0.2u+t% and Mg alone or in combination of two or more
, Zr, and Ti may be contained alone or in combinations of up to 1 ust%, since silver brazing will be impaired and properties such as tensile strength, conductivity, and number of lead wire bending tests will be maintained without problems. It is permissible until

しかして、本発明に係るセラミックパッケージrC用リ
ード線は、」1記に説明した銅合金から熱間押出加工、
冷開抽伸加工、焼鈍等の工程を経て作製されるが、この
リード線の製造工程には特に限定的なものはなく、また
、ろう(t it後の冷却速度はセラミックスが割れな
い程度であれば゛よい。
Therefore, the lead wire for the ceramic package rC according to the present invention is produced by hot extrusion processing from the copper alloy described in 1.
Although it is manufactured through processes such as cold-open drawing and annealing, there are no particular restrictions on the manufacturing process for this lead wire. Good.

また、本発明に係るセラミックパッケージIC用リード
線を、さらに、400〜55 fl ’Cの温度で10
〜30分lII熱処理を行なうことにより硬度および導
電率を向上させることができる。
Further, the ceramic package IC lead wire according to the present invention was further heated for 10 minutes at a temperature of 400 to 55 fl'C.
Hardness and electrical conductivity can be improved by performing a heat treatment for ~30 minutes.

なお、本発明に係るセラミックパッケージIC用リード
線が硬ろう付は後においても、硬度か高く、かつ、導電
率が大きいのは、ろう付は後の冷却過程中に400〜5
50°Cの温度域を通過する際にN i2S iが析出
しては相の純度が向−)1するからである。
The reason why the ceramic package IC lead wire according to the present invention has high hardness and high conductivity even after hard brazing is that it has a high hardness of 400 to 500% during the cooling process after brazing.
This is because the purity of the phase decreases if N i2S i precipitates when passing through the 50°C temperature range.

1実施例1 次に、本発明に係るセラミックパンケーノIC) 用’
J −F線″実施fil″説11J1t7+・実施例 第1表に示す合金をクリプトル炉で大気中で木炭被覆下
に溶解し、傾注式の鋳鉄製のブックモールドに鋳込み、
厚さ60mm、幅60mm、長さ180I圃と鋳塊を作
製した。
1 Example 1 Next, a ceramic panqueno IC according to the present invention was used.
J-F line "implementation fil" Theory 11J1t7+/Example The alloy shown in Table 1 was melted under charcoal coating in the air in a Kryptor furnace, and poured into a tilting cast iron book mold.
A field and an ingot with a thickness of 60 mm, a width of 60 mm, and a length of 180 mm were prepared.

この鋳塊の表面および裏面を各5111111面削し8
50゜Cの温度で熱間圧延を行ない厚さ]O【Ilmの
板材を作り、この板材から直径6+nmφの棒材を旋盤
により削り出し、700°Cの温度に30分加熱後水中
で急冷した。
The front and back sides of this ingot were milled 5111111 times 8
Hot rolling was carried out at a temperature of 50°C to produce a plate with a thickness of O[Ilm], and from this plate a bar with a diameter of 6+nmφ was machined using a lathe, heated to a temperature of 700°C for 30 minutes, and then rapidly cooled in water. .

次いで、硫酸によりスケール除去後、冷I旧こおけるス
ウェーッング加工と抽伸により直径0.46mmφの線
材を作製した。
Next, after removing scale with sulfuric acid, a wire rod with a diameter of 0.46 mm was produced by swaging in a cold I old oven and drawing.

比較材として市販のF−15合金を使用した。Commercially available F-15 alloy was used as a comparison material.

第 1 表 8− これらの線材を、セラミックスにメタライズして形成し
た電極へJ ISBAg−8等の銀ろうにて接合する条
件を想定して、850℃の温度に10分間加熱後、約り
℃/分の速度で室温まで冷却腰475℃の温度で30分
時効処理し、硬度、導電率およびリード線曲げ試験を行
なった。
Table 1 8- Assuming the conditions for joining these wires to electrodes formed by metallizing ceramics using silver solder such as JISBAg-8, after heating to a temperature of 850°C for 10 minutes, approximately The specimens were cooled to room temperature at a rate of 1/2 min, and then aged at a temperature of 475° C. for 30 minutes, and hardness, conductivity, and lead wire bending tests were conducted.

その結果を第2表に示す。The results are shown in Table 2.

リード曲げ試験は、227gの荷重を端子に吊し、端子
が90°曲がるまでゆっくり傾け、その後正規位置に戻
すというこの全動作を1回とし、破断するまでの曲げ回
数をめた。ただし、掴み部のRはOmenとした・ この第1表および第2表から次のようなことがわかる。
In the lead bending test, a load of 227 g was suspended on the terminal, the terminal was slowly tilted until it was bent by 90°, and then returned to the normal position.This entire operation was counted as one time, and the number of bends until breakage was determined. However, the R of the gripping part was set to Omen. The following can be seen from Tables 1 and 2.

即ち、本発明No、1、No、2は銀ろう付は後の硬度
(14v)は1.30以」二であり、導電率も20%l
AC3以」二であり、リード線曲げ回数も3回以上であ
る。
That is, in the present invention Nos. 1, 2, and 2, the hardness (14V) after silver brazing is 1.30 or more, and the electrical conductivity is 20% l.
The AC rating is 3 or more, and the number of times the lead wire is bent is 3 or more times.

しかし、比較例No、3はリード線曲げ回数が3未満で
あって規格を満足せず、また、No、4は導電率が3%
lAC3と低いのである。
However, in Comparative Example No. 3, the lead wire was bent less than 3 times and did not satisfy the standard, and in No. 4, the conductivity was 3%.
It is as low as lAC3.

従って、本発明に係るセラミックパッケージIC用リー
ド線が優れていることがわかる。
Therefore, it can be seen that the lead wire for ceramic package IC according to the present invention is excellent.

[発明の効果1 以上説明したように、本発明に係るセラミックパッケー
ジIC用リード線は上記の構成を有しているものである
から、セラミックスの熱膨張係数とは近似していないに
も拘わらず、800〜900°Cの温度下の銀ろう付は
後の冷却過程でセラミックスの割れの発生は皆無でであ
り、セラミックスとリード線との熱膨張係数を近似させ
る必要がなく、導電率の低いF−15合金或いはF−1
1− 30合金を使用しなくてもよく、さらに、ろう付は後1
こおいても強度が高く、導電率が大トいという優れた効
果を有するものである。
[Effect of the Invention 1] As explained above, the lead wire for a ceramic package IC according to the present invention has the above-mentioned configuration, so even though the coefficient of thermal expansion is not close to that of ceramics, , silver brazing at a temperature of 800 to 900°C does not cause any cracking of the ceramic during the subsequent cooling process, there is no need to approximate the thermal expansion coefficients of the ceramic and the lead wire, and the conductivity is low. F-15 alloy or F-1
There is no need to use 1-30 alloy, and brazing is done after 1.
In this case as well, it has excellent effects such as high strength and high electrical conductivity.

12−12-

Claims (1)

【特許請求の範囲】 Ni 1.0〜5.0IIIL%、SiO,2〜1,5
u+t%、Zn 0105−5,0w1%、Sn O,
1−2,Ou+t%、Cr 00002−0.5iuL
% を含有し、残部Cuおよび不可避不純物からなることを
特徴とするセラミックパッケージIC用リード線。
[Claims] Ni 1.0-5.0III%, SiO, 2-1,5
u+t%, Zn 0105-5,0w1%, SnO,
1-2, Ou+t%, Cr 00002-0.5iuL
%, with the remainder consisting of Cu and inevitable impurities.
JP11529884A 1984-06-05 1984-06-05 Lead for ceramic package ic Pending JPS60258945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11529884A JPS60258945A (en) 1984-06-05 1984-06-05 Lead for ceramic package ic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11529884A JPS60258945A (en) 1984-06-05 1984-06-05 Lead for ceramic package ic

Publications (1)

Publication Number Publication Date
JPS60258945A true JPS60258945A (en) 1985-12-20

Family

ID=14659171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11529884A Pending JPS60258945A (en) 1984-06-05 1984-06-05 Lead for ceramic package ic

Country Status (1)

Country Link
JP (1) JPS60258945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223069A (en) * 2007-03-12 2008-09-25 Miyoshi Gokin Kogyo Kk High-strength, high-conductivity copper alloy and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572851A (en) * 1980-06-06 1982-01-08 Nippon Mining Co Ltd Copper alloy for lead material of semiconductor device
JPS58123846A (en) * 1982-01-20 1983-07-23 Nippon Mining Co Ltd Lead material for semiconductor apparatus
JPS58145745A (en) * 1982-02-24 1983-08-30 Showa Denko Kk Production of polyolefin resin molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572851A (en) * 1980-06-06 1982-01-08 Nippon Mining Co Ltd Copper alloy for lead material of semiconductor device
JPS58123846A (en) * 1982-01-20 1983-07-23 Nippon Mining Co Ltd Lead material for semiconductor apparatus
JPS58145745A (en) * 1982-02-24 1983-08-30 Showa Denko Kk Production of polyolefin resin molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223069A (en) * 2007-03-12 2008-09-25 Miyoshi Gokin Kogyo Kk High-strength, high-conductivity copper alloy and its manufacturing method

Similar Documents

Publication Publication Date Title
JPS60245753A (en) High strength copper alloy having high electric conductivity
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JPS6314056B2 (en)
JPS5834537B2 (en) High-strength conductive copper alloy with good heat resistance
JPS59170231A (en) High tension conductive copper alloy
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
EP0189745A1 (en) Lead material for ceramic package IC
JPS6239218B2 (en)
JPS6256937B2 (en)
JPS6215622B2 (en)
JPS594493B2 (en) Copper alloy for lead material of semiconductor equipment
JPS60258945A (en) Lead for ceramic package ic
JPH01159337A (en) High tensile and high electric conductive copper alloy
JPS639574B2 (en)
JPS6365748B2 (en)
JPH01180932A (en) High tensile and high electric conductivity copper alloy for pin, grid and array ic lead pin
JPS5853700B2 (en) Copper alloy for lead material of semiconductor equipment
JPH0356294B2 (en)
JPS6157379B2 (en)
JPS58147140A (en) Lead wire of semiconductor device
JPS63192835A (en) Lead material for ceramic package
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPS60245750A (en) Copper alloy for lead material of semiconductor apparatus
JPS63310933A (en) Lead material for package for electronic equipment