JP7126656B2 - Copper alloy for cryogenic parts - Google Patents

Copper alloy for cryogenic parts Download PDF

Info

Publication number
JP7126656B2
JP7126656B2 JP2018171837A JP2018171837A JP7126656B2 JP 7126656 B2 JP7126656 B2 JP 7126656B2 JP 2018171837 A JP2018171837 A JP 2018171837A JP 2018171837 A JP2018171837 A JP 2018171837A JP 7126656 B2 JP7126656 B2 JP 7126656B2
Authority
JP
Japan
Prior art keywords
cryogenic
superconducting
copper alloy
temperature
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018171837A
Other languages
Japanese (ja)
Other versions
JP2020041207A (en
Inventor
和子 杉野
武夫 猪亦
真人 新井
勇多 新井
睦己 石島
逸夫 江口
義仁 小笠原
慎太朗 藤井
源次郎 萩野
▲キ▼ 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYOSHI GOKIN KOGYO CO., LTD.
Original Assignee
MIYOSHI GOKIN KOGYO CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYOSHI GOKIN KOGYO CO., LTD. filed Critical MIYOSHI GOKIN KOGYO CO., LTD.
Priority to JP2018171837A priority Critical patent/JP7126656B2/en
Publication of JP2020041207A publication Critical patent/JP2020041207A/en
Application granted granted Critical
Publication of JP7126656B2 publication Critical patent/JP7126656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Particle Accelerators (AREA)

Description

本発明は、液体ヘリウム温度のような極低温環境下であっても安定的に使用し得る極低温部材用銅合金に関し、特に、超伝導加速空洞や超伝導磁石において極低温・高磁場環境下で安定的に使用し得る極低温部材用銅合金に関する。 The present invention relates to a copper alloy for cryogenic members that can be used stably even in cryogenic environments such as liquid helium temperature, and in particular, in superconducting acceleration cavities and superconducting magnets in cryogenic and high magnetic field environments. It relates to a copper alloy for cryogenic members that can be stably used in

超伝導加速器や医療機器の計測機器などの各種装置において超伝導加速空洞や超伝導磁石が利用されている。これらの装置を冷却するための冷媒としては液体ヘリウムが用いられる。また最近の高温超伝導体材料の開発に伴い、高温超伝導磁石においては液体窒素などのより安価な冷媒に置き換えられることも期待される。かかる極低温環境下であって材料の強度、硬さ、低温脆性、熱収縮、高/低熱伝導性、非磁性などの観点から安定的に使用し得る極低温部材用の金属材料が求められている。 Superconducting acceleration cavities and superconducting magnets are used in various devices such as superconducting accelerators and measuring instruments for medical equipment. Liquid helium is used as a coolant for cooling these devices. Also, with the recent development of high-temperature superconducting materials, it is expected that liquid nitrogen and other low-cost refrigerants will be substituted for high-temperature superconducting magnets. There is a demand for metallic materials for cryogenic parts that can be stably used in such cryogenic environments in terms of material strength, hardness, low-temperature brittleness, thermal shrinkage, high/low thermal conductivity, and non-magnetism. there is

例えば、特許文献1では、MRI(核磁気共鳴)装置の超伝導コイルとして、円筒状部及び鍔状部を有する円筒状の非磁性ステンレス鋼製の巻枠に巻線を与え、該巻枠の円筒部の内周部に銅又はアルミニウム製の伝熱部材の一端部を密着させるとともに他端部を冷凍機に接続して、巻線の発生する熱を冷凍機に導くようにした超伝導コイルが開示されている。ステンレス鋼製の巻枠よりも熱伝導の高い銅又はアルミニウムを伝熱部材に用いることで、巻線の外周部を効率良く冷却できるとしている。 For example, in Patent Document 1, as a superconducting coil for an MRI (nuclear magnetic resonance) apparatus, a winding is applied to a cylindrical non-magnetic stainless steel winding frame having a cylindrical portion and a flange portion. A superconducting coil in which one end of a heat transfer member made of copper or aluminum is brought into close contact with the inner circumference of a cylindrical portion and the other end is connected to a refrigerator so that the heat generated by the winding is led to the refrigerator. is disclosed. By using copper or aluminum, which has a higher thermal conductivity than a winding frame made of stainless steel, as the heat transfer member, the outer peripheral portion of the winding can be efficiently cooled.

特許文献2では、超伝導加速器の超伝導磁石構成部材用のオーステナイト系非磁性ステンレス鋼として、冷間加工と析出硬化によって機械強度を高め得るステンレス鋼を開示している。非磁性のオーステナイト系ステンレス鋼は加工によりマルテンサイト変態しフェライトを部分的に生成して磁性を帯びることが知られているが、かかる合金は、オーステナイト相の安定性に優れるとしている。また、極低温での透磁率に優れるとともに、低い熱収縮率などの極低温での機械的性質にも優れるとしている。 Patent Document 2 discloses a stainless steel whose mechanical strength can be increased by cold working and precipitation hardening as an austenitic non-magnetic stainless steel for a superconducting magnet component of a superconducting accelerator. It is known that non-magnetic austenitic stainless steel transforms into martensite by working to partially generate ferrite and acquires magnetism. Such alloys are said to have excellent austenite phase stability. In addition to excellent magnetic permeability at extremely low temperatures, it also has excellent mechanical properties at extremely low temperatures, such as low thermal shrinkage.

また、特許文献3では、超伝導加速空洞を用いて電子や陽子等の荷電粒子を加速する超伝導加速器において、超伝導材料のニオブからなる超伝導加速空洞にステンレス鋼からなる冷媒槽をボルトによって接合した場合、運転中にボルト接合のためシール性能が低下してリークを生じ易いことについて述べている。そこで、冷媒槽も超伝導加速空洞と同じニオブ系材料によって形成し溶接により接合し、又は、銅製の超伝導加速空洞の表面にニオブをスパッタしステンレス鋼からなる冷媒槽とロウ付けにより接合することなどを開示している。 In Patent Document 3, in a superconducting accelerator that accelerates charged particles such as electrons and protons using a superconducting accelerating cavity, a coolant tank made of stainless steel is inserted into a superconducting accelerating cavity made of niobium, a superconducting material, by bolts. It is mentioned that if they are connected, the sealing performance is lowered due to the bolted connection during operation, and leakage is likely to occur. Therefore, the coolant tank is also made of the same niobium material as the superconducting accelerating cavity and joined by welding, or niobium is sputtered on the surface of the superconducting accelerating cavity made of copper and joined to the coolant tank made of stainless steel by brazing. etc. is disclosed.

特開平11-144940号公報JP-A-11-144940 特開2007-262582号公報JP 2007-262582 A 特開2000-150197号公報JP-A-2000-150197

ところで、銅合金は元来、非磁性でかつ加工や溶接によっても磁化しない。また、極低温まで明確な低温脆化の遷移温度を示すことなく、非磁性ステンレス鋼などの代替材料としての利用が期待される。さらに、特許文献3で指摘されるよう、熱サイクルや極低温環境下での機械的性質に優れ、非磁性を維持したまま安定性を高めることも求められる。 By the way, copper alloys are originally non-magnetic and are not magnetized by working or welding. In addition, it is expected to be used as a substitute material for non-magnetic stainless steel, etc., because it does not show a clear transition temperature of low-temperature embrittlement down to extremely low temperatures. Furthermore, as pointed out in Patent Document 3, it is also required to have excellent mechanical properties under heat cycles and cryogenic environments, and to improve stability while maintaining non-magnetism.

例えば、超伝導加速空洞クライオモジュール内にビーム収束用超伝導ソレノイドを挿入する場合、ソレノイドの運転中の漏れ磁場によって周囲の部材が磁化される場合がある。超伝導空洞を臨界温度以上に昇温した後に再冷却した場合(運転中のサーマルサイクル)、磁化された部材からの磁場が超伝導空洞にトラップされ、空洞の性能が著しく劣化する。この防止のため、ソレノイドの運転後に煩雑な消磁プロセスが必要となり、十分に消磁できない場合もある。また、ステンレス316Lのような、加工や溶接によって容易に磁化されてしまう材料の代替材料として、超伝導ソレノイドの運転でも磁化しない完全非磁性の材料からなる部材が要求される。 For example, when inserting a beam-focusing superconducting solenoid into a superconducting accelerating cavity cryomodule, the surrounding members may be magnetized by leakage magnetic fields during operation of the solenoid. When the superconducting cavity is heated above the critical temperature and then recooled (thermal cycling during operation), the magnetic field from the magnetized members is trapped in the superconducting cavity and the performance of the cavity is severely degraded. In order to prevent this, a complicated degaussing process is required after the solenoid is operated, and in some cases it cannot be degaussed sufficiently. Also, as a substitute for materials such as stainless steel 316L that are easily magnetized by machining or welding, members made of completely non-magnetic materials that are not magnetized even when a superconducting solenoid is operated are required.

本発明は、以上のような状況を鑑み、超伝導加速空洞や超伝導磁石のような極低温で且つ強磁場下でも安定的に使用し得る極低温部材用銅合金を提供することにある。 SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide a copper alloy for cryogenic parts such as superconducting accelerating cavities and superconducting magnets, which can be used stably at cryogenic temperatures and under strong magnetic fields.

本発明による極低温部材用銅合金は、質量%で、Ni:1.5~9.0%、Si:0.4~2.5%、Cr:0.2~1.5%を含有し、残部、Cu及び不可避的不純物とした成分組成を有し、Ni/Si比を3.8~4.1として、Cu母相中にCrを固溶させ且つNi-Si系金属間化合物を析出させて、室温における熱伝導度を100W/m・K以上とするとともに、液体窒素温度でのシャルピー試験(JIS Z 2242準拠)による衝撃値を15J/cm以上としたことを特徴とする。 The copper alloy for cryogenic members according to the present invention contains Ni: 1.5 to 9.0%, Si: 0.4 to 2.5%, and Cr: 0.2 to 1.5% by mass%. , the balance is Cu and unavoidable impurities, and the Ni/Si ratio is set to 3.8 to 4.1 to dissolve Cr in the Cu matrix and precipitate a Ni—Si intermetallic compound. It is characterized by having a thermal conductivity of 100 W/m·K or more at room temperature and an impact value of 15 J/cm 2 or more in a Charpy test (JIS Z 2242 compliant) at liquid nitrogen temperature.

かかる発明によれば、Cu母相を強化することで熱サイクルや極低温環境下での機械的性質の安定性に高く、超伝導加速空洞や超伝導磁石のような極低温且つ高磁場中であっても機械的劣化を示さず、安定的に使用し得る。 According to this invention, by strengthening the Cu matrix, the stability of mechanical properties in thermal cycles and in cryogenic environments is high, and in cryogenic and high magnetic fields such as superconducting acceleration cavities and superconducting magnets. It does not show any mechanical deterioration even if it is in contact, and can be used stably.

上記した発明において、前記成分組成は、Sn:0.1~0.3%を更に含むとともに、衝撃値を50J/cm以上としたことを特徴としてもよい。また、前記不可避的不純物として、少なくとも、Mn及びZrを0.05%以下としたことを特徴としてもよい。かかる発明によれば、母相強度をより高め得て、極低温且つ高磁場中であってもより安定的に使用し得る。 In the above-described invention, the component composition may further contain Sn: 0.1 to 0.3%, and may have an impact value of 50 J/cm 2 or more. Moreover, it may be characterized in that at least Mn and Zr are set to 0.05% or less as the unavoidable impurities. According to such an invention, the strength of the matrix can be further increased, and it can be used more stably even at extremely low temperatures and in a high magnetic field.

本発明による実施例に用いた銅合金の成分組成を示す表である。1 is a table showing chemical compositions of copper alloys used in examples according to the present invention. 実施例の各種試験の結果の一覧表である。It is a list of the results of various tests of Examples.

以下に、本発明による極低温部材用銅合金の1つの実施例について説明する。 An example of a copper alloy for cryogenic components according to the present invention is described below.

本実施例における極低温部材用銅合金は、質量%で、Ni:1.5~9.0%、Si:0.4~2.5%、Cr:0.2~1.5%を含有する銅合金である(図1参照)。さらに、質量比で、Ni/Siを3.8~4.1とすることで、Ni-Si系金属間化合物を析出させてSiを消費し、Cr-Si系金属間化合物の析出を抑制してCu母相中へのCrの固溶を維持させる。このとき、Crを十分に固溶させて固溶強化を図るとともに、Ni-Si系金属間化合物による析出硬化も図り、両強化機構の相乗効果を得てより高い機械強度を得ることを意図している。そして、室温における熱伝導度を100W/m・K以上とするとともに、液体窒素温度(77K)でのシャルピー試験(JIS Z 2242準拠)による衝撃値を15J/cm以上とするよう、熱処理によって均質性を調整するのである。 The copper alloy for cryogenic members in this embodiment contains, by mass %, Ni: 1.5 to 9.0%, Si: 0.4 to 2.5%, and Cr: 0.2 to 1.5%. It is a copper alloy that can be used (see Fig. 1). Furthermore, by setting the Ni/Si mass ratio to 3.8 to 4.1, the Ni—Si intermetallic compound is precipitated to consume Si, and the precipitation of the Cr—Si intermetallic compound is suppressed. to maintain the solid solution of Cr in the Cu matrix. At this time, solid solution strengthening is achieved by sufficiently dissolving Cr, and precipitation hardening by Ni—Si intermetallic compounds is also attempted, and the synergistic effect of both strengthening mechanisms is obtained to achieve higher mechanical strength. ing. Then, it is homogenized by heat treatment so that the thermal conductivity at room temperature is 100 W/m K or more and the impact value in the Charpy test (JIS Z 2242 compliant) at liquid nitrogen temperature (77 K) is 15 J/cm 2 or more. It regulates gender.

このような銅合金は、Cu母相を上記したように強化することで熱サイクルや極低温環境下での機械的性質の安定性に高く、超伝導磁石の周辺の極低温且つ高磁場中であっても磁化せず、機械的劣化を示さず、安定的に使用することが可能なのである。 Such a copper alloy is highly stable in mechanical properties under thermal cycles and in cryogenic environments by strengthening the Cu parent phase as described above, and is highly stable in cryogenic and high magnetic fields around superconducting magnets. Even if there is, it does not magnetize and does not exhibit mechanical deterioration, and can be used stably.

また、このような銅合金は組成の調整により、極低温の熱伝導度をより高いものから非常に低いものまで調整でき、用いられる環境の温度変化による熱侵入量や熱応力の発生を抑制し、熱変動に対して高い耐性を有する。さらに、このような銅合金は、切削加工性にも優れる。超伝導加速空洞においては、本実施例の銅合金はニオブやニオブ合金などと相性がよく、空洞のフランジ締め付け用ネジ/ナットに使用した場合、フランジネジとのかじりが発生しない。また、超伝導空洞の組み立てにおいてはゴミによる空洞内部の汚染を極力避ける必要があるが、空洞組み立て時のネジの締め付け作業でゴミの発生が極めて少ない。 In addition, by adjusting the composition of such a copper alloy, the thermal conductivity at cryogenic temperatures can be adjusted from high to very low, suppressing the amount of heat penetration and the generation of thermal stress due to temperature changes in the environment in which it is used. , with high resistance to thermal fluctuations. Furthermore, such a copper alloy is excellent in machinability. In the superconducting accelerating cavity, the copper alloy of this embodiment is compatible with niobium and niobium alloys, and when used as screws/nuts for tightening the flange of the cavity, galling with the flange screws does not occur. In addition, when assembling a superconducting cavity, it is necessary to avoid contamination of the inside of the cavity with dust as much as possible, but the screw tightening work during assembly of the cavity generates very little dust.

すなわち、本実施例による極低温部材用銅合金は、超伝導加速器空洞のような清浄度の高い部材、ネジ切りされた部材などに好適である。 In other words, the copper alloy for cryogenic members according to this example is suitable for highly clean members such as superconducting accelerator cavities, threaded members, and the like.

なお、このような極低温部材用銅合金として、その成分組成において、さらに、Sn:0.1~0.3%を更に含んでもよい。このとき、上記した液体窒素温度(77K)でのシャルピー試験による衝撃値を50J/cm以上とし得て好ましい。 In addition, the composition of such a copper alloy for cryogenic members may further contain Sn: 0.1 to 0.3%. At this time, it is preferable that the impact value in the Charpy test at the liquid nitrogen temperature (77K) can be 50 J/cm 2 or more.

また、不可避的不純物として、少なくとも、Mn及びZrを0.05%以下としてもよい。このとき、母相強度をより高め得て好ましい。 Moreover, at least Mn and Zr may be 0.05% or less as unavoidable impurities. At this time, the matrix strength can be further increased, which is preferable.

なお、このような銅合金においては、例えば、保持温度を850~950℃とする溶体化処理を十分に行った後、所定の熱伝導度を得るよう450~550℃で保持する時効処理を行って、極低温環境下での機械物性に優れる銅合金を得るのである。 In addition, in such a copper alloy, for example, after sufficiently performing solution treatment at a holding temperature of 850 to 950 ° C., aging treatment is performed at 450 to 550 ° C. so as to obtain a predetermined thermal conductivity. Thus, a copper alloy having excellent mechanical properties in an extremely low temperature environment can be obtained.

次に、上記したような極低温部材用銅合金についての物性や機械的性質を調査する試験を行った結果について説明する。 Next, the results of tests conducted to investigate physical properties and mechanical properties of the above copper alloy for cryogenic members will be described.

図1に示す成分組成の銅合金、すなわち、実施例1及び実施例2について試験を実施した。実施例1、実施例2ともに、950℃で保持の後、水冷する溶体化処理によってCrを十分に固溶させて、550℃での時効処理によってNi-Si系金属間化合物を析出させたものである。 Tests were conducted on the copper alloys having the composition shown in FIG. 1, ie, Examples 1 and 2. In both Examples 1 and 2, after holding at 950 ° C., Cr is sufficiently dissolved by solution treatment of cooling with water, and Ni-Si intermetallic compound is precipitated by aging treatment at 550 ° C. is.

図2に各種試験の結果について示す。熱伝導度、熱膨張係数、引張試験、硬さ試験はいずれも室温環境下において実施し、衝撃試験については77K(液体窒素温度)で実施し、実施例2について4K(液体ヘリウム温度)でも衝撃試験を実施した。衝撃試験は、JIS Z 2242に準拠したシャルピー衝撃試験とした。 FIG. 2 shows the results of various tests. Thermal conductivity, thermal expansion coefficient, tensile test, and hardness test were all performed under room temperature environment, impact test was performed at 77 K (liquid nitrogen temperature), and Example 2 was impacted at 4 K (liquid helium temperature) A test was conducted. The impact test was a Charpy impact test conforming to JIS Z 2242.

同図に示すように、熱伝導度は実施例1及び実施例2ともに100W/m・K以上となり、熱膨張係数はいずれも17×10-6/Kであった。つまり、比較的高い熱伝導度を有するとともに、比較的小さな熱膨張係数を有する。これによって、温度変化によっても部材に大きな熱応力を与えることなく使用できる。例えば、リン青銅であれば、同等程度の熱膨張係数を有するものの、熱伝導度が実施例1及び実施例2に比べて小さく、温度変化に対して部材に比較的大きな熱応力を付与してしまう。 As shown in the figure, the thermal conductivity was 100 W/m·K or more in both Example 1 and Example 2, and the thermal expansion coefficient was 17×10 −6 /K in both cases. That is, it has a relatively high thermal conductivity and a relatively small coefficient of thermal expansion. As a result, even when the temperature changes, the member can be used without being subjected to a large thermal stress. For example, phosphor bronze has a similar coefficient of thermal expansion, but the thermal conductivity is smaller than those of Examples 1 and 2, and a relatively large thermal stress is applied to the member due to temperature changes. put away.

また、絶対温度2Kの極低温下での熱伝導率を測定した結果、4W/mKと超伝導状態にあるニオブ材の熱伝度率(10W/mK)よりも小さい値が得られた。本実施例の銅合金を超伝導空洞用クライオスタット内のパイプ配管などに使用すれば、外部からの熱侵入を大きく減らすことが可能となる。 Moreover, as a result of measuring the thermal conductivity at an extremely low temperature of 2K, a value of 4 W/mK, which is smaller than the thermal conductivity (10 W/mK) of a niobium material in a superconducting state, was obtained. If the copper alloy of this embodiment is used for pipe piping in a cryostat for superconducting cavities, it is possible to greatly reduce heat intrusion from the outside.

また、実施例1及び実施例2ともに引張強さは650MPa以上、耐力は550MPa以上と十分に高い値を示し、伸びも13%以上で十分であった。例えば、リン青銅であれば、伸びは同等程度であるものの、引張強さ、耐力はこれより低い傾向にある。また、硬さについても実施例1及び実施例2ともに210Hv以上を得られたが、リン青銅ではこれより低い傾向にある。 Moreover, both Example 1 and Example 2 exhibited sufficiently high values of tensile strength of 650 MPa or more and yield strength of 550 MPa or more, and elongation of 13% or more was sufficient. For example, phosphor bronze has similar elongation, but tends to have lower tensile strength and yield strength. Also, the hardness was 210 Hv or more in both Examples 1 and 2, but the phosphor bronze tends to be lower than this.

シャルピー衝撃試験については実施例1及び実施例2共に衝撃値を15J/cm以上と高い値を得た。特に、Snを0.1~0.3%の範囲で含む実施例2においては、50J/cm以上とさらに高い衝撃値を得ることができた。 As for the Charpy impact test, both Example 1 and Example 2 obtained a high impact value of 15 J/cm 2 or more. In particular, in Example 2 containing Sn in the range of 0.1 to 0.3%, a higher impact value of 50 J/cm 2 or more could be obtained.

以上のように、本実施例においては、高い熱伝導度と小さな熱膨張係数、また極低温で非常に小さな熱伝導度を有し、熱サイクルや極低温環境下での機械的性質の安定性に優れ、極低温では熱侵入を阻止できる。また、極低温でのシャルピー試験による衝撃値も高かった。また、実施例1及び実施例2で示した銅合金は極低温においても非磁性を示す。つまり、超伝導磁石のような極低温且つ高磁場中であっても機械的劣化を示さず、安定的に使用し得る。 As described above, in this example, it has a high thermal conductivity, a small thermal expansion coefficient, and a very low thermal conductivity at cryogenic temperatures, and the stability of mechanical properties in heat cycles and cryogenic environments and can block heat penetration at extremely low temperatures. In addition, the impact value in the Charpy test at extremely low temperatures was also high. Moreover, the copper alloys shown in Examples 1 and 2 exhibit non-magnetism even at extremely low temperatures. In other words, it does not exhibit mechanical deterioration even in extremely low temperatures and high magnetic fields like superconducting magnets, and can be used stably.

以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 Although the embodiments according to the present invention and modifications based thereon have been described above, the present invention is not necessarily limited to these, and a person skilled in the art can deviate from the gist of the present invention or the scope of the appended claims. Various alternatives and modifications may be found without further ado.

Claims (3)

質量%で、Ni:1.5~9.0%、Si:0.4~2.5%、Cr:0.2~1.5%を含有し、残部、Cu及び不可避的不純物とした成分組成を有し、
Ni/Si比を3.8~4.1として、Cu母相中にCrを固溶させ且つNi-Si系金属間化合物を析出させて、
室温における熱伝導度を100W/m・K以上とするとともに、液体窒素温度でのシャルピー試験(JIS Z 2242準拠)による衝撃値を15J/cm以上としたことを特徴とする極低温部材用銅合金。
% by mass, Ni: 1.5 to 9.0%, Si: 0.4 to 2.5%, Cr: 0.2 to 1.5%, the balance being Cu and inevitable impurities having the composition
By setting the Ni/Si ratio to 3.8 to 4.1, dissolving Cr in the Cu matrix and precipitating the Ni—Si intermetallic compound,
A copper for cryogenic parts, characterized by having a thermal conductivity of 100 W/m K or more at room temperature and an impact value of 15 J/cm 2 or more in a Charpy test (JIS Z 2242 compliant) at liquid nitrogen temperature. alloy.
前記成分組成は、Sn:0.1~0.3%を更に含むとともに、衝撃値を50J/cm以上としたことを特徴とする請求項1記載の極低温部材用銅合金。 2. The copper alloy for cryogenic members according to claim 1, wherein said composition further contains Sn: 0.1 to 0.3% and has an impact value of 50 J/cm 2 or more. 前記不可避的不純物として、少なくとも、Mn及びZrを0.05%以下としたことを特徴とする請求項1又は2に記載の極低温部材用銅合金。

3. The copper alloy for cryogenic members according to claim 1, wherein at least Mn and Zr are 0.05% or less as the unavoidable impurities.

JP2018171837A 2018-09-13 2018-09-13 Copper alloy for cryogenic parts Active JP7126656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018171837A JP7126656B2 (en) 2018-09-13 2018-09-13 Copper alloy for cryogenic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018171837A JP7126656B2 (en) 2018-09-13 2018-09-13 Copper alloy for cryogenic parts

Publications (2)

Publication Number Publication Date
JP2020041207A JP2020041207A (en) 2020-03-19
JP7126656B2 true JP7126656B2 (en) 2022-08-29

Family

ID=69797638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171837A Active JP7126656B2 (en) 2018-09-13 2018-09-13 Copper alloy for cryogenic parts

Country Status (1)

Country Link
JP (1) JP7126656B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223069A (en) 2007-03-12 2008-09-25 Miyoshi Gokin Kogyo Kk High-strength, high-conductivity copper alloy and its manufacturing method
JP2009235557A (en) 2008-03-07 2009-10-15 Miyoshi Gokin Kogyo Kk High-strength and high-conductivity copper alloy, and method for manufacturing the same
JP2012229465A (en) 2011-04-25 2012-11-22 Senju Metal Ind Co Ltd Sliding material, alloy for bearing, and multilayer metal material for bearing
JP2017172813A (en) 2016-03-18 2017-09-28 株式会社東芝 Cryogenic cooling apparatus and cryogenic cooling method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110146A (en) * 1991-10-21 1993-04-30 Hitachi Ltd Cryostat
JPH05253625A (en) * 1991-12-02 1993-10-05 Kobe Steel Ltd Method for working aluminum alloy plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223069A (en) 2007-03-12 2008-09-25 Miyoshi Gokin Kogyo Kk High-strength, high-conductivity copper alloy and its manufacturing method
JP2009235557A (en) 2008-03-07 2009-10-15 Miyoshi Gokin Kogyo Kk High-strength and high-conductivity copper alloy, and method for manufacturing the same
JP2012229465A (en) 2011-04-25 2012-11-22 Senju Metal Ind Co Ltd Sliding material, alloy for bearing, and multilayer metal material for bearing
JP2017172813A (en) 2016-03-18 2017-09-28 株式会社東芝 Cryogenic cooling apparatus and cryogenic cooling method

Also Published As

Publication number Publication date
JP2020041207A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
US6807812B2 (en) Pulse tube cryocooler system for magnetic resonance superconducting magnets
US6995562B2 (en) Conduction cooled passively-shielded MRI magnet
JP3972968B2 (en) Refrigerant recondensation system
Ciovati et al. Multi-metallic conduction cooled superconducting radio-frequency cavity with high thermal stability
JP6433196B2 (en) Stainless steel for low temperature applications
JPWO2010090151A1 (en) Method for producing high manganese spheroidal graphite cast iron
US20150015097A1 (en) Conduction-cooled superconducting rotating machine
JP7126656B2 (en) Copper alloy for cryogenic parts
JP4583048B2 (en) Rare earth magnet sealed body and method of manufacturing IPM motor
JP2021063242A (en) Stainless magnet
JP2010272745A (en) Superconducting coil and superconducting magnet device
Freudenberger et al. Mechanical behaviour of high nitrogen stainless steel reinforced conductor for use in pulsed high field magnets at cryogenic temperature
JP2007262582A (en) Superconducting magnetic component
Boffo et al. Performance of SCU15: The new conduction-cooled superconducting undulator for ANKA
Han et al. Characterization of nitronic-40 stainless steel shells
Murakami et al. Magnetic domain structure in the presence of very thin martensite plates: Electron holography study on a thin-foil Fe–31.2 at.% Pd alloy
Cruikshank et al. Mechanical design aspects of the LHC beam screen
Polinski Materials in cryogenics
Li et al. Temperature-dependent mechanical behavior of a nanostructured Ni–Fe alloy
Wang et al. The mechanism of multi-directional Invar effect in a cross-rolling TiNb alloy
JP5366391B2 (en) Superconducting element
EP2313537B1 (en) Austenitic alloy for cryogenic applications
Putselyk Short review on cryostats with superconducting magnets
Lebrun Cryogenic systems for accelerators
JP2016046278A (en) Magnetic field generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R150 Certificate of patent or registration of utility model

Ref document number: 7126656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150