JP5366391B2 - Superconducting element - Google Patents

Superconducting element Download PDF

Info

Publication number
JP5366391B2
JP5366391B2 JP2007307271A JP2007307271A JP5366391B2 JP 5366391 B2 JP5366391 B2 JP 5366391B2 JP 2007307271 A JP2007307271 A JP 2007307271A JP 2007307271 A JP2007307271 A JP 2007307271A JP 5366391 B2 JP5366391 B2 JP 5366391B2
Authority
JP
Japan
Prior art keywords
superconducting
organic polymer
superconducting element
pcs
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007307271A
Other languages
Japanese (ja)
Other versions
JP2009130336A (en
Inventor
一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007307271A priority Critical patent/JP5366391B2/en
Publication of JP2009130336A publication Critical patent/JP2009130336A/en
Application granted granted Critical
Publication of JP5366391B2 publication Critical patent/JP5366391B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To propose a superconductive element whose problem is solved that part of a superconductive wire is subjected to a normal electrical conduction transition and quenching is generated. <P>SOLUTION: In a permanent current switch (PCS) 10 shown in Fig.1, its superconductive wire 11 contains a hardened organic macromolecule 13. The organic macromolecule is prepared by impregnating hardening organic macromolecule whose viscosity is 200 (mPa S) or lower at 25&deg;C before hardening and thereafter being hardened at 60&deg;C or lower. A bending elastic modulus at 25&deg;C is 3 GPa or lower and no crack is created by a thermal shock of quenching from 25&deg;C to 77K. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、超電導素子に関し、特に磁場発生用コイルや永久電流スイッチなどとして好適な超電導素子に関するものである。   The present invention relates to a superconducting element, and more particularly to a superconducting element suitable as a magnetic field generating coil, a permanent current switch, or the like.

超電導素子は、磁気共鳴画像診断装置、NMR分析装置、単結晶引き上げ装置、磁気浮上列車、磁気分離装置、SMES(超電導電力貯蔵システム)等の超電導機器において、磁場を発生するための超電導コイルや、永久電流スイッチ(Persistent Current Switch、 以下PCS)として用いられている。   A superconducting element is a superconducting coil for generating a magnetic field in a superconducting device such as a magnetic resonance diagnostic imaging apparatus, an NMR analyzer, a single crystal pulling apparatus, a magnetic levitation train, a magnetic separation apparatus, a SMES (superconducting power storage system), It is used as a permanent current switch (PCS).

上記超電導コイルは、低損失で高磁場を出力させるためのものであり、例えばニオブ・チタン合金等の超電導物質を使用した超電導線を多数回巻回した構造を有する。これを冷却し超電導状態にして電流を流すことで高磁場を出力する超電導電磁石を得ることができる。   The superconducting coil is for outputting a high magnetic field with low loss, and has a structure in which a superconducting wire using a superconducting material such as a niobium-titanium alloy is wound many times. A superconducting electromagnet that outputs a high magnetic field can be obtained by cooling this to a superconducting state and passing a current.

PCSは、温度コントロールによって超電導線の常電導状態(抵抗状態)と超電導状態(無抵抗状態)の間を転移させて開閉動作するスイッチであり、巻回された超電導線にヒーターが熱的に接触する構造を有している。PCSを冷却した状態で上記ヒーターへの通電をON/OFFすることで超電導線を常電導状態から超電導状態に、あるいはその逆に転移させることができ、超電導電磁石を永久電流モードで運転することができる。   PCS is a switch that opens and closes by switching between the normal conducting state (resistance state) and the superconducting state (non-resistance state) of the superconducting wire by temperature control. The heater is in thermal contact with the wound superconducting wire. It has the structure to do. The superconducting wire can be switched from the normal conducting state to the superconducting state or vice versa by turning on / off the power to the heater with the PCS cooled, and the superconducting electromagnet can be operated in the permanent current mode. it can.

これらの超電導素子は熱的擾乱が僅かでもあると、超電導線の一部が容易に常電導転移し、さらにそれに伴う発熱により常電導転移が超電導素子全体に広がり、予期せぬ常電導転移、即ちクエンチが発生するという避けるべき事態が生じる。超電導素子においてクエンチが生じると、磁場を失うことはもとより大量の液体ヘリウムを消費する。冷媒を用いない間接冷却のコイルでも、再び超電導に復帰する温度まで冷却するために長時間を要する。従ってかかる問題が生じないように、斯界では超電導素子にはクエンチが発生し難くするために様々の対策がなされてきている。   In these superconducting elements, if the thermal disturbance is slight, a part of the superconducting wire easily undergoes normal conduction transition, and further, due to heat generation, the normal conduction transition spreads over the entire superconducting element. There is a situation to avoid that a quench occurs. When quenching occurs in a superconducting element, it loses a magnetic field as well as consumes a large amount of liquid helium. Even an indirect cooling coil that does not use a refrigerant takes a long time to cool to a temperature at which it returns to superconductivity again. Therefore, in order to prevent such a problem from occurring, various measures have been taken in this field to make it difficult for quenching to occur in superconducting elements.

例えば、超電導素子に用いられている超電導線に対しては、それが電磁力によって動かないように樹脂により強固にモールドされる。超電導素子の使用状態は、ほとんどの場合高磁場環境下で大電流が通電されるので、電流が流れる超電導線材には大きな電磁力が働く。この電磁力により超電導線が動くと熱が発生し、この熱でクエンチが発生する場合がある。このような線材の動きを防止するため、超電導素子内部では超電導線は硬化した有機高分子、例えば硬化エポキシ樹脂により含浸されて動かないように固定されるのが一般的である。   For example, a superconducting wire used in a superconducting element is firmly molded with resin so that it does not move due to electromagnetic force. In most cases, the superconducting element is used in such a way that a large current is applied in a high magnetic field environment, so that a large electromagnetic force acts on the superconducting wire through which the current flows. When the superconducting wire moves due to this electromagnetic force, heat is generated, and this heat may cause quenching. In order to prevent such movement of the wire, the superconducting wire is generally impregnated with a cured organic polymer such as a cured epoxy resin and fixed so as not to move inside the superconducting element.

特開平4−206506JP-A-4-206506 特開平11−140415JP-A-11-140415 特開2005−322831JP 2005-322831 A 特開2003−267766JP 2003-267766 A

上記のように、超電導素子は、超電導線を硬化した有機高分子でモールドした構造を有しているが、従来から当該分野で使用されてきた硬化性有機高分子では、硬化前の粘性が高く、そのために超電導線間に気泡(ボイド)が残存する問題があった。硬化した有機高分子と超電導線とでは、熱収縮差があるので超電導素子を冷却すると内部応力が発生し、さらに超電導素子の使用状態では内部の超電導線に大きな電磁力が働く。そのため、硬化した有機高分子内にボイドが発生し、それが残存していると超電導線を固定している有機高分子内に微小な割れ(クラック)が発生する。クラックが発生すると、その開放エネルギーにより熱が発生し、周囲の有機高分子および超電導線の温度が上昇し、超電導線の一部が常電導転移してクエンチに発展する。このように従来の超電導素子は、クラック発生によるクエンチが発生しやすい問題があった。   As described above, the superconducting element has a structure in which a superconducting wire is molded with a cured organic polymer, but the curable organic polymer that has been used in the field has a high viscosity before curing. For this reason, there is a problem that air bubbles (voids) remain between the superconducting wires. Since there is a difference in thermal shrinkage between the cured organic polymer and the superconducting wire, an internal stress is generated when the superconducting element is cooled, and a large electromagnetic force acts on the internal superconducting wire when the superconducting element is used. For this reason, voids are generated in the cured organic polymer, and if they remain, minute cracks are generated in the organic polymer fixing the superconducting wire. When a crack occurs, heat is generated by the open energy, the temperature of the surrounding organic polymer and the superconducting wire rises, and a part of the superconducting wire undergoes a normal conducting transition to develop into a quench. As described above, the conventional superconducting element has a problem that quenching is likely to occur due to the occurrence of cracks.

本発明は、従来技術における上記の問題点を解決することを課題とし、超電導素子内部のボイドの発生を抑え、クエンチしにくい超電導素子を提供するものであって、当該超電導素子は、ボビン状の巻枠に巻き回された超電導線と、超電導線の線間を埋める硬化有機高分子からなる超電導素子であって、前記硬化有機高分子は、25℃における粘度が190mPa・Sの未硬化の有機高分子を超電導線の線間に含浸させた状態で50℃で硬化し、25℃における曲げ弾性率が3GPaであり且つ温度が25℃である厚さ5mmの前記硬化有機高分子を液体窒素中に投入した際にクラック発生がないことを特徴とするものである。 An object of the present invention is to provide a superconducting element that suppresses the generation of voids inside the superconducting element and is difficult to quench, with the object of solving the above-described problems in the prior art, and the superconducting element has a bobbin shape. A superconducting element made of a superconducting wire wound around a winding frame and a cured organic polymer that fills the space between the superconducting wires, the cured organic polymer having an uncured organic viscosity of 190 mPa · S at 25 ° C. The cured organic polymer having a thickness of 5 mm, which is cured at 50 ° C. with the polymer impregnated between the lines of the superconducting wire, has a flexural modulus of 3 GPa at 25 ° C. , and a temperature of 25 ° C. is liquid. It is characterized in that no cracks are generated when it is introduced into nitrogen .

超電導線間を良好に樹脂で充填することができるので、クエンチが発生し難い超電導素子を製造することができる。
以下、本発明を実施の形態、実施例、および比較例により具体的に説明する。
Since the space between the superconducting wires can be satisfactorily filled with the resin, it is possible to manufacture a superconducting element in which quenching hardly occurs.
Hereinafter, the present invention will be specifically described by way of embodiments, examples, and comparative examples.

実施の形態1.
図1および図2は、本発明の実施の形態1を説明するものであって、図1は本発明の超電導素子の一例としての永久電流スイッチ10(PCS10)の断面図であり、図2はPCS10を超電導電磁石に組み込んだ回路図例である。図1において、PCS10は、PCS用巻枠12に巻回された超電導線11、超電導線11の線間を埋める硬化有機高分子13、およびヒーター14(細長い白地部)から構成されている。超電導線11としては、例えばニオブ・チタン合金等の超電導物質からなるものが用いられ、硬化有機高分子13としては、例えば後記するエポキシ樹脂の硬化物が用いられていて超電導線11を固定すると共に電気的に絶縁している。PCS用巻枠12としては、例えばガラス・エポキシやステンレス等の非磁性材料で製作されたものが用いられ、超電導線11の巻芯として機能する。ヒーター14は、超電導線11と熱的に接触していて超電導線11と共に硬化有機高分子13内に埋め込まれている。
Embodiment 1 FIG.
FIG. 1 and FIG. 2 explain Embodiment 1 of the present invention. FIG. 1 is a cross-sectional view of a permanent current switch 10 (PCS 10) as an example of a superconducting element of the present invention. It is the example of a circuit diagram which incorporated PCS10 in the superconducting electromagnet. In FIG. 1, a PCS 10 is composed of a superconducting wire 11 wound around a PCS winding frame 12, a cured organic polymer 13 filling the space between the superconducting wires 11, and a heater 14 (elongated white background portion). As the superconducting wire 11, for example, a superconducting material such as niobium / titanium alloy is used. As the cured organic polymer 13, for example, a cured product of an epoxy resin described later is used to fix the superconducting wire 11. It is electrically insulated. The PCS reel 12 is made of a nonmagnetic material such as glass, epoxy, or stainless steel, and functions as the core of the superconducting wire 11. The heater 14 is in thermal contact with the superconducting wire 11 and is embedded in the cured organic polymer 13 together with the superconducting wire 11.

実施の形態1のPCS10は、次ぎの工程を経て製造される。即ち、超電導線11がPCS用巻枠12を巻芯として超電導線11の固定を強固なものとするために張力をかけて巻回され、その巻回後にヒーター14が取り付けられる。その後、それらが適当な容器に入れられて真空引きして巻線間の空気が除去される。一方、含浸用の前記有機高分子の未硬化物もそれの貯槽内で別途真空引きにて当該未硬化物に溶解している空気あるいはその他の溶存ガスが脱気される。   The PCS 10 according to the first embodiment is manufactured through the following steps. That is, the superconducting wire 11 is wound with tension to make the superconducting wire 11 firmly fixed with the PCS reel 12 as a core, and the heater 14 is attached after the winding. They are then placed in a suitable container and evacuated to remove the air between the windings. On the other hand, the uncured product of the organic polymer for impregnation is separately evacuated in the storage tank, and air or other dissolved gas dissolved in the uncured product is degassed.

溶存ガスの除去後、真空に保持されている上記容器内に当該未硬化物を流し込み、巻線内および巻線間に未硬化物を浸透させる。その際、未硬化物による良好な含浸を達成するために、必要に応じて加圧と除圧とを繰り返す真空加圧含浸法が推奨される。また、硬化前の上記未硬化物に水分が混入あるいは残存すると硬化不良を起こすので、硬化に先立って未硬化物、超電導線11およびPCS用巻枠12を加熱や真空、あるいは加熱下での真空などにより乾燥することが好ましい。上記の含浸後、必要に応じて加熱して未硬化物を硬化させ、かくして超電導素子が完成する。本発明では、上記未硬化物は60℃以下の比較的低温で硬化せしめられるため、上記の硬化処理は例えば50℃で12時間程度の真空下加熱が好ましい。なお当該加熱中に浸透した樹脂が漏れ出すと巻線内部に空隙が発生する問題があるので、これを防ぐために含浸前に適当な型や容器などに入れて含浸し加熱するとよい。型や容器を使用した場合、硬化後にそれらは除去される。   After removal of the dissolved gas, the uncured material is poured into the container held in a vacuum, and the uncured material is infiltrated into and between the windings. At that time, in order to achieve good impregnation with the uncured product, a vacuum pressure impregnation method in which pressurization and depressurization are repeated as necessary is recommended. Further, if moisture is mixed in or remains in the uncured material before curing, poor curing occurs. Therefore, prior to curing, the uncured material, the superconducting wire 11 and the PCS reel 12 are heated, vacuumed, or vacuumed under heating. It is preferable to dry by, for example. After the above impregnation, the uncured material is cured by heating as necessary, thus completing the superconducting element. In the present invention, since the uncured product is cured at a relatively low temperature of 60 ° C. or less, the curing treatment is preferably performed at 50 ° C. for about 12 hours under vacuum. If the resin that has permeated during the heating leaks, there is a problem that voids are generated inside the winding. In order to prevent this, it is preferable to impregnate and heat in an appropriate mold or container before impregnation. If molds or containers are used, they are removed after curing.

本発明において、上記硬化有機高分子の未硬化時における粘度が過大であると、超電導線間や超電導線と巻枠との間の空隙に硬化前の有機高分子が充填され難くて硬化後にボイドが残存する問題があり、硬化温度が高過ぎると、有機高分子と超電導線との熱収縮差が大きくて残存内部応力が大きくなる問題があり、硬化有機高分子の室温における曲げ弾性率が過大であると応力がかかった場合に割れが発生し易い問題があり、さらに硬化有機高分子のうちで液体窒素中に投入した際にクラック発生するものでは、極低温での使用時でもクラック発生し易い問題がある。   In the present invention, if the viscosity of the cured organic polymer when it is uncured is excessive, it is difficult to fill the gap between the superconducting wires or between the superconducting wire and the winding frame with the organic polymer before curing, and voids after curing. If the curing temperature is too high, the difference in thermal shrinkage between the organic polymer and the superconducting wire will be large, resulting in a large residual internal stress. The bending organic modulus of the cured organic polymer will be excessive at room temperature. There is a problem that cracks are likely to occur when stress is applied, and among the hardened organic polymers that crack when they are put into liquid nitrogen, cracks occur even when used at extremely low temperatures. There is an easy problem.

本発明においては、上記の諸問題を解決するために、上記硬化有機高分子として、その未硬化時における25℃での粘度が200mPa・S以下であるものが用いられ、当該未硬化は、超電導線11に含浸させた状態で60℃以下で硬化してなるものが用いられ、上記硬化有機高分子は25℃における曲げ弾性率が3GPa以下であるものが用いられ、さらに温度が25℃である所定の厚さの上記硬化有機高分子を液体窒素中に投入した際にクラック発生がないもの、即ち耐熱衝撃性を有するものが用いられる。なお、上記の耐熱衝撃性は、室温に保持された厚さ1mm程度の被試験の硬化有機高分子片を液体窒素中に投入し、その際の肉眼観察によるクラック発生の有無にて調べることができる。かかる硬化性有機高分子および硬化有機高分子(以下、両者を纏めて本発明有機高分子と総称する。)としては、従来から周知あるいは公知の各種の硬化性有機高分子中から硬化前後の特性を実測して、上記の要件に合致するものを選択し、採用することができる。   In the present invention, in order to solve the above problems, as the cured organic polymer, a polymer having a viscosity at 25 ° C. of 200 mPa · S or less when uncured is used. What was hardened | cured at 60 degrees C or less in the state impregnated at the wire | line 11 is used, and the above-mentioned hardening organic polymer is a thing whose bending elastic modulus in 25 degreeC is 3 GPa or less, and temperature is 25 degreeC When the cured organic polymer having a predetermined thickness is introduced into liquid nitrogen, one that does not generate cracks, that is, one having thermal shock resistance is used. The thermal shock resistance described above can be examined by checking whether or not a cured organic polymer piece to be tested having a thickness of about 1 mm kept at room temperature is placed in liquid nitrogen, and cracks are observed by visual observation. it can. Examples of the curable organic polymer and the curable organic polymer (hereinafter collectively referred to as the organic polymer of the present invention) include properties before and after curing among various conventionally known curable organic polymers. Can be selected and adopted that meets the above requirements.

上記した本発明有機高分子としては、例えばエポキシ樹脂中では、ブチルグリシジルエーテルなどの希釈剤を混合したビスフェノールA型エポキシ樹脂を、硬化剤として変性脂肪族ポリアミンを用いて硬化したものが例示される。なお当該エポキシ樹脂の硬化前に、消泡剤および浸透性助剤を混合するとよい。上記消泡剤としては、例えばジメチルシリコーンオイル、フッ素変性シリコーンオイル等のシリコーン系消泡剤が例示される。浸透性助剤としては、例えば高級アルコールエチレンオキサイド付加物、アルキルフェノールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、高級アルキルアミンエチレンオキサイド付加物、ソルビトール及びソルビタンの脂肪酸エステル、ショ糖脂肪酸エステル、フッ素系界面活性剤等の界面活性剤などが例示される。   Examples of the above-described organic polymer of the present invention include, for example, epoxy resins obtained by curing a bisphenol A type epoxy resin mixed with a diluent such as butyl glycidyl ether using a modified aliphatic polyamine as a curing agent. . In addition, it is good to mix an antifoamer and a penetration support agent before hardening of the said epoxy resin. Examples of the antifoaming agent include silicone antifoaming agents such as dimethyl silicone oil and fluorine-modified silicone oil. Examples of penetration aids include higher alcohol ethylene oxide adducts, alkylphenol ethylene oxide adducts, fatty acid ethylene oxide adducts, higher alkylamine ethylene oxide adducts, sorbitol and sorbitan fatty acid esters, sucrose fatty acid esters, and fluorine-based interfaces. Examples of the surfactant include surfactants.

ビスフェノールA型エポキシ樹脂にブチルグリシジルエーテルなどの希釈剤を混合すると、未硬化時の樹脂粘性を下げて硬化後に樹脂中や線材同士間でのボイド発生が防止され、柔軟性を有し可撓性が高いため耐熱衝撃性に勝れたものが得られる。また、消泡剤はボイドの発生を抑え、浸透性助剤は超電導線とエポキシ樹脂の接着性を向上させる効果がある。かかる添加剤が配合されたエポキシ樹脂は、上記の諸効果により従来のエポキシ樹脂と比較して耐熱衝撃性が高いものとなり、この結果、クエンチを起こし難いPCSを製作することができる。   When a diluent such as butyl glycidyl ether is mixed with bisphenol A type epoxy resin, the viscosity of the uncured resin is lowered to prevent voids from occurring in the resin and between the wires after curing. Therefore, it is possible to obtain a material having excellent thermal shock resistance. Further, the antifoaming agent suppresses the generation of voids, and the permeability aid has an effect of improving the adhesion between the superconducting wire and the epoxy resin. Epoxy resins containing such additives have high thermal shock resistance as compared with conventional epoxy resins due to the above-mentioned effects, and as a result, a PCS that hardly causes quenching can be produced.

次に実施の形態1におけるPCS10の超電導電磁石への適用について説明する。図2は、実施の形態1におけるPCS10を超電導電磁石に組み込んだ回路図である。図2において、当該超電導電磁石は、超電導線11とヒーター14とからなるPCS10、超電導コイル22、ダイオード23、低温容器24、励磁電源25、PCS用電源26、PCS用電源スイッチ27、およびヒーター14から構成されている。図2において、複数個(図2では2個の例を示す。)の超電導コイル22が直列に接続されており、所望の磁場を発生する。超電導コイル22の直列接続の両端には、PCS10、および逆並列に組み合わされたダイオード23が接続されている。   Next, application of the PCS 10 in the first embodiment to a superconducting electromagnet will be described. FIG. 2 is a circuit diagram in which the PCS 10 according to the first embodiment is incorporated into a superconducting electromagnet. In FIG. 2, the superconducting electromagnet includes a PCS 10 composed of a superconducting wire 11 and a heater 14, a superconducting coil 22, a diode 23, a cryogenic vessel 24, an excitation power supply 25, a PCS power supply 26, a PCS power switch 27, and a heater 14. It is configured. In FIG. 2, a plurality of superconducting coils 22 (two examples are shown in FIG. 2) are connected in series to generate a desired magnetic field. The PCS 10 and the diode 23 combined in antiparallel are connected to both ends of the series connection of the superconducting coil 22.

PCS10、超電導コイル22、およびダイオード23は電磁石内部の構成要素であり、低温容器24内で液体ヘリウム中に浸漬されている。図示しないが、低温容器24は、液体ヘリウムを保持するヘリウム槽、外部からの熱輻射を遮断する熱シールド、全体を真空断熱するための真空槽、熱シールド、ヘリウム槽を冷却する極低温冷凍機からなり、液体ヘリウムの蒸発を抑える構造を有している。励磁電源25は、超電導電磁石のコイル回路に直流電流を流す。PCS用電源26は、PCS10のヒーター14に接続されている。PCS用電源スイッチ27をONすることによりヒーター14に電流が供給され、PCS10内の超電導線11は常電導状態に転移する。   The PCS 10, the superconducting coil 22, and the diode 23 are components inside the electromagnet, and are immersed in liquid helium in the cryogenic vessel 24. Although not shown, the cryogenic container 24 includes a helium tank for holding liquid helium, a heat shield for blocking external heat radiation, a vacuum tank for thermally insulating the whole, a heat shield, and a cryogenic refrigerator for cooling the helium tank. And has a structure that suppresses evaporation of liquid helium. The excitation power supply 25 supplies a direct current to the coil circuit of the superconducting electromagnet. The PCS power supply 26 is connected to the heater 14 of the PCS 10. When the PCS power switch 27 is turned on, a current is supplied to the heater 14, and the superconducting wire 11 in the PCS 10 changes to a normal conducting state.

上記超電導電磁石を励磁する際にはまず、PCS用電源スイッチ27を閉じてPCS10のヒーター14に電流を流し超電導線11を加熱することにより、PCS10を常電導状態にする。この状態で、ダイオード23のターンオン電圧以下の電圧を励磁電源25にて印加して電流を流すと、超電導コイル22は電気抵抗がゼロに、一方PCS10は高抵抗状態であるので、電流は全て超電導コイル22に流れる。このようにして、所望の磁場出力が得られる電流値まで、超電導コイル22に流れている電流値を上げる。その後PCS21用電源スイッチ27を開にし、PCS10のヒーター14への通電をやめると、PCS10の超電導線11は常電導状態から超電導状態に転移し、超電導コイル22と接続されている回路の電気抵抗がゼロになる。   When exciting the superconducting magnet, first, the PCS power switch 27 is closed and a current is passed through the heater 14 of the PCS 10 to heat the superconducting wire 11, thereby bringing the PCS 10 into a normal conducting state. In this state, when a voltage equal to or lower than the turn-on voltage of the diode 23 is applied by the excitation power supply 25 and a current is passed, the superconducting coil 22 has zero electrical resistance, while the PCS 10 is in a high resistance state, so It flows to the coil 22. In this way, the current value flowing through the superconducting coil 22 is increased to a current value at which a desired magnetic field output can be obtained. After that, when the power switch 27 for the PCS 21 is opened and the energization of the heater 14 of the PCS 10 is stopped, the superconducting wire 11 of the PCS 10 changes from the normal conducting state to the superconducting state, and the electric resistance of the circuit connected to the superconducting coil 22 is reduced. It becomes zero.

ここで励磁電源25の出力電流を下げると、励磁電源25と超電導コイル22の回路を流れていた電流はPCS10に分流し、最終的に励磁電源25の電流は全てPCS10と超電導コイル22からなる回路上を流れることになる。かくして超電導電磁石は永久電流モードと呼ばれる運転モードに入り、外部からの電源供給なしに磁場を発生し続けることとなる。通常、永久電流モードになった超電導電磁石からは、励磁電源25、PCS用電源26を切り離して運転する。   Here, when the output current of the excitation power supply 25 is lowered, the current flowing through the circuit of the excitation power supply 25 and the superconducting coil 22 is shunted to the PCS 10, and finally all the current of the excitation power supply 25 is a circuit composed of the PCS10 and the superconducting coil 22. Will flow over. Thus, the superconducting electromagnet enters an operation mode called a permanent current mode and continues to generate a magnetic field without external power supply. Usually, the superconducting electromagnet in the permanent current mode is operated with the excitation power supply 25 and the PCS power supply 26 disconnected.

永久電流モード中の超電導電磁石を消磁する場合は、上記と逆に次のイ〜ニの工程を経る。イ:励磁電源25とPCS用電源26を超電導電磁石に接続する、ロ:励磁電源25から電流を流し、超電導コイル22に流れている電流値まで上げる、ハ:PCS10のヒーター14に通電し、PCS10の超電導線11を常電導状態に転移させる、ニ:励磁電源25の電流値を下げ、超電導コイル22を流れる電流を下げる。   In order to demagnetize the superconducting electromagnet in the permanent current mode, the following steps (i) to (d) are performed in reverse to the above. A: Excitation power supply 25 and PCS power supply 26 are connected to the superconducting electromagnet. B: Current is supplied from the excitation power supply 25 to the current value flowing through the superconducting coil 22. C: The heater 14 of the PCS 10 is energized and PCS10 The superconducting wire 11 is transferred to the normal conducting state. D: The current value of the exciting power supply 25 is lowered, and the current flowing through the superconducting coil 22 is lowered.

上記のように、PCS10は超電導電磁石において用いられ、超電導線11には高磁場環境で大電流が流れることとなり、大きな電磁力が働く。例えば、5000ガウスの磁場環境で500アンペアの電流が流れた場合、超電導線11が磁場の方向と直交しているとすれば、超電導線11に働く電磁力の大きさは1メートルあたり250Nとなる。このような大きな電磁力が働くことにより、超電導線11が動いたり、超電導線11を固定しているエポキシ樹脂などの硬化有機高分子13(図1参照)にクラックが入ったりすると、超電導線11がクエンチを起こす原因となるので、超電導線11を含浸する硬化有機高分子13には、超電導線間の隙間やボイドができる限り少ないことが求められる。   As described above, the PCS 10 is used in a superconducting electromagnet, and a large current flows through the superconducting wire 11 in a high magnetic field environment, and a large electromagnetic force works. For example, when a current of 500 amperes flows in a magnetic field of 5000 gauss, if the superconducting wire 11 is orthogonal to the direction of the magnetic field, the magnitude of the electromagnetic force acting on the superconducting wire 11 is 250 N per meter. . When such a large electromagnetic force works, the superconducting wire 11 moves, or when a crack occurs in the cured organic polymer 13 such as an epoxy resin (see FIG. 1) fixing the superconducting wire 11, the superconducting wire 11. As a result, the cured organic polymer 13 impregnated with the superconducting wire 11 is required to have as few gaps or voids as possible between the superconducting wires.

実施の形態2.
前記実施の形態1では、耐クラック性の高い硬化有機高分子13を含むPCS10に関するものであるが、硬化有機高分子13と同様のものを有する超電導コイルの製作に適用することで、クエンチを起こし難い磁場発生用コイルを製作することができる。図3および図4は、実施の形態2として本発明の超電導素子の他の例である磁場発生用コイルを説明するものであって、図3は磁場発生用コイル30の平面図であり、図4は図3のA−A線断面図である。図3および図4において、当該磁場発生用コイル30は、磁場発生用コイル用巻枠31、当該巻枠31に巻回された超電導線33、および超電導線33の線間を埋める硬化有機高分子32から構成されている。
Embodiment 2. FIG.
The first embodiment relates to the PCS 10 including the hardened organic polymer 13 having high crack resistance. However, when applied to the manufacture of a superconducting coil having the same material as the hardened organic polymer 13, the quench is caused. Difficult magnetic field generating coils can be manufactured. 3 and 4 illustrate a magnetic field generating coil as another example of the superconducting element of the present invention as the second embodiment. FIG. 3 is a plan view of the magnetic field generating coil 30. FIG. 4 is a cross-sectional view taken along line AA of FIG. 3 and 4, the magnetic field generating coil 30 includes a magnetic field generating coil winding frame 31, a superconducting wire 33 wound around the winding frame 31, and a cured organic polymer that fills the space between the superconducting wires 33. 32.

巻枠31は、その胴部が図示するように中空となっている管状体であって、当該中空の内部の矢印は、磁場発生用コイル30が発生する磁場の方向を示す。また巻枠31は、発生する磁場に影響を及ぼさないように例えばオーステナイト系ステンレスで製作されるが、アルミニウム、チタン、あるいはその他の非磁性体で製作されていてもよい。また、磁芯としての機能を兼ねさせたい場合には、例えば鉄などの強磁性体を採用することもある。超電導線33は、大きな電磁力に耐えるために巻枠31に例えば数10kgの高張力で巻回されており、巻枠31には大きな機械的強度が求められる。   The reel 31 is a tubular body whose body is hollow as shown in the figure, and the arrow inside the hollow indicates the direction of the magnetic field generated by the magnetic field generating coil 30. The reel 31 is made of, for example, austenitic stainless steel so as not to affect the generated magnetic field, but may be made of aluminum, titanium, or other nonmagnetic material. In addition, when it is desired to function as a magnetic core, a ferromagnetic material such as iron may be employed. The superconducting wire 33 is wound around the reel 31 with a high tension of, for example, several tens of kg in order to withstand a large electromagnetic force, and the reel 31 is required to have a high mechanical strength.

超電導線33は、ニオブ・チタン合金等のフィラメントを超電導体とし、それを銅の安定化材中に埋め込んだ構造を有しているが、超電導体としてNbSn、MgBなど、安定化材としてアルミニウムやその他の材質を利用してもよい。巻枠31に超電導線33が巻回されている隙間には、エポキシ樹脂32が埋め込まれており、超電導線33を強固に固定している。超電導線33の線間は、エポキシ樹脂などの硬化有機高分子32を実施の形態1と同様の手順により真空含浸することで隙間なく充填される。 The superconducting wire 33 has a structure in which a filament such as a niobium / titanium alloy is used as a superconductor and is embedded in a copper stabilizing material, but a stabilizing material such as Nb 3 Sn or MgB 2 is used as the superconductor. Aluminum or other materials may be used. An epoxy resin 32 is embedded in the gap around which the superconducting wire 33 is wound around the winding frame 31, and the superconducting wire 33 is firmly fixed. The space between the superconducting wires 33 is filled without gaps by vacuum impregnation with a cured organic polymer 32 such as an epoxy resin by the same procedure as in the first embodiment.

次に実施の形態2に係る磁場発生用コイル30の動作について説明する。超電導コイル、PCS、その他の構成要素の接続状態および運転方法は、実施の形態1における超電導電磁石と同様である。磁場発生用コイル30に電流が流れることにより、高磁場が発生するが、その際、磁場発生用コイル30を形成する超電導線には大きな電磁力が働くため、同コイル30内部に応力が発生する。この応力により硬化有機高分子32にクラックが発生すると、クラックのエネルギー解放により、同コイル30がクエンチすることとなる。実施の形態2における硬化有機高分子32としては、例えば前記実施の形態1で説明したように、エポキシ樹脂に硬化剤、消泡剤、浸透性助剤などを混合したものが例示される。   Next, the operation of the magnetic field generating coil 30 according to the second embodiment will be described. The connection state and operation method of the superconducting coil, PCS, and other components are the same as those of the superconducting electromagnet in the first embodiment. When a current flows through the magnetic field generating coil 30, a high magnetic field is generated. At that time, a large electromagnetic force acts on the superconducting wire forming the magnetic field generating coil 30, so that stress is generated inside the coil 30. . When a crack occurs in the cured organic polymer 32 due to this stress, the coil 30 is quenched by releasing the energy of the crack. As the cured organic polymer 32 in the second embodiment, for example, as described in the first embodiment, a mixture of an epoxy resin with a curing agent, an antifoaming agent, a permeability aid, and the like is exemplified.

次に本発明を実施例および比較例により一層詳細に説明するが、エポキシ樹脂に他の成分を混合した混合物の特性は、以下に示す方法および条件で測定されている。粘度(mPa・S);JIS−C−2103、比重(25℃);JIS−C−2103、引張強度(25℃、N/mm);ASTM−D−638、引張り弾性率(25℃、GPa);ASTM−D−638、曲げ強度(25℃、N/mm);ASTM−D−790、曲げ弾性率(25℃、GPa);ASTM−D−790、ガラス転移温度(℃);DSC法、線膨脹係数(×10−5)、接着強度(MPa);SUS−SUS間の接着性、絶縁破壊強さ(kv/mm);JIS−C−2110、耐クラック性;厚さ5mmの試験体を25℃から液体窒素(77K)に投入して急冷した際での目視によるクラック発生の有無。 Next, the present invention will be described in more detail with reference to Examples and Comparative Examples. The characteristics of a mixture in which other components are mixed with an epoxy resin are measured by the following methods and conditions. Viscosity (mPa · S); JIS-C-2103, specific gravity (25 ° C.); JIS-C-2103, tensile strength (25 ° C., N / mm 2 ); ASTM-D-638, tensile modulus (25 ° C., GP-A); ASTM-D-638, bending strength (25 ° C., N / mm 2 ); ASTM-D-790, flexural modulus (25 ° C., GPa); ASTM-D-790, glass transition temperature (° C.); DSC method, linear expansion coefficient (× 10-5), adhesive strength (MPa); SUS-SUS adhesion, dielectric breakdown strength (kv / mm); JIS-C-2110, crack resistance; thickness 5 mm The presence or absence of visual cracking when the test specimen was put into liquid nitrogen (77K) from 25 ° C. and rapidly cooled.

実施例1.
主剤として25℃における粘度;1000mPa・S、比重;1.14、引火点;79のビスフェノールA型エポキシ樹脂100質量部と硬化剤として25℃の粘度;9mPa・S、比重;0.95、引火点;125℃の変性脂肪族ポリアミン30質量部との混合物が用いられた。当該混合物は、未硬化時における25℃および40℃における各粘度が190mPa・Sおよび80mPa・Sであり、これを50℃で12時間保持して硬化した。得られた硬化物は、引張強度;58N/mm、引張り弾性率;2.6GPa、曲げ強度;80N/mm、曲げ弾性率3GPa、ガラス転移温60℃)、線膨脹係数7.5×10−5、接着強度15.7MPa、絶縁破壊強さ18kv/mm、であり、耐クラック性試験においてクラック発生は無かった。
Example 1.
Viscosity at 25 ° C. as main agent: 1000 mPa · S, specific gravity: 1.14, flash point: 100 parts by mass of 79 bisphenol A type epoxy resin and viscosity at 25 ° C. as curing agent: 9 mPa · S, specific gravity: 0.95, ignition Point: A mixture with 30 parts by mass of a modified aliphatic polyamine at 125 ° C. was used. The mixture had a viscosity of 190 mPa · S and 80 mPa · S at 25 ° C. and 40 ° C. when uncured, and was cured by holding at 50 ° C. for 12 hours. The obtained cured product has a tensile strength of 58 N / mm 2 , a tensile elastic modulus of 2.6 GPa, a bending strength of 80 N / mm 2 , a bending elastic modulus of 3 GPa, a glass transition temperature of 60 ° C., and a linear expansion coefficient of 7.5 ×. 10 −5 , adhesive strength 15.7 MPa, dielectric breakdown strength 18 kv / mm, and no crack was generated in the crack resistance test.

上記混合物と同じ組成の未硬化物を前記実施の形態1のエポキシ樹脂として採用し、超電導線として外部磁場3Tでの臨界電流1000Aのものを採用し、当該実施の形態で説明した方法で使用し、50℃で12時間保持して硬化して実施の形態1の永久電流スイッチを製造した。かくして製造された永久電流スイッチに、外部印加磁場3Tの条件下で通電し電流を除々に上げていったところ、通電電流910A(負荷率91%)までクエンチが発生しなかった。   An uncured material having the same composition as the above mixture is employed as the epoxy resin of the first embodiment, and a superconducting wire having a critical current of 1000 A in an external magnetic field of 3T is employed in the method described in the present embodiment. The permanent current switch of Embodiment 1 was manufactured by holding at 50 ° C. for 12 hours and curing. When the permanent current switch thus manufactured was energized under the condition of the externally applied magnetic field 3T and the current was gradually increased, no quenching occurred until the energization current 910A (load factor 91%).

実施例2.
実施例1と同じ組成の未硬化物を前記実施の形態2のエポキシ樹脂3として採用し、超電導線として磁場5Tでの臨界電流973A、磁場6Tでの臨界電流760Aのものを採用し、当該実施の形態で説明した方法で使用し、50℃で12時間保持して硬化して実施の形態1の磁場発生用コイルを製造した。かくして製造された磁場発生用コイルに、外部印加磁場3Tの条件下で通電し電流を除々に上げていったところ、通電電流514Aまではクエンチは発生しなかった。この時の超電導線の臨界電流に対する負荷率は94%であった。
Example 2
An uncured material having the same composition as that of Example 1 is employed as the epoxy resin 3 of the second embodiment, and a superconducting wire having a critical current of 973A in a magnetic field of 5T and a critical current of 760A in a magnetic field of 6T is employed. The magnetic field generating coil of the first embodiment was manufactured by using the method described in the above embodiment, and curing it by holding at 50 ° C. for 12 hours. When the magnetic field generating coil thus manufactured was energized under the condition of the externally applied magnetic field 3T and the current was gradually increased, no quenching occurred until the energizing current 514A. The load factor with respect to the critical current of the superconducting wire at this time was 94%.

比較例1
主剤として25℃における粘度;500mPa・S、比重;1.14、引火点;226℃のビスフェノールA型エポキシ樹脂100質量部と硬化剤として25℃の粘度;65mPa・S、比重;1.21、引火点;157℃の変性脂肪族ポリアミン86質量部との混合物が用いられた。当該混合物は、未硬化時における25℃、40℃および60℃における各粘度が500mPa・S、145mPa・S,および50mPa・Sであり、これを150℃で15時間保持して硬化した。得られた硬化物は、引張強度;70N/mm、引張り弾性率;2.3GPa、曲げ強度;130N/mm、曲げ弾性率3.5GPa、ガラス転移温93℃、線膨脹係数7.16×10−5、接着強度16.2MPa、絶縁破壊強さ25kv/mm、であり、耐クラック性試験においてクラック発生が認められた。
Comparative Example 1
Viscosity at 25 ° C. as main agent: 500 mPa · S, specific gravity: 1.14, flash point: 100 parts by mass of 226 ° C. bisphenol A type epoxy resin and viscosity at 25 ° C. as curing agent: 65 mPa · S, specific gravity: 1.21, Flash point: A mixture with 86 parts by weight of a modified aliphatic polyamine at 157 ° C. was used. The mixture had a viscosity of 500 mPa · S, 145 mPa · S, and 50 mPa · S at 25 ° C., 40 ° C., and 60 ° C. when uncured, and was cured by being held at 150 ° C. for 15 hours. The resulting cured product had a tensile strength; 70N / mm 2, tensile modulus; 2.3 GPa, flexural strength; 130N / mm 2, flexural modulus 3.5 GPa, a glass transition temperature of 93 ° C., the linear expansion coefficient 7.16 × 10 −5 , adhesive strength 16.2 MPa, dielectric breakdown strength 25 kv / mm, and occurrence of cracks was observed in the crack resistance test.

上記混合物と同じ組成の未硬化物を前記実施の形態1のエポキシ樹脂として採用し、超電導線として外部磁場3Tでの臨界電流1000Aのものを採用し、当該実施の形態で説明した方法で使用し、50℃で12時間保持して硬化して実施の形態1の永久電流スイッチを製造した。かくして製造された永久電流スイッチに、外部印加磁場3Tの条件下で通電し電流を除々に上げていったところ、通電電流800A(負荷率80%)でクエンチが発生した。   An uncured material having the same composition as the above mixture is employed as the epoxy resin of the first embodiment, and a superconducting wire having a critical current of 1000 A in an external magnetic field of 3T is employed in the method described in the present embodiment. The permanent current switch of Embodiment 1 was manufactured by holding at 50 ° C. for 12 hours and curing. When the permanent current switch thus manufactured was energized under the condition of the externally applied magnetic field 3T and the current was gradually increased, quenching occurred at an energizing current of 800 A (load factor 80%).

比較例2
上記混合物と同じ組成の未硬化物を前記実施の形態2のエポキシ樹脂として採用し、磁場5Tでの臨界電流973A、磁場6Tでの臨界電流760Aのものを採用し、当該実施の形態で説明した方法で使用し、50℃で12時間保持して硬化して実施の形態2の磁場発生用コイルを製造した。かくして製造された磁場発生用コイルに外部印加磁場3Tの条件下で通電し電流を除々に上げていったところ、通電電流355Aでクエンチが発生した。この時の超電導線の臨界電流に対する負荷率は65%であった。
Comparative Example 2
An uncured material having the same composition as the above mixture is employed as the epoxy resin of the second embodiment, and a critical current of 973A at a magnetic field of 5T and a critical current of 760A at a magnetic field of 6T are employed. The coil for magnetic field generation according to the second embodiment was manufactured by using the method and curing by holding at 50 ° C. for 12 hours. When the current-generating coil thus manufactured was energized under the condition of the externally applied magnetic field 3T and the current was gradually increased, quenching occurred with the energizing current 355A. The load factor with respect to the critical current of the superconducting wire at this time was 65%.

本発明超電導素子は、永久電流スイッチや磁場発生用コイルとして利用される。   The superconducting element of the present invention is used as a permanent current switch or a magnetic field generating coil.

本発明の実施の形態1における永久電流スイッチの断面図である。It is sectional drawing of the permanent current switch in Embodiment 1 of this invention. 永久電流スイッチを超電導電磁石に組み込んだ回路図例である。It is an example of a circuit diagram incorporating a permanent current switch in a superconducting electromagnet. 本発明の実施の形態2における磁場発生用コイルの平面図である。It is a top view of the coil for magnetic field generation in Embodiment 2 of this invention. 図3のA−A線断面図である。FIG. 4 is a sectional view taken along line AA in FIG. 3.

符号の説明Explanation of symbols

10;PCS、11;超電導線、12;PCS用巻枠、13;硬化有機高分子、
14;ヒーター、22;超電導コイル、23;ダイオード、24;低温容器、
25;励磁電源、26;PCS用電源、27;PCS用電源スイッチ、
30;磁場発生用コイル、31;磁場発生用コイル用巻枠、32;硬化有機高分子、
33;超電導線。
10; PCS, 11; superconducting wire, 12; reel for PCS, 13; cured organic polymer,
14; heater, 22; superconducting coil, 23; diode, 24; cryogenic vessel,
25; excitation power supply, 26; power supply for PCS, 27; power switch for PCS,
30; Coil for magnetic field generation; 31; Winding frame for coil for magnetic field generation; 32; Cured organic polymer;
33; Superconducting wire.

Claims (7)

ボビン状の巻枠に巻き回された超電導線と、前記超電導線の線間を埋める硬化有機高分子からなる超電導素子であって、
前記硬化有機高分子は、25℃における粘度が190mPa・Sの未硬化の有機高分子を前記超電導線の線間に含浸させた状態で50℃で硬化し、25℃における曲げ弾性率が3GPaであり、且つ温度が25℃である厚さ5mmの前記硬化有機高分子を液体窒素中に投入した際にクラック発生がないことを特徴とする超電導素子。
A superconducting element made of a superconducting wire wound around a bobbin-shaped winding frame and a cured organic polymer filling a space between the superconducting wires,
The cured organic polymer is cured at 50 ° C. with an uncured organic polymer having a viscosity of 190 mPa · S at 25 ° C. impregnated between the lines of the superconducting wire, and has a flexural modulus of 3 GPa at 25 ° C. A superconducting element characterized in that no crack is generated when the cured organic polymer having a thickness of 5 mm having a temperature of 25 ° C. is introduced into liquid nitrogen .
前記超電導線が前記巻枠に張力をかけて巻回された後、容器に入れられて真空加圧含浸により前記未硬化の有機高分子を巻線間に浸透させ、必要に応じて加熱して前記有機高分子を硬化して得られる請求項1記載の超電導素子。   After the superconducting wire is wound with tension applied to the reel, it is placed in a container and the uncured organic polymer is infiltrated between the windings by vacuum pressure impregnation, and heated as necessary. The superconducting element according to claim 1, obtained by curing the organic polymer. 前記有機高分子は、エポキシ樹脂である請求項1に記載の超電導素子。The superconducting element according to claim 1, wherein the organic polymer is an epoxy resin. 前記エポキシ樹脂は、希釈剤を混合したものである請求項3に記載の超電導素子。The superconducting element according to claim 3, wherein the epoxy resin is a mixture of a diluent. 前記希釈剤は、ブチルグリシジルエーテルである請求項4に記載の超電導素子。The superconducting element according to claim 4, wherein the diluent is butyl glycidyl ether. 前記超電導素子は、磁場発生用コイルである請求項1から請求項のいずれか一項に記載の超電導素子。 The superconducting element according to any one of claims 1 to 5 , wherein the superconducting element is a magnetic field generating coil. 前記超電導素子は、永久電流スイッチである請求項1から請求項のいずれか一項に記載の超電導素子。 The superconducting element according to any one of claims 1 to 5 , wherein the superconducting element is a permanent current switch.
JP2007307271A 2007-11-28 2007-11-28 Superconducting element Expired - Fee Related JP5366391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007307271A JP5366391B2 (en) 2007-11-28 2007-11-28 Superconducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307271A JP5366391B2 (en) 2007-11-28 2007-11-28 Superconducting element

Publications (2)

Publication Number Publication Date
JP2009130336A JP2009130336A (en) 2009-06-11
JP5366391B2 true JP5366391B2 (en) 2013-12-11

Family

ID=40820905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307271A Expired - Fee Related JP5366391B2 (en) 2007-11-28 2007-11-28 Superconducting element

Country Status (1)

Country Link
JP (1) JP5366391B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049570A (en) * 2012-08-30 2014-03-17 Kobe Steel Ltd Spool of superconducting magnet
EP3483902A1 (en) * 2017-11-14 2019-05-15 Koninklijke Philips N.V. Superconducting magnet assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3327708A1 (en) * 1983-07-29 1985-02-07 Siemens AG, 1000 Berlin und 8000 München REACTION RESIN MATERIALS FOR IMPREGNATING AND POOLING LARGE VOLUME COMPONENTS
JPH0823003B2 (en) * 1988-05-11 1996-03-06 日本化薬株式会社 Adhesive composition for superconducting coil
JPH08236343A (en) * 1995-02-23 1996-09-13 Toshiba Transport Eng Kk Method and equipment for manufacturing superconducting coil and permanent current switch
JP4603409B2 (en) * 2005-04-22 2010-12-22 出光興産株式会社 Magnetic levitation railway ground coil device and manufacturing method thereof
JP4847811B2 (en) * 2006-07-06 2011-12-28 株式会社日立製作所 Permanent current switch and manufacturing method thereof
JP2007251184A (en) * 2007-04-16 2007-09-27 Toshiba Corp Insulating coil, device of curing resin, and method of curing resin

Also Published As

Publication number Publication date
JP2009130336A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
Mizuno et al. Experimental production of a real-scale REBCO magnet aimed at its application to maglev
JP5686733B2 (en) Method for adjusting superconducting magnet used in magnetic resonance imaging apparatus and dock for exciting superconducting magnet
JP5366391B2 (en) Superconducting element
Muratore et al. Test results of the first two full-length prototype quadrupole magnets for the LHC Hi-Lumi upgrade
Kashikhin et al. Superconducting splittable quadrupole magnet for linear accelerators
Kesgin et al. Development of short-period Nb 3 Sn superconducting planar undulators
JP2013021324A (en) Superconducting magnet device and magnetic resonance image system
Zlobin et al. Development and test of Nb/sub 3/Sn cos-theta dipoles based on PIT strands
Rice et al. Mechanical and electrical properties of wrappable ceramic insulation
JP2014013877A (en) Superconductive pancake coil, and method of manufacturing the same
US10580573B2 (en) Persistent-mode MRI magnet fabricated from reacted, monofilamentary MgB2 wires and joints
Boffo et al. Performance of SCU15: The new conduction-cooled superconducting undulator for ANKA
Liu et al. Testing of the ceramic insulation break for fusion device
Kovalenko et al. Superferric model dipole magnet with the yoke at 80 K for the GSI future fast cycling synchrotron
JP2002198214A (en) Superconducting magnet power lead
Willen et al. Superconducting helical snake magnet for the AGS
Yokoyama et al. Enhancement of trapped magnetic field using a large-size REBCO bulk in a desktop type superconducting bulk magnet
Ren et al. Development of a superconducting magnet system for microwave application
Carcagno et al. Magnetic and thermal performance of a conduction-cooled splittable quadrupole
JPH11214214A (en) Hybrid superconducting magnet
US9627119B2 (en) Persistent-mode MRI magnet fabricated from reacted, monofilamentary MgB2 wires and joints
Zhu et al. A homogeneous superconducting magnet system for EBIT
Nishijima et al. Superconducting properties and thermal stability of high-strength Nb/sub 3/Sn wire with Ta-reinforced filaments
Cheng et al. Development of $\hbox {Nb} _ {3}\hbox {Sn} $ Superconducting Coil Manufacture Technology
CN115171973B (en) Copper-silver alloy reinforced superconducting tape, reinforcing method and superconducting coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R151 Written notification of patent or utility model registration

Ref document number: 5366391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees