JPH08236343A - Method and equipment for manufacturing superconducting coil and permanent current switch - Google Patents

Method and equipment for manufacturing superconducting coil and permanent current switch

Info

Publication number
JPH08236343A
JPH08236343A JP7035399A JP3539995A JPH08236343A JP H08236343 A JPH08236343 A JP H08236343A JP 7035399 A JP7035399 A JP 7035399A JP 3539995 A JP3539995 A JP 3539995A JP H08236343 A JPH08236343 A JP H08236343A
Authority
JP
Japan
Prior art keywords
temperature
coil
manufacturing
resin
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7035399A
Other languages
Japanese (ja)
Inventor
Ken Sasaki
謙 佐々木
Tatsumi Yamane
根 達 視 山
Hisashi Hirai
井 久 之 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Transport Engineering Inc
Original Assignee
Toshiba Corp
Toshiba Transport Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Transport Engineering Inc filed Critical Toshiba Corp
Priority to JP7035399A priority Critical patent/JPH08236343A/en
Publication of JPH08236343A publication Critical patent/JPH08236343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE: To enable sink marks to be less generated in a resin layer in the vicinity of the center of a coil-wound port and to manufacture a superconducting coil and a permanent current coil where quenching hardly occurs. CONSTITUTION: A superconducting coil 1 in a winding frame 3 is composed of a superconducting wire 2 which is wound in a coil and a thermosetting resin 5. When the resin 5 is cured by heating, a current is applied to a drying oven heater 10 by a temperature controller 8, and also a current is fed to a superconducting wire 2 from a direct current power supply 7. At this point, the set curing temperature of the resin 5a near the center of the resin 5 is set 1 to 10 deg.C higher than that of the peripheral resin 5b. By this setup, the center part 5a of the resin 5 is cured first, and then the peripheral part 5b is gradually cured, so that sink marks are less generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エポキシ樹脂等の熱硬
化性樹脂により固化固定された超電導コイル及び永久電
流スイッチの製造方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a superconducting coil and a permanent current switch which are solidified and fixed by a thermosetting resin such as an epoxy resin.

【0002】[0002]

【従来の技術】磁気浮上式鉄道や核磁気共鳴イメージン
グ(MRI)等の超電導コイルに使用される超電導線
は、CuやAl等の比抵抗の低い金属を母材とし、超電
導体をNb−Ti等の合金やNb−Sn等の化合物に
より構成したものが一般に使用されている。
2. Description of the Related Art A superconducting wire used in a superconducting coil for a magnetic levitation railway or nuclear magnetic resonance imaging (MRI) has a base material made of a metal having a low specific resistance such as Cu or Al, and a superconductor made of Nb-Ti. Those composed of alloys such as Nb 3 —Sn and compounds such as Nb 3 —Sn are generally used.

【0003】また、永久電流スイッチに使用される超電
導線内部の超電導体の構成は、超電導コイルと同様であ
るが、その母材は、スイッチオフ時の抵抗を高くするた
め、Cu−Ni等の比抵抗値の高い金属で構成するのが
一般的である。これらの超電導コイルは通電時に何らか
の擾乱により、超電導線が数μm程度動くことによる熱
エネルギーの発生で、超電導コイルに局部的な発熱が生
じる。この発熱による温度上昇は、周囲の冷却により通
常は抑えられるが、発熱量が冷却能力より大きくなって
温度上昇値が超電導線の臨界温度を越えると、局部的に
発熱した個所は超電導状態から常電導状態へ転移してし
まう。この状態が超電導コイル全域に伝播してしまい、
超電導コイルとしての特性を失うことを、通常、クエン
チ現象と称している。
The structure of the superconductor inside the superconducting wire used for the permanent current switch is the same as that of the superconducting coil, but its base material is made of Cu-Ni or the like in order to increase the resistance when the switch is turned off. It is generally composed of a metal having a high specific resistance value. In these superconducting coils, due to some disturbance during energization, the superconducting wires move about several μm to generate thermal energy, which causes local heat generation in the superconducting coils. The temperature rise due to this heat generation is usually suppressed by cooling the surroundings.However, when the amount of heat generation exceeds the cooling capacity and the temperature rise value exceeds the critical temperature of the superconducting wire, the locally heated location is always in the superconducting state. Transfers to the conductive state. This state propagates throughout the superconducting coil,
Loss of characteristics as a superconducting coil is usually called a quench phenomenon.

【0004】また、超電導線が動かなくても、超電導線
周囲に何らかの熱エネルギーが発生すれば、局部的な発
熱が生じることとなり、常電導転移の芽が起こり、クエ
ンチに至ることもあり得る。
Even if the superconducting wire does not move, if some kind of thermal energy is generated around the superconducting wire, local heat is generated, and a bud of the normal-conducting transition may occur to cause quenching.

【0005】特に、永久電流スイッチに使用されている
超電導線は、安定化に寄与しない比抵抗の高い金属が母
材であるため、比抵抗の低い金属を母材とした超電導線
よりクエンチに至り易い。
In particular, since the superconducting wire used in the persistent current switch is a base material of a metal having a high specific resistance that does not contribute to stabilization, the superconducting wire having a low specific resistance as a base material leads to quenching. easy.

【0006】そして、超電導コイルの場合は、その特性
上、高磁界を発生するため,通電時に外周に広がろうと
するフープ力が働き、超電導線をコイル外周方向に動か
そうとする。
In the case of a superconducting coil, a high magnetic field is generated due to its characteristics, so that a hoop force that spreads to the outer periphery when energized acts to move the superconducting wire toward the outer periphery of the coil.

【0007】上記の様な何らかの擾乱やフープ力による
超電導線の動きを極力小さく抑えるため、超電導コイル
及び永久電流スイッチは、高テンションで巻かれるか、
あるいは巻線後にエポキシ樹脂等を含浸または注型して
固化固定させる方法が主として用いられる。しかし、磁
気浮上式鉄道用の超電導コイルや永久電流スイッチは、
運転中に外部から強い振動を受けることになる。
In order to suppress the movement of the superconducting wire due to any disturbance or hoop force as described above as much as possible, the superconducting coil and the persistent current switch are wound with high tension,
Alternatively, a method of impregnating or casting an epoxy resin or the like after winding and solidifying and fixing is mainly used. However, superconducting coils and permanent current switches for magnetic levitation railways
Strong vibrations from outside during driving.

【0008】よって高テンションで巻いただけでは、線
間で摩擦や線材の大きなずれが生じ、クエンチに至る恐
れがあるので、エポキシ樹脂等の熱硬化性樹脂により固
化固定するのが一般的である。
Therefore, if the coil is wound with only a high tension, there is a risk of friction between the wires and a large deviation of the wire material, which may lead to quenching. Therefore, it is generally fixed and fixed by a thermosetting resin such as an epoxy resin.

【0009】また、Nb−Sn等の化合物超電導体を
使用したコイルは、巻線後、熱を加えて化合物とするの
であるが、化合前は柔らかくて破損し易いため高テンシ
ョンでの巻線が不可能であり、化合後は硬くてもろい線
になるため、エポキシ樹脂等による固化固定が必要とな
る。
In addition, a coil using a compound superconductor such as Nb 3 -Sn is heated to form a compound after winding. However, before compounding, the coil is soft and easily damaged, so that winding with high tension is possible. Is not possible, and since it becomes a hard and brittle wire after compounding, it is necessary to solidify and fix with an epoxy resin or the like.

【0010】このようなエポキシ樹脂等により固化固定
が必要となる含浸コイルの製造方法について、磁気浮上
式鉄道に使用される超電導コイルを一例にとり説明す
る。
A method of manufacturing an impregnated coil which needs to be solidified and fixed with such an epoxy resin will be described by taking a superconducting coil used in a magnetic levitation railway as an example.

【0011】図15はこのコイルの巻線方法についての
説明図である。この図において、金属製の巻型3に、1
mm×2mm程度の平角超電導線2を最大経験磁界約5T
(テスラ)を発生させるため、約1000ターン程度巻
線機16により巻込んだ構成がとられている。
FIG. 15 is an explanatory view of the winding method of this coil. In this figure, 1 is attached to the metal winding form 3.
The maximum experience magnetic field of the flat superconducting wire 2 is about 5T.
In order to generate (Tesla), about 1000 turns are wound by the winding machine 16.

【0012】巻線終了後は、図16(a)の断面図に示
すように、含浸槽6に巻型3を収納し、樹脂5を含浸し
た後は含浸槽6ごと乾燥炉9に搬入する。そして、乾燥
炉9のヒータの熱風により約80〜100℃で数10時
間硬化した後、巻型3をその外周部の樹脂5から取り出
し、さらに、巻型3を分解する。これにより、図16
(c)に示すような超電導コイル1が完成する。
After the winding is finished, as shown in the sectional view of FIG. 16 (a), the winding die 3 is housed in the impregnation tank 6, and after impregnated with the resin 5, the impregnation tank 6 and the impregnation tank 6 are carried into the drying furnace 9. . Then, after being cured by hot air from the heater of the drying oven 9 at about 80 to 100 ° C. for several tens of hours, the winding form 3 is taken out from the resin 5 on the outer peripheral portion thereof, and the winding form 3 is disassembled. As a result, FIG.
The superconducting coil 1 as shown in (c) is completed.

【0013】また、別の方法として、巻線後は、図16
(b)に示すように、巻型3にヒータ線12が付いた構
成を用いる方法もある。すなわち、樹脂5を含浸口4か
ら注入した後、巻型のヒータ12により、約100℃で
数時間程度硬化し、その後で巻型3を分解する。これに
より、図16(c)に示すような超電導コイル1が形成
される。
As another method, after winding, as shown in FIG.
As shown in (b), there is also a method in which the winding wire 3 is provided with a heater wire 12. That is, after injecting the resin 5 from the impregnation port 4, the winding heater 12 cures the resin at about 100 ° C. for several hours, and then the winding die 3 is disassembled. As a result, the superconducting coil 1 as shown in FIG. 16C is formed.

【0014】[0014]

【発明が解決しようとする課題】エポキシ等の熱硬化性
樹脂をコイルに含浸又は注入した後、樹脂を硬化させる
方法は、上記のように、乾燥炉による方法、あるいは巻
型(又はモールド用型)のヒータによる方法が一般的で
あるが、両者共に、樹脂硬化時はコイルの表面からコイ
ル内部へ徐々に乾燥炉及びヒータの熱が伝わっていく。
そのため、コイル周囲の樹脂が先に硬化し、コイル中心
付近の樹脂が最後に硬化する傾向にある。
As described above, the method for curing the resin after impregnating or injecting the thermosetting resin such as epoxy into the coil is the method using the drying oven or the winding mold (or the mold for molding). Although the method of using a heater) is generally used, in both cases, the heat of the drying furnace and the heater is gradually transferred from the surface of the coil to the inside of the coil when the resin is cured.
Therefore, the resin around the coil tends to cure first, and the resin near the center of the coil tends to cure last.

【0015】このような硬化をする場合、コイル周囲の
樹脂がコイル中心付近の樹脂より先に硬化するため、コ
イル中心付近の樹脂が外周に引き付けられて、図17に
示すような巣、いわゆるヒケ17が発生することがあ
る。
In the case of such curing, the resin around the coil is cured before the resin near the center of the coil, so that the resin near the center of the coil is attracted to the outer periphery, and a nest as shown in FIG. 17 may occur.

【0016】超電導コイル1は、その運転時には極低温
温度まで冷却され、所定の起磁力を有するまで外部から
通電される。ところが、上記のようなヒケ17が存在す
る場合、このヒケ17を起因とするクラックが発生し、
そのときの熱エネルギーが超電導線2に伝わるため、局
部発熱を起こしてクエンチしてしまうおそれがある。
The superconducting coil 1 is cooled to a cryogenic temperature during its operation and is externally energized until it has a predetermined magnetomotive force. However, when the sink mark 17 as described above exists, a crack caused by the sink mark 17 occurs,
Since the heat energy at that time is transmitted to the superconducting wire 2, there is a risk of causing local heat generation and quenching.

【0017】また、ヒケ17が超電導線2に隣接してい
る場合は、このヒケ17側に超電導線2がずれることに
よる熱エネルギーの発生で、超電導線2が局部発熱を起
こし、やはりクエンチしてしまうおそれがある。この場
合、樹脂5の硬化収縮力は、超電導コイル1の断面積に
比例して大きくなるので、ヒケ17が発生する蓋然性及
びその発生量も断面積に応じて大きくなってくると考え
られる。
When the sink mark 17 is adjacent to the superconducting wire 2, the superconducting wire 2 causes local heat generation due to the generation of thermal energy due to the displacement of the superconducting wire 2 on the sink mark 17 side, and the quenching also occurs. There is a risk that In this case, since the curing shrinkage force of the resin 5 increases in proportion to the cross-sectional area of the superconducting coil 1, it is considered that the probability that the sink mark 17 is generated and the amount thereof are also increased in accordance with the cross-sectional area.

【0018】本発明は上記事情に鑑みてなされたもので
あり、コイル状巻回部中心付近の樹脂層におけるヒケ部
の発生を低減させ、クエンチの生じにくい超電導コイル
及び永久電流スイッチを製造することができる方法及び
装置を提供することを目的としている。
The present invention has been made in view of the above circumstances, and it is possible to reduce the occurrence of sink marks in the resin layer near the center of the coil-shaped winding portion, and manufacture a superconducting coil and a persistent current switch in which quenching does not easily occur. It is an object of the present invention to provide a method and a device capable of

【0019】[0019]

【課題を解決するための手段】本発明は、上記課題を解
決するための手段として、超電導線がコイル状に巻回さ
れた巻型に熱硬化性樹脂を含浸又は注型し、その後の加
熱によりこの熱硬化性樹脂を硬化させる場合において、
前記超電導線の横断面方向におけるコイル状巻回部中心
付近の樹脂層温度がコイル状巻回部周囲の樹脂層温度よ
りも所定温度だけ高くなるように、前記加熱を行うこ
と、を特徴とするものである。
As a means for solving the above-mentioned problems, the present invention impregnates or casts a thermosetting resin into a winding mold in which a superconducting wire is wound in a coil shape and then heats it. When curing this thermosetting resin by
The heating is performed such that the resin layer temperature near the center of the coil-shaped winding portion in the cross-sectional direction of the superconducting wire is higher than the resin layer temperature around the coil-shaped winding portion by a predetermined temperature. It is a thing.

【0020】[0020]

【作用】含浸又は注型後の巻型を乾燥炉内に入れて樹脂
を硬化させる場合、どうしてもコイル状巻回部周囲の樹
脂が先に硬化し、その後にコイル状巻回部中心付近の樹
脂が硬化することになる。つまり、コイル状巻回部中心
付近の樹脂の硬化時間は長いものとなっている。
[Function] When the winding mold after impregnation or casting is put in a drying oven to cure the resin, the resin around the coiled winding portion inevitably cures first, and then the resin near the center of the coiled winding portion. Will be cured. That is, the curing time of the resin near the center of the coiled winding portion is long.

【0021】一方、熱硬化性樹脂は、硬化温度が高くな
れば硬化時間が短くなるという特性を有している。した
がって、上記構成では、コイル状巻回部中心付近の樹脂
層から先に硬化が始まり、その後にコイル状巻回部周囲
の樹脂層の硬化が行なわれることになる。そのため、ヒ
ケの発生を低減させることができる。
On the other hand, the thermosetting resin has a characteristic that the curing time becomes shorter as the curing temperature becomes higher. Therefore, in the above structure, the resin layer near the center of the coiled winding portion starts to be cured first, and then the resin layer around the coiled winding portion is cured. Therefore, the occurrence of sink marks can be reduced.

【0022】[0022]

【実施例】図1は本発明の第1実施例に係る装置の構成
図である。この図において、超電導線2がコイル状に巻
回されて成る超電導コイル1は巻型3内に、エポキシ等
の熱硬化性樹脂5と共に収納されている。ここで、5a
はコイル状巻回部中心付近の樹脂を示し、5bはコイル
状巻回部周囲の樹脂を示している。
1 is a block diagram of an apparatus according to a first embodiment of the present invention. In this figure, a superconducting coil 1 formed by winding a superconducting wire 2 in a coil shape is housed in a winding die 3 together with a thermosetting resin 5 such as epoxy. Where 5a
Indicates the resin near the center of the coil-shaped winding portion, and 5b indicates the resin around the coil-shaped winding portion.

【0023】巻型3は樹脂5が満たされた含浸槽6内に
漬けられており、含浸槽6は乾燥炉9内に置かれてい
る。超電導線2の巻始め口出し線2a及び巻終り口出し
線2bは直流電源7に接続されている。また、乾燥炉9
の下部には乾燥炉ヒータ10が設けられている。
The winding form 3 is immersed in an impregnation tank 6 filled with a resin 5, and the impregnation tank 6 is placed in a drying furnace 9. A winding start lead wire 2a and a winding end lead wire 2b of the superconducting wire 2 are connected to a DC power supply 7. Also, the drying oven 9
A drying furnace heater 10 is provided in the lower part of the.

【0024】樹脂5a,5bにはそれぞれの温度を検出
するための熱電対20a,20bが設けられている。温
度制御器8はこの熱電対20a,20bの検出に基い
て、直流電源7及び乾燥炉ヒータ10の電流制御を行な
い、樹脂5a,5bの温度制御行なうようになってい
る。
Thermocouples 20a and 20b for detecting respective temperatures are provided on the resins 5a and 5b. The temperature controller 8 controls the currents of the DC power supply 7 and the drying furnace heater 10 based on the detection of the thermocouples 20a and 20b, and controls the temperatures of the resins 5a and 5b.

【0025】次に、図1の動作につき説明する。まず、
図2に示すように、巻型3内に樹脂5a,5bを注入す
る。この後、これを含浸槽6内に漬け、さらに、図1に
示すように、この含浸槽6を乾燥炉9内に置く。そし
て、温度制御器8は乾燥炉ヒータ10の通電を行なって
炉内の温度を上げ、さらに、直流電源7に超電導線2の
通電を行なわせ、樹脂5a,5bに対する加熱硬化を行
なう。この場合、樹脂5aの硬化温度が樹脂5bの硬化
温度よりも10℃高くなるように設定する。
Next, the operation of FIG. 1 will be described. First,
As shown in FIG. 2, resins 5a and 5b are injected into the winding die 3. After that, this is immersed in the impregnation tank 6, and as shown in FIG. 1, the impregnation tank 6 is placed in the drying furnace 9. Then, the temperature controller 8 energizes the drying oven heater 10 to raise the temperature in the oven, and further causes the DC power source 7 to energize the superconducting wire 2 to heat and cure the resins 5a and 5b. In this case, the curing temperature of the resin 5a is set to be 10 ° C. higher than the curing temperature of the resin 5b.

【0026】図3は、ある含浸用エポキシ樹脂の硬化温
度とゲル化(樹脂固体化)するまでの時間との関係を表
す特性図の一例である。この図によれば、硬化温度が高
くなるにつれて、ゲル化する時間が短くなっていること
が解る。例えば、硬化温度90℃と100℃とでは10
0℃の方が約1時間速くゲル化するようになっている。
FIG. 3 is an example of a characteristic diagram showing the relationship between the curing temperature of an impregnating epoxy resin and the time until gelation (resin solidification). According to this figure, it is understood that the gelling time becomes shorter as the curing temperature becomes higher. For example, at a curing temperature of 90 ° C and 100 ° C, 10
At 0 ° C., gelation occurs about 1 hour faster.

【0027】したがって、上記設定により樹脂5aの硬
化温度が100℃、樹脂5bの硬化温度が90℃になっ
ているとすれば、樹脂5aの方から先に硬化が始まり、
樹脂5aが硬化した後に1時間かかって樹脂5bが硬化
するとになる。
Therefore, assuming that the setting temperature of the resin 5a is 100 ° C. and the setting temperature of the resin 5b is 90 ° C., the resin 5a starts to be cured first.
It takes 1 hour after the resin 5a is cured to cure the resin 5b.

【0028】このように、樹脂5aの硬化温度を樹脂5
bの硬化温度よりも10℃高くすれば、従来のように樹
脂5bから先に硬化し始めることがなくなるので、ヒケ
部の発生を低減することができる。また、図1の構成で
は、熱電対20a,20bを用いたきめ細かな温度調節
ができるので、樹脂5a,5b間の硬化収縮の差を予め
制御することができ、収縮差による残留応力の差を極力
小さくすることができる。
In this way, the curing temperature of the resin 5a is set to the resin 5
When the temperature is higher than the curing temperature of b by 10 ° C., the resin 5b does not start to cure first as in the conventional case, so that the occurrence of sink marks can be reduced. Further, in the configuration of FIG. 1, since the temperature can be finely adjusted using the thermocouples 20a and 20b, the difference in curing shrinkage between the resins 5a and 5b can be controlled in advance, and the difference in residual stress due to the difference in shrinkage can be reduced. It can be made as small as possible.

【0029】ところで、含浸されたエポキシ等の樹脂を
硬化させる場合は、始めから本硬化温度に設定すると硬
化収縮が著しいので、約20℃〜40℃低い温度で半硬
化(一次硬化)させた後、本硬化温度で完全硬化(二次
硬化)させるのが一般的になっている。
By the way, when the impregnated resin such as epoxy resin is cured, since the curing shrinkage is remarkable when the main curing temperature is set from the beginning, it is semi-cured (primary curing) at a temperature lower by about 20 ° C. to 40 ° C. It is common to completely cure (secondary cure) at the main curing temperature.

【0030】そこで、本実施例でもこのような硬化方法
を採用することとしている。図4は、その場合の硬化パ
ターンの一例を示すものであり、樹脂5aについては一
次硬化領域及び二次硬化領域の硬化温度を80℃,10
0℃に設定し、樹脂5bについては各領域の硬化温度を
70℃,90℃に設定している。
Therefore, in this embodiment also, such a curing method is adopted. FIG. 4 shows an example of a curing pattern in that case. For the resin 5a, the curing temperature of the primary curing region and the secondary curing region is 80 ° C., 10 ° C.
The temperature is set to 0 ° C., and the curing temperature of each region of the resin 5b is set to 70 ° C. and 90 ° C.

【0031】なお、熱電対20a,20bは加熱硬化が
終了した後は不要なものとなるので、適当な個所で切断
して差し支えない。また、製造ラインにおいては,熱電
対20a,20bは全ての超電導コイルの製造に使用す
る必要はない。つまり、1個又は2個以上の超電導コイ
ルについて、熱電対20a,20bを用いて加熱硬化を
行ない、その加熱制御パターンを把握したら、以後は同
じ仕様の超電導コイルに対しては、熱電対20a,20
bの温度検出に基く制御を行なわず、把握した制御パタ
ーンに基いて温度制御を行うことが可能である。
Since the thermocouples 20a and 20b are no longer needed after the heat curing is completed, they can be cut at appropriate places. Further, in the manufacturing line, the thermocouples 20a and 20b need not be used for manufacturing all superconducting coils. That is, one or more superconducting coils are heated and cured by using the thermocouples 20a and 20b, and when the heating control pattern is grasped, thereafter, for the superconducting coils having the same specifications, the thermocouple 20a, 20
It is possible to perform the temperature control based on the grasped control pattern without performing the control based on the temperature detection of b.

【0032】さらに、上記の加熱硬化を行う場合に、乾
燥炉9の内部を窒素ガス等で満たし、内部圧力を10〜
30kg/cm 程度に加圧しておけば、樹脂5a,5bに生
じるヒケ部を一段と低減することができる。
Further, when performing the above-mentioned heat curing, the inside of the drying furnace 9 is filled with nitrogen gas or the like, and the internal pressure is adjusted to 10 to 10.
If pressure is applied to about 30 kg / cm 2, the sink marks generated on the resins 5a and 5b can be further reduced.

【0033】また、上記実施例は超電導コイルを対象と
したものであったが、同様の構成を有する永久電流スイ
ッチにも、もちろん適用可能である。
Further, although the above-mentioned embodiment is intended for the superconducting coil, it is of course applicable to a permanent current switch having a similar structure.

【0034】図5は本発明の第2実施例に係る装置の構
成図である。図6に示すように、超電導コイル1には、
通電時及びクエンチ時の内部電圧を計測するための電圧
計測線11a,11b,11c,11dが取り付けられ
ている場合が多い。本実施例は、超電導コイル1の口出
し線2a,2bと、このような計測線11a〜11dと
を併用して超電導線2に通電を行うものである。なお、
図5では、図1と重複する符号の説明を省略してある。
FIG. 5 is a block diagram of an apparatus according to the second embodiment of the present invention. As shown in FIG. 6, in the superconducting coil 1,
In many cases, voltage measurement lines 11a, 11b, 11c, 11d for measuring the internal voltage during energization and quench are attached. In the present embodiment, the lead wires 2a and 2b of the superconducting coil 1 and the measuring wires 11a to 11d are used together to energize the superconducting wire 2. In addition,
In FIG. 5, description of the reference numerals that are the same as those in FIG. 1 is omitted.

【0035】図5において、中心付近の樹脂5aは、計
測線11b,11cにはさまれた超電導線2の通電によ
り加熱され、左方の樹脂5c及び右方の樹脂5dは、そ
れぞれ口出し線2aと計測線11aとの間、及び計測線
11dと口出し線2bとの間にある超電導線2の通電に
より加熱されるようになっている。
In FIG. 5, the resin 5a near the center is heated by energization of the superconducting wire 2 sandwiched between the measurement lines 11b and 11c, and the left resin 5c and the right resin 5d are respectively connected to the lead wire 2a. And the measurement line 11a, and between the measurement line 11d and the lead wire 2b are heated by energization of the superconducting wire 2.

【0036】図7は、本実施例の硬化パターンの一例を
示す特性図である。この図に示すように、一次硬化領域
では、樹脂5aは90℃、樹脂5c,5dは85℃、樹
脂5bは80℃にそれぞれ熱硬化温度が設定されてい
る。そして、二次硬化領域では、樹脂5aは120℃、
樹脂5c,5dは110℃にそれぞれ熱硬化温度が設定
されている。
FIG. 7 is a characteristic diagram showing an example of the curing pattern of this embodiment. As shown in this figure, in the primary curing region, the thermosetting temperature is set to 90 ° C. for the resin 5a, 85 ° C. for the resins 5c and 5d, and 80 ° C. for the resin 5b. Then, in the secondary curing region, the resin 5a is 120 ° C.,
The thermosetting temperature of each of the resins 5c and 5d is set to 110 ° C.

【0037】本実施例においても、図3の特性を持つ樹
脂を使用したとすれば、80℃及び90℃におけるゲル
化(樹脂固体化)までの時間差は2時間あるので、一次
硬化領域では樹脂5a側から樹脂5b側にわたり、2時
間かけて徐々にゲル化させることができる。
Also in this embodiment, if the resin having the characteristics shown in FIG. 3 is used, the time difference between the gelation (solidification of the resin) at 80 ° C. and 90 ° C. is 2 hours. From the 5a side to the resin 5b side, it is possible to gradually gelate over 2 hours.

【0038】図8は本発明の第3実施例に係る装置の構
成図である。この実施例は、巻型3の内部に埋設ヒータ
12が埋込まれており、温度制御器8が埋設ヒータ12
に流れる電流を制御するようになっている。この実施例
では、樹脂5bに埋設ヒータ12が接近し、温度制御を
行ないやすくなっているので、より良好な温度特性を得
ることができる。
FIG. 8 is a block diagram of an apparatus according to the third embodiment of the present invention. In this embodiment, the embedded heater 12 is embedded inside the winding form 3, and the temperature controller 8 includes the embedded heater 12.
It is designed to control the current flowing through. In this embodiment, since the embedded heater 12 comes close to the resin 5b to facilitate temperature control, better temperature characteristics can be obtained.

【0039】ところで、ClやAlあるいはCu−Ni
などの母材の面積をNb−TiあるいはNb−Snな
どの超電導体の面積で割った値を母材マトリクス比と呼
ぶが、本実施例では、図10(図9のX−X線に沿う断
面図)に示すように、このマトリクス比を、超電導線2
の断面積を一定としたままで、中心付近の樹脂5aに近
づくほど小さくなる構成としている。なお、このように
マトリクス比を変化させる構成は、もちろん他の実施例
に対しても適用可能である。
By the way, Cl, Al or Cu-Ni
A value obtained by dividing the area of the base material such as by the area of the superconductor such as Nb-Ti or Nb 3 -Sn is called a base material matrix ratio. As shown in the cross-sectional view of FIG.
The cross-sectional area of the resin is kept constant, and becomes smaller as it approaches the resin 5a near the center. Note that the configuration in which the matrix ratio is changed in this way can of course be applied to other embodiments.

【0040】上記のようにマトリクス比を変化させる
と、マトリクス比が一定の場合に比べて、有効な温度差
をつけることができる。すなわち、超電導体は、常電導
状態(常温)では、母材より抵抗が大きいため、常温で
電流を流すとほとんど母材に電流が流れる。一方、超電
導線の断面積が一定の場合、マトリクス比が小さいほど
母材面積が小さいので、常温の抵抗が高くなる。
By changing the matrix ratio as described above, an effective temperature difference can be provided as compared with the case where the matrix ratio is constant. That is, since the superconductor has a resistance higher than that of the base material in the normal conducting state (normal temperature), almost all the current flows in the base material when the current is applied at room temperature. On the other hand, when the cross-sectional area of the superconducting wire is constant, the smaller the matrix ratio is, the smaller the area of the base material is, and the higher the resistance at room temperature is.

【0041】このような超電導コイル1では、中心部の
超電導線2eのマトリクス比は小、その周囲の超電導線
2dは中、表面付近の超電導線2cは大となっているの
で、電流を流すと、表面側から中心側にかけて次第に温
度が高くなる。
In such superconducting coil 1, since the matrix ratio of the superconducting wire 2e at the central portion is small, the superconducting wire 2d around it is medium, and the superconducting wire 2c near the surface is large. , The temperature gradually increases from the surface side to the center side.

【0042】図10のように、上下方向及び左右方向に
マトリクス比を変化させるのが理想的ではあるが、巻線
作業がかなり困難となる。そこで、図11のように上下
方向のみ、すなわち内周及び外周側から中心側にかけて
のみマトリクス比を変化させる構成としてもよい。
Although it is ideal to change the matrix ratio in the vertical and horizontal directions as shown in FIG. 10, the winding work becomes considerably difficult. Therefore, as shown in FIG. 11, the matrix ratio may be changed only in the vertical direction, that is, only from the inner and outer circumference sides to the center side.

【0043】図12は本発明の第4実施例に係る装置の
構成図である。この実施例は、コイル状に巻回された超
電導線2を短絡状態又は開放状態にするスイッチ回路1
6と、巻型3に近接して設置され、交流電源17により
通電される誘起コイル13とを備えたものである。
FIG. 12 is a block diagram of an apparatus according to the fourth embodiment of the present invention. In this embodiment, a switch circuit 1 for putting a superconducting wire 2 wound in a coil into a short circuit state or an open state.
6 and an induction coil 13 installed near the winding form 3 and energized by an AC power supply 17.

【0044】超電導線2を短絡状態にしておいて誘起コ
イル13に交流電流を流すと、コイル状の超電導線2に
誘起電流が流れて樹脂5a,5bの温度が上昇する。温
度の上昇を抑える場合は、スイッチング回路16をオフ
にして開放状態とすればよい。温度制御器8はこのよう
な温度制御を行う。
When the superconducting wire 2 is short-circuited and an alternating current is passed through the induction coil 13, the induced current flows through the coil-shaped superconducting wire 2 and the temperatures of the resins 5a and 5b rise. In order to suppress the temperature rise, the switching circuit 16 may be turned off and put into an open state. The temperature controller 8 performs such temperature control.

【0045】第3実施例の超電導線2はマトリクス比を
変化させたものであったが、この第4実施例では、図1
3に示すように、断面積を変化させた構成としてある。
このような構成では、内周側及び外周側の超電導線2f
は断面積が大きいので抵抗が小さくなり、中心側の超電
導線2gでは断面積が小さいので抵抗が大きくなってい
る。したがって、中心側の温度を内周側及び外周側より
高くすることができ、有効に温度差をつけることができ
る。
The superconducting wire 2 of the third embodiment has a different matrix ratio, but in the fourth embodiment, as shown in FIG.
As shown in FIG. 3, the cross-sectional area is changed.
In such a configuration, the inner and outer peripheral superconducting wires 2f
Has a large cross-sectional area and thus has a small resistance, and the central superconducting wire 2g has a small cross-sectional area and thus has a large resistance. Therefore, the temperature on the center side can be made higher than that on the inner peripheral side and the outer peripheral side, and the temperature difference can be effectively provided.

【0046】なお、この第4実施例では、上下方向のみ
断面積を変化させる例を図示したが、もちろん、上下方
向のみならず左右方向についても断面積を変化させれば
理想的である。
In the fourth embodiment, an example in which the cross-sectional area is changed only in the vertical direction is shown, but it is ideal if the cross-sectional area is changed not only in the vertical direction but also in the horizontal direction.

【0047】図14は本発明の第5実施例に係る装置の
構成図である。ただし、この第5実施例は永久電流スイ
ッチのみを対象としている。
FIG. 14 is a block diagram of an apparatus according to the fifth embodiment of the present invention. However, this fifth embodiment is intended only for the permanent current switch.

【0048】現在用いられている永久電流スイッチの殆
んどは、運転時に、ヒータのオン,オフによって超電導
状態と常電導状態との間の切換えを行う、いわゆる熱式
開閉型のものである。図14に示したのは、このような
熱式開閉型の永久電流スイッチ14であり、超電導線2
の間に永久電流スイッチヒータ15が装着されている。
そして、直流電源7により口出し線15a,15bを介
してヒータ15に通電を行うことにより、中心付近の樹
脂5a(図示略)と周囲の樹脂5bとの間に温度差をつ
けることができる。
Most of the permanent current switches currently used are of the so-called thermal switching type, which switches between the superconducting state and the normal conducting state by turning the heater on and off during operation. FIG. 14 shows such a thermal-type open / close type permanent current switch 14, which is a superconducting wire 2
A permanent current switch heater 15 is mounted between the two.
Then, by energizing the heater 15 from the direct current power supply 7 through the lead wires 15a and 15b, it is possible to make a temperature difference between the resin 5a (not shown) near the center and the resin 5b around the center.

【0049】上記した各実施例によれば、超電導コイル
及び永久電流スイッチの含浸コイルを製造する場合に、
樹脂硬化時は、含浸コイル内部より徐々に硬化させるこ
とができるので、内部のヒケ部の発生を従来より低減さ
せることができる。
According to each of the above-mentioned embodiments, when manufacturing the superconducting coil and the impregnated coil of the persistent current switch,
When the resin is cured, the resin can be gradually cured from the inside of the impregnated coil, so that it is possible to reduce the occurrence of internal sink marks as compared with the conventional case.

【0050】よって、超電導コイル及び永久電流スイッ
チの運転時、内部のヒケ部を起因とするクラック発生に
伴う超電導線の局部発熱によるクエンチや超電導線がヒ
ケ部に落ち込む運動によって生じる局部発熱によるクエ
ンチを低減することができ、従来より安定性の高い超電
導コイル及び永久電流スイッチの含浸コイルを製造する
ことができる。
Therefore, during operation of the superconducting coil and the persistent current switch, quenching due to local heat generation of the superconducting wire due to crack generation due to internal sink portion and quenching due to local heat generation due to movement of the superconducting wire into the sink portion It is possible to manufacture a superconducting coil and an impregnated coil for a persistent current switch that can be reduced in number and have higher stability than before.

【0051】また、制御器等で、含浸コイル内部温度と
周囲温度とを追随させるコントロールをすることによ
り、細かい温度分布が可能であるため、制作上のバラツ
キが少なく、性能のバラツキの少ない含浸コイルを得る
ことができる。
Further, since a fine temperature distribution is possible by controlling the internal temperature of the impregnated coil and the ambient temperature with a controller or the like, there is little variation in production and less variation in performance. Can be obtained.

【0052】なお、上記各実施例では種々の態様を紹介
したが、これらの態様は、本発明の趣旨を逸脱しない限
りにおいて、自由に組合わせを変えることが可能であ
る。
Although various modes have been introduced in the above-mentioned embodiments, these modes can be freely combined without departing from the spirit of the present invention.

【0053】[0053]

【発明の効果】以上のように、本発明によれば、超電導
線の横断面方向におけるコイル状巻回部中心付近の樹脂
層温度がコイル状巻回部周囲の樹脂層温度よりも所定温
度だけ高くなるように加熱を行う構成としたので、コイ
ル状巻回部中心付近の樹脂層におけるヒケ部の発生を低
減させ、クエンチの生じにくい超電導コイル及び永久電
流スイッチを製造することができる。
As described above, according to the present invention, the temperature of the resin layer in the vicinity of the center of the coil-shaped winding portion in the cross-sectional direction of the superconducting wire is a predetermined temperature higher than the temperature of the resin layer around the coil-shaped winding portion. Since the heating is performed so as to raise the temperature, it is possible to reduce the occurrence of sink marks in the resin layer near the center of the coil-shaped winding portion, and to manufacture a superconducting coil and a persistent current switch in which quenching is less likely to occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る装置の構成図。FIG. 1 is a configuration diagram of an apparatus according to a first embodiment of the present invention.

【図2】図1における超電導コイルの構造についての説
明図。
2 is an explanatory view of the structure of the superconducting coil in FIG.

【図3】第1実施例における樹脂のゲル化についての特
性図。
FIG. 3 is a characteristic diagram regarding gelation of a resin in the first embodiment.

【図4】第1実施例における樹脂の硬化パターンについ
ての特性図。
FIG. 4 is a characteristic diagram of a resin curing pattern in the first embodiment.

【図5】本発明の第2実施例に係る装置の構成図。FIG. 5 is a configuration diagram of an apparatus according to a second embodiment of the present invention.

【図6】図5における超電導コイルの構造についての説
明図。
6 is an explanatory view of the structure of the superconducting coil in FIG.

【図7】第2実施例における樹脂の硬化パターンについ
ての特性図。
FIG. 7 is a characteristic diagram of a resin curing pattern in the second embodiment.

【図8】本発明の第3実施例に係る装置の構成図。FIG. 8 is a configuration diagram of an apparatus according to a third embodiment of the present invention.

【図9】第3実施例における超電導コイルの形状を示す
斜視図。
FIG. 9 is a perspective view showing the shape of a superconducting coil according to a third embodiment.

【図10】図9のX−X線に沿う断面図。10 is a cross-sectional view taken along line XX of FIG.

【図11】図10の変形例を示す断面図。11 is a cross-sectional view showing a modified example of FIG.

【図12】本発明の第4実施例に係る装置の構成図。FIG. 12 is a configuration diagram of an apparatus according to a fourth embodiment of the present invention.

【図13】第4実施例における超電導線の断面積の変化
状態を示す断面図。
FIG. 13 is a cross-sectional view showing a changed state of the cross-sectional area of the superconducting wire in the fourth embodiment.

【図14】本発明の第5実施例に係る装置の構成図。FIG. 14 is a configuration diagram of an apparatus according to a fifth embodiment of the present invention.

【図15】超電導線の巻回の仕方についての説明図。FIG. 15 is an explanatory diagram of how to wind a superconducting wire.

【図16】従来の製造方法についての説明図。FIG. 16 is an explanatory diagram of a conventional manufacturing method.

【図17】従来の製造方法の課題についての説明図。FIG. 17 is an explanatory diagram of a problem of the conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1 超電導コイル 2 超電導線 3 巻型 5 エポキシ樹脂(熱硬化性樹脂) 5a コイル状巻回部中心付近の樹脂 5b コイル状巻回部周囲の樹脂 7 直流電源 8 温度制御器 9 乾燥炉 10 乾燥炉ヒータ 11a〜11d 電圧計測線 12 埋設ヒータ 13 誘起コイル 14 永久電流スイッチ 15 永久電流スイッチヒータ 17 交流電源 20a,20b 温度検出手段(熱電対) 1 superconducting coil 2 superconducting wire 3 winding type 5 epoxy resin (thermosetting resin) 5a resin near the center of the coiled winding portion 5b resin around the coiled winding portion 7 DC power supply 8 temperature controller 9 drying oven 10 drying oven Heater 11a-11d Voltage measurement line 12 Embedded heater 13 Induction coil 14 Permanent current switch 15 Permanent current switch heater 17 AC power supply 20a, 20b Temperature detection means (thermocouple)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山 根 達 視 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 平 井 久 之 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Tatsumi Yamane, Inventor 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Fuchu factory, Toshiba Corp. (72) Hisayuki Hirai 2, 4-Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa Address inside Toshiba Keihin office

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】超電導線がコイル状に巻回された巻型に熱
硬化性樹脂を含浸又は注型し、その後の加熱によりこの
熱硬化性樹脂を硬化させる超電導コイル及び永久電流ス
イッチの製造方法において、 前記超電導線の横断面方向におけるコイル状巻回部中心
付近の樹脂層温度がコイル状巻回部周囲の樹脂層温度よ
りも所定温度だけ高くなるように、前記加熱を行うこ
と、 を特徴とする超電導コイル及び永久電流スイッチの製造
方法。
1. A method for manufacturing a superconducting coil and a permanent current switch, wherein a thermosetting resin is impregnated or cast into a winding die in which a superconducting wire is wound in a coil shape, and then the thermosetting resin is cured by heating thereafter. In the above, the heating is performed such that the resin layer temperature in the vicinity of the center of the coil-shaped winding portion in the cross-sectional direction of the superconducting wire becomes higher than the resin layer temperature around the coil-shaped winding portion by a predetermined temperature. And a method for manufacturing a superconducting coil and a persistent current switch.
【請求項2】請求項1記載の製造方法において、 前記所定温度は1℃〜10℃の値であること、 を特徴とする製造方法。2. The manufacturing method according to claim 1, wherein the predetermined temperature has a value of 1 ° C. to 10 ° C. 【請求項3】請求項1又は2記載の製造方法において、 前記コイル状巻回部中心付近と前記コイル状巻回部周囲
とにそれぞれ温度検出手段を設け、各温度検出手段の検
出に基いて各樹脂層温度の制御を行うこと、 を特徴とする製造方法。
3. The manufacturing method according to claim 1, wherein temperature detecting means is provided in the vicinity of the center of the coil-shaped winding portion and around the coil-shaped winding portion, and based on the detection of each temperature detecting means. Controlling the temperature of each resin layer.
【請求項4】請求項1乃至3のいずれかに記載の製造方
法において、 前記コイル状巻回部中心付近の樹脂層温度が、前記横断
面方向における位置に応じて異なる値となっているこ
と、 を特徴とする製造方法。
4. The manufacturing method according to claim 1, wherein the temperature of the resin layer near the center of the coil-shaped winding portion has a different value depending on the position in the cross-sectional direction. A manufacturing method characterized by:
【請求項5】請求項1乃至4のいずれかに記載の製造方
法において、 前記加熱に基く熱硬化性樹脂の硬化パターンは、所定の
硬化温度を有する一次硬化領域と、この一次硬化領域の
硬化温度よりも高い硬化温度を有する二次硬化領域とを
含んでいること、 を特徴とする製造方法。
5. The manufacturing method according to claim 1, wherein the curing pattern of the thermosetting resin based on the heating is a primary curing region having a predetermined curing temperature, and curing of the primary curing region. And a secondary curing region having a curing temperature higher than the temperature.
【請求項6】請求項1乃至5のいずれかに記載の製造方
法において、 前記コイル状巻回部の周囲側から中心側へ向かうにつれ
て母材マトリクス比が次第に小さくなるように、前記超
電導線を形成したこと、 を特徴とする製造方法。
6. The manufacturing method according to any one of claims 1 to 5, wherein the superconducting wire is formed so that the matrix ratio of the base material gradually decreases from the peripheral side to the center side of the coiled winding portion. A manufacturing method characterized by being formed.
【請求項7】請求項1乃至5のいずれかに記載の製造方
法において、 前記コイル状巻回部の内周側及び外周側付近の母材マト
リクス比が大きく、また、この内周側と外周側との間の
母材マトリクス比が小さくなるように、前記超電導線を
形成したこと、 を特徴とする製造方法。
7. The manufacturing method according to claim 1, wherein the matrix ratio of the base material near the inner circumference side and the outer circumference side of the coiled winding portion is large, and the inner circumference side and the outer circumference side are large. The superconducting wire is formed such that the matrix ratio of the base material to the side is small.
【請求項8】請求項1乃至5のいずれかに記載の製造方
法において、 前記コイル状巻回部の周囲側から中心側へ向かうにつれ
て断面積が次第に小さくなるように、前記超電導線を形
成したこと、 を特徴とする製造方法。
8. The manufacturing method according to claim 1, wherein the superconducting wire is formed so that the cross-sectional area gradually decreases from the peripheral side to the center side of the coiled winding portion. A manufacturing method characterized by the following.
【請求項9】請求項1乃至5のいずれかに記載の製造方
法において、 前記コイル状巻回部の内周側及び外周側付近の断面積が
大きく、また、この内周側と外周側との間の断面積が小
さくなるように、前記超電導線を形成したこと、 を特徴とする製造方法。
9. The manufacturing method according to claim 1, wherein the coiled winding portion has a large cross-sectional area in the vicinity of the inner peripheral side and the outer peripheral side, and the inner peripheral side and the outer peripheral side. The superconducting wire is formed such that the cross-sectional area between the two is small.
【請求項10】請求項1乃至9のいずれかに記載の製造
方法において、 前記含浸又は注型後の前記巻型に所定圧力を加えた状態
で前記加熱を行うこと、 を特徴とする製造方法。
10. The manufacturing method according to claim 1, wherein the heating is performed while applying a predetermined pressure to the winding mold after the impregnation or casting. .
【請求項11】超電導線がコイル状に巻回された巻型に
熱硬化性樹脂を含浸又は注型し、その後の加熱によりこ
の熱硬化性樹脂を硬化させる超電導コイル及び永久電流
スイッチの製造装置において、 前記コイル状に巻回された超電導線の口出し線に接続さ
れ、この超電導線に通電を行う直流電源と、 前記超電導線の横断面方向におけるコイル状巻回部中心
付近の第1の樹脂層温度、及びコイル状巻回部周囲の第
2の樹脂層温度をそれぞれ検出する少くとも2以上の温
度検出手段と、 前記各温度検出手段からの検出値に基いて前記直流電源
の出力を制御し、これにより前記第1の樹脂層温度が第
2の樹脂層温度よりも所定温度だけ高くなるように温度
制御を行う温度制御手段と、 を備えたことを特徴とする超電導コイル及び永久電流ス
イッチの製造装置。
11. A manufacturing device of a superconducting coil and a permanent current switch, wherein a thermosetting resin is impregnated or cast into a winding die in which a superconducting wire is wound in a coil shape, and the thermosetting resin is cured by heating thereafter. In the above, a DC power source connected to the lead wire of the superconducting wire wound in a coil shape, and energizing the superconducting wire, and a first resin near the center of the coiled winding portion in the cross-sectional direction of the superconducting wire. At least two or more temperature detecting means for respectively detecting the layer temperature and the second resin layer temperature around the coiled winding portion, and controlling the output of the DC power source based on the detection values from the temperature detecting means. And a temperature control means for controlling the temperature so that the first resin layer temperature becomes higher than the second resin layer temperature by a predetermined temperature, and a superconducting coil and a persistent current switch. Manufacturing equipment.
【請求項12】請求項11記載の製造装置において、 前記温度制御手段は、前記含浸又は注型後の巻型を収納
する乾燥炉のヒータの通電制御も行うものである、 ことを特徴とする製造装置。
12. The manufacturing apparatus according to claim 11, wherein the temperature control means also controls energization of a heater of a drying furnace that houses the winding mold after the impregnation or casting. Manufacturing equipment.
【請求項13】請求項11又は12記載の製造装置にお
いて、 前記直流電源は、前記口出し線と共に、内部電圧を計測
するための電圧計測線を併用して前記超電導線に通電を
行うものである、 ことを特徴とする製造装置。
13. The manufacturing apparatus according to claim 11 or 12, wherein the DC power source energizes the superconducting wire by using together with the lead wire, a voltage measuring wire for measuring an internal voltage. , A manufacturing apparatus characterized by the above.
【請求項14】請求項11記載の製造装置において、 前記巻型は埋設ヒータを有しており、前記温度制御手段
は、この埋設ヒータの通電制御も行うものである、 ことを特徴とする製造装置。
14. The manufacturing apparatus according to claim 11, wherein the winding die has an embedded heater, and the temperature control means also controls energization of the embedded heater. apparatus.
【請求項15】請求項11記載の製造装置において、 前記直流電源に代えて、前記コイル状に巻回された超電
導線を短絡状態又は開放状態とするスイッチ回路を備え
ると共に、交流電力を出力する交流電源と、前記交流電
源からの通電により、前記短絡状態にある超電導線に誘
起電流を発生させる誘起コイルと、を備えており、 前記温度制御手段は、前記各温度検出手段からの検出値
に基いて前記スイッチ回路のオンオフ制御を行ない、こ
れにより前記第1の樹脂層温度が第2の樹脂層温度より
も所定温度だけ高くなるように温度制御を行うものであ
る、 ことを特徴とする製造装置。
15. The manufacturing apparatus according to claim 11, further comprising a switch circuit for placing the coil-shaped superconducting wire in a short-circuited state or an open state, instead of the DC power source, and outputting AC power. An alternating current power supply, and an induction coil for generating an induced current in the superconducting wire in the short-circuited state by energization from the alternating current power supply, and the temperature control means, the detection value from each of the temperature detection means. Based on this, on / off control of the switch circuit is performed, thereby performing temperature control such that the first resin layer temperature is higher than the second resin layer temperature by a predetermined temperature. apparatus.
【請求項16】超電導線がコイル状に巻回されると共
に、この超電導線の間に、超電導状態から常電導状態へ
の切換えを行うためのヒータが装着されている巻型に、
熱硬化性樹脂を含浸又は注型し、その後の加熱によりこ
の熱硬化性樹脂を硬化させる永久電流スイッチの製造装
置において、 前記ヒータに通電を行う直流電源と、 前記超電導線の横断面方向におけるコイル状巻回部中心
付近の第1の樹脂層温度、及びコイル状巻回部周囲の第
2の樹脂層温度をそれぞれ検出する少くとも2以上の温
度検出手段と、 前記各温度検出手段からの検出値に基いて前記直流電源
の出力を制御し、これにより前記第1の樹脂層温度が第
2の樹脂層温度よりも所定温度だけ高くなるように温度
制御を行う温度制御手段と、 を備えたことを特徴とする永久電流スイッチの製造装
置。
16. A winding form in which a superconducting wire is wound in a coil shape, and a heater for switching from a superconducting state to a normal conducting state is mounted between the superconducting wires.
In a manufacturing apparatus of a permanent current switch in which a thermosetting resin is impregnated or cast, and then the thermosetting resin is cured by heating, a DC power supply for energizing the heater, and a coil in the cross-sectional direction of the superconducting wire. At least two temperature detecting means for respectively detecting the first resin layer temperature near the center of the coil-shaped winding portion and the second resin layer temperature around the coil-shaped winding portion, and the detection from each of the temperature detecting means Temperature control means for controlling the output of the DC power supply based on the value, and thereby controlling the temperature so that the first resin layer temperature becomes higher than the second resin layer temperature by a predetermined temperature. An apparatus for manufacturing a persistent current switch, which is characterized in that
JP7035399A 1995-02-23 1995-02-23 Method and equipment for manufacturing superconducting coil and permanent current switch Pending JPH08236343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7035399A JPH08236343A (en) 1995-02-23 1995-02-23 Method and equipment for manufacturing superconducting coil and permanent current switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7035399A JPH08236343A (en) 1995-02-23 1995-02-23 Method and equipment for manufacturing superconducting coil and permanent current switch

Publications (1)

Publication Number Publication Date
JPH08236343A true JPH08236343A (en) 1996-09-13

Family

ID=12440846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7035399A Pending JPH08236343A (en) 1995-02-23 1995-02-23 Method and equipment for manufacturing superconducting coil and permanent current switch

Country Status (1)

Country Link
JP (1) JPH08236343A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318979A (en) * 2005-05-10 2006-11-24 Toshiba Corp Heating device and method for superconductive coil
JP2009130336A (en) * 2007-11-28 2009-06-11 Mitsubishi Electric Corp Superconductive element
JP2013135057A (en) * 2011-12-26 2013-07-08 Denso Corp Method and apparatus for producing resin burying metal component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318979A (en) * 2005-05-10 2006-11-24 Toshiba Corp Heating device and method for superconductive coil
JP4664731B2 (en) * 2005-05-10 2011-04-06 株式会社東芝 Superconducting coil heat treatment apparatus and heat treatment method
JP2009130336A (en) * 2007-11-28 2009-06-11 Mitsubishi Electric Corp Superconductive element
JP2013135057A (en) * 2011-12-26 2013-07-08 Denso Corp Method and apparatus for producing resin burying metal component

Similar Documents

Publication Publication Date Title
US8306589B2 (en) Superconducting electromagnets comprising coils bonded to a support structure
JP6429800B2 (en) Superconducting magnet coil device
CA1280153C (en) Conical unimpregnated winding for mr magnets
JP2003533005A (en) Amorphous metal transformer with a substantially rectangular coil
JP2018117042A (en) High-temperature superconducting permanent current switch and high-temperature superconducting magnet device
JPH08236343A (en) Method and equipment for manufacturing superconducting coil and permanent current switch
KR100549558B1 (en) Dry-type transformer having a generally rectangular, resin encapsulated coil
CN217405325U (en) Thermal control type superconducting switch for high-temperature superconducting magnet
JPS6213010A (en) Superconductive electromagnet
CN116779375A (en) Thermal control type superconducting switch for high-temperature superconducting magnet
JP2720565B2 (en) Permanent current switch
JP2765204B2 (en) How to train a permanent current switch
JPH07192951A (en) Method and apparatus for producing resin molded item
JPH03179710A (en) Manufacture of superconducting coil
JP3762551B2 (en) Induction heating coil for heating inner peripheral surface of cylindrical body
JP3773333B2 (en) Current limiter
JPS60139143A (en) Coil for voice coil motor
JPH06151984A (en) Thermal type permanent current switch
USRE45942E1 (en) Superconducting electromagnets comprising coils bonded to a support structure
JP4562947B2 (en) Superconducting magnet
JPS58105A (en) Manufacture of superconducting coil
JPH10335712A (en) Superconductor switch
JPH0311774A (en) Thermal type permanent current switch
JPS63239876A (en) Thermal permanent current switch
JPH10107331A (en) Persistent-current switching device and its operating method