JP2008218956A - 半導体レーザ素子の製造方法および半導体レーザ素子 - Google Patents

半導体レーザ素子の製造方法および半導体レーザ素子 Download PDF

Info

Publication number
JP2008218956A
JP2008218956A JP2007058202A JP2007058202A JP2008218956A JP 2008218956 A JP2008218956 A JP 2008218956A JP 2007058202 A JP2007058202 A JP 2007058202A JP 2007058202 A JP2007058202 A JP 2007058202A JP 2008218956 A JP2008218956 A JP 2008218956A
Authority
JP
Japan
Prior art keywords
etching
layer
upper cladding
semiconductor laser
cladding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007058202A
Other languages
English (en)
Inventor
Katsuhiko Kishimoto
克彦 岸本
Shuichi Hirukawa
秀一 蛭川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007058202A priority Critical patent/JP2008218956A/ja
Publication of JP2008218956A publication Critical patent/JP2008218956A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Weting (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】リッジ部の加工精度を改善でき、したがってキンクの発生を十分に抑制でき高出力動作が可能な半導体レーザ素子およびその製造方法を提供する。
【解決手段】この半導体レーザ素子の製造方法では、エッチングモニタ用開口部117で反射する光の反射干渉波形をモニタし、エッチングマーカ層110を利用してドライエッチング工程の終点を検出し、ドライエッチングを停止しているので、従来の時間制御法に比べて、より深くまで精度良くドライエッチングを続けることができる。さらに、このドライエッチング工程に続くウエットエッチング工程において、エッチングストップ層108を利用してウエットエッチングを行うので、リッジ部120の高さを精密に制御できると共に、等方的に進むウエットエッチングの時間を短縮できる。
【選択図】図4

Description

この発明は、半導体レーザ素子の製造方法、および半導体レーザ素子に関し、より詳しくは、エッチング方法に特徴がある半導体レーザ素子の製造方法に関する。さらに、この発明は、そのような製造方法で製造した半導体レーザ素子を備えた光ディスク装置に関する。
半導体レーザ素子を高出力化する際の大きな課題の一つに、キンク(半導体レーザ素子の光出力−動作電流特性における非直線性のこと)の発生がある。
このキンクは、半導体レーザの導波路幅(リッジ幅)に対して導波路の内と外との屈折率差Δnが大きい場合に、基本導波モード以外の高次導波モードが発生することによって生じる。また、光出力を大きくするにつれて、導波路内で発生する熱により屈折率差Δnが増大するので、そのことによってもキンクが発生する。
このキンクを抑制するためには、導波路内の特に水平方向における高次導波モードの発生を抑制することが必要であり、そのためには、リッジ幅をより狭くすることが効果的である。
リッジ幅の微細化に関しては、ドライエッチング法を用いてリッジを形成することによって、より狭いリッジを、より制御性よく安定的に作製することができるようになる。すなわち、ドライエッチング法は、異方性エッチングを実現できるというメリットがあるので、リッジの幅,形状の加工制御性を向上できる。
しかし、一方で、ドライエッチング法を用いてリッジを形成する場合、従来のウエットエッチング法では一般的となっている選択エッチングの手法が使いづらいというデメリットがある。
したがって、ドライエッチング法では、ウエットエッチング法に比べて、エッチング量(深さ)を制御することが困難になる。
このため、従来のドライエッチング法によるリッジ加工の際は、条件出しを行って事前にエッチングレートを求めておき、所望の深さだけエッチングするのに必要なエッチング時間を算出して、エッチングを開始してからそのエッチング時間が経過したところでエッチングを停止させるということが行われてきた。
このリッジ加工の際に、エッチングする所望の深さが少なくとも1〜2(μm)である場合に、エッチング深さの制御量としては、例えば、10〜数10(nm)の精度が要求される。
しかしながら、上述の従来のドライエッチング方法では、被エッチング半導体層の厚さのばらつきやドライエッチングのエッチング量自体のばらつきなどにより、必要なエッチング量制御が十分にできないという問題がある。
その結果、リッジ導波路の脇のクラッド層の厚さの制御が不安定になり、結果としてキンクが発生することがあった。リッジ導波路の脇のクラッド層の厚さを制御することは、キンクを抑制するためのもう一つの重要な観点である。
そこで、例えば、特許文献1(特開平3−6877号公報)や特許文献2(特許第2601229号公報)に開示されている技術では、クラッド層を成長させる段階でリッジ部の下部に相当する深さに終点検出層(クラッド層とは組成が異なる層)を介挿している。この技術では、ドライエッチングでリッジ部を加工する際のエッチング量(深さ)を制御するに際し、上記終点検出層を利用することで、エッチング深さの精度を向上させている。
しかし、前述の特許文献1,2で開示された方法では、終点検出層が存在することによって、最終的なリッジ断面の垂直性を阻害する要因となることがあった。すなわち、特許文献1,2で開示された方法では、図8Aに示すように、リッジ部920の側面にクラッド層(リッジ部の大部分を構成する層)とは組成の異なる終点検出層950が露出して、この終点検出層950が部分的に出っ張ったり、逆に、図8Bに示すように、終点検出層950が引っ込んだりするという問題があった。これは、終点検出層950のエッチング特性がクラッド層のエッチング特性とは異なることに起因して、ドライエッチングによる加工後に、化学エッチャントを用いてドライエッチング時の反応生成物とダメージの除去を行う際に、終点検出層950のエッチング量とクラッド層のエッチング量とが異なることによって発生する。
図8A,図8Bに示すように、リッジ部920の側面の垂直性が阻害されると、結局、キンクの発生を抑制できなくなってしまうという問題がある。さらには、上記終点検出層950の突出や陥没は、リッジ部920を被覆する絶縁膜や電極の段切れ(リッジ部の側面の凹凸によって絶縁膜や電極が不連続となる現象)の原因になることもある。
特開平3−006877号公報 特許2601229号公報
そこで、この発明の課題は、リッジ部の加工精度を改善でき、したがってキンクの発生を十分に抑制でき高出力動作が可能な半導体レーザ素子およびその製造方法を提供することにある。
上記課題を解決するため、この発明の半導体レーザ素子の製造方法は、基板上に、少なくとも、下クラッド層と、活性層と、第1上クラッド層と、上記第1上クラッド層とは組成が異なるエッチングストップ層と、上記エッチングストップ層とは組成が異なる第2上クラッド層と、上記第2上クラッド層とは組成が異なるエッチングマーカ層と、上記エッチングマーカ層とは組成が異なる第3上クラッド層と、コンタクト層とが順に積層された半導体積層構造部を形成する積層工程と、
上記半導体積層構造部にエッチングモニタ用開口部を形成するための第1の開口部と上記半導体積層構造部にストライプ状のリッジ部を形成するための第2の開口部とを有するマスクを、上記コンタクト層上に形成するマスク形成工程と、
上記半導体積層構造部をドライエッチングしながら、上記マスクの上記第1の開口部に光を照射し、この光が上記半導体積層構造部で反射して発生する反射干渉光をモニタすることで、上記エッチングマーカ層がエッチングされていることを観察した後、上記第2上クラッド層の途中でドライエッチングを停止させるドライエッチング工程と、
上記第2上クラッド層を上記エッチングストップ層に対して選択的にウエットエッチング法にてエッチングして上記リッジ部を形成するウエットエッチング工程とを有することを特徴としている。
ここで、下クラッド層および上クラッド層は、いわゆるガイド層を含んでいてもよい。また、コンタクト層とは、半導体レーザ素子に電流注入する際に必要な電極金属と半導体多層構造との間に良好なオーミック接合を実現するために設けられる半導体層のことである。
この発明の製造方法によれば、エッチングマーカ層を利用してドライエッチング工程の終点を検出し、ドライエッチングを停止しているので、従来の時間制御法に比べて、より深くまで精度良くドライエッチングを続けることができる。さらに、このドライエッチング工程に続くウエットエッチング工程において、エッチングストップ層を利用してウエットエッチングを行うので、リッジ部の高さを精密に制御できると共に、等方的に進むウエットエッチングの時間を短縮できる。
したがって、この発明の製造方法によれば、高さ制御性と垂直性に優れたリッジ部を作製でき、キンクの発生を十分に抑制できて高出力動作が可能な半導体レーザ素子を製造できる。
また、一実施形態の半導体レーザ素子の製造方法では、上記第1、第2および第3上クラッド層がAlGaInPであり、上記エッチングストップ層がGaInPであり、上記エッチングマーカ層がAlGaAsである。
この実施形態によれば、AlGaInPからなるクラッド層に対してエッチングマーカ層がAlGaAsであることにより、良好なドライエッチング終点検出が可能になる。また、GaInPからなるエッチングストップ層を用いることにより、ウエットエッチング工程において、クラッド層に対して確実に選択エッチングを実行することができる。
また、一実施形態の半導体レーザ素子の製造方法では、上記AlGaInPからなる第2および第3上クラッド層のAlのIII族混晶比が0.3乃至0.4であり、
上記AlGaAsからなるエッチングマーカ層のAl混晶比が0.35乃至0.45であり、
上記第2上クラッド層をエッチングするウエットエッチング工程において、エッチャントとしてふっ酸を使用する。
この実施形態によれば、上記ウエットエッチング工程において、上記第2および第3上クラッド層に対するサイドエッチング速度(基板に対して平行方向にエッチングされる速度)と、上記エッチングマーカ層に対するサイドエッチング速度とがほぼ等しくなる。これにより、ふっ酸によるウエットエッチング工程を経た後もリッジ部の垂直性が悪くならない。よって、キンクを抑えることができる。
なお、上記AlGaInPからなる第2,第3上クラッド層のAl混晶比を0.35とすることが望ましい。この場合、半導体レーザ素子に要求される好ましい屈折率分布を実現できる。
また、AlGaInP,AlGaAsはAl混晶比が小さくなる程、ふっ酸ではエッチングされ難くなる。すなわち、AlGaInPではAl混晶比が0.3よりも小さくなると実質的にエッチングされなくなり、AlGaAsではAl混晶比が0.35よりも小さくなると実質的にエッチングされなくなる。一方、AlGaInP,AlGaAsは、それぞれ、Al混晶比0.4,0.45を上回るとエッチングレートが指数関数的に大きくなり、エッチング量を制御し難くなる。
また、一実施形態の半導体レーザ素子の製造方法では、上記反射干渉波形をモニタする光の波長が、450nm乃至550nmである。
上記実施形態によれば、波長が450nm乃至550nmの光の反射干渉波形をモニタすることによって、AlGaInPからなる第2および第3上クラッド層に挟まれたAlGaAsからなるエッチングマーカ層を容易に検出できる。
例えば、横軸をエッチング時間(単位:秒)とし縦軸を反射干渉光の反射強度(単位:cps(count per second):1秒間当たりのフォトン(光子)のカウント数(検出数))とした図7A,図7Bに示すように、モニタ光の波長が450nm,550nmでは、第3上クラッド層の始点、および第3上クラッド層からエッチングマーカ層への移行点が反射強度の変化から明瞭に分かる。一方、モニタ光の波長が670nmでは、図7Cに示すように、第3上クラッド層の始点、および第3上クラッド層からエッチングマーカ層への移行点が明瞭にならない。そして、実験の結果、モニタ光の波長が550nmを上回ると、各半導体層での反射強度の差が不明確になり、界面が明確に分からなくなることが判明した。
一方、モニタ光の波長が450nmを下回ると、第3上クラッド層とエッチングマーカ層との界面の直近までエッチングしないと干渉波形が明確に現れなないので、製造工程での利用が実質的にできなくなる。なお、特に、干渉波形の波の数をカウントしてエッチング深さを検出する場合には、干渉波形が明確でないとエッチング深さを検出できなくなる。
また、一実施形態の半導体レーザ素子の製造方法では、上記第2上クラッド層の厚さが、30nm乃至100nmである。
この実施形態よれば、第2上クラッド層の厚さを30nm以上としたことで、ドライエッチング工程においてドライエッチングを停止させるときに、第2上クラッド層中でエッチングを容易に停止できる。これに対し、第2上クラッド層の厚さが30nm未満では、例えば、前述の図7Bに示すようなモニタ光の波長が550nmでの測定結果において、第3上クラッド層における干渉波形の1つの山(半波長)分の寸法よりも第2上クラッド層の厚さが薄くなる。このため、エッチングが第3上クラッド層からエッチングマーカ層を通過して第2上クラッド層へ進行したことを検出し難くなって、第2上クラッド層の途中でエッチングを停止させることが困難になる。
一方、第2上クラッド層の厚さを100nm以下としたことで、ドライエッチング工程後のウエットエッチング工程で除去すべき第2上クラッド層の厚さを小さくできるので、等方的エッチングとなるウエットエッチング時間を短縮できる。よって、リッジ部の側面の垂直性を向上でき、キンクを抑制できる。
また、一実施形態の半導体レーザ素子の製造方法では、上記AlGaAsからなるエッチングマーカ層の厚さが5nm乃至15nmである。
この実施形態によれば、上記AlGaAsからなるエッチングマーカ層の厚さが5nm以上であるので、上記反射干渉波形を明確にモニタすることができる。これにより、ドライエッチングの終点時機を明確に判別できる。また、上記エッチングマーカ層の厚さを15nm以下としているので、エッチングマーカ層の存在が半導体レーザ素子の特性に悪影響を与えることを回避できる。
なお、上記エッチングマーカ層の厚さが5nm未満では反射干渉波形でエッチングマーカ層を明確に検出することが困難になる一方、上記エッチングマーカ層の厚さが15nmを超えると半導体レーザ素子の光閉じ込めに悪影響を及ぼす。
また、この発明の別の側面に係る半導体レーザ素子は、半導体基板上に、少なくとも、下クラッド層と、活性層と、第1上クラッド層と、上記第1上クラッド層とは組成が異なるエッチングストップ層と、上記エッチングストップ層とは組成が異なる第2上クラッド層と、上記第2上クラッド層とは組成が異なるエッチングマーカ層と、上記エッチングマーカ層とは組成が異なる第3上クラッド層と、コンタクト層とが順に積層された半導体積層構造部を備え、
上記半導体積層構造部は、
上記半導体積層構造部の表面から上記エッチングストップ層が露出する深さまで形成された一対のストライプ状凹部と、
上記一対のストライプ状凹部の間に形成されると共に上記半導体基板の表面に対して略垂直な側面を持つリッジ部と、
上記リッジ部とで各ストライプ状凹部を挟むように形成されたリッジテラス部とを有し、
上記リッジ部と上記リッジテラス部とが導波路を構成していることを特徴としている。
この半導体レーザ素子は、半導体積層構造部が、第1上クラッド層上のエッチングストップ層と、第2上クラッド層上のエッチングマーカ層を有している。よって、エッチングマーカ層でもってドライエッチングの終点を精度良く検出でき、かつ、エッチングストップ層でもってウエットエッチングを終了させる本発明の製造方法で製造できる。よって、加工形状の制御性と高さの制御性の両方が良いリッジ部となり、キンクを抑制でき、高出力動作が可能となる。また、上記エッチングマーカ層の厚さを15nm以下とした場合には、エッチングマーカ層の存在が半導体レーザ素子の特性に悪影響を与えることを回避でき、特性劣化や歩留りの低下を回避できる。
また、この発明の光ディスク装置は、上記半導体レーザ素子を光源として備えたことを特徴としている。
この光ディスク装置は、光源としての半導体レーザ素子がキンクの発生を十分に抑制できるので、従来の半導体レーザ素子に比して、より高出力まで動作する。この結果、この発明の光ディスク装置では、従来の光ディスク装置よりも高速な読み書きが可能になる。
この発明の半導体レーザ素子の製造方法によれば、エッチングマーカ層を利用してドライエッチング工程の終点を検出し、ドライエッチングを停止しているので、従来の時間制御法に比べて、より深くまで精度良くドライエッチングを続けることができる。さらに、このドライエッチング工程に続くウエットエッチング工程において、エッチングストップ層を利用してウエットエッチングを行うので、リッジ部の高さを精密に制御できると共に、等方的に進むウエットエッチングの時間を短縮できる。
したがって、この発明によれば、高さ制御性と垂直性に優れたリッジ部を作製でき、キンクの発生を十分に抑制でき、高出力動作が可能な半導体レーザ素子の製造方法を実現できる。
以下、この発明の半導体レーザ素子とその製造方法および光ディスク装置を図示の実施の形態により詳細に説明する。
なお、この明細書を通じて、「上」とは、基板から離れる方向を意味し、「下」とは、基板へ近づく方向を意味する。結晶成長は「下」から「上」の方向へ向かって進行する。
(第1の実施の形態)
図1は、この発明の第1実施形態の半導体レーザ素子の構造を示したものである。
この第1実施形態の半導体レーザ素子は、出射光の波長が650nmである赤色の半導体レーザ素子である。この半導体レーザ素子は、n型GaAs基板101上に、順に、n型GaAsバッファ層102、n型(Al0.7Ga0.3)0.5In0.5P下クラッド層103、(Al0.545Ga0.455)0.5In0.5P下ガイド層104、多重歪量子井戸活性層105、(Al0.545Ga0.455)0.5In0.5P上ガイド層106、p型(Al0.7Ga0.3)0.5In0.5P第1上クラッド層107、Ga0.63In0.37Pエッチングストップ層108が形成されている。
また、このGa0.63In0.37Pエッチングストップ層108上に、リッジ部120、および、このリッジ部120の両側に所定間隔を隔てたリッジテラス121A,121Bが形成されている。このリッジ部120とリッジテラス121A,121Bは、それぞれ、エッチングストップ層108上に順に形成されたp型(Al0.7Ga0.3)0.5In0.5P第2上クラッド層109、p型Al0.4Ga0.6Asエッチングマーカ層110、p型(Al0.7Ga0.3)0.5In0.5P第3上クラッド層111とp型Ga0.51In0.49P中間層112、p型GaAsコンタクト層113を備えている。
上記リッジ部120とリッジテラス121A,121Bおよび上記バッファ層102から上記エッチングストップ層108までの層が半導体積層構造部を構成している。また、図1に示すように、リッジ部120とリッジテラス121Aとリッジテラス121Bは、それぞれ、ストライプ状にエッチング加工されている。なお、リッジ部120とリッジテラス121A,121Bが導波路を構成している。そして、リッジテラス121A,121Bは、コンタクト層113側を底部としてステムやパッケージにマウントする(すなわち、ジャンクションダウン実装する)際に、リッジ部120が破損しないように設けられるものである。
図1に示すように、リッジ部120およびリッジテラス121A,121Bの側面部およびエッチングストップ層108およびリッジテラス121A,121Bの上には、SiOからなる絶縁層114が形成されている。なお、リッジ部120のコンタクト層113上には絶縁層114が形成されていない。
上記絶縁層114、および上記リッジ部120のp型GaAsコンタクト層113の上には、p側電極115が形成されている。また、n型GaAs基板101の上記半導体積層構造部が積層されている側と反対側の面には、n側電極116が形成されている。
(第2の実施の形態)
次に、図2から図5を順に参照して、図1に示す第1実施形態の半導体レーザ素子を製造する方法である第2実施形態を説明する。
まず、積層工程では、図2に示すように、3インチ径のn型GaAs基板(ウエハ)101上に、n型GaAsバッファ層102(層厚:500nm)、n型(Al0.7Ga0.3)0.5In0.5P下クラッド層103(層厚:2.8μm)、(Al0.545Ga0.455)0.5In0.5P下ガイド層104(層厚:55nm)、多重歪量子井戸活性層105、(Al0.545Ga0.455)0.5In0.5P上ガイド層106(層厚:55nm)、p型(Al0.7Ga0.3)0.5In0.5P第1上クラッド層107(層厚:245nm)、Ga0.63In0.37Pエッチングストップ層108(層厚:13nm)、p型(Al0.7Ga0.3)0.5In0.5P第2上クラッド層109(層厚:50nm)、p型Al0.4Ga0.6Asエッチングマーカ層110(層厚:15nm)、p型(Al0.7Ga0.3)0.5In0.5P第3上クラッド層111(層厚:1.0μm)とp型Ga0.51In0.49P中間層112(層厚:35nm)、p型GaAsコンタクト層113(層厚:500nm)を順次、MOCVD(有機金属気相成長法)にて結晶成長させて、半導体積層構造部100を形成する。
上記多重歪量子井戸活性層105は、Ga0.445In0.555P量子井戸層(層厚:5nm、4層)と(Al0.545Ga0.455)0.5In0.5P障壁層(層厚:6.3nm、3層)を交互に配して形成される。なお、多重歪量子井戸活性層105の構造は、この発明の本質とは直接関係無いため、多重歪量子井戸活性層105の詳細な断面構造は図示していない。
次に、マスク形成工程では、図3に示すように、上記基板101上に形成した上記半導体多層構造部100のコンタクト層113上にプラズマCVD法を用いてSiO膜(膜厚:400nm)を成膜する。続いて、このSiO膜上にフォトレジストを塗布し、フォトリソグラフィー技術を用いて基板(ウェハ)101の中央付近に略矩形のエッチングモニタ用開口部117と、リッジ部を形成するためのストライプ状のリッジ形成用開口部118とを有するSiO膜からなるマスク119を形成する。なお、ここでは、上記SiO膜のパターニングには、RIE(反応性イオンエッチング)法を用いた。
次に、ドライエッチング工程では、図4に示すように、図3のマスク119を用いてエッチングモニタ用開口部117とリッジ形成用開口部118から露出した半導体多層構造部100の領域をICP(誘導結合プラズマ)エッチャー装置を使用してドライエッチングする。このとき、上記エッチングモニタ用開口部117には可視光を照射し、この可視光の反射干渉光の強度を観察することによってドライエッチングの進行状況をモニタリングする。この方法によれば、エッチングが進行して、上記半導体多層構造部100の或る半導体層(コンタクト層113,中間層112,第3上クラッド層111,エッチングマーカ層110等)の厚さが薄くなって行くに従って、上記或る半導体層の表面からの反射光とその下の半導体層との界面からの反射光の光路長差に起因して干渉光強度が大きくなって行く。
そして、上記或る半導体層の厚さがゼロになった時点で上記干渉光強度がゼロになるので、上記或る半導体層のエッチングの完了を知ることができる。したがって、この干渉光強度をモニタリングすることによって、上記エッチングマーカ層110のエッチングが完了したことを検出した時点でドライエッチングを終了させる。
ここでは、上記ドライエッチングのエッチングガスをClとして、ガス圧0.01(Torr)としてエッチングを行った。なお、上記エッチングガスとしては、Clの他に、SiClやBClなどの塩素系ガスも使用することができる。
また、上記ドライエッチングの進行状況をモニタリングするために照射する可視光としては、450〜550nm程度の単色光が適切であるが、上記波長範囲を含む白色光を照射した後、その反射光を分光して波長450〜550nmの光についてモニタリングする方法を用いてもよい。この実施形態では、白色光源であるキセノンランプで発生させた光を照射し、分光器を介して500nmの反射光を取り出しモニタリングを実施した。
続いて、ウェットエッチング工程では、ふっ酸(HF)を用いて、エッチングストップ層108が露出するまで、ウェットの選択エッチングを行う。前工程(ドライエッチング工程)において、エッチングマーカ層110を利用してエッチングモニタを行いながら、エッチングストップ層108に到達するぎりぎりまでドライエッチングしているので、等方的にエッチングされるウェットエッチング(選択エッチング)工程の所要時間を必要最小限にできる。
さらに、第2上クラッド層109および第3上クラッド層111の材料である(Al0.7Ga0.3)0.5In0.5Pとエッチングマーカ層110の材料であるAl0.4Ga0.6Asとは、ふっ酸によるエッチングレートがほぼ等しい。このため、このウエットエッチング工程を経ても、エッチングマーカ層110の部分が上クラッド層109,111に対して出っ張ったり、引っ込んだりすることがない。すなわち、リッジ部120の垂直性を阻害することがない。そして、このウェットエッチング工程を行うことによって、前工程のドライエッチング工程でドライエッチングを行ったことによりリッジ部120の表面に付着した反応生成物を除去できると共にダメージ導入層を除去できる。
続いて、図5に示すように、プラズマCVD法を用いて、厚さ150nmのSiOを成膜し、リッジ部120の上部をなすコンタクト層113が露出するようにフォトリソグラフィー法を用いてエッチング加工し、絶縁膜114を形成する。さらに、リッジ部120のコンタクト層113および絶縁膜114上に、Ti、Pt、Auの順に金属薄膜を蒸着形成してp側電極115を形成する。
そして、このp側電極115を形成した後、図1に示すように、基板101を裏面側から所望の厚さ(ここでは、約110μm)にまで、ラッピング法により研削する。そして、基板101の裏面側から抵抗加熱蒸着法を用いて、n側電極材料としてAuGe合金(Au88%とGe12%との合金)、Ni、Auを積層形成し、N雰囲気中で390℃で1分間加熱し、n側電極材料のアロイ処理を行う。こうして、n側電極116が形成される。
上述の各工程を経て得られたウエハを、所望の共振器長(ここでは、1500μm)を有する複数のバーに分割した後、上記バーに端面コーティングを行い、さらに上記バーをチップ(1500μm×200μm)に分割する。分割後のチップをサブマウントに実装した後、サブマウントごとステムにダイボンドし、更にワイヤーボンディングを実施して半導体レーザ素子が完成する。
この第2実施形態の半導体レーザ素子の製造方法では、エッチングマーカ層110で反射した反射干渉光による信号を検知し、エッチングマーカ層110のエッチングが完了したことを検出することによってドライエッチングを停止させる。よって、この第2実施形態では、コンタクト層111のエッチング開始からの時間制御でドライエッチングを停止させる従来例に比べて、図4に示す第2上クラッド層109のドライエッチング後の下部層109Aの層厚加工精度が大幅に向上する。
さらに、この実施形態では、上述のように、第2,第3上クラッド層109,111の材料組成とエッチングマーカ層110の材料組成を適切に選択することによって、ウエットエッチング工程における第2,第3上クラッド層109,111のエッチングレートを、ウエットエッチング工程におけるエッチングマーカ層110のエッチングレートに合わせることができる。その結果、ウエットエッチング工程後のリッジ部120の側面の垂直性を悪化させることがない。
より具体的には、第2,第3上クラッド層109,111としてAlのIII族混晶比が0.3〜0.4であるようなAlGaInPと、Al混晶比が0.35〜0.45であるようなAlGaAsからなるエッチングマーカ層110とを組み合せることが好ましい。
また、第2上クラッド層109の厚さは30nm以上、100nm以下とすることが好ましい。この場合、エッチングマーカ層110での反射干渉光による信号を観察し、エッチングマーカ層110のエッチング完了を検出して、ドライエッチング工程を停止させたときに、第2上クラッド層109中でエッチングが容易に停止する。その上、ドライエッチング工程後のウエットエッチングで除去すべき第2上クラッド層109の厚さが小さくなるので、等方的エッチングとなるウエットエッチング時間を短縮させることができる。
なお、この実施形態においては、一例として、第2および第3上クラッド層としてAlのIII族混晶比を0.35、エッチングマーカ層110のAl混晶比を0.4とし、第2上クラッド層109の厚さを50nmとした。
また、エッチングマーカ層110の厚さを5nm以上とすることによって、反射干渉波形を明確に判別できるようになる。さらに、厚さを15nm以下とすることによって、第2上クラッド層109と第3上クラッド層111との間にエッチングマーカ層110を介挿したことによる光学特性のズレを考慮する必要をほとんどなくすることができる。この実施形態では、一例として、エッチングマーカ層110の厚さを15nmとした。
これらの結果、この第2実施形態の製造方法によれば、リッジ部120の側面120A,120Bの垂直性に優れ、従来のドライエッチングによる製造方法に比べて、キンクを更に抑制でき、高出力動作が可能な半導体レーザ素子を製造できる。
(第3の実施の形態)
次に、図6に、この発明にかかる第3実施形態である光ディスク装置200の構造の一例を示す。この光ディスク装置200は、光ディスク201にデータを書き込んだり、光ディスク201に書き込まれたデータを再生したりするためのものである。この光ディスク装置200は、上記書き込み,再生の際に用いられる発光素子として、先述した第2実施形態で製造した波長650nm帯で発振する半導体レーザ素子202を備えている。
この光ディスク装置200についてさらに詳しく説明する。この光ディスク装置200では、書き込みの際は、半導体レーザ素子202から出射された信号光Lがコリメートレンズ203により平行光とされ、ビームスプリッタ204を透過して、λ/4偏光板205で偏光状態が調節された後、対物レンズ206で集光されて光ディスク201に照射される。
一方、読み出し時には、データ信号がのっていないレーザ光が書き込み時と同じ経路をたどって光ディスク201に照射される。このレーザ光がデータの記録された光ディスク201の表面で反射され、レーザ光照射用対物レンズ206、λ/4偏光板205を経た後、ビームスプリッタ204で反射されて90°角度を変えた後、受光素子用対物レンズ207で集光され、信号検出用受光素子208に入射する。信号検出用受光素子208内に入射したレーザ光の強弱によって、光ディスク201に記録されたデータ信号が電気信号に変換され、信号光再生回路209において元の信号に再生される。
この第2実施形態の光ディスク装置は、より高出力までキンクの発生が抑制できる半導体レーザ素子202を備えているので、従来の光ディスク装置に比べてより高速な書き込みが可能となった。
なお、ここでは、波長650nmで発振する半導体レーザ素子202を記録再生型の光ディスク装置に適用した例について説明したが、前述の第2実施形態の製造方法を適用して作製した他の波長帯(例えば780nm帯)の半導体レーザ素子を備えた光ディスク装置にも本発明を適用可能であることは言うまでもない。
この発明の第1実施形態の半導体レーザ素子の断面模式図である。 この発明の第2実施形態である半導体レーザ素子の製造方法の積層工程を説明するための結晶成長後の状態を表す模式図である。 上記第2実施形態のマスク形成工程を説明するための模式図である。 上記第2実施形態のドライエッチング工程,ウエットエッチング工程を説明するための模式図である。 上記第2実施形態の上記ウエットエッチング工程に引き続いて、p側電極形成工程まで終了した状態を表す図である。 この発明の第3実施形態の光ディスク装置の概略図である。 この発明のドライエッチング工程において、第3上クラッド層,エッチングマーカ層を順次エッチングしているときに、波長が450nmのモニタ光で反射干渉光をモニタしている場合での反射干渉光の反射強度波形を表す図である。 この発明のドライエッチング工程において、第3上クラッド層,エッチングマーカ層を順次エッチングしているときに、波長が450nmのモニタ光で反射干渉光をモニタしている場合での反射干渉光の反射強度波形を表す図である。 この発明のドライエッチング工程の比較例において、第3上クラッド層,エッチングマーカ層を順次エッチングしているときに、波長が670nmのモニタ光で反射干渉光をモニタしている場合での反射干渉光の反射強度波形を表す図である。 終点検出層を用いてドライエッチングの深さ制御を行う従来例で作製したリッジ部の一例を示す断面模式図である。 上記従来例で作製したリッジ部の他の一例を示す断面模式図である。
符号の説明
100 半導体積層構造部
101 n型GaAs基板
102 n型GaAsバッファ層
103 n型AlGaInP下クラッド層
104 AlGaInP下ガイド層
105 多重歪量子井戸活性層
106 AlGaInP上ガイド層
107 p型AlGaInP第1上クラッド層
108 GaInPエッチングストップ層
109 p型AlGaInP第2上クラッド層
110 p型AlGaAsエッチングマーカ層
111 p型AlGaInP第3上クラッド層
112 p型GaInP中間層
113 p型GaAsコンタクト層
114 絶縁層
115 p側電極
116 n側電極
117 エッチングモニタ用開口部
118 ストライプ状のリッジ形成用開口部
119 マスク
120 リッジ部
121A、121B リッジテラス
200 光ディスク装置
201 光ディスク
202 半導体レーザ素子
203 コリメートレンズ
204 ビームスプリッタ
205 λ/4偏光板
206 レーザ光照射用対物レンズ
207 受光素子用対物レンズ
208 信号検出用受光素子
209 信号光再生回路

Claims (8)

  1. 基板上に、少なくとも、下クラッド層と、活性層と、第1上クラッド層と、上記第1上クラッド層とは組成が異なるエッチングストップ層と、上記エッチングストップ層とは組成が異なる第2上クラッド層と、上記第2上クラッド層とは組成が異なるエッチングマーカ層と、上記エッチングマーカ層とは組成が異なる第3上クラッド層と、コンタクト層とが順に積層された半導体積層構造部を形成する積層工程と、
    エッチングモニタを行うための第1の開口部と上記半導体積層構造部にストライプ状のリッジ部を形成するための第2の開口部とを有するマスクを、上記コンタクト層上に形成するマスク形成工程と、
    上記マスクを用いて、上記半導体積層構造部をドライエッチングしながら、上記マスクの上記第1の開口部に光を照射し、この光が上記半導体積層構造部で反射して発生する反射干渉光をモニタすることで、上記エッチングマーカ層がエッチングされていることを観察した後、上記第2上クラッド層の途中でドライエッチングを停止させるドライエッチング工程と、
    上記第2上クラッド層を上記エッチングストップ層に対して選択的にウエットエッチング法にてエッチングして上記リッジ部を形成するウエットエッチング工程とを有することを特徴とする半導体レーザ素子の製造方法。
  2. 請求項1に記載の半導体レーザ素子の製造方法において、
    上記第1、第2および第3上クラッド層がAlGaInPであり、上記エッチングストップ層がGaInPであり、上記エッチングマーカ層がAlGaAsであることを特徴とする半導体レーザ素子の製造方法。
  3. 請求項2に記載の半導体レーザ素子の製造方法において、
    上記AlGaInPからなる第2および第3上クラッド層のAlのIII族混晶比が0.3乃至0.4であり、
    上記AlGaAsからなるエッチングマーカ層のAl混晶比が0.35乃至0.45であり、
    上記第2上クラッド層をエッチングするウエットエッチング工程において、エッチャントとしてふっ酸を使用することを特徴とする半導体レーザ素子の製造方法。
  4. 請求項2に記載の半導体レーザ素子の製造方法において、
    上記反射干渉波形をモニタする光の波長が、450nm乃至550nmであることを特徴とする半導体レーザ素子の製造方法。
  5. 請求項2に記載の半導体レーザ素子の製造方法において、
    上記第2上クラッド層の厚さが、30nm乃至100nmであることを特徴とする半導体レーザ素子の製造方法。
  6. 請求項3に記載の半導体レーザ素子の製造方法において、
    上記AlGaAsからなるエッチングマーカ層の厚さが5nm乃至15nmであることを特徴とする半導体レーザ素子の製造方法。
  7. 半導体基板上に、少なくとも、下クラッド層と、活性層と、第1上クラッド層と、上記第1上クラッド層とは組成が異なるエッチングストップ層と、上記エッチングストップ層とは組成が異なる第2上クラッド層と、上記第2上クラッド層とは組成が異なるエッチングマーカ層と、上記エッチングマーカ層とは組成が異なる第3上クラッド層と、コンタクト層とが順に積層された半導体積層構造部を備え、
    上記半導体積層構造部は、
    上記半導体積層構造部の表面から上記エッチングストップ層が露出する深さまで形成された一対のストライプ状凹部と、
    上記一対のストライプ状凹部の間に形成されると共に上記半導体基板の表面に対して略垂直な側面を持つリッジ部と、
    上記リッジ部とで各ストライプ状凹部を挟むように形成されたリッジテラス部とを有し、
    上記リッジ部と上記リッジテラス部とが導波路を構成していることを特徴とする半導体レーザ素子。
  8. 請求項7に記載の半導体レーザ素子を光源として備えたことを特徴とする光ディスク装置。
JP2007058202A 2007-03-08 2007-03-08 半導体レーザ素子の製造方法および半導体レーザ素子 Pending JP2008218956A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007058202A JP2008218956A (ja) 2007-03-08 2007-03-08 半導体レーザ素子の製造方法および半導体レーザ素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007058202A JP2008218956A (ja) 2007-03-08 2007-03-08 半導体レーザ素子の製造方法および半導体レーザ素子

Publications (1)

Publication Number Publication Date
JP2008218956A true JP2008218956A (ja) 2008-09-18

Family

ID=39838588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007058202A Pending JP2008218956A (ja) 2007-03-08 2007-03-08 半導体レーザ素子の製造方法および半導体レーザ素子

Country Status (1)

Country Link
JP (1) JP2008218956A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228441A (ja) * 2010-04-19 2011-11-10 Sharp Corp 窒化物系半導体レーザ素子の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02307003A (ja) * 1989-05-05 1990-12-20 Applied Materials Inc 材料の成長速度とエッチング速度の光学的監視
JPH0645683A (ja) * 1992-07-21 1994-02-18 Sharp Corp 半導体レーザ素子
JP2004304030A (ja) * 2003-03-31 2004-10-28 Tokyo Electron Ltd プラズマ処理方法
JP2005175450A (ja) * 2003-11-21 2005-06-30 Sharp Corp 化合物半導体装置およびその製造方法、ならびにその化合物半導体装置を備えた光ディスク装置
JP2006005317A (ja) * 2004-06-21 2006-01-05 Sharp Corp 半導体レーザ素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02307003A (ja) * 1989-05-05 1990-12-20 Applied Materials Inc 材料の成長速度とエッチング速度の光学的監視
JPH0645683A (ja) * 1992-07-21 1994-02-18 Sharp Corp 半導体レーザ素子
JP2004304030A (ja) * 2003-03-31 2004-10-28 Tokyo Electron Ltd プラズマ処理方法
JP2005175450A (ja) * 2003-11-21 2005-06-30 Sharp Corp 化合物半導体装置およびその製造方法、ならびにその化合物半導体装置を備えた光ディスク装置
JP2006005317A (ja) * 2004-06-21 2006-01-05 Sharp Corp 半導体レーザ素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228441A (ja) * 2010-04-19 2011-11-10 Sharp Corp 窒化物系半導体レーザ素子の製造方法

Similar Documents

Publication Publication Date Title
JP2008060478A (ja) 半導体レーザ装置及びその製造方法
JP2002190635A (ja) 半導体レーザ素子およびその製造方法
JP4755090B2 (ja) 半導体レーザ装置及びその製造方法
JP2007158195A (ja) 半導体レーザ素子およびその製造方法
JP2010068007A (ja) 窒化物半導体レーザ素子
JP2007294732A (ja) 半導体レーザ装置及びその製造方法
JP4938507B2 (ja) 半導体レーザ素子の製造方法、半導体レーザ素子、光ディスク装置
KR20080037848A (ko) 광차단막을 갖는 반도체 레이저 소자의 제조방법
JP2009277684A (ja) 半導体レーザ装置
JP2008218956A (ja) 半導体レーザ素子の製造方法および半導体レーザ素子
JP2006093682A (ja) 半導体レーザおよびその製造方法
JP4932380B2 (ja) 半導体レーザ素子の製造方法
JP2006278839A (ja) 半導体レーザ素子及びその製造法
JP4890362B2 (ja) 半導体レーザ素子の製造方法
JP5503391B2 (ja) 窒化物系半導体レーザ素子の製造方法
JP2009129919A (ja) 半導体レーザ装置及びその製造方法
JP5919747B2 (ja) 光半導体装置及びその製造方法
JP2006253235A (ja) レーザダイオードチップ、レーザダイオード及びレーザダイオードチップの製造方法
JP3999952B2 (ja) 化合物半導体デバイス製造方法
JP3888927B2 (ja) 化合物半導体デバイス製造方法
JP5289360B2 (ja) 半導体レーザ装置
JP2014220440A (ja) 半導体レーザ素子及びその製造方法
KR101060133B1 (ko) 레이저 다이오드의 제조 방법
JP4331137B2 (ja) 半導体レーザ
KR100855425B1 (ko) 반도체 레이저 장치 및 그 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090218

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20110322

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20110322

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

A02 Decision of refusal

Effective date: 20111004

Free format text: JAPANESE INTERMEDIATE CODE: A02