JP2008218481A - Capacitor and its manufacturing method - Google Patents

Capacitor and its manufacturing method Download PDF

Info

Publication number
JP2008218481A
JP2008218481A JP2007049805A JP2007049805A JP2008218481A JP 2008218481 A JP2008218481 A JP 2008218481A JP 2007049805 A JP2007049805 A JP 2007049805A JP 2007049805 A JP2007049805 A JP 2007049805A JP 2008218481 A JP2008218481 A JP 2008218481A
Authority
JP
Japan
Prior art keywords
capacitor
film
anode
valve metal
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007049805A
Other languages
Japanese (ja)
Other versions
JP4992475B2 (en
Inventor
Kenji Shioga
健司 塩賀
Kazuaki Kurihara
和明 栗原
Nobuyuki Hayashi
信幸 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007049805A priority Critical patent/JP4992475B2/en
Publication of JP2008218481A publication Critical patent/JP2008218481A/en
Application granted granted Critical
Publication of JP4992475B2 publication Critical patent/JP4992475B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor and its manufacturing method by which a large-capacity thin-film capacitor can be mounted adjacent to a semiconductor integrated circuti device at a low cost. <P>SOLUTION: The capacitor is provided with a positive electrode 14 of the capacitor made of valve metal that is formed on a lower electrode 13, a dielectric film 15 as a positive electrode oxide film formed on the surface of the positive electrode 14, a negative electrode 16 of the capacitor made of a conductive polymer formed on the surface of the dielectric film 15, and an upper electrode 17 formed on the surface of the negative electrode 16. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,半導体集積回路装置の近傍に実装し、半導体集積回路装置の高周波領域での安定動作に寄与するデカップリングキャパシタとして好適なキャパシタ及びそのキャパシタを製造する方法に関する。   The present invention relates to a capacitor suitable for use as a decoupling capacitor that is mounted in the vicinity of a semiconductor integrated circuit device and contributes to stable operation in a high frequency region of the semiconductor integrated circuit device, and a method for manufacturing the capacitor.

現在、マイクロプロセッサをはじめとする半導体集積回路装置において,動作速度の高速化と低消費電力化が図られている。そして、GHz帯の高周波帯域に於いて、低電圧で半導体集積回路装置を安定に動作させる為、負荷インピーダンスの急激な変動等に起因して生ずる電源電圧変動を抑制すると共に電源の高周波ノイズを除去することが極めて重要になっている。   Currently, in an integrated circuit device such as a microprocessor, an operation speed is increased and a power consumption is reduced. In order to operate the semiconductor integrated circuit device stably at a low voltage in the high frequency band of the GHz band, it suppresses power supply voltage fluctuation caused by sudden fluctuation of load impedance and removes high frequency noise of the power supply. It has become extremely important to do so.

従来の半導体パッケージ基板上では,電源電圧の変動や電源及びグランドラインが重畳する基板内の高周波ノイズによる半導体集積回路装置の誤動作を防止する為、デカップリングキャパシタとして積層チップキャパシタを半導体集積回路装置近傍に実装することが行われている。   On a conventional semiconductor package substrate, a multilayer chip capacitor is used as a decoupling capacitor in the vicinity of the semiconductor integrated circuit device in order to prevent a malfunction of the semiconductor integrated circuit device due to fluctuations in the power supply voltage and high frequency noise in the substrate where the power supply and ground lines overlap. It has been implemented.

この場合のキャパシタとしては、キャパシタの大容量化と高周波帯域における低インダクタンス化とを両立したものが望まれている。   As a capacitor in this case, a capacitor that achieves both a large capacity of the capacitor and a low inductance in a high frequency band is desired.

キャパシタ容量を増大する為、誘電体層の厚さを薄くする技術を導入した薄膜キャパシタでは、真空装置を用いシリコンなどの支持基板上に金属および誘電体酸化物を堆積させる薄膜プロセスにより製造され、この場合、ドライエッチングによる微細加工が可能であることから低インダクタンス構造のキャパシタを実現することができる(例えば、特許文献1、特許文献2、特許文献3などを参照。)。   In order to increase the capacitance of the capacitor, a thin film capacitor that introduces a technique for reducing the thickness of the dielectric layer is manufactured by a thin film process in which a metal and a dielectric oxide are deposited on a support substrate such as silicon using a vacuum device. In this case, since fine processing by dry etching is possible, a capacitor having a low inductance structure can be realized (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).

図11は薄膜プロセスを用いて製造された従来の薄膜キャパシタを表す要部切断側面図であり、図に於いて、1は表面にSiO2 膜を形成したSi基板、2は下部電極、3は誘電体薄膜、4は上部電極、5は保護膜、6はTi(下地)/Cu膜、7はNiめっき膜、8ははんだバンプをそれぞれ示している。尚、Ti/Cu膜6及びNiめっき膜8でUBM(under bump metal)膜を構成している。 FIG. 11 is a cutaway side view showing a main part of a conventional thin film capacitor manufactured by using a thin film process. In FIG. 11, 1 is a Si substrate having a SiO 2 film formed on the surface, 2 is a lower electrode, and 3 is a lower electrode. Dielectric thin film, 4 is an upper electrode, 5 is a protective film, 6 is a Ti (undercoat) / Cu film, 7 is a Ni plating film, and 8 is a solder bump. The Ti / Cu film 6 and the Ni plating film 8 constitute an UBM (under bump metal) film.

特許文献1乃至3に開示されている技術では、薄膜キャパシタの電極材料として、酸化し難いPt、Auなどの貴金属材料を使用するのが一般的であり、また、高誘電率材料を成膜するためのスパッタリング装置の導入や製造歩留向上のためにパーティクル除去対策を必要とするなど、低コスト化を図ることが困難である。   In the techniques disclosed in Patent Documents 1 to 3, it is common to use a precious metal material such as Pt or Au that is difficult to oxidize as an electrode material of a thin film capacitor, and a film having a high dielectric constant is formed. Therefore, it is difficult to reduce the cost, for example, because it is necessary to take a particle removal measure in order to introduce a sputtering apparatus for improving the manufacturing yield.

また、この技術を用いて、ラミネートフィルム状のキャパシタを形成するには,ポリイミド等の樹脂上に350℃以下の低温で誘電体薄膜をスパッタ成膜する必要があり、誘電体の結晶化が不十分なため、大きな容量は実現できず、通常では 0 .3μF/cm2 以下である。
特開2003−197463号公報 特開2004−079801号公報 特開2004−214589号公報
Also, in order to form a laminated film capacitor using this technology, it is necessary to sputter a dielectric thin film on a resin such as polyimide at a low temperature of 350 ° C. or lower, and crystallization of the dielectric is difficult. Since it is sufficient, a large capacity cannot be realized, and is usually 0.3 μF / cm 2 or less.
JP 2003-197463 A JP 2004-079801 A JP 2004-214589 A

本発明では、半導体集積回路装置の近傍に実装することができる大容量の薄膜キャパシタを低コストで製造できるようにする。   According to the present invention, a large-capacity thin film capacitor that can be mounted in the vicinity of a semiconductor integrated circuit device can be manufactured at low cost.

本発明に依るキャパシタ及びその製造方法に於いては、下部電極上に形成された弁金属からなるキャパシタの陽極と、該陽極の表面に形成された陽極酸化膜である誘電体膜と、該誘電体膜の表面に形成された導電性高分子材料からなるキャパシタの陰極と、該陰極の表面に形成された上部電極とを備えてなることを特徴とするキャパシタを実現する。   In the capacitor and the manufacturing method thereof according to the present invention, the anode of the capacitor made of a valve metal formed on the lower electrode, the dielectric film that is the anodic oxide film formed on the surface of the anode, and the dielectric A capacitor comprising a cathode of a capacitor made of a conductive polymer material formed on the surface of a body film and an upper electrode formed on the surface of the cathode is realized.

前記手段を採ることに依り、ガスデポジション法を適用することで粗面化して成膜された弁金属膜からなる陽極を陽極酸化して実現した誘電体膜に起因し、50μF/cm2 〜500μF/cm2 に達する大容量の薄膜キャパシタが実現され、そして、この場合のプロセスとしては、樹脂の硬化温度を下回る低温プロセスの適用が可能である。 Due to the dielectric film realized by anodizing the anode made of the valve metal film roughened by applying the gas deposition method by adopting the above means, 50 μF / cm 2 to A large-capacity thin film capacitor reaching 500 μF / cm 2 is realized, and as a process in this case, a low temperature process lower than the curing temperature of the resin can be applied.

また、弁金属膜は選択的に成膜することができるので、従来の技術に於けるような誘電体部分のパターニング工程は不要となり、低コストで薄膜キャパシタを作製することができる。   In addition, since the valve metal film can be selectively formed, the patterning process of the dielectric portion as in the prior art is not required, and a thin film capacitor can be manufactured at a low cost.

更にまた,本発明に依るキャパシタは、従来,各種産業で利用されてきた通常の陽極酸化技術を利用してキャパシタ用誘電体膜を簡単且つ容易に作製された平面状の電解コンデンサであって、ラミネートフィルム状を成し、そして、従来では得られなかった大容量が実現されている。   Furthermore, the capacitor according to the present invention is a planar electrolytic capacitor in which a dielectric film for a capacitor is simply and easily produced by using a conventional anodizing technique conventionally used in various industries, A laminated film is formed, and a large capacity that has not been obtained in the past has been realized.

本発明に依るキャパシタを作製するには,ガラス等の支持基板上にポリイミド等の樹脂材料膜を成膜し,その上に例えばスパッタリング法を用いて下部電極を成膜し、この上にガスデポジション法を用いてNb、Taなどの弁金属膜を成膜する。この弁金属膜からなる陽極に対して陽極化成を行なって酸化皮膜を形成することでキャパシタの誘電体膜とする。   In order to fabricate a capacitor according to the present invention, a resin material film such as polyimide is formed on a support substrate such as glass, and a lower electrode is formed thereon using, for example, a sputtering method, and a gas electrode is formed thereon. A valve metal film such as Nb or Ta is formed using the position method. A capacitor dielectric film is formed by anodizing the anode made of the valve metal film to form an oxide film.

この場合、該弁金属膜は以下に記述する特徴のいずれかを有している。
(A)弁金属膜の粒の密度は下層ほど緻密で、かつ、上層ほど粗化されている。
(B)弁金属膜の表面の凹凸の大きさが酸化皮膜の膜厚よりも大きい。
(C)弁金属膜の表面の凹凸の大きさが該弁金属膜の粒子径よりも大きい。 (D)弁金属膜の表面が,該弁金属膜の膜厚の10%以上〜50%以下の大きさの凹凸を有する。
In this case, the valve metal film has any of the characteristics described below.
(A) The density of the particles of the valve metal film is denser in the lower layer and roughened in the upper layer.
(B) The unevenness | corrugation magnitude | size of the surface of a valve metal film is larger than the film thickness of an oxide film.
(C) The size of the irregularities on the surface of the valve metal film is larger than the particle diameter of the valve metal film. (D) The surface of the valve metal film has irregularities having a size of 10% to 50% of the thickness of the valve metal film.

前記のようにして形成された誘電体膜上に導電性高分子膜からなる陰極を形成し、その上に上部電極を成膜することでキャパシタ構造が実現される。その後、保護樹脂膜、はんだ材料からなる外部接続用導体を形成してから前記ガラス等の支持基板と前記ポリイミド等の樹脂材料膜を剥離することでラミネートフィルム状のキャパシタが得られる。   A capacitor structure is realized by forming a cathode made of a conductive polymer film on the dielectric film formed as described above, and forming an upper electrode thereon. Thereafter, a protective resin film and a conductor for external connection made of a solder material are formed, and then the support substrate such as glass and the resin material film such as polyimide are peeled to obtain a laminated film capacitor.

本発明で適用するガスデポジション法は、ナノ金属粒子をガス流に乗せてノズルより高速で噴射することにより膜形成を行う方法である。   The gas deposition method applied in the present invention is a method of forming a film by spraying nano metal particles on a gas flow at a high speed from a nozzle.

このナノ金属粒子は、ガス中で生成された直後の粒子を使用する装置(前者)と、他の方法で生成した微粒子を粉状で容器に収容し、ガスをこの容器に供給してエアロゾル化して噴射する装置(後者)とが知られている。   This nano metal particle is a device that uses particles immediately after being generated in gas (the former) and fine particles generated by other methods are stored in a container in the form of powder, and gas is supplied to this container for aerosolization. And the latter device (the latter) are known.

前者は、原料生成室において、2〜3気圧に加圧されたヘリウムガス中で蒸発した金属原子がヘリウム分子と衝突して冷却され、これが金属ナノ粒子となって搬送され、ノズルから100m/sec以上の速度で噴射され、基板に衝突して金属膜を形成する。   In the former, in the raw material production chamber, metal atoms evaporated in helium gas pressurized to 2 to 3 atmospheres collide with helium molecules and are cooled, and these are transported as metal nanoparticles, and 100 m / sec from the nozzle. It is sprayed at the above speed and collides with the substrate to form a metal film.

ナノ金属粒子は,原料生成室から膜形成室に至る搬送系における圧力差に依って加速される。例えば,圧力差が 0 .1kPa〜11kPaでは噴射速度が小さいため、ポーラスな膜となる。   Nano metal particles are accelerated by the pressure difference in the transport system from the raw material generation chamber to the film formation chamber. For example, when the pressure difference is 0.1 kPa to 11 kPa, the injection speed is small, so that a porous film is formed.

図12はナノ金属粒子を噴射して成膜したポーラスな膜を表す要部切断側面図であり、図に於いて、2は下部電極、9はナノ金属粒子9Aからなる膜をそれぞれ示していて、かなりポーラスなものである。   FIG. 12 is a cut-away side view of a main part showing a porous film formed by spraying nano metal particles. In the figure, 2 indicates a lower electrode and 9 indicates a film made of nano metal particles 9A. It's pretty porous.

また、圧力差が10kPa程度になると、衝突に依ってナノ金属粒子9Aの一部は融着するのであるが、未だ、金属粒子9A間には隙間が存在する。   Further, when the pressure difference becomes about 10 kPa, a part of the nano metal particles 9A is fused due to the collision, but there is still a gap between the metal particles 9A.

図13は圧力を若干高め、即ち、10kPa程度に設定してナノ金属粒子を噴射することで成膜した場合の膜を表す要部切断側面図であり、図12に於いて用いた記号と同じ記号で指示した部分は同一或いは同効の部分を表すものとする。   FIG. 13 is a cutaway side view of the main part showing the film when the film is formed by slightly raising the pressure, that is, by setting the nanometal particles to about 10 kPa, and is the same as the symbol used in FIG. Parts indicated by symbols shall represent identical or equivalent parts.

また、100kPa〜500kPaでは、噴射速度が大きいため、ナノ金属粒子9A間には隙間がなくなり、緻密な金属膜が形成される。   Further, at 100 kPa to 500 kPa, since the injection speed is high, there is no gap between the nano metal particles 9A, and a dense metal film is formed.

図14はナノ金属粒子の噴射速度を大きくして成膜した隙間がない緻密な金属膜を表している。尚、図では緻密な金属膜を記号14で指示してある。尚、下部電極と金属膜14との密着性を向上させる為、支持基板温度を200℃程度にしてもよい。   FIG. 14 shows a dense metal film having no gap formed by increasing the spray speed of the nano metal particles. In the figure, a dense metal film is indicated by symbol 14. In order to improve the adhesion between the lower electrode and the metal film 14, the support substrate temperature may be about 200 ° C.

前記した後者、即ち、微粒子を粉状で容器に収容し、ガスをこの容器に供給してエアロゾル化して噴射する装置に於いては、あらかじめ生成された金属微粒子の容器と成膜室とが接続され、キャリアガスを送出することでエアロゾルを生成する。   In the latter case, that is, in the apparatus in which fine particles are stored in a container and gas is supplied to the container to be aerosolized and sprayed, the container of the metal fine particles generated in advance and the film formation chamber are connected. Then, the aerosol is generated by sending the carrier gas.

キャリアガスは、アルゴン、ヘリウム、ネオン、窒素などの不活性ガスが好ましい。また、エアロゾルの濃度はキャリアガスの濃度及び流量で制御する。   The carrier gas is preferably an inert gas such as argon, helium, neon, or nitrogen. The aerosol concentration is controlled by the carrier gas concentration and flow rate.

エアロゾルは、ノズルから基板へ向けて噴射され,基板に衝突して金属膜を形成する。この場合も,噴射速度を50m/sec〜1000m/secに調整することで,膜の緻密性および表面凹凸を制御できる。   The aerosol is sprayed from the nozzle toward the substrate and collides with the substrate to form a metal film. Also in this case, the denseness of the film and the surface unevenness can be controlled by adjusting the injection speed to 50 m / sec to 1000 m / sec.

図1は本発明に於ける基本的なキャパシタを表す要部切断側面図であり、図に於いて、12は樹脂膜、13は下部電極、14は弁金属からなるキャパシタの陽極、15は陽極酸化膜、16は導電性高分子からなるキャパシタの陰極、17は上部電極、18は樹脂からなる保護膜、19ははんだ材料からなる外部接続用導体をそれぞれ示している。   FIG. 1 is a cutaway side view of a principal part showing a basic capacitor in the present invention. In the figure, 12 is a resin film, 13 is a lower electrode, 14 is an anode of a capacitor made of a valve metal, and 15 is an anode. An oxide film, 16 is a cathode of a capacitor made of a conductive polymer, 17 is an upper electrode, 18 is a protective film made of resin, and 19 is an external connection conductor made of a solder material.

このキャパシタに於いては、下部電極13の上にガスデポジション法で成膜した弁金属からなる陽極14があり、その表面は陽極酸化されて酸化膜15が生成されている。この陽極酸化膜15の表面には、ポリピロールやポリエチレンジオキシチオフェンなどの導電性高分子材料が塗布・成膜され、キャパシタの陰極16を構成している。その上にカーボンペーストや銀ペーストを塗布、若しくは、スパッタ法やめっき法などを用いて上部電極17を形成する。その上に感光性樹脂、例えば、ポリイミドを用いて電極形成予定領域に開口をもつ保護膜18を形成し、その後、はんだ材料を用いて外部接続用導体19を形成する。   In this capacitor, there is an anode 14 made of a valve metal formed by a gas deposition method on a lower electrode 13, and the surface thereof is anodized to produce an oxide film 15. A conductive polymer material such as polypyrrole or polyethylenedioxythiophene is applied and formed on the surface of the anodic oxide film 15 to constitute a cathode 16 of the capacitor. An upper electrode 17 is formed thereon by applying a carbon paste or a silver paste, or using a sputtering method or a plating method. A protective film 18 having an opening in an electrode formation scheduled region is formed thereon using a photosensitive resin, for example, polyimide, and then an external connection conductor 19 is formed using a solder material.

図2乃至図7は図1について説明したキャパシタを製造する工程を説明する為の工程要所に於けるキャパシタを表す要部切断側面図であり、以下、これ等の図を参照しつつ工程を説明する。   2 to 7 are side sectional views showing the main part of the capacitor at the main points of the process for explaining the process of manufacturing the capacitor described with reference to FIG. 1. Hereinafter, the process will be described with reference to these figures. explain.

図2参照
(1)
支持基板11として、例えばガラス基板を用い、その上にポリイミド樹脂膜12を成膜する。支持基板11とポリイミド樹脂膜12の間の密着性は弱いので、後の工程で、キャパシタをダイシングして個別化する際、支持基板11とポリイミド樹脂膜12とは容易に剥離する。
See Fig. 2 (1)
For example, a glass substrate is used as the support substrate 11, and a polyimide resin film 12 is formed thereon. Since the adhesion between the support substrate 11 and the polyimide resin film 12 is weak, the support substrate 11 and the polyimide resin film 12 are easily peeled when the capacitor is diced and separated in a later step.

ポリイミド樹脂膜12の上に下部電極13として、スパッタリング法を用いてCr(支持基板側)/Cuからなる積層膜を形成する。Cr膜はCuからなる下部電極13とポリイミド樹脂膜12との密着性向上の役割を果たす。   A laminated film made of Cr (support substrate side) / Cu is formed as a lower electrode 13 on the polyimide resin film 12 by sputtering. The Cr film plays a role of improving adhesion between the lower electrode 13 made of Cu and the polyimide resin film 12.

図3参照
(2)
ガスデポジション法を用い、下部電極13上に例えばNb微粒子からなる弁金属からなるキャパシタの陽極14を形成する。この場合、Nb微粒子の直径は、10nm〜2μmである。
See Fig. 3 (2)
Using a gas deposition method, a capacitor anode 14 made of a valve metal made of, for example, Nb fine particles is formed on the lower electrode 13. In this case, the diameter of the Nb fine particles is 10 nm to 2 μm.

ガスデポジション法を用いた場合、エッチング工程が不要であり、任意の場所に選択的に成膜できる旨の特徴がある。また、弁金属からなる陽極14の表面は、前記(A)乃至(D)として記述した特徴の何れかの特徴をもっている。   When the gas deposition method is used, there is a feature that an etching process is unnecessary and a film can be selectively formed at an arbitrary place. Further, the surface of the anode 14 made of a valve metal has any one of the characteristics described as (A) to (D).

(3)
この陽極14に対して、リン酸、或いは、硫酸の水溶液中で陽極化成処理を行い、Nbからなる陽極14の表面に酸化弁金属膜である酸化Nb膜からなる陽極酸化膜15を形成する。
(3)
The anode 14 is anodized in an aqueous solution of phosphoric acid or sulfuric acid to form an anodic oxide film 15 made of an oxide Nb film that is an oxidation valve metal film on the surface of the anode 14 made of Nb.

陽極14の表面は、前記(A)乃至(D)の特徴がある為、陽極酸化膜15の実効表面積が大きくなり、従って、キャパシタ容量は増大する。   Since the surface of the anode 14 has the characteristics (A) to (D), the effective surface area of the anodic oxide film 15 is increased, and thus the capacitance of the capacitor is increased.

図4参照
(4)
この陽極酸化膜15の上にマスクを形成してから、陰極材料として、例えばポリエチレンジオキシチオフェン等の導電性高分子からなるキャパシタの陰極16を成膜する。尚、このパターニング成膜には、インクジェット法を用いることができる。
See Fig. 4 (4)
After forming a mask on the anodic oxide film 15, a cathode 16 of a capacitor made of a conductive polymer such as polyethylenedioxythiophene is formed as a cathode material. An ink jet method can be used for this patterning film formation.

(5)
導電性高分子からなるキャパシタの陰極16上に例えば銀ペースト材料を印刷することで上部電極17を形成してキャパシタ部分が完成される。
(5)
For example, a silver paste material is printed on the cathode 16 of the capacitor made of a conductive polymer to form the upper electrode 17 to complete the capacitor portion.

図5参照
(6)
例えば、感光性ポリイミドを塗布することで保護膜18を形成し、ガラスマスクを用いて露光してから現像することで保護膜18に開口18A及び18Bを形成し、開口18Aの底に下部電極13の一部を、また、開口18Bの底に上部電極17の一部をそれぞれ表出させる。
See FIG. 5 (6)
For example, the protective film 18 is formed by applying photosensitive polyimide, and exposure and development are performed using a glass mask to form openings 18A and 18B in the protective film 18, and the lower electrode 13 is formed at the bottom of the opening 18A. And a part of the upper electrode 17 are exposed at the bottom of the opening 18B.

図6参照
(7)
上部電極17と下部電極13との電気的接続をとる為、保護膜18の開口18A及び開口18Bに、例えば、Sn−Ag−Cuからなるはんだペースト材料を印刷法に依って充填し、外部接続用導体19を形成する。
See FIG. 6 (7)
In order to establish electrical connection between the upper electrode 17 and the lower electrode 13, the solder paste material made of, for example, Sn—Ag—Cu is filled in the opening 18A and the opening 18B of the protective film 18 by a printing method, and external connection is made. A conductor 19 is formed.

図7参照
(8)
ダイシングによりキャパシタを個片化するが、その際、ガラスの支持基板11とポリイミド樹脂膜12の密着性が小さいので容易に剥離され、ラミネートフィルム状のキャパシタを作製することができる。尚、ガラスからなる支持基板11の上に熱発泡テープを貼付し、ポリイミド樹脂膜12を接着してもよい。
Refer to FIG. 7 (8)
The capacitors are separated into individual pieces by dicing. At this time, since the adhesion between the glass support substrate 11 and the polyimide resin film 12 is small, the capacitors are easily peeled off, and a laminated film capacitor can be manufactured. In addition, a thermal foam tape may be stuck on the support substrate 11 made of glass, and the polyimide resin film 12 may be adhered.

本発明では,支持基板11の材料にはガラスに特定されることはなく、例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)などからなるプラスチックフィルムを用いることもできる。   In the present invention, the material of the support substrate 11 is not limited to glass, and for example, a plastic film made of PET (polyethylene terephthalate), PEN (polyethylene naphthalate), or the like can be used.

図8は図2乃至図7について説明した工程で作成されたキャパシタを俯瞰して、即ち、上面から見た要部説明図であり、図2乃至図7に於いて用いた記号と同じ記号で指示した部分は同一或いは同効の部分を表すものとする。   FIG. 8 is a bird's-eye view of the capacitor created in the process described with reference to FIGS. 2 to 7, that is, a top view of the capacitor, and the same symbols as those used in FIGS. The indicated part represents the same or equivalent part.

図示されているように、下部電極13を正側(+)とし,上部電極17を負側(−)とし、下部電極13には外部接続用導体19が2個設けてあり、上部電極17には外部接続用導体19が1個設けてある。   As shown in the figure, the lower electrode 13 is on the positive side (+), the upper electrode 17 is on the negative side (−), the lower electrode 13 is provided with two external connection conductors 19, and the upper electrode 17 Is provided with one external connection conductor 19.

本発明では、外部接続用導体19の配置は、図8に見られる構成に限られるものではなく、他に、種々な配置を採ることができる。   In the present invention, the arrangement of the external connection conductors 19 is not limited to the configuration shown in FIG. 8, and various other arrangements can be adopted.

図9は外部接続用導体の配置が異なるキャパシタを上面から見た要部説明図であり、下部電極13(従って、キャパシタの陽極14)と上部電極17(従って、キャパシタの陰極16)とが交互に配置されている構造であってもよい。   FIG. 9 is an explanatory view of a main part of a capacitor having a different arrangement of external connection conductors as viewed from above, and the lower electrode 13 (accordingly, the anode 14 of the capacitor) and the upper electrode 17 (accordingly, the cathode 16 of the capacitor) are alternately arranged. The structure arrange | positioned may be sufficient.

実施例1として、さきに図2乃至図7について説明したキャパシタを製造する工程を具体的に説明する。   As Example 1, a process for manufacturing the capacitor described above with reference to FIGS. 2 to 7 will be described in detail.

(1)
支持基板11として厚さ 0 .4mmのパイレックス(Pyrex:Corning Glass Works(米)の商標名)ガラスの上にポリイミド樹脂膜12を成膜する。
(1)
A polyimide resin film 12 is formed on the Pyrex (Pyrex: Corning Glass Works (US)) glass having a thickness of 0.4 mm as the support substrate 11.

ポリイミド樹脂膜12の成膜は、ポリイミドワニスをスピンコート法(3000rpm/30秒)で10μmの厚さに成膜し、べーク(350℃)を行い、厚さ6μmのポリイミド樹脂膜12を形成する。   The polyimide resin film 12 is formed by forming a polyimide varnish to a thickness of 10 μm by spin coating (3000 rpm / 30 seconds), baking (350 ° C.), and forming a polyimide resin film 12 having a thickness of 6 μm. Form.

(2)
この上にスパッタリング法を用いて、Cr膜(下地)の膜厚を100nm、Cu膜の膜厚を500nmとして、Cr膜とCu膜とを積層して下部電極13を形成し、適宜、エッチングに依ってパターニングする。
(2)
A lower electrode 13 is formed by laminating a Cr film and a Cu film on this with a Cr film (underlying) film thickness of 100 nm and a Cu film film thickness of 500 nm. Therefore, patterning is performed.

(3)
下部電極13に於けるCu膜上に、ガスデポジション法で厚さ30μmのAlからなる弁金属からなる陽極14を成膜する。その場合、基板温度を100℃とし,キャリアガスにはヘリウムを使用した。原料生成室と膜形成室の圧力差を成膜初期には20kPaとして厚さ10μmの緻密なAl膜を成膜し、残りの中期から後期の成膜では、圧力差を 0 .5kPaとしてポーラスなAl膜を成膜する。この場合、膜表面の平均粗さRaは400〜500nm、最大粗さRyは5000〜8000nmである。
(3)
On the Cu film in the lower electrode 13, an anode 14 made of a valve metal made of Al having a thickness of 30 μm is formed by a gas deposition method. In that case, the substrate temperature was 100 ° C. and helium was used as the carrier gas. The pressure difference between the raw material generation chamber and the film formation chamber is set to 20 kPa at the initial stage of film formation, and a dense Al film with a thickness of 10 μm is formed. In the remaining film formation from the middle period to the latter stage, the pressure difference is set to 0.5 kPa to be porous. An Al film is formed. In this case, the average roughness Ra of the film surface is 400 to 500 nm, and the maximum roughness Ry is 5000 to 8000 nm.

(4)
陽極14の成膜後、純水1000mlに対してアジピン酸アンモニウムを150g溶解させた水溶液中で陽極化成を行なって膜厚約100nmのアルミニウム酸化膜である陽極酸化膜15を形成する。陽極化成時の液温度は85℃、化成電圧は100V、電流は 0 .3A、電圧印加時間は20分とした。また、この工程中、下部電極13の表出部分にはレジストでマスキングしておくものとする。
(4)
After the anode 14 is formed, anodization is performed in an aqueous solution in which 150 g of ammonium adipate is dissolved in 1000 ml of pure water to form an anodized film 15 that is an aluminum oxide film having a thickness of about 100 nm. The liquid temperature during anodization was 85 ° C., the formation voltage was 100 V, the current was 0.3 A, and the voltage application time was 20 minutes. During this process, the exposed portion of the lower electrode 13 is masked with a resist.

(5)
陰極16の形成予定領域以外をレジストでマスキングすることで保護し、ポリエチレンジオキシチオフェンとスチレンスルホン酸を含む溶液を塗布し乾燥させる。この場合の乾燥条件は、120℃、5分である。
(5)
A region other than the region where the cathode 16 is to be formed is protected by masking with a resist, and a solution containing polyethylene dioxythiophene and styrene sulfonic acid is applied and dried. The drying conditions in this case are 120 ° C. and 5 minutes.

(6)
レジストを剥離後、印刷法に依って厚さ10μmの銀ペースト膜を成膜してから硬化させる。その硬化条件は大気中で150℃、1時間である。
(6)
After removing the resist, a silver paste film having a thickness of 10 μm is formed according to a printing method and then cured. The curing condition is 150 ° C. for 1 hour in the air.

(7)
スパッタ法で厚さ350nmのCu膜を成膜してから、該Cu膜をエッチングして上部電極17を形成する。
(7)
After a Cu film having a thickness of 350 nm is formed by sputtering, the upper electrode 17 is formed by etching the Cu film.

(8)
感光性ポリイミド樹脂を使用し、電極の形成および保護を行なう。即ち、感光性ポリイミドワニスをスピンコート法(3000rpm/30秒)で厚さ6μmに成膜する。プリベーク(60℃)後、露光及び現像工程を経て、本ベーク(375℃)を行なって4μm厚のポリイミド樹脂膜からなり、且つ、開口18A及び18Bが形成された保護膜18を形成する。
(8)
A photosensitive polyimide resin is used to form and protect the electrodes. That is, a photosensitive polyimide varnish is formed to a thickness of 6 μm by spin coating (3000 rpm / 30 seconds). After pre-baking (60 ° C.), through exposure and development steps, this baking (375 ° C.) is performed to form a protective film 18 made of a polyimide resin film having a thickness of 4 μm and having openings 18A and 18B.

(9)
印刷法を用い、Sn−Ag−Cuからなるはんだペーストを材料として印刷を行い、開口18A内及び開口18B内に表出された下部電極13及び上部電極17にコンタクトすると共に開口18A及び開口18Bを埋める外部接続用導体19を形成する。
(9)
Printing is performed using a solder paste made of Sn-Ag-Cu as a material, and the lower electrode 13 and the upper electrode 17 exposed in the opening 18A and the opening 18B are contacted and the openings 18A and 18B are formed. The external connection conductor 19 to be filled is formed.

(10)
ダイシングによる部品の個片化を行なうが、その際、ガラスからなる支持基板11と、その上に在るポリイミド樹脂膜12とは密着性が弱い為、容易に剥離して、図7、図8、図9に見られるようなキャパシタが完成される。
(10)
The parts are diced by dicing. At that time, the supporting substrate 11 made of glass and the polyimide resin film 12 on the glass substrate are weakly peeled, so that they are easily peeled off, and FIG. 7 and FIG. The capacitor as seen in FIG. 9 is completed.

(1)
パイレックスガラスからなる支持基板11の上に両面テープを貼り付ける。この場合、支持基板11と接着される面のテープは、エポキシからなる熱発泡テープを用いる。この熱発泡テープは、約180℃でテープ素材内部のマイクロカプセルが発泡し,接着性がなくなる性質をもっている。この熱発泡テープの上に厚さ100μmのポリエチレンナフタレートフィルムを貼り合わせる。
(1)
A double-sided tape is affixed on the support substrate 11 made of Pyrex glass. In this case, a thermal foam tape made of epoxy is used as the tape on the surface bonded to the support substrate 11. This heat-foamed tape has a property that the microcapsules inside the tape material foam at about 180 ° C. and the adhesiveness is lost. A polyethylene naphthalate film having a thickness of 100 μm is bonded onto the thermal foam tape.

(2)
スパッタリング法を用いて、Cr及びCuからなる下部電極13を成膜後、エッチングを行って所要のパターンにする。
(2)
The lower electrode 13 made of Cr and Cu is formed by sputtering and then etched to obtain a required pattern.

(3)
ガスデポジション法を用いて、下部電極13に於けるCu膜の上に厚さ25μmの弁金属であるNbからなるキャパシタ陽極14を成膜する。その位置は、図8或いは図9に見られる上部電極17の下方である。成膜時の基板温度は室温とし、キャリアガスにはヘリウムを使用する。原料生成室と膜形成室の圧力差は、成膜初期に100kPaとして緻密なNb膜を5μmの厚さに成膜し、残りの成膜を行う中期から後期にかけては,圧力差を 0 .3kPaとしてポーラスなNb膜を成膜する。この場合、膜表面の平均粗さRaは350〜400nm、最大粗さRyは5000nmである。
(3)
A capacitor anode 14 made of Nb, which is a valve metal having a thickness of 25 μm, is formed on the Cu film in the lower electrode 13 by using a gas deposition method. The position is below the upper electrode 17 seen in FIG. 8 or FIG. The substrate temperature during film formation is room temperature, and helium is used as the carrier gas. The pressure difference between the raw material generation chamber and the film formation chamber is set to 100 kPa at the initial stage of film formation, and a dense Nb film is formed to a thickness of 5 μm, and the pressure difference is 0.3 kPa from the middle stage to the latter stage when the remaining film formation is performed. As a result, a porous Nb film is formed. In this case, the average roughness Ra of the film surface is 350 to 400 nm, and the maximum roughness Ry is 5000 nm.

(4)
リン酸溶液中でNb膜である陽極14の陽極化成を行なって、厚さ250nmのNb酸化膜である陽極酸化膜15を形成する。陽極酸化時の液温度は90℃、化成電圧は120V、電流は0.6A、電圧印加時間は10分とした。
(4)
Anodization of the anode 14 which is an Nb film is performed in a phosphoric acid solution to form an anodic oxide film 15 which is an Nb oxide film having a thickness of 250 nm. The liquid temperature during anodization was 90 ° C., the formation voltage was 120 V, the current was 0.6 A, and the voltage application time was 10 minutes.

(5)
この後,実施例1と同様、導電性高分子材料膜を成膜して上部電極17とすることで、図9に見られるようなキャパシタを形成し、次に、感光性エポキシ樹脂を使用し、電極の形成および保護を行なった。即ち、感光性エポキシワニスをスピンコート法(2000rpm/30秒)で厚さ10μmに成膜する。プリベーク(60℃)後、露光及び現像工程を経て、本ベーク(300℃)を行なって、5μm厚のエポキシ樹脂膜からなり、且つ、開口18A及び18Bが形成された保護膜18を形成する。
(5)
Thereafter, as in Example 1, a conductive polymer material film is formed to form the upper electrode 17, thereby forming a capacitor as shown in FIG. 9, and then using a photosensitive epoxy resin. Electrode formation and protection were performed. That is, a photosensitive epoxy varnish is formed to a thickness of 10 μm by spin coating (2000 rpm / 30 seconds). After pre-baking (60 ° C.), through exposure and development steps, this baking (300 ° C.) is performed to form a protective film 18 made of an epoxy resin film having a thickness of 5 μm and having openings 18A and 18B.

(6)
印刷法を用い、Sn−Ag−Cuからなるはんだペーストを材料として印刷を行い、開口18A内及び開口18B内に表出された下部電極13及び上部電極17にコンタクトすると共に開口18A及び開口18Bを埋める外部接続用導体19を形成する。
(6)
Printing is performed using a solder paste made of Sn-Ag-Cu as a material, and the lower electrode 13 and the upper electrode 17 exposed in the opening 18A and the opening 18B are contacted and the openings 18A and 18B are formed. The external connection conductor 19 to be filled is formed.

(7)
最後に,各電極上にUBM及びはんだバンプ(両方とも図11を参照。)を形成し、適宜ダイシングを行ない、180℃に加熱してガラスからなる支持基板11から剥離することで図9に見られるようなキャパシタを完成させた。
(7)
Finally, UBM and solder bumps (both see FIG. 11) are formed on each electrode, appropriately diced, heated to 180 ° C. and peeled off from the support substrate 11 made of glass, as shown in FIG. As a result, the capacitor was completed.

(1)
実施例1と同様な方法で形成した下部電極13上に成膜する弁金属からなる陽極14として、Nb金属微粒子をエアロゾル化して噴射することで成膜した。
(1)
The anode 14 made of a valve metal formed on the lower electrode 13 formed by the same method as in Example 1 was formed by aerosolizing and spraying Nb metal fine particles.

この場合、Nb微粒子の粒径は 0 .1μmであり、成膜初期には、ノズル噴射速度を1000m/sec.として緻密なNb膜を10μmの厚さに成膜し,残りの成膜中期から後期にかけては,噴射速度を200m/sec.から50m/sec.へと変化させ、ポーラスなNb金属膜を成膜した。   In this case, the particle size of the Nb fine particles is 0.1 μm, and the nozzle injection speed is set to 1000 m / sec. A dense Nb film is formed to a thickness of 10 μm, and the spray speed is 200 m / sec. To 50 m / sec. A porous Nb metal film was formed.

この場合、Nb膜表面の平均粗さRaは、400〜500nm、最大粗さRyは8000〜10000nmである。   In this case, the average roughness Ra of the Nb film surface is 400 to 500 nm, and the maximum roughness Ry is 8000 to 10,000 nm.

(2)
陽極14の成膜後、リン酸溶液中で陽極化成を行ない、のNb酸化膜である陽極酸化膜15を形成する。陽極化成時の液温度は90℃、化成電圧は100V、電流は 0 .5A、電圧印加時間は10分とした。酸化膜15の膜厚は,200nmである。この後,実施例1と同様の工程によりキャパシタを完成させた。
(2)
After the anode 14 is formed, anodization is performed in a phosphoric acid solution to form an anodic oxide film 15 that is an Nb oxide film. The liquid temperature during anodization was 90 ° C., the formation voltage was 100 V, the current was 0.5 A, and the voltage application time was 10 minutes. The film thickness of the oxide film 15 is 200 nm. Thereafter, the capacitor was completed by the same process as in Example 1.

図10は多層回路配線板に大容量キャパシタを内蔵した実施例4を表す要部切断側面図であり、図1乃至図9に於いて用いた記号と同じ記号で指示した部分は同一或いは同効の部分を表すものとする。   FIG. 10 is a cutaway side view of a main part showing a fourth embodiment in which a large-capacity capacitor is built in a multilayer circuit wiring board, and the parts indicated by the same symbols as those used in FIGS. 1 to 9 are the same or effective. This part is represented.

図に於いて、100は多層回路配線板、101はエポキシ樹脂を主体とするコア層、102はエポキシ樹脂を主体とする厚さ50μmのビルドアップ層、103は内蔵されたキャパシタをそれぞれ示している。   In the figure, 100 is a multilayer circuit wiring board, 101 is a core layer mainly composed of epoxy resin, 102 is a 50 μm thick buildup layer mainly composed of epoxy resin, and 103 is a built-in capacitor. .

実施例4を作製するには、キャパシタを内蔵できるように設計されたガラス布エポキシ樹脂を主体としてCu配線が形成された基板上に実施例1と同様な工程を実施して、回路配線板100の任意の場所にガスデポジション法を適用して厚さ20μmのAl膜を成膜し、陽極酸化,陰極形成,上部電極形成などの工程を経てキャパシタを作り込むようにする。   In order to manufacture the fourth embodiment, a circuit wiring board 100 is formed by performing the same process as in the first embodiment on a substrate on which a Cu wiring is mainly formed of a glass cloth epoxy resin designed so that a capacitor can be embedded. An Al film having a thickness of 20 μm is formed by applying a gas deposition method at any of the above locations, and a capacitor is formed through processes such as anodization, cathode formation, and upper electrode formation.

本発明に於いては、前記説明した実施の形態を含め、多くの形態で実施することができるので、以下、それを付記として例示する。   Since the present invention can be implemented in many forms including the above-described embodiment, it will be exemplified as an additional note hereinafter.

(付記1)
下部電極上に形成された弁金属からなるキャパシタの陽極と、
該陽極の表面に形成された陽極酸化膜である誘電体膜と、
該誘電体膜の表面に形成された導電性高分子材料からなるキャパシタの陰極と、 該陰極の表面に形成された上部電極と
を備えてなることを特徴とするキャパシタ。
(Appendix 1)
A capacitor anode made of a valve metal formed on the lower electrode;
A dielectric film that is an anodized film formed on the surface of the anode;
A capacitor comprising: a capacitor cathode made of a conductive polymer material formed on a surface of the dielectric film; and an upper electrode formed on the surface of the cathode.

(付記2)
弁金属からなるキャパシタの陽極は下部電極側が密であると共に上部電極側が粗であること を特徴とする(付記1)記載のキャパシタ。
(Appendix 2)
The capacitor according to (Appendix 1), wherein the anode of the capacitor made of a valve metal is dense on the lower electrode side and rough on the upper electrode side.

(付記3)
弁金属からなるキャパシタの陽極に於ける表面の凹凸の大きさが陽極酸化膜である誘電体膜の膜厚に比較して大きいこと
を特徴とする(付記1)記載のキャパシタ。
(Appendix 3)
The capacitor according to (Appendix 1), wherein the surface irregularity of the anode of the capacitor made of a valve metal is larger than the thickness of the dielectric film which is an anodized film.

(付記4)
弁金属からなるキャパシタの陽極に於ける表面の凹凸の大きさが該弁金属の粒子径に比較して大きいこと
を特徴とする(付記1)記載のキャパシタ。
(Appendix 4)
The capacitor according to (Appendix 1), wherein the surface irregularities of the anode of the capacitor made of a valve metal are larger than the particle diameter of the valve metal.

(付記5)
弁金属からなる陽極の表面に該陽極に於ける膜厚の10%以上乃至50%以下の大きさの凹凸が在ること
を特徴とする(付記1)記載のキャパシタ。
(Appendix 5)
The capacitor according to (Appendix 1), wherein the surface of an anode made of a valve metal has irregularities having a size of 10% to 50% of the thickness of the anode.

(付記6)
弁金属がアルミニウム、ニオブ、タンタル、タングステン、ハフニウム、バナジウム、ビスマス、チタンの何れか、若しくは、これ等の合金から選択されたものであること
を特徴とする請求項1記載のキャパシタ。
(Appendix 6)
2. The capacitor according to claim 1, wherein the valve metal is selected from aluminum, niobium, tantalum, tungsten, hafnium, vanadium, bismuth, titanium, or an alloy thereof.

(付記7)
支持基板上に下部電極を形成する工程と、
該下部電極上に弁金属からなるキャパシタの陽極をガスデポジション法に依って形成する工程と、
該弁金属からなるキャパシタの陽極表面を陽極酸化して誘電体膜を形成する工程と、
該誘電体膜の表面に導電性高分子材料からなるキャパシタの陰極を形成する工程と、
該陰極上に上部電極を形成する工程と、
該下部電極並びに該上部電極にはんだ材料からなる外部接続用導体を形成する工程と
が含まれてなることを特徴とするキャパシタの製造方法。
(Appendix 7)
Forming a lower electrode on the support substrate;
Forming a capacitor anode made of a valve metal on the lower electrode by a gas deposition method;
Forming a dielectric film by anodizing the anode surface of the capacitor made of the valve metal;
Forming a cathode of a capacitor made of a conductive polymer material on the surface of the dielectric film;
Forming an upper electrode on the cathode;
And a step of forming an external connection conductor made of a solder material on the lower electrode and the upper electrode.

(付記8)
(付記7)記載のキャパシタの製造方法を実施する際、
支持基板をガラス、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートから選択された材料からなる暫定基板とし、
該暫定基板上にキャパシタを作製した後、該暫定基板とキャパシタとを剥離してラミネートフィルム状のキャパシタとする工程
が含まれてなることを特徴とする(付記7)記載のキャパシタの製造方法。
(Appendix 8)
(Appendix 7) When carrying out the method for manufacturing a capacitor described in
The support substrate is a temporary substrate made of a material selected from glass, polyethylene terephthalate film, and polyethylene naphthalate,
The method for manufacturing a capacitor according to (Appendix 7), comprising a step of producing a capacitor on the temporary substrate and then peeling the temporary substrate and the capacitor to form a laminated film capacitor.

本発明に於ける基本的なキャパシタを表す要部切断側面図である。It is a principal part cutting side view showing the basic capacitor in this invention. 図1について説明したキャパシタを製造する工程を説明する為の工程要所に於けるキャパシタを表す要部切断側面図である。FIG. 2 is a cutaway side view showing a main part of a capacitor at a process point for explaining a process of manufacturing the capacitor described with reference to FIG. 1. 図1について説明したキャパシタを製造する工程を説明する為の工程要所に於けるキャパシタを表す要部切断側面図である。FIG. 2 is a cutaway side view showing a main part of a capacitor at a process point for explaining a process of manufacturing the capacitor described with reference to FIG. 1. 図1について説明したキャパシタを製造する工程を説明する為の工程要所に於けるキャパシタを表す要部切断側面図である。FIG. 2 is a cutaway side view showing a main part of a capacitor at a process point for explaining a process of manufacturing the capacitor described with reference to FIG. 1. 図1について説明したキャパシタを製造する工程を説明する為の工程要所に於けるキャパシタを表す要部切断側面図である。FIG. 2 is a cutaway side view showing a main part of a capacitor at a process point for explaining a process of manufacturing the capacitor described with reference to FIG. 1. 図1について説明したキャパシタを製造する工程を説明する為の工程要所に於けるキャパシタを表す要部切断側面図である。FIG. 2 is a cutaway side view showing a main part of a capacitor at a process point for explaining a process of manufacturing the capacitor described with reference to FIG. 1. 図1について説明したキャパシタを製造する工程を説明する為の工程要所に於けるキャパシタを表す要部切断側面図である。FIG. 2 is a cutaway side view showing a main part of a capacitor at a process point for explaining a process of manufacturing the capacitor described with reference to FIG. 1. 図2乃至図7について説明した工程で作成されたキャパシタを上面から見た要部説明図である。FIG. 8 is an explanatory diagram of a main part when a capacitor created in the process described with reference to FIGS. 2 to 7 is viewed from above. 図8と比較して外部接続用導体の配置が異なるキャパシタを上面から見た要部説明図である。It is principal part explanatory drawing which looked at the capacitor from which the arrangement | positioning of the external connection conductor differs compared with FIG. 8 from the upper surface. 多層回路配線板に大容量キャパシタを内蔵した実施例4を表す要部切断側面図である。It is a principal part cutting side view showing Example 4 which incorporated the large capacity capacitor in the multilayer circuit wiring board. 従来の薄膜キャパシタを表す要部切断側面図である。It is a principal part cutting side view showing the conventional thin film capacitor. ナノ金属粒子を噴射して成膜したポーラスな膜を表す要部切断側面図である。It is a principal part cutting side view showing the porous film | membrane formed by spraying a nano metal particle. 圧力を若干高めに設定してナノ金属粒子を噴射することで成膜した場合の膜を表す要部切断側面図である。It is a principal part cutting side view showing the film | membrane at the time of forming into a film by injecting a nano metal particle by setting a pressure a little high. ナノ金属粒子の噴射速度を大きくして成膜した隙間がない緻密な金属膜を表す要部切断側面図である。It is a principal part cutting side view showing the dense metal film without the gap | interval formed into a film by increasing the injection speed of a nano metal particle.

符号の説明Explanation of symbols

11 支持基板
12 樹脂膜
13 下部電極
14 弁金属からなるキャパシタの陽極
15 陽極酸化膜
16 導電性高分子からなるキャパシタの陰極
17 上部電極
18 樹脂からなる保護膜
19 はんだ材料からなる外部接続用導体
DESCRIPTION OF SYMBOLS 11 Support substrate 12 Resin film 13 Lower electrode 14 Capacitor anode made of valve metal 15 Anodized film 16 Capacitor cathode made of conductive polymer 17 Upper electrode 18 Protective film made of resin 19 External connection conductor made of solder material

Claims (5)

下部電極上に形成された弁金属からなるキャパシタの陽極と、
該陽極の表面に形成された陽極酸化膜である誘電体膜と、
該誘電体膜の表面に形成された導電性高分子材料からなるキャパシタの陰極と、 該陰極の表面に形成された上部電極と
を備えてなることを特徴とするキャパシタ。
A capacitor anode made of a valve metal formed on the lower electrode;
A dielectric film that is an anodized film formed on the surface of the anode;
A capacitor comprising: a capacitor cathode made of a conductive polymer material formed on a surface of the dielectric film; and an upper electrode formed on the surface of the cathode.
弁金属からなるキャパシタの陽極は下部電極側が密であると共に上部電極側が粗であること を特徴とする請求項1記載のキャパシタ。   2. The capacitor according to claim 1, wherein the anode of the capacitor made of a valve metal is dense on the lower electrode side and rough on the upper electrode side. 弁金属からなるキャパシタの陽極に於ける表面の凹凸の大きさが陽極酸化膜である誘電体膜の膜厚に比較して大きいこと
を特徴とする請求項1記載のキャパシタ。
2. The capacitor according to claim 1, wherein the size of the irregularities on the surface of the anode of the capacitor made of a valve metal is larger than the thickness of the dielectric film which is an anodized film.
弁金属からなるキャパシタの陽極に於ける表面の凹凸の大きさが該弁金属の粒子径に比較して大きいこと
を特徴とする請求項1記載のキャパシタ。
2. The capacitor according to claim 1, wherein the size of the irregularities on the surface of the anode of the capacitor made of a valve metal is larger than the particle diameter of the valve metal.
支持基板上に下部電極を形成する工程と、
該下部電極上に弁金属からなるキャパシタの陽極をガスデポジション法に依って形成する工程と、
該弁金属からなるキャパシタの陽極表面を陽極酸化して誘電体膜を形成する工程と、
該誘電体膜の表面に導電性高分子材料からなるキャパシタの陰極を形成する工程と、
該陰極上に上部電極を形成する工程と、
該下部電極並びに該上部電極にはんだ材料からなる外部接続用導体を形成する工程と
が含まれてなることを特徴とするキャパシタの製造方法。
Forming a lower electrode on the support substrate;
Forming a capacitor anode made of a valve metal on the lower electrode by a gas deposition method;
Forming a dielectric film by anodizing the anode surface of the capacitor made of the valve metal;
Forming a cathode of a capacitor made of a conductive polymer material on the surface of the dielectric film;
Forming an upper electrode on the cathode;
And a step of forming an external connection conductor made of a solder material on the lower electrode and the upper electrode.
JP2007049805A 2007-02-28 2007-02-28 Capacitor manufacturing method Expired - Fee Related JP4992475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007049805A JP4992475B2 (en) 2007-02-28 2007-02-28 Capacitor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007049805A JP4992475B2 (en) 2007-02-28 2007-02-28 Capacitor manufacturing method

Publications (2)

Publication Number Publication Date
JP2008218481A true JP2008218481A (en) 2008-09-18
JP4992475B2 JP4992475B2 (en) 2012-08-08

Family

ID=39838225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007049805A Expired - Fee Related JP4992475B2 (en) 2007-02-28 2007-02-28 Capacitor manufacturing method

Country Status (1)

Country Link
JP (1) JP4992475B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200352A (en) * 2008-02-22 2009-09-03 Fujitsu Ltd Method of manufacturing electrode foil
JP2011222689A (en) * 2010-04-08 2011-11-04 Fujitsu Ltd Electrolytic capacitor and manufacturing method thereof
WO2013163259A2 (en) * 2012-04-25 2013-10-31 University Of Delaware Supercapacitor electrodes and associated methods of manufacturing
US10840025B2 (en) 2015-10-20 2020-11-17 Tdk Corporation Thin film capacitor having an outer layer including a second conductor layer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522162U (en) * 1978-07-28 1980-02-13
JPS59167009A (en) * 1983-03-11 1984-09-20 昭和アルミニウム株式会社 Method of producing electrode material for electrolytic condenser
JPS6215813A (en) * 1985-07-12 1987-01-24 昭和アルミニウム株式会社 Anode material for electrolytic capacitor
JPH04186814A (en) * 1990-11-21 1992-07-03 Hitachi Aic Inc Manufacture of tantalum solid electrolytic capacitor
JPH0548235A (en) * 1991-08-15 1993-02-26 Omron Corp Circuit substrate
JPH0864113A (en) * 1994-08-18 1996-03-08 Canon Inc Electron emitting element, electron source and image forming device using it
JPH08222405A (en) * 1995-02-10 1996-08-30 Hokuriku Electric Ind Co Ltd Chip-type electronic component and its manufacture
JP2002260960A (en) * 2001-03-01 2002-09-13 Shinko Electric Ind Co Ltd Capacitor, circuit board incorporating capacitor and their producing method
JP2003124067A (en) * 2001-10-19 2003-04-25 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2005252261A (en) * 2004-03-02 2005-09-15 Vishay Sprague Inc Surface mount flip-chip capacitor
JP2006335583A (en) * 2005-05-31 2006-12-14 Ulvac Japan Ltd Graphite nanofiber producing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522162U (en) * 1978-07-28 1980-02-13
JPS59167009A (en) * 1983-03-11 1984-09-20 昭和アルミニウム株式会社 Method of producing electrode material for electrolytic condenser
JPS6215813A (en) * 1985-07-12 1987-01-24 昭和アルミニウム株式会社 Anode material for electrolytic capacitor
JPH04186814A (en) * 1990-11-21 1992-07-03 Hitachi Aic Inc Manufacture of tantalum solid electrolytic capacitor
JPH0548235A (en) * 1991-08-15 1993-02-26 Omron Corp Circuit substrate
JPH0864113A (en) * 1994-08-18 1996-03-08 Canon Inc Electron emitting element, electron source and image forming device using it
JPH08222405A (en) * 1995-02-10 1996-08-30 Hokuriku Electric Ind Co Ltd Chip-type electronic component and its manufacture
JP2002260960A (en) * 2001-03-01 2002-09-13 Shinko Electric Ind Co Ltd Capacitor, circuit board incorporating capacitor and their producing method
JP2003124067A (en) * 2001-10-19 2003-04-25 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2005252261A (en) * 2004-03-02 2005-09-15 Vishay Sprague Inc Surface mount flip-chip capacitor
JP2006335583A (en) * 2005-05-31 2006-12-14 Ulvac Japan Ltd Graphite nanofiber producing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200352A (en) * 2008-02-22 2009-09-03 Fujitsu Ltd Method of manufacturing electrode foil
JP2011222689A (en) * 2010-04-08 2011-11-04 Fujitsu Ltd Electrolytic capacitor and manufacturing method thereof
WO2013163259A2 (en) * 2012-04-25 2013-10-31 University Of Delaware Supercapacitor electrodes and associated methods of manufacturing
WO2013163259A3 (en) * 2012-04-25 2014-03-13 University Of Delaware Supercapacitor electrodes and associated methods of manufacturing
US10840025B2 (en) 2015-10-20 2020-11-17 Tdk Corporation Thin film capacitor having an outer layer including a second conductor layer

Also Published As

Publication number Publication date
JP4992475B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4738299B2 (en) Capacitor, manufacturing method thereof, and electronic substrate
JP3792129B2 (en) Capacitor, capacitor built-in circuit board, and manufacturing method thereof
US7284307B2 (en) Method for manufacturing wiring board
US20060131069A1 (en) Method of manufacturing wiring substrate to which semiconductor chip is mounted
EP2313900B1 (en) Substrate with embedded patterned capacitance
JP4992475B2 (en) Capacitor manufacturing method
JP2006120948A (en) Semiconductor device and its manufacturing method
WO2001082319A1 (en) Solid electrolyte capacitor
JP4734369B2 (en) Capacitor and manufacturing method thereof
JP4801687B2 (en) Capacitor-embedded substrate and manufacturing method thereof
US20050135074A1 (en) Printed circuit dielectric foil and embedded capacitors
JP4962339B2 (en) Capacitor manufacturing method
JP5617291B2 (en) Aerosol deposition apparatus and aerosol deposition method
JP4289365B2 (en) Printed wiring board manufacturing method and printed wiring board
JP4910747B2 (en) Capacitor manufacturing method
JPH1197289A (en) Thin-film chip capacitor and its manufacture
JP2013127993A (en) Capacitor element, capacitor built-in substrate, element sheet, and manufacturing methods of capacitor element, capacitor built-in substrate, and element sheet
JP5682414B2 (en) Manufacturing method of decoupling capacitor
JP5171407B2 (en) Circuit board, manufacturing method thereof, and electronic apparatus
JP2006253710A (en) Printed wiring board and method for manufacturing the same
JP3139817B2 (en) Lead frame and manufacturing method thereof
JP4289366B2 (en) Printed wiring board manufacturing method and printed wiring board
JP5029299B2 (en) Capacitor, semiconductor device including capacitor, and method of manufacturing capacitor
JP2002134358A (en) Thin-film capacitor and its manufacturing method
JP2002373828A (en) Compound electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees