JPS6215813A - Anode material for electrolytic capacitor - Google Patents

Anode material for electrolytic capacitor

Info

Publication number
JPS6215813A
JPS6215813A JP60154964A JP15496485A JPS6215813A JP S6215813 A JPS6215813 A JP S6215813A JP 60154964 A JP60154964 A JP 60154964A JP 15496485 A JP15496485 A JP 15496485A JP S6215813 A JPS6215813 A JP S6215813A
Authority
JP
Japan
Prior art keywords
base material
film
aluminum
metal
anode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60154964A
Other languages
Japanese (ja)
Other versions
JPH061751B2 (en
Inventor
西崎 武
室岡 秀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP60154964A priority Critical patent/JPH061751B2/en
Publication of JPS6215813A publication Critical patent/JPS6215813A/en
Publication of JPH061751B2 publication Critical patent/JPH061751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Primary Cells (AREA)
  • Electrolytic Production Of Metals (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、アルミニウム電解コンデンサ用陽極材料に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to anode materials for aluminum electrolytic capacitors.

なお、この明細書において、アルミニウムの語は、その
合金を含む意味において用いる。
In this specification, the term aluminum is used to include its alloys.

従来の技術と発明課題 近時、エレクトロニクス製品の小型化、高性能化に伴っ
て、これに使用される電解コンデンサも小型・高性能化
への要請が強く、そのためにも静電容量の一層の増大を
はかることが強く求められている。
Conventional Technology and Invention Challenges Recently, as electronic products have become smaller and more sophisticated, there has been a strong demand for electrolytic capacitors used in these products to be smaller and more efficient. There is a strong need to increase this.

ところで、アルミニウム電解コンデンサにおける電極材
料の静電容量は、 C=ε・A/l C:静電容量 ε:誘電率 A:表面積 t:誘電体の皮膜厚 で示されるが、誘電体皮膜厚(1)は使用電圧によって
概ね限定されるものであるから、静電容!1i(C)の
増大は主として誘電率(ε)の増大と、表面積の拡大化
によって考慮されなければならない。
By the way, the capacitance of the electrode material in an aluminum electrolytic capacitor is expressed as: C=ε・A/l C: Capacitance ε: Dielectric constant A: Surface area t: Dielectric film thickness. 1) is generally limited by the voltage used, so capacitance! The increase in 1i(C) must be considered mainly due to the increase in the dielectric constant (ε) and the expansion of the surface area.

従来、アルミニウム電解コンデンサ用の陽極材料として
は、高純度アルミニウム箔基材の表面をエツチングして
表面積を拡大したのち、ホウ酸アンモニウム溶液等の中
性水溶液中で陽極酸化処理し、上記基材表面に誘電体と
しての八ρ203皮膜を形成したものが用いられている
が、エツチングによる基材表面膜の拡大は限界にきてお
り、その面からの静電容量の大幅な増大は見込み得ない
状況に至っている。
Conventionally, as an anode material for aluminum electrolytic capacitors, the surface of a high-purity aluminum foil base material is etched to enlarge the surface area, and then anodized in a neutral aqueous solution such as ammonium borate solution to improve the surface area of the base material. However, the expansion of the base material surface film by etching has reached its limit, and it is difficult to expect a significant increase in capacitance from that surface. It has reached this point.

このことから、上式に基づき、誘電率の極めて大きな例
えばBaTiO3(比誘電率ε:500〜6000)等
の誘電体皮膜を形成する手)     段が考えられる
が、耐電圧、リーク電流等の点で実用化され得ない。
From this, based on the above formula, it is possible to form a dielectric film with an extremely high dielectric constant, such as BaTiO3 (relative permittivity ε: 500 to 6000), but this method may be considered in terms of withstand voltage, leakage current, etc. cannot be put into practical use.

一方、アルミニウム箔基材上に、その酸化物がAg30
3より高い誘電率をもつような金属からなる酸化皮膜を
形成し、これを陽極化成することによって静電容量の増
大をはかることも提案されているが、表面積の拡大とい
う面から不充分であり、近時要求される静電容量の増大
に対して充分な満足を与えるものではなかった。
On the other hand, on the aluminum foil base material, the oxide is Ag30
It has also been proposed to increase capacitance by forming an oxide film made of a metal with a dielectric constant higher than 3 and anodizing it, but this is insufficient in terms of expanding the surface area. However, it did not fully satisfy the recent demand for an increase in capacitance.

この発明は、上記のような従来の技術を踏まえた上で、
拡面率の更なる可及的増大と、誘電率の向上をはかるこ
とにより、両者相俟って、従来品より更に一段と高い静
電容量を有し、コンデンナの小型化、高性能化を実現し
うるアルミニウムコンデンサ用陽極材料を提供すること
を目的とする。
This invention is based on the above-mentioned conventional technology.
By further increasing the area expansion ratio and improving the dielectric constant, the capacitance is even higher than that of conventional products, resulting in smaller capacitors and higher performance. The purpose of the present invention is to provide an anode material for aluminum capacitors that can be used as an anode material for aluminum capacitors.

課題解決のための手段 この発明は、上記の目的において、アルミニウム箔基材
表面を微細にかつ多数のボア(凹部)を有する状態に粗
面化し、その特に微細な凹凸による効果を基材表面に形
成される導電性金属皮膜面に現出せしめるものとするこ
とにより、表面積の充分な拡大化をはかると共に、上記
皮膜を、該皮膜の酸化膜と電解液とが電気的な弁作用を
生ずるような金属、即ち弁金属微粒子によって構成し、
かつ化成処理によって前記凹凸面上の弁金属微粒子皮膜
と前記ボア内の通常は基材アルミニウムが露出している
面とにそれぞれの酸化皮膜を形成せしめるものとするこ
とにより、両酸化皮膜が相俟って静電容量の増大に寄与
するように構成することにより、従来品より一段と優れ
た静電容量を発揮するアルミニウム電解コンデンサ用陽
極材料を提供し得たものである。
Means for Solving the Problems For the above-mentioned purpose, the present invention roughens the surface of an aluminum foil base material to have a large number of fine bores (concavities), and applies the effects of the particularly fine irregularities to the base material surface. By making the conductive metal film appear on the surface of the formed conductive metal film, the surface area can be sufficiently expanded, and the film can be formed so that the oxide film of the film and the electrolyte can produce an electrical valve action. composed of metal, that is, valve metal fine particles,
In addition, by forming respective oxide films on the valve metal fine particle film on the uneven surface and the surface in the bore where the base material aluminum is normally exposed by chemical conversion treatment, both oxide films are combined. By configuring the anode material to contribute to an increase in capacitance, it is possible to provide an anode material for an aluminum electrolytic capacitor that exhibits a capacitance much superior to conventional products.

即ち、この発明の構成は、微細な凹凸を有しかつこの凹
凸面中に多数のボアを有する状態に粗面化されたアルミ
ニウム箔基材の少なくとも前記凹凸面上に、弁金属微粒
子からなる金属皮膜が形成されると共に、該金属皮膜面
上及び前記ボアの内面に、それぞれの表面の金属による
酸化皮膜が形成されてなることを特徴とする電解コンデ
ンサ用陽極材料を要旨とするものである。
That is, the structure of the present invention is such that a metal made of valve metal fine particles is applied to at least the uneven surface of an aluminum foil base material which has fine unevenness and has been roughened to have a large number of bores in the uneven surface. The object of the present invention is to provide an anode material for an electrolytic capacitor, characterized in that a film is formed thereon, and an oxide film is formed on the surface of the metal film and on the inner surface of the bore by the metal on each surface.

この発明において、金属皮膜を構成する弁金属とは、前
記のようにそれを酸化してできた膜と電解液とが電気的
な弁作用を生じ、該膜と電解液との組合わせに整流性を
発現する金属でおり、最も一般的にはTr、Ta、/l
、Nbを挙げることができるものであり、その他更に同
様の性質を有するものとしてMq、Zr、Zn、s;、
sr、t−u”、”r;にBと3nを加えた合金、T1
にPbとsbを加えた合金、liにOrとVを加えた合
金等を挙げることができる。
In this invention, the valve metal that constitutes the metal film is the membrane formed by oxidizing it as described above and the electrolyte that produces an electrical valve action, and the combination of the membrane and the electrolyte causes rectification. metals that exhibit properties, most commonly Tr, Ta, /l
, Nb, and others having similar properties include Mq, Zr, Zn, s;
Alloy with B and 3n added to sr, tu'', ``r;, T1
Examples include an alloy in which Pb and sb are added to li, and an alloy in which Or and V are added to li.

添附図面の参照のもとに、この発明の構成を、更に詳し
く説明すれば次のとおりでおる。
The structure of the present invention will be explained in more detail as follows with reference to the accompanying drawings.

アルミニウム@基材(1)の表面を粗面化して微細な凹
凸(3)を形成するのは、前述のようにその凹凸効果を
基材に形成される弁金属の微粒子からなる金属皮膜(2
)の表面に波及せしめて皮膜の拡面率の向上を助長する
ためでおる。また、基材(1)に多数のボア(4)を形
成す−るのは、基材の表面積のより一層の拡大化を図る
と共に、電解液のぬれ性の向上を図るためである。この
ような基材表面の粗面化と、ボア(4)の形成は、エツ
チング操作によって同 。
The purpose of roughening the surface of aluminum @ base material (1) to form fine irregularities (3) is to use the irregularity effect to form a metal film (2) made of fine particles of valve metal formed on the base material, as described above.
) to help improve the area expansion ratio of the film. Further, the reason why a large number of bores (4) are formed in the base material (1) is to further expand the surface area of the base material and to improve the wettability of the electrolyte. The roughening of the surface of the base material and the formation of the bore (4) are achieved by etching.

時に達成しうる。かかるエツチングは、化学的あるいは
電気化学的な湿式エツチング法のほか、サンドブラスト
加工、ヘアライン加工、あるいはプラズマエツチングの
ような乾式エツチング法を採用することも可能である。
can be achieved at times. For such etching, in addition to chemical or electrochemical wet etching methods, it is also possible to employ dry etching methods such as sandblasting, hairline processing, or plasma etching.

ボア(4)の断面形状はもとより不定形のものであり、
代表的な断面形状としては例えば内径が深さにかかわら
ず略一定な円筒形、開口部の内径が狭い壷形、あるいは
底部から開口部に至るにつれて内径が広くなっている椀
形等が挙げられる。ボア(4)の寸法は、特に限定され
るものではないが最大深ざ25JM以下、最大内径10
0p以下とすることが望ましい。最大深さが25pを越
え、あるいは又、最大内径が100pを越えると、基材
(1)に電極材料としての所要の機械的強度を保持し難
いものとなる欠点が派生する。
The cross-sectional shape of the bore (4) is of course irregular;
Typical cross-sectional shapes include, for example, a cylindrical shape with an approximately constant inner diameter regardless of depth, a pot shape with a narrow inner diameter at the opening, or a bowl shape with an inner diameter that widens from the bottom to the opening. . The dimensions of the bore (4) are not particularly limited, but the maximum depth is 25 JM or less, and the maximum inner diameter is 10 mm.
It is desirable to set it to 0p or less. If the maximum depth exceeds 25p or the maximum inner diameter exceeds 100p, a drawback arises in that it becomes difficult for the base material (1) to maintain the required mechanical strength as an electrode material.

また、ボア(4)は基材(1)の拡面率増大のうえから
、比較的小径のものを可及的高密度に分布せしめるもの
とすることが好ましく、従っで、少なくとも100個/
 crA程度以上の密度で分布せしめるものとすること
が望ましい。ボア(4)の内面は必ずしも粗面化された
ものであることを必要としないが、静電容量の増大化を
図るうえからは該内面も微細な凹凸粗面に形成される方
が望ましい。なお、この明細書でいう粗面化による微細
な凹凸は、基材表面のボアの部分はもちろん、同表面の
うねり成分等を含まない微視的な凹凸をいうものである
In addition, in order to increase the area expansion ratio of the base material (1), it is preferable that the bores (4) have relatively small diameters distributed as densely as possible, and therefore, at least 100 bores/holes should be formed.
It is desirable that the density be distributed at a density equal to or higher than that of crA. Although the inner surface of the bore (4) does not necessarily have to be roughened, it is preferable that the inner surface also be formed into a roughened surface with fine irregularities in order to increase the capacitance. In this specification, the fine irregularities due to surface roughening refer to microscopic irregularities that do not include not only the bore portion of the surface of the base material but also the undulation components of the same surface.

基材(1)の表面に被覆形成される導電性の金属皮膜(
2)の材料は、前記弁金属が用いられるものであるが、
なかでもTi1TaSAΩ、Nb等の金属を用いるのが
一般的であり、特にT:の使用は静電容量の面で、更に
はコンデンサの長野白化、高信頼性の面からも好ましい
結果を得ることができる。この弁金属微粒子から   
  jなる金属皮膜(2)は、図面に示すように少なく
とも前記ボア(4)を除く基材(1)の表面部分の全体
、即ち微細な凹凸面(3)の全体に被覆形成されること
が必要であるが、勿論、同時に前記ボア(4)の内面に
も被覆形成される方が、静電容量の更なる増大を図り得
る点で好ましい。かかる皮膜を構成する弁金属微粒子の
平均粒子径は、拡面率向上の点から0.01〜1.0庫
の範囲とすべきである。即ち、0.01未満では皮膜が
平滑化されて拡大効果に寄与するところが少ないし、ま
た逆に1.OJJmを越えて粗大化しても却って拡面効
果に乏しく静電容量の小さいものとなってしまうからで
ある。
A conductive metal film (
The material of 2) is one in which the valve metal is used,
Among them, it is common to use metals such as Ti1TaSAΩ and Nb, and in particular, the use of T: gives favorable results in terms of capacitance, Nagano whitening of capacitors, and high reliability. can. From this valve metal fine particles
As shown in the drawing, the metal coating (2) may be formed to cover the entire surface portion of the base material (1) excluding at least the bore (4), that is, the entire finely uneven surface (3). Although it is necessary, it is of course preferable to form a coating on the inner surface of the bore (4) at the same time, since the capacitance can be further increased. The average particle diameter of the valve metal fine particles constituting such a coating should be in the range of 0.01 to 1.0 from the viewpoint of improving the area expansion ratio. That is, if it is less than 0.01, the film is smoothed and contributes little to the enlargement effect, and conversely, if it is less than 1.0. This is because even if the thickness exceeds OJJm, the effect of expanding the surface area will be poor and the capacitance will be small.

また皮膜の厚さは0.05〜5.0声の範囲とすべきで
ある。0.05JM未満ては、同じく皮膜の粗面化によ
る拡面効果を期待し得ないからであり、逆に5.0.c
iを越えても使用弁金属材料の増大、コスト上昇、作業
性の悪化に見合うだけの効果が得られないからである。
The thickness of the coating should also be in the range of 0.05 to 5.0 tones. This is because if it is less than 0.05 JM, the effect of surface expansion due to roughening of the film cannot be expected, and conversely if it is less than 5.0 JM. c.
This is because, even if the value exceeds i, the effect is not commensurate with the increase in the amount of valve metal material used, the increase in cost, and the deterioration in workability.

このような微粒子金属皮膜(2)の基材(1)表面への
被覆形成方法としては、真空蒸着法、不活性ガス中蒸着
法、スパッタリング法、イオンブレーティング法等を用
いることができる。
As a method for forming such a fine particle metal coating (2) on the surface of the base material (1), a vacuum evaporation method, an inert gas evaporation method, a sputtering method, an ion blating method, etc. can be used.

なお、このようなチタン皮膜の蒸着形成処理は、コイル
状の基材を巻き取りながら半連続的に行いうるものであ
る。
Incidentally, such a process for forming a titanium film by vapor deposition can be performed semi-continuously while winding up a coiled base material.

陽極材料の最表面に形成される酸化皮膜(5)(6)は
、弁金属の微粒子からなる前記金属皮膜(2)を形成し
た基材(,1)の表面を、ホウ酸、ホウ酸アンモニウム
、酒石酸アンモニウムなどの中性溶液を用いて陽極化成
することによって行われるものであり、金属皮膜(2)
面上と、金属皮膜を有しないボア(4)内部の基材アル
ミニウム表面との両者に、同時にそれぞれの表面を構成
している金属の酸化物として形成されるものである。か
かる酸化皮膜(5)(6)は、陽極材料の誘電体として
少なくとも1oA以上に形成することを必要とするが、
特に低圧用陽極箔としては3000Å以下の厚さに形成
されることをもって必要かつ充分であり、それ以上の厚
さとすることは事実上無益である。
The oxide films (5) and (6) formed on the outermost surface of the anode material are made by coating the surface of the base material (1) on which the metal film (2) made of fine particles of valve metal is formed with boric acid or ammonium borate. This is done by anodizing using a neutral solution such as ammonium tartrate, and the metal film (2)
It is simultaneously formed both on the surface and on the surface of the base aluminum inside the bore (4) which does not have a metal coating, as oxides of the metals constituting the respective surfaces. Such oxide films (5) and (6) need to be formed at least 1oA as a dielectric of the anode material, but
In particular, as a low-pressure anode foil, it is necessary and sufficient to form the anode foil with a thickness of 3000 Å or less, and it is practically useless to make it thicker than that.

発明の効果 この発明に係るアルミニウム電解コンデンサ用陽極材料
は上述のとおり、微細な凹凸を有し、かつ該凹凸面中に
多数のボアを有する状態に粗面化されたアルミニウム基
材が用いられ、更に該基材表面中の少なくとも前記ボア
を除く表面部分に、弁金属微粒子からなる金属皮膜が被
覆形成されたものとなされていることにより、該皮膜に
よる表面積拡大効果と相俟って、従来品に較べ顕著な実
効表面積の拡大化をはかることができ、ひいては静電容
量の拡大に大きく貢献を果しつる。加えて、上記弁金属
微粒子からなる皮膜面上と、アルミニウム箔基材のボア
内面とに形成されたそれぞれの酸化皮膜の両方が、静電
容■に寄与するため、弁金属の選択によってその酸化皮
膜の誘電率を高いものとし、単位面積当りに愈々大きな
静電容量を有するものとなすことができる。もとよりこ
の静電容量はアルミニウム箔基材の表面を単にエツチン
グによ■ り粗面化し、陽極化成してアルミニウム酸化皮膜を形成
した従来の陽極材料に較べてはるかに高いものであり、
従って、電解コンデンサの一層の小型化、高性能化をは
かることが可能となる。
Effects of the Invention As described above, the anode material for an aluminum electrolytic capacitor according to the present invention uses an aluminum base material that has fine irregularities and is roughened to have a large number of bores in the irregular surface, Furthermore, since at least the surface of the base material excluding the bore is coated with a metal film made of fine valve metal particles, this film, together with the surface area expansion effect, is superior to conventional products. It is possible to significantly increase the effective surface area compared to the conventional method, which in turn greatly contributes to increasing capacitance. In addition, since both the oxide films formed on the film surface made of the valve metal fine particles and the inner surface of the bore of the aluminum foil base material contribute to the electrostatic capacitance, the oxide film can be reduced depending on the selection of the valve metal. It is possible to make the dielectric constant of the material high and to have a large capacitance per unit area. Of course, this capacitance is much higher than that of conventional anode materials in which the surface of an aluminum foil base material is roughened simply by etching and anodized to form an aluminum oxide film.
Therefore, it is possible to further reduce the size and improve the performance of the electrolytic capacitor.

また、表面に多数のボアを有する基材が用いられている
ことにより、陽極表面への電解液のねれ性が一段と良好
なものとなり、ひいてはコンデンサの耐久性、初期性能
の保持性を向上しうる。
In addition, the use of a base material with numerous bores on the surface improves the wetting properties of the electrolyte on the anode surface, which in turn improves the durability and retention of initial performance of the capacitor. sell.

実施例 次に、この発明の実施例を比較例との対比において示す
EXAMPLES Next, examples of the present invention will be shown in comparison with comparative examples.

実施例1 厚ざ0.1!rvri、純度99.99%のアルミニウ
ム箔を、液温60℃の2.5wt%塩酸溶液中に浸漬し
、2 OA / crrtの電流密度で300秒間交流
電解エツチングを施した。このエツチング後のアルミニ
ウム筒基材の表面は、全面的に平均0.5JM以下の微
細な凹凸が形成されると共に、深さ20p程度、内径3
0P程度の多数のエツチングボアが形成されたものであ
り、表面拡大率は約50倍程度のものであった。次いで
、上記エツチング箔基材表面に、5 x 10 ’To
rrのアルゴンガス中でチタンを蒸発させ、最大厚さ1
.0庫のチタン蒸着皮膜を形成した。そして更にこの基
材を、液温30℃の1mwt%ホウ酸アンモニウム溶液
中で直流10Vを印加して陽極化成を施し、上記のチタ
ン蒸着皮膜の表面、及びチタンの蒸着されていないボア
内のアルミニラ゛ ム基材露出面に各々の酸化皮膜を形
成した。
Example 1 Thickness 0.1! An aluminum foil with a purity of 99.99% was immersed in a 2.5 wt% hydrochloric acid solution at a temperature of 60°C, and subjected to AC electrolytic etching at a current density of 2 OA/crrt for 300 seconds. After this etching, the surface of the aluminum cylindrical base material has fine irregularities of 0.5 JM or less on the entire surface, a depth of about 20p, and an inner diameter of 3.
A large number of etched bores of about 0P were formed, and the surface magnification was about 50 times. Next, on the surface of the etching foil base material, 5 x 10'To
Evaporate titanium in argon gas at rr to a maximum thickness of 1
.. A titanium vapor-deposited film of 0 was formed. Then, this base material was anodized by applying a direct current of 10 V in a 1 mwt% ammonium borate solution at a liquid temperature of 30°C, so that the surface of the titanium vapor-deposited film and the aluminum in the bore where titanium was not vapor-deposited were coated. Each oxide film was formed on the exposed surface of the film base material.

比較例1 実施例1との対比例として、それと同様のエツチング箔
基材を用い、チタン蒸着皮膜を −形成しないことのほ
かは実施例1と全く同様にして陽極化成処理を行った。
Comparative Example 1 As a comparative example with Example 1, an etching foil base material similar to that of Example 1 was used, and anodization treatment was performed in exactly the same manner as in Example 1, except that a titanium vapor-deposited film was not formed.

実施例2 厚さ0.1m、純一度99.99%のアルミニウム箔を
液温60℃の3wt%塩酸水溶液中に浸漬し、化学エツ
チングを施した。このエツチング後の箔基材は、表面に
表面粗さ平均0.5p以下の微細な凹凸が形成されると
ともに、深さ10p程度、内径20ttm程度の多数の
エツチングポアが形成されたものであった。また基材の
表面拡大率は約30倍であった。次いで、上記エツチン
グ箔基材表面に、2 X 10−5Torrの真空度で
タンタルを蒸発させ、最大厚さ0.8Pタンタル蒸着皮
膜を形成した。そして更にこの基材を、液温35℃の5
wt%酒石酸アンモニウム溶液中で直流20Vの電圧を
印加して陽極化成し、上記タンタル蒸着皮膜面上及びタ
ンタルの蒸着されていないボア内面のアルミニウム基材
露出面の両表面に各々の酸化皮膜を形成した。
Example 2 An aluminum foil having a thickness of 0.1 m and having a purity of 99.99% was immersed in a 3 wt % aqueous hydrochloric acid solution at a temperature of 60° C. to undergo chemical etching. After this etching, the foil base material had fine irregularities formed on its surface with an average surface roughness of 0.5 p or less, and a large number of etching pores with a depth of about 10 p and an inner diameter of about 20 ttm. Moreover, the surface magnification ratio of the base material was about 30 times. Next, tantalum was evaporated on the surface of the etching foil base material at a vacuum level of 2×10 −5 Torr to form a tantalum vapor-deposited film having a maximum thickness of 0.8P. Then, this base material was heated to 5°C at a liquid temperature of 35℃
Anodization is carried out by applying a DC voltage of 20 V in a wt% ammonium tartrate solution to form each oxide film on both surfaces of the tantalum vapor-deposited film surface and the exposed surface of the aluminum base material on the inner surface of the bore where tantalum is not vapor-deposited. did.

比較例2 実施例2との対比例として、それと同じエツチングアル
ミニウム箔を用い、タンタル蒸着皮膜を形成しないで実
施例2と同様の陽極化成処理を施した。
Comparative Example 2 As a comparative example with Example 2, the same etched aluminum foil was used and the same anodization treatment as in Example 2 was performed without forming a tantalum vapor deposition film.

実施例3 運ざ(l lan、純度99.99%のアルミニウム箔
を、液温60℃の3wt%塩酸水溶液中に浸漬し、20
A150Cdの電流密度で300秒間直流電解エツチン
グを施した。この基材の表面は微細に粗面化されかつ多
数のエツチングボアを有するものであり、表面積拡大率
は約40倍のものであった。次いでこの基材表面に1 
X 10−3Torrの真空度のアルゴンガス中でアル
ミニウムを蒸発させ、最大皮膜厚さ0.5JMのアルミ
ニウム蒸着皮膜を形成した。次にこの基材を液温30′
Cのホウ酸水溶液中で直流50Vの電圧を印加して陽極
化成処理し、アルミニウム蒸着皮膜の表面及びアルミ蒸
着皮膜を有しないボア内の基材アルミニウム露出面の両
表面に各々の酸化皮膜を形成した。
Example 3 An aluminum foil with a purity of 99.99% was immersed in a 3wt% hydrochloric acid aqueous solution with a liquid temperature of 60°C.
Direct current electrolytic etching was performed for 300 seconds at a current density of A150Cd. The surface of this base material was finely roughened and had a large number of etched bores, and the surface area expansion rate was about 40 times. Next, 1 was applied to the surface of this base material.
Aluminum was evaporated in argon gas at a vacuum level of X 10-3 Torr to form an aluminum vapor-deposited film with a maximum film thickness of 0.5 JM. Next, this base material was heated to 30'
Apply a DC voltage of 50 V in an aqueous boric acid solution of C to perform anodization treatment to form oxide films on both surfaces of the aluminum vapor-deposited film and the exposed surface of the base aluminum in the bore that does not have the aluminum vapor-deposited film. did.

比較例3 実施例3と対比するもので、それと同じエツチングアル
ミニウム潤基材を用い、アルミニウム蒸着皮膜を形成し
ないで実施例1と同様の陽極化成処理を施した。
Comparative Example 3 In comparison with Example 3, the same etched aluminum base material was used and the same anodization treatment as in Example 1 was performed without forming an aluminum vapor deposition film.

上記実施例1〜3及び比較例1〜3で得られた電解コン
デンサ用陽極材料の各々の試料につき、それらの静電容
量を液温30°C、ホウ酸アルミニウム水溶液中で測定
した。結果を下記の表の6摺部分に示す。
The capacitance of each sample of the anode material for electrolytic capacitors obtained in Examples 1 to 3 and Comparative Examples 1 to 3 was measured in an aluminum borate aqueous solution at a liquid temperature of 30°C. The results are shown in section 6 of the table below.

〔以 下 余 白〕[Below, remainder white]

上表の結果から明らかなように、この発明による電解コ
ンデンサ用陽極材料は、単にアルミニウム箔基材表面で
エツチングで粗面化したのち陽極化成処理して酸化皮膜
を形成した従来品相当のものに較べ、顕著に優れた静電
容量を有するものであることを確認し得た。
As is clear from the results in the table above, the anode material for electrolytic capacitors according to the present invention is comparable to conventional products in which the surface of the aluminum foil base material is simply roughened by etching and then subjected to anodization treatment to form an oxide film. By comparison, it was confirmed that the capacitance was significantly superior.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る電解コンデンサ用陽極材料の表
面部の構成を示す模式的断面図でおる。 (1)・・・基材、(2)・・・金属皮膜、(3)・・
・微細な凹凸、(4)・・・ボア、(5)(6)・・・
酸化皮膜。 以上
FIG. 1 is a schematic cross-sectional view showing the structure of the surface portion of the anode material for an electrolytic capacitor according to the present invention. (1)...Base material, (2)...Metal coating, (3)...
・Minute irregularities, (4)...Bore, (5)(6)...
Oxide film. that's all

Claims (3)

【特許請求の範囲】[Claims] (1)微細な凹凸を有しかつこの凹凸面中に多数のボア
を有する状態に粗面化されたアルミニウム箔基材の少な
くとも前記凹凸面上に、弁金属微粒子からなる金属皮膜
が形成されると共に、該金属皮膜面上及び前記ボアの内
面に、それぞれの表面の金属による酸化皮膜が形成され
てなることを特徴とする電解コンデンサ用陽極材料。
(1) A metal film made of fine valve metal particles is formed on at least the uneven surface of an aluminum foil base material that has been roughened to have fine unevenness and a large number of bores in the uneven surface. An anode material for an electrolytic capacitor, characterized in that an oxide film is formed on the metal film surface and on the inner surface of the bore by the metal on each surface.
(2)弁金属微粒子からなる金属皮膜が、平均粒子径0
.01〜1.0μmの微粒子群からなる厚さ0.05〜
5.0μmの皮膜である特許請求の範囲第1項記載の電
解コンデンサ用陽極材料。
(2) The metal film made of fine valve metal particles has an average particle size of 0.
.. Thickness 0.05~ consisting of fine particles of 01~1.0μm
The anode material for an electrolytic capacitor according to claim 1, which is a 5.0 μm film.
(3)酸化皮膜が、厚さ10〜3000Åである特許請
求の範囲第1項または第2項記載の電解コンデンサ用陽
極材料。
(3) The anode material for an electrolytic capacitor according to claim 1 or 2, wherein the oxide film has a thickness of 10 to 3000 Å.
JP60154964A 1985-07-12 1985-07-12 Anode material for electrolytic capacitors Expired - Lifetime JPH061751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60154964A JPH061751B2 (en) 1985-07-12 1985-07-12 Anode material for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60154964A JPH061751B2 (en) 1985-07-12 1985-07-12 Anode material for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPS6215813A true JPS6215813A (en) 1987-01-24
JPH061751B2 JPH061751B2 (en) 1994-01-05

Family

ID=15595752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60154964A Expired - Lifetime JPH061751B2 (en) 1985-07-12 1985-07-12 Anode material for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JPH061751B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306614A (en) * 1987-06-08 1988-12-14 Nichicon Corp Manufacture of aluminum electrode for electrolytic capacitor
JP2007035902A (en) * 2005-07-27 2007-02-08 Nichicon Corp Method of manufacturing anode foil for aluminum electrolytic capacitor
JP2007123815A (en) * 2005-09-30 2007-05-17 Nippon Chemicon Corp Electrode material for electrolytic capacitor
JP2007294875A (en) * 2006-03-31 2007-11-08 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2008166602A (en) * 2006-12-28 2008-07-17 Sachiko Ono Aluminum material for electrolytic capacitor electrode, its manufacturing method, electrode material for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2008218481A (en) * 2007-02-28 2008-09-18 Fujitsu Ltd Capacitor and its manufacturing method
JP2008270525A (en) * 2007-04-20 2008-11-06 Fujitsu Ltd Electrolytic capacitor
JP2008270524A (en) * 2007-04-20 2008-11-06 Fujitsu Ltd Electrode foil and manufacturing method therefor
WO2008132829A1 (en) * 2007-04-20 2008-11-06 Fujitsu Limited Electrode foil, process for producing the electrode foil, and electrolytic capacitor
JP2012124347A (en) * 2010-12-09 2012-06-28 Panasonic Corp Electrode foil, method of manufacturing the same, and capacitor
JP2017175091A (en) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method thereof
WO2024162155A1 (en) * 2023-01-30 2024-08-08 パナソニックIpマネジメント株式会社 Electrode foil for electrolytic capacitors, electrolytic capacitor, and method for producing electrode foil for electrolytic capacitors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4415990B2 (en) * 2004-08-05 2010-02-17 パナソニック株式会社 Method for producing aluminum electrode foil for capacitor and aluminum foil for etching

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496762A (en) * 1977-12-27 1979-07-31 Siemens Ag Electrolytic capacitor and method of producing same
JPS55145335A (en) * 1979-04-28 1980-11-12 Nichicon Capacitor Ltd Method of fabricating electrode foil for electrolytic condenser
JPS5683921A (en) * 1979-12-13 1981-07-08 Showa Aluminium Co Ltd Aluminum foil for electrolytic condenser and method of manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496762A (en) * 1977-12-27 1979-07-31 Siemens Ag Electrolytic capacitor and method of producing same
JPS55145335A (en) * 1979-04-28 1980-11-12 Nichicon Capacitor Ltd Method of fabricating electrode foil for electrolytic condenser
JPS5683921A (en) * 1979-12-13 1981-07-08 Showa Aluminium Co Ltd Aluminum foil for electrolytic condenser and method of manufacturing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306614A (en) * 1987-06-08 1988-12-14 Nichicon Corp Manufacture of aluminum electrode for electrolytic capacitor
JP2007035902A (en) * 2005-07-27 2007-02-08 Nichicon Corp Method of manufacturing anode foil for aluminum electrolytic capacitor
JP2007123815A (en) * 2005-09-30 2007-05-17 Nippon Chemicon Corp Electrode material for electrolytic capacitor
JP2007294875A (en) * 2006-03-31 2007-11-08 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2008166602A (en) * 2006-12-28 2008-07-17 Sachiko Ono Aluminum material for electrolytic capacitor electrode, its manufacturing method, electrode material for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2008218481A (en) * 2007-02-28 2008-09-18 Fujitsu Ltd Capacitor and its manufacturing method
JP2008270525A (en) * 2007-04-20 2008-11-06 Fujitsu Ltd Electrolytic capacitor
JP2008270524A (en) * 2007-04-20 2008-11-06 Fujitsu Ltd Electrode foil and manufacturing method therefor
WO2008132829A1 (en) * 2007-04-20 2008-11-06 Fujitsu Limited Electrode foil, process for producing the electrode foil, and electrolytic capacitor
CN101689429A (en) * 2007-04-20 2010-03-31 富士通株式会社 Electrode foil, process for producing the electrode foil, and electrolytic capacitor
US8213159B2 (en) 2007-04-20 2012-07-03 Fujitsu Limited Electrode foil, method of manufacturing electrode foil, and electrolytic capacitor
JP2012124347A (en) * 2010-12-09 2012-06-28 Panasonic Corp Electrode foil, method of manufacturing the same, and capacitor
JP2017175091A (en) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method thereof
WO2024162155A1 (en) * 2023-01-30 2024-08-08 パナソニックIpマネジメント株式会社 Electrode foil for electrolytic capacitors, electrolytic capacitor, and method for producing electrode foil for electrolytic capacitors

Also Published As

Publication number Publication date
JPH061751B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
KR100647181B1 (en) Solid electrolyte capacitor and its manufacturing method
CN101093751B (en) Method for preparing cathode foil with high specific volume
JPS6215813A (en) Anode material for electrolytic capacitor
JP4973229B2 (en) Electrolytic capacitor and manufacturing method thereof
JP2745875B2 (en) Cathode materials for electrolytic capacitors
JPH0337293B2 (en)
JP3106559B2 (en) Method for producing base material having metal oxide on surface
JPS59167009A (en) Method of producing electrode material for electrolytic condenser
JPH06204094A (en) Manufacture of aluminium material for electrode of electrolytic capacitor
JPH05190400A (en) High capacitance electrolytic capacitor electrode material and its manufacturing method
JPH03150822A (en) Aluminum electrode for electrolytic capacitor
JPH0263284B2 (en)
JPH059710A (en) Production of aluminum electrode for electrolytic capacitor
US4323950A (en) Electrolytic capacitor with high-purity aluminized cathode
JP2006310493A (en) Electrode foil for capacitor
JPS63160322A (en) Aluminum electrode material for electrolytic capacitor
JPS6258609A (en) Cathode material for electrolytic capacitor
JPS6060709A (en) Aluminum electrode for electrolytic condenser
JPS63304613A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH0625895A (en) Formation of oxide film on surface of metallic material
JP2734233B2 (en) Electrode materials for electrolytic capacitors
JPS63100711A (en) Manufacture of electrode material for electrolytic capacitor
JPS63160323A (en) Aluminum electrode material for electrolytic capacitor
JPS63255910A (en) Manufacture of aluminum electrode material for electrolytic capacitor
JP5016472B2 (en) Method for producing electrode foil for electrolytic capacitor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term