JPS63304613A - Manufacture of aluminum electrode for electrolytic capacitor - Google Patents

Manufacture of aluminum electrode for electrolytic capacitor

Info

Publication number
JPS63304613A
JPS63304613A JP14056687A JP14056687A JPS63304613A JP S63304613 A JPS63304613 A JP S63304613A JP 14056687 A JP14056687 A JP 14056687A JP 14056687 A JP14056687 A JP 14056687A JP S63304613 A JPS63304613 A JP S63304613A
Authority
JP
Japan
Prior art keywords
aluminum
barium
lanthanate
sprayed
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14056687A
Other languages
Japanese (ja)
Other versions
JPH079870B2 (en
Inventor
Takashi Mochizuki
隆 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP14056687A priority Critical patent/JPH079870B2/en
Publication of JPS63304613A publication Critical patent/JPS63304613A/en
Publication of JPH079870B2 publication Critical patent/JPH079870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the electrostatic capacity of electrolytic capacitors and make them small-sized by generating a dielectric film wherein barium titanate or barium lanthanate is contained in an aluminum oxide thin film, thereby providing breakdown strength to be obtained by the aluminum oxide. CONSTITUTION:With the deposition thickness of the barium titanate or barium lanthanate to be sprayed and deposited onto the surface being limited to 0.1mum or less, an oxide film of an appropriate density is formed within a short time. When sprayed to aluminum, d'=14Angstrom XV (V is for the later anodization) is preferable as the thickness d' to be sprayed. The electrode foil produced in this way becomes an article of a very high electrostatic capacity since the capacitors by the oxide film of the sprayed metal and the aluminum oxide film are eqivalently connected in parallel, and the breakdown strength of the dielectric film is also good, so that electrolytic capacitors can substantially be made small. In addition, the spray coating is smoothly performed also on an aluminum foil having considerable irregularities on the etched surface thereof, electrolytic capacitors can remarkably be made small.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電解コンデンサ用アルミニウム電極の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing aluminum electrodes for electrolytic capacitors.

従来の技術 電解コンデンサの電極には、非常に薄い誘電体皮膜が電
気化学的に生成されるような金属が用いられ、現在はア
ルミニウムとタンタルが電極材料として工業化されてい
る。
BACKGROUND OF THE INVENTION The electrodes of electrolytic capacitors use metals in which very thin dielectric films are electrochemically produced, and aluminum and tantalum are currently being industrialized as electrode materials.

このうちアルミニウム電極の誘電体であるAβ203の
比誘電率はおよそ7〜10であり、他の弁作用金属の比
誘電率よりも決して大きな値ではない。
Among these, the dielectric constant of Aβ203, which is the dielectric material of the aluminum electrode, is about 7 to 10, which is by no means larger than the dielectric constant of other valve metals.

たとえばTaz 05は比誘電率ε−25,2であり、
TiO2のε−66,1である。このためアルミニウム
電解コンデンサに用いられるアルミニウム箔は静電容量
増大のために高倍率エツチング処理を行い、表面積を増
大させている。
For example, Taz 05 has a dielectric constant ε-25.2,
The ε-66,1 of TiO2. For this reason, aluminum foil used in aluminum electrolytic capacitors is subjected to high-magnification etching treatment to increase the surface area in order to increase the capacitance.

このエツチング処理は箔厚を考慮し幾何学的に最も表面
積増大になるべく形伊、すなわち理想エツチング状態に
すべく電気化学的あるいは化学的なエツチング方法の研
究が行われている。しかしながらエツチング技術はかな
り進歩し、現時点において現在の表面拡大率の2倍、3
倍とすることは単に表面を微細化させるのみでは不可能
になってきている。
In this etching process, research is being carried out on electrochemical or chemical etching methods in order to achieve the ideal etching condition, that is, in consideration of the thickness of the foil, the surface area can be maximized geometrically. However, etching technology has progressed considerably, and at present the current surface magnification rate can be doubled or tripled.
It is becoming impossible to double the size simply by making the surface finer.

発明が解決しようとする問題点 また仮により微細化することに成功したとしても、高い
電圧になるとエツチング孔のいわゆる目詰り現象によっ
て工・ノチング形状は生かせず、静電容量の低下を招く
。さらに電解コンデンサを作成した時も電解液との界面
接触が低下し、箔抵抗の増大、tanδの増大、インピ
ーダンス特性の低下など様々な緒特性の低下につながる
Problems to be Solved by the Invention Even if it were possible to achieve finer etching, the etching/notching shape cannot be utilized due to the so-called clogging phenomenon of the etching holes when the voltage is high, resulting in a decrease in capacitance. Furthermore, when an electrolytic capacitor is produced, the interfacial contact with the electrolyte decreases, leading to a decrease in various mechanical properties such as an increase in foil resistance, an increase in tan δ, and a decrease in impedance characteristics.

一方陽極酸化方法(化成方法)による静電容量の増大も
試みられている。これは純水ボイル処理によるベーマイ
ト皮膜と電気化学的生成皮膜との複合皮膜、ホウ酸溶液
による化成皮膜とリン酸溶液による化成皮膜との複合皮
膜、化成前処理に特殊薄膜を作成させて、該薄膜と電気
化学的皮膜との複合皮膜など様々な検討が行われている
。しかしながら大幅な静電容量の増加方法は見出されて
いない。
On the other hand, attempts have also been made to increase the capacitance using an anodizing method (chemical conversion method). This is achieved by creating a composite film of a boehmite film and an electrochemically generated film by boiling in pure water, a composite film of a chemical conversion film using a boric acid solution and a chemical conversion film using a phosphoric acid solution, and a special thin film created by a pre-chemical treatment. Various studies are being conducted, including composite films of thin films and electrochemical films. However, no method has been found to significantly increase capacitance.

このように現時点に使用されている99.99%あるい
は99.9%の高純度アルミニウム箔を用いた改良では
大幅な静電容量の増大にはかなりの困難に直面している
。無理をして静電容量の増大を図っても漏れ電流の増大
、耐圧の低下を起こし良好な結果は得られない。
As described above, improvements using 99.99% or 99.9% high-purity aluminum foil currently in use face considerable difficulties in significantly increasing capacitance. Even if the capacitance is increased by force, the leakage current increases and the withstand voltage decreases, and good results cannot be obtained.

問題点を解決するための手段 本発明はこのような背景をもとに無理なく大きな静電容
量が得られる電解コンデンサ用アルミニウム電極の製造
方法を提供しようとするものである。
Means for Solving the Problems Based on this background, the present invention aims to provide a method for manufacturing aluminum electrodes for electrolytic capacitors, which allows reasonably large capacitance to be obtained.

本発明の骨子は高誘電率を有するチタン酸バリウムまた
はランタン酸バリウムをアルミニウム表面上に溶射し、
0.1μm以下の薄膜となし、このままではチタン酸バ
リウム、ランタン酸バリウム中にボイド、クラックなど
が残存したり、溶射未完成な部分があったりし、もとも
と耐圧の低いものであるが故に、水溶液中にてアルミニ
ウムを陽極酸化し、耐電場強度をもたせ、高CVを有す
る電解コンデンサ用電極を得ようとするものである。
The gist of the present invention is to thermally spray barium titanate or barium lanthanate with a high dielectric constant onto the aluminum surface,
A thin film of 0.1 μm or less is formed, and if left as is, voids and cracks may remain in the barium titanate and barium lanthanate, and there may be unfinished areas of thermal spraying. The purpose is to anodize the aluminum inside to provide an electrolytic capacitor electrode with high electric field strength and high CV.

すなわち、酸化アルミニウム薄膜中にチタン酸バリウム
またはランタン酸バリウムを混在させた誘電体皮膜を生
成させ、静電容量はチタン酸バリウムまたはランタン酸
バリうムにより大幅に増大せしめ、耐圧(耐電場強度)
は酸化アルミによってもたせようとするものである。
In other words, a dielectric film is created in which barium titanate or barium lanthanate is mixed in an aluminum oxide thin film, and the capacitance is greatly increased by barium titanate or barium lanthanate, and the withstand voltage (electric field strength) is increased.
is intended to be made of aluminum oxide.

またチタン酸バリウムなどはセラミックコンデンサに用
いられており、比誘電率は非常に大きいが、製品作成上
誘電体としての厚みが大きいため、C=ε・□なる弐か
らも判るようにdが太きいため、アルミニウム電解コン
デンサのエツチング処理を施したものと大差がなくなっ
ている。これは誘電体耐圧および誘電体作成時における
ボイド、クランクなどの要因により厚(なっているもの
である。本発明はこうしたアルミニウムとセラミンクの
双方の欠点を補い得るものである。
In addition, barium titanate is used in ceramic capacitors, and although it has a very high dielectric constant, it is thick as a dielectric material in product manufacturing, so d is thick as can be seen from C = ε・□. Because of its high quality, there is no big difference from etching-treated aluminum electrolytic capacitors. This thickness is due to factors such as dielectric breakdown voltage and voids and cranks during dielectric preparation.The present invention can compensate for these drawbacks of both aluminum and ceramic.

しかしながら、本発明においてチタン酸バリウムまたは
ランタン酸バリウムと酸化アルミニウムはあ(まで混在
させなければならず、双方がセパレータで直列系で配置
していると全(効果がないばかりか、静電容量の大幅な
低下を招く。
However, in the present invention, barium titanate or barium lanthanate and aluminum oxide must be mixed together, and if both are arranged in series with a separator, not only will it not be effective, but the capacitance will be reduced. This results in a significant decrease.

本発明者はこの問題を解決すべく種々の検討を行った結
果、溶射して表面に付着するチタン酸バリウム、ランタ
ン酸バリウムの付着厚みを0.1μm以下とし、短時間
で適正な疎密度の酸化膜を形成すると、大幅に静電容量
が増大することを見出した。
As a result of various studies in order to solve this problem, the inventor of the present invention determined that the thickness of barium titanate and barium lanthanate deposited on the surface by thermal spraying was set to 0.1 μm or less, and an appropriate density could be achieved in a short period of time. We found that forming an oxide film significantly increases capacitance.

アルミニウムに溶射する場合、溶射される厚みd′とし
て d’−14人XV(Vは後に陽極酸化される電圧で
ある)が良好であった。
In the case of thermal spraying on aluminum, it was found that the sprayed thickness d' was d'-14V (V is the voltage at which the aluminum is later anodized).

作用 このようにして作成した電極箔は溶射した金属の酸化物
皮膜と酸化アルミニウム皮膜によるコンデンサが等価的
に並列接続されるため、非常に高静電容量品となり、ま
た誘電体皮膜耐圧も良好で、大幅な電解コンデンサの小
型化が図れる。またエツチングされ表面にかなりの凹凸
を有するアルミニウム箔上にも溶射がスムーズに行われ
るため、著しく小型化が図れた。
Function The electrode foil created in this way has a capacitor made of a thermally sprayed metal oxide film and an aluminum oxide film, which are equivalently connected in parallel, resulting in an extremely high capacitance product, and the dielectric film has a good withstand voltage. , it is possible to significantly reduce the size of electrolytic capacitors. Furthermore, thermal spraying can be carried out smoothly even on etched aluminum foil, which has considerable irregularities on the surface, making it possible to significantly reduce the size.

実施例 純度99.99%、厚さ70μmのアルミニウム箔を塩
酸を主体とするエツチング液を用いて電解エツチングを
行い、約30倍の表面積を有するエツチング箔を作成し
た。次いで約0.1μm厚になるようにチタン酸バリウ
ムを表裏に溶射した試料A、ランタン酸バリウムを溶射
した試料すを各々作成した。上記試料A、Bおよび溶射
を行わない試料CをpH=6.5のリン酸アンモニウム
溶液で80VII極酸化を行い、皮膜特性を測定した。
Example An aluminum foil having a purity of 99.99% and a thickness of 70 μm was electrolytically etched using an etching solution mainly containing hydrochloric acid to produce an etched foil having a surface area approximately 30 times larger. Next, Sample A was prepared by thermally spraying barium titanate on the front and back surfaces to a thickness of approximately 0.1 μm, and Sample A was thermally sprayed with barium lanthanate. Samples A and B and sample C which was not subjected to thermal spraying were subjected to 80VII polar oxidation using an ammonium phosphate solution having a pH of 6.5, and the film properties were measured.

静電容量は5%ホウ酸アンモニウム溶液中において12
011zで測定、皮膜耐圧は上記化成液中で0.1mA
/cJで通電した時の電圧一時間特性を測定し、電圧上
昇停止点を被膜耐圧とした。また漏れ電流は上記測定液
で50V印加し2分後の値を読み取った。その結果を表
に示す。
The capacitance is 12 in 5% ammonium borate solution.
Measured with 011z, film withstand pressure is 0.1mA in the above chemical solution
The voltage one-hour characteristic when current was applied at /cJ was measured, and the voltage rise stop point was defined as the film breakdown voltage. In addition, the leakage current was measured by applying 50V to the test liquid and reading the value after 2 minutes. The results are shown in the table.

発明の効果 表に示したように本発明の手法によって作成した電極は
大幅な静電容量の増大が図られ、製品とした場合も大幅
な小型化が図れるようになった。
As shown in the Effects of the Invention table, the electrodes produced by the method of the present invention have a significant increase in capacitance, and when manufactured into products, they can be significantly miniaturized.

また他の電気的製品特性も従来品と比べほとんど遜色な
く、工業的かつ実用的価値大なるものである。
In addition, other electrical product characteristics are almost comparable to conventional products, and have great industrial and practical value.

Claims (3)

【特許請求の範囲】[Claims] (1)アルミニウム金属の表面にチタン酸バリウムまた
はランタン酸バリウム、あるいはその双方を溶射した後
、陽極酸化処理し、弁作用金属との複合混在誘電体皮膜
を生成させることを特徴とする電解コンデンサ用アルミ
ニウム電極の製造方法。
(1) For electrolytic capacitors characterized by spraying barium titanate or barium lanthanate, or both, onto the surface of aluminum metal and then anodizing it to form a composite mixed dielectric film with valve metal. Method for manufacturing aluminum electrodes.
(2)上記アルミニウム金属をエッチング処理した後、
該金属の表面にチタン酸バリウム、ランタン酸バリウム
のうち一方またはその双方を溶射し、陽極酸化処理を行
うことを特徴とする特許請求の範囲第1項記載の電解コ
ンデンサ用アルミニウム電極の製造方法。
(2) After etching the aluminum metal,
The method for manufacturing an aluminum electrode for an electrolytic capacitor according to claim 1, characterized in that one or both of barium titanate and barium lanthanate is thermally sprayed onto the surface of the metal and anodization treatment is performed.
(3)上記溶射されるチタン酸バリウム、ランタン酸バ
リウムの厚みが0.1μm以下であることを特徴とする
特許請求の範囲第1項または第2項記載の電解コンデン
サ用アルミニウム電極の製造方法。
(3) The method for manufacturing an aluminum electrode for an electrolytic capacitor according to claim 1 or 2, wherein the thickness of the thermally sprayed barium titanate or barium lanthanate is 0.1 μm or less.
JP14056687A 1987-06-04 1987-06-04 Method for manufacturing aluminum electrode for electrolytic capacitor Expired - Fee Related JPH079870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14056687A JPH079870B2 (en) 1987-06-04 1987-06-04 Method for manufacturing aluminum electrode for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14056687A JPH079870B2 (en) 1987-06-04 1987-06-04 Method for manufacturing aluminum electrode for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS63304613A true JPS63304613A (en) 1988-12-12
JPH079870B2 JPH079870B2 (en) 1995-02-01

Family

ID=15271665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14056687A Expired - Fee Related JPH079870B2 (en) 1987-06-04 1987-06-04 Method for manufacturing aluminum electrode for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH079870B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582844A1 (en) * 1992-08-05 1994-02-16 ROEDERSTEIN SPEZIALFABRIKEN FÜR BAUELEMENTE DER ELEKTRONIK UND KONDENSATOREN DER STARKSTROMTECHNIK GmbH Capacitor, especially electrolytic capacitor
US6865071B2 (en) 1998-03-03 2005-03-08 Acktar Ltd. Electrolytic capacitors and method for making them
CN110565140A (en) * 2019-09-18 2019-12-13 南通海星电子股份有限公司 Preparation method of high-dielectric-constant composite film aluminum foil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582844A1 (en) * 1992-08-05 1994-02-16 ROEDERSTEIN SPEZIALFABRIKEN FÜR BAUELEMENTE DER ELEKTRONIK UND KONDENSATOREN DER STARKSTROMTECHNIK GmbH Capacitor, especially electrolytic capacitor
US6865071B2 (en) 1998-03-03 2005-03-08 Acktar Ltd. Electrolytic capacitors and method for making them
CN110565140A (en) * 2019-09-18 2019-12-13 南通海星电子股份有限公司 Preparation method of high-dielectric-constant composite film aluminum foil

Also Published As

Publication number Publication date
JPH079870B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
CN111463016B (en) Preparation method of porous anode aluminum foil for electrolytic capacitor
US20120231262A1 (en) Electrode material for aluminum electrolytic capacitor and production method therefor
CA1244104A (en) Preparation of capacitor electrodes
WO2003042425A1 (en) Composite titanium oxide film and method for formation thereof and titanium electrolytic capacitor
JP3106559B2 (en) Method for producing base material having metal oxide on surface
US3397446A (en) Thin film capacitors employing semiconductive oxide electrolytes
TWI254333B (en) Solid electrolytic capacitor and method of manufacturing same
JPS6215813A (en) Anode material for electrolytic capacitor
US3262867A (en) Method for making film capacitors
JPS63304613A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH0291918A (en) Electrode material for electrolytic capacitor
US2798037A (en) Aluminum oxide films
US3544434A (en) Thick film capactors for miniaturized circuitry
JPH03150822A (en) Aluminum electrode for electrolytic capacitor
JPS63306614A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPS63160322A (en) Aluminum electrode material for electrolytic capacitor
JPH059710A (en) Production of aluminum electrode for electrolytic capacitor
US3649880A (en) Solid electrolytic capacitor having a titanium-zirconium alloy electrode
JPH0320059B2 (en)
KR101160907B1 (en) Preparation method of aluminum film with complex oxide dielectric using cathode electrolytic deposition and anodizing
JPH0917686A (en) Capacitor
JPH08203783A (en) Solid electrolytic capacitor and its manufacture
JP5016472B2 (en) Method for producing electrode foil for electrolytic capacitor
JPS59191319A (en) Method of producing electrolytic condenser
JPH06151255A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees