JPH03150822A - Aluminum electrode for electrolytic capacitor - Google Patents

Aluminum electrode for electrolytic capacitor

Info

Publication number
JPH03150822A
JPH03150822A JP28955389A JP28955389A JPH03150822A JP H03150822 A JPH03150822 A JP H03150822A JP 28955389 A JP28955389 A JP 28955389A JP 28955389 A JP28955389 A JP 28955389A JP H03150822 A JPH03150822 A JP H03150822A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
electrode
aluminum
niobium
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28955389A
Other languages
Japanese (ja)
Inventor
Yutaka Yokoyama
豊 横山
Susumu Ando
進 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP28955389A priority Critical patent/JPH03150822A/en
Publication of JPH03150822A publication Critical patent/JPH03150822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To obtain an electrode for an electrolytic capacitor having large electrostatic capacity per unit area and high reliability by covering the surface of an aluminum electrode with a thin film of nitride of niobium, and forming a thin film having high stability in characteristics. CONSTITUTION:A niobium nitride layer is formed on the surface of high purity aluminum of an aluminum electrode. As a result, the electrode is formed on its surface with a thin spontaneous oxide film of high capacity or a metal aluminum surface of high conductivity not almost formed with a spontaneous oxide film on a specific microscopic part as it is to be stably protected by niobium nitride. Thus, an electrostatic capacity per unit area can be enhanced as an electrode for an electrolytic capacitor, an electrolytic capacitor having a small size and a large capacity can be obtained particularly in a low voltage region, and stable characteristics are maintained for a long period.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は電解コンデンサに用いられるアルミニウム電
極であって、特に陰極に用いられるアルミニウム電極に
関する。
The present invention relates to an aluminum electrode used in an electrolytic capacitor, and particularly to an aluminum electrode used as a cathode.

【従来の技術】[Conventional technology]

電解コンデンサは、小型、大容量、安価で整流出力の平
滑用などの用途に優れた特性を示し、各種の電気・電子
機器の重要な構成要素の一つである。 電解コンデンサは、−iにアルミニウム等の絶縁性酸化
皮膜が形成され得る、いわゆる弁金属を陽極に用い、前
記絶縁性酸化皮膜を誘電体層として、集電用の陰極電極
との間にセパレータに保持された電解液を介在させてコ
ンデンサ素子を作成し、これを密閉容器内に収納して構
成される。 陽極材料は前述したように、アルミニウムをはじめ、タ
ンタル、ニオブ、チタンなどが使用される。また集電の
ための陰極電極材料には、陽極材料と同種の金属が用い
られる。 ところが、弁金属は一般に自然酸化による酸化皮膜層が
表面に形成される。この傾向はアルミニウムにおいて特
に顕著である。そしてこの自然酸化皮膜は極めて薄い絶
縁層のため、陰極側にも静電容量が形成され、電解コン
デンサは、陽極側の静電容量および陰極側の静電容量が
直列に接続された合成容量となり、所望の静電容量が得
られなくなる。また所望の静電容量を得るため、陽極側
の静電容量を必要以上に大きくする必要がある。 この影響を少なくするためには、陽極側の静電容量値に
比べ陰極側の静電容量値を著しく高くすれば、陰極側の
静電容量による影響は殆ど無視できることになるが、低
電圧用の電解コンデンサの陽極の単位面積あたりの静電
容量は相当に高いフ1準にあり、これをより高めるのは
困難で、合成で量による静電容量値の低下は免れ得ない
。 そこで陰極側の静電容量値をより高くするたνに、陰極
電極表面をエツチング処理して表面積づ拡大する方法が
ある。しかしこの表面積を拡大する技術は、現在では高
度に洗練されているが、この技術のみによって電解コン
デンサの静電容ff1(飛躍的に増加させるのは次第に
困難になりつつ凌る。 むしろ陰極との合成容量による静電容量の低1の問題の
解決のためには、陰極の表面部に絶縁11の酸化皮膜を
形成しない導電性の金属からなる薄膜で被覆することに
よって、合成容量による静電容量値の低下を防止するこ
とが考えられる。 このようなものとして、例えば特開昭6O−182E号
公報のように、各種の導電性金属を真空蒸着するものが
知られている。また薄膜を形成するためには、前記の真
空蒸着によるもののほか、イオンブレーティング法、ス
パッタリング法あるいはプラズマCVD法などのような
各種の物理的方法がある。 しかしながら、導電性金属のうち、金、白金などのいわ
ゆる貴金属については、薬品との反応が殆どなく、電解
コンデンサとして長期間使用しても良好な導電性を保ち
得る。しかしながらこの種の貴金属は、安価で多量の生
産が要求される電解コンデンサには、経済的理由から採
用されるに到起き、表面の状態が経時変化するために、
腐食事故の発生や、電解コンデンサの特性が安定しない
という欠点があった。
Electrolytic capacitors are small, large-capacitance, inexpensive, and have excellent characteristics for applications such as smoothing rectified output, and are one of the important components of various electrical and electronic devices. An electrolytic capacitor uses a so-called valve metal on which an insulating oxide film such as aluminum can be formed as an anode, and a separator is used between the insulating oxide film as a dielectric layer and a cathode electrode for current collection. A capacitor element is created by interposing the retained electrolyte, and the capacitor element is housed in a sealed container. As mentioned above, the anode materials used include aluminum, tantalum, niobium, and titanium. Further, the same type of metal as the anode material is used for the cathode electrode material for current collection. However, valve metals generally have an oxide film layer formed on their surfaces due to natural oxidation. This tendency is particularly noticeable in aluminum. Since this natural oxide film is an extremely thin insulating layer, capacitance is also formed on the cathode side, and an electrolytic capacitor is a composite capacitance in which the capacitance on the anode side and the capacitance on the cathode side are connected in series. , the desired capacitance cannot be obtained. Furthermore, in order to obtain the desired capacitance, it is necessary to make the capacitance on the anode side larger than necessary. In order to reduce this effect, if the capacitance value on the cathode side is made significantly higher than the capacitance value on the anode side, the effect of the capacitance on the cathode side can be almost ignored. The capacitance per unit area of the anode of an electrolytic capacitor is at a fairly high standard, and it is difficult to increase it further, and it is inevitable that the capacitance value will decrease depending on the amount of synthesis. Therefore, in order to increase the capacitance value on the cathode side, there is a method of enlarging the surface area by etching the surface of the cathode electrode. However, although the technology for expanding this surface area is now highly sophisticated, it is becoming increasingly difficult to dramatically increase the capacitance ff1 of an electrolytic capacitor using only this technology. In order to solve the problem of low capacitance due to capacitance, it is possible to reduce the capacitance value due to the composite capacitance by coating the surface of the cathode with a thin film made of a conductive metal that does not form an oxide film of insulation 11. As such, there are known methods such as those disclosed in Japanese Unexamined Patent Publication No. Sho 6O-182E, in which various conductive metals are vacuum-deposited. In addition to the vacuum evaporation method described above, there are various physical methods such as ion blasting, sputtering, and plasma CVD.However, among conductive metals, so-called noble metals such as gold and platinum This type of precious metal has almost no reaction with chemicals and can maintain good conductivity even when used as an electrolytic capacitor for a long time.However, this type of precious metal is not economical for electrolytic capacitors that are required to be produced in large quantities at low cost. Due to the fact that the surface condition changes over time,
The disadvantages were that corrosion accidents occurred and the characteristics of the electrolytic capacitor were unstable.

【発明が解決しようとする課題] この発明は、高純度アルミニウムの表面に導電性で、しかも電解コンデンサとして使用した場合に特性上安定度の高い薄膜を形成し、単位面積あたりの静電容量が大きく、しかも信軽性の高い電解コンデンサ用電極を得ることを目的としている。 【課題を解決するための手段】[Problem to be solved by the invention] This invention forms a thin film on the surface of high-purity aluminum that is conductive and has high stability when used as an electrolytic capacitor, and has a large capacitance per unit area and is highly reliable. The purpose is to obtain electrodes for capacitors. [Means to solve the problem]

この発明は、窒化ニオブがこの発明の目的に適合した薄
膜を形成することに着目したもので、この発明の電解コ
ンデンサ用電極は、高純度アルミニウム表面に、窒化ニ
オブ層を形成したことを特徴としている。 すなわちこの発明は、ニオブの窒化物の薄膜によりアル
ミニウム電極表面を被覆することによりこの発明の目的
を達成している。 この発明によれば、被処理材料としては、通常の電解コ
ンデンサの陰極に用いる高純度で箔状あるいは板状のア
ルミニウムを用いることができる。 このアルミニウム表面は、あらかじめ脱脂処理等にをよ
り表面を清浄化しておく。またアルミニウム表面はエツ
チング処理を施しても良いし、プレーンのままであって
も使用可能である。ただエツチングの際はエツチングに
よる凹凸の細かさの範囲を窒化ニオブ層を形成する手段
によって選択する必要がある場合がある。 形成される窒化ニオブ層の厚さは、少なくともアルミニ
ウム表面を均一に覆われる必要がある。 また厚さが必要以上になると、被覆処理に時間がかかる
ことなどから、好ましくは0.02ないし5μm、より
好ましくは0.1ないし2μmである。 窒化ニオブ薄膜を形成するための手段としては、各種の
手段が適用可能であるが、一般には薄膜ゆえ、厚さや状
態の制御が容易な物理的手段によるドライプロセスによ
るのが好適である。このような手段としては、真空蒸着
、陰極アーク蒸着、スパッタリング、イオンブレーティ
ング、プラズマCVD法などが例示できる。
This invention focuses on the fact that niobium nitride forms a thin film suitable for the purpose of this invention, and the electrode for an electrolytic capacitor of this invention is characterized by forming a niobium nitride layer on the surface of high-purity aluminum. There is. That is, the object of the present invention is achieved by coating the surface of an aluminum electrode with a thin film of niobium nitride. According to the present invention, as the material to be treated, high-purity foil-like or plate-like aluminum, which is used for the cathode of an ordinary electrolytic capacitor, can be used. This aluminum surface is cleaned in advance by degreasing or the like. Further, the aluminum surface may be etched or left plain. However, during etching, it may be necessary to select the range of fineness of the unevenness caused by etching depending on the means for forming the niobium nitride layer. The thickness of the niobium nitride layer formed must be such that at least the aluminum surface is uniformly covered. Moreover, if the thickness is more than necessary, the coating process will take time, so the thickness is preferably 0.02 to 5 μm, more preferably 0.1 to 2 μm. Various methods can be used to form the niobium nitride thin film, but since it is a thin film, it is generally preferable to use a dry process using physical means that allows easy control of thickness and condition. Examples of such means include vacuum evaporation, cathodic arc evaporation, sputtering, ion blasting, and plasma CVD.

【作  用】[For production]

窒化ニオブは、比抵抗値がおよそ200μΩ・cmと低
い抵抗値を有する硬質な化合物で、アルミニウムとの反
応性も良好なことから、アルミニウム表面に低比抵抗の
緻密な薄膜が形成される。 この結果、アルミニウム電極は表面に形成された高容量
の極めて薄い自然酸化皮膜か、あるいは特定の微小部分
については自然酸化皮膜が殆ど形成されない電導度の高
い金属アルミニウム表面がそのまま、窒化ニオブによっ
て安定して保護されることになり、電極全体として高い
静電容量値が得られるものと思われる。 また窒化ニオブは、電解液との反応が起きにくく、電極
の表面状態を長期にわたって安定して維持させる。
Niobium nitride is a hard compound with a low resistivity of about 200 μΩ·cm and has good reactivity with aluminum, so a dense thin film with low resistivity is formed on the aluminum surface. As a result, the aluminum electrode has an extremely thin natural oxide film with high capacity formed on its surface, or in certain minute areas, the highly conductive metal aluminum surface with almost no natural oxide film is stabilized by niobium nitride. It is thought that the electrode will be protected by a high capacitance value as a whole. In addition, niobium nitride is less likely to react with the electrolyte and maintains the surface condition of the electrode stably over a long period of time.

【実 施 例】【Example】

以下実施例に基づいて、この発明を更に詳細に説明する
。 この発明の窒化ニオブ薄膜を表面に形成した高純度アル
ミニウム被処理材を以下の実施例1および2のごとく作
成した。また比較例として、窒化物でない金属ニオブ層
を形成したもの、従来から用いられている高純度アルミ
ニウム表面をエツチング処理のみ行ったものを比較例1
ないし3とした。 +1− 高純度のアルミニウム箔(純度99.95%、厚さlO
loouを501M+X 100+amに切断したもの
を被処理材として使用し、窒素ガスを含む全圧が5X1
0−’Torrのチャンバ中で、陰極アーク蒸着法を用
いて蒸着を行った。蒸着条件は、被処理材を200°C
に加熱し、アーク放電電圧100V、アーク電流100
Aで蒸着速度を0.05μm/分で4分間蒸着を行った
。 この結果表面に、膜厚0.2μmの窒化ニオブ層が形成
された。 一裏施班I− 実施例Iと同じ高純度アルミニウムに、イオンブレーテ
ィング法によって、窒化ニオブ薄膜を形成した。 形成条件は、チャンバ中の窒素ガスを含む全圧が、l 
X 10− ”Torrの雰囲気で、被処理材と蒸着源
であるニオブ電極間に1200Vを印加して20分間イ
オンブレーティングを行った。 この結果、表面に、膜ff 0.2μmの窒化ニオブ層
が形成された。 一且藍拠上一 被処理材には実施例と同じものを用い、これを常温状態
で、2 X 1O−3Torrのアルゴンガス雰囲気の
チャンバ中で実施例1と同じ陰極アーク蒸着法によって
金属ニオブ薄膜を形成した。蒸着条件は、アーク放電電
圧100■、アーク電流100Aで蒸着温度を0.02
μm/分で10分間蒸着を行った。 この結果、膜厚0.2μmの金属ニオブ蒸着膜が形成さ
れた。 一止較班I− 実施例2と同じイオンブレーティング法によって金属ニ
オブの薄膜を形成した。 被処理材は、実施例1と同じものを用いた。薄膜形成条
件は、2 X 10− ”Torrのアルゴンガス雰囲
気中で、被処理材、蒸発源間に1200 Vの電圧を印
加して20分間蒸着を行った。 この結果、膜圧0.2μmの金属ニオブ膜が形成された
。 一上J■[L− 実施例と同じ素材からなる高純度アルミニウム材表面を
交流電解法によってエツチング処理したものをY$備し
た。 これら、各実施例および比較例の被処理材について、各
々の単位面積あたりの静電容量値を測定したところ、第
1表に示す結果が得られた。 (第 1 表) この結果から明らかなように、この発明の実施例のもの
は、比較のものに比べていずれも単位面積あたりの静電
容量値が高いことがわかる。 次に、形成された薄膜の安定性を調べるために、これら
各被処理材を電解コンデンサの陰極に用いて電解コンデ
ンサを作成し、寿命試験を行って特性の変化を調べた。 作成した電解コンデンサは、リード線同一方向型の電解
コンデンサで、箔状の電極をセパレータと共に巻回した
素子に電解液を含浸し、金属ケース内に収納し、開口部
を封口ゴムで密閉したちのである。電解コンデンサを構
成する材料は、陰極箔として上記の各実施例ならびに比
較例のものを用いた以外は全て共通のものを使用した。 また組立方法についても全て同じである。 電解コンデンサの定格電圧は6.3■、定格容量が47
μF、外形寸法が直径5 mm、長さ7 mmである使
用した電解液の組成は、エチシングリコ−シフ8重景%
、アジピン酸アンモニウム10重量%、水12重重量の
組成からなるもので、通常用いられる電解液に比べて、
水の含有■を多くしである。これは、水による電極箔の
水和劣化の発生が顕著になるようにしたためである。 この電解コンデンサに定格電圧を印加し、110°Cで
500時間の寿命試験を行った後の静電容量値と、初期
の静電容量値との変化率を調べた。この結果を第2表に
示す。 (第 表) この結果かられかるように、この発明のアルミニウム電
極を用いた電解コンデンサは、初期値においても、高い
静電容量値が得られるとともに、高温負荷寿命試験を行
った後も、電極表面に水和劣化等の特性劣化が生じない
ので、電気特性に変動が少なく、長期にわたって安定し
た特性が維持できることがわかる。
The present invention will be described in more detail below based on Examples. High purity aluminum treated materials having the niobium nitride thin film of the present invention formed on their surfaces were prepared as in Examples 1 and 2 below. In addition, as comparative examples, Comparative Example 1 is one in which a metal niobium layer other than nitride is formed, and one in which only etching treatment is performed on the conventionally used high-purity aluminum surface.
It was set as 3 to 3. +1- High purity aluminum foil (purity 99.95%, thickness lO
louou cut into 501M+X 100+am is used as the material to be treated, and the total pressure including nitrogen gas is 5X1.
Deposition was performed using cathodic arc deposition in a chamber at 0-'Torr. The vapor deposition conditions were to heat the material to be treated at 200°C.
The arc discharge voltage is 100V and the arc current is 100V.
In A, vapor deposition was performed for 4 minutes at a vapor deposition rate of 0.05 μm/min. As a result, a 0.2 μm thick niobium nitride layer was formed on the surface. First side application I--A niobium nitride thin film was formed on the same high-purity aluminum as in Example I by the ion blasting method. The formation conditions are such that the total pressure including nitrogen gas in the chamber is l
In an atmosphere of The same material as in Example 1 was used as the material to be treated, and it was subjected to the same cathode arc as in Example 1 in a chamber with an argon gas atmosphere of 2 x 10-3 Torr at room temperature. A metallic niobium thin film was formed by a vapor deposition method.The vapor deposition conditions were an arc discharge voltage of 100 cm, an arc current of 100 A, and a vapor deposition temperature of 0.02
Deposition was carried out for 10 minutes at μm/min. As a result, a metal niobium vapor deposited film with a film thickness of 0.2 μm was formed. One-Stop Comparison Group I--A thin film of metallic niobium was formed by the same ion blating method as in Example 2. The same material as in Example 1 was used as the material to be treated. The thin film formation conditions were as follows: In an argon gas atmosphere of 2 x 10-'' Torr, a voltage of 1200 V was applied between the material to be treated and the evaporation source for 20 minutes. As a result, the film thickness was 0.2 μm. A metallic niobium film was formed. Y$ was prepared by etching the surface of a high-purity aluminum material made of the same material as in the example using an alternating current electrolytic method.These examples and comparative examples When the capacitance value per unit area of each of the treated materials was measured, the results shown in Table 1 were obtained. (Table 1) As is clear from the results, Examples of the present invention It can be seen that the capacitance values per unit area are higher than those for comparison.Next, in order to investigate the stability of the formed thin film, each of these treated materials was placed in an electrolytic capacitor. An electrolytic capacitor was created using this as a cathode, and a life test was conducted to examine changes in characteristics.The created electrolytic capacitor has lead wires in the same direction. The capacitor was impregnated with an electrolytic solution, housed in a metal case, and the opening was sealed with sealing rubber.The materials constituting the electrolytic capacitor were those used in each of the above embodiments and comparative examples as the cathode foil. The same thing was used for all.The assembly method was also the same for all.The rated voltage of the electrolytic capacitor is 6.3■, and the rated capacity is 47.
μF, external dimensions are 5 mm in diameter and 7 mm in length. The composition of the electrolyte used is Ethysin Glyco-Schiff 8%
, consisting of 10% by weight of ammonium adipate and 12% by weight of water, compared to commonly used electrolytes.
The water content is increased. This is to make the occurrence of hydration deterioration of the electrode foil due to water more noticeable. A rated voltage was applied to this electrolytic capacitor, and a life test was conducted at 110° C. for 500 hours, and the capacitance value and the rate of change between the initial capacitance value and the capacitance value were examined. The results are shown in Table 2. (Table) As can be seen from the results, the electrolytic capacitor using the aluminum electrode of the present invention has a high capacitance value even at the initial value, and even after performing the high temperature load life test, the electrolytic capacitor using the aluminum electrode of the present invention has a high capacitance value. It can be seen that since no property deterioration such as hydration deterioration occurs on the surface, there is little variation in electrical properties and stable properties can be maintained over a long period of time.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、電解コンデンサ用
の電極として、単位面積あたりの静電容量を高めること
ができるので、特に低圧領域において小型大容量の電解
コンデンサが得られる。 また電極表面が窒化ニオブによって保護され、水和劣化
等の電極表面の劣化が防止されるので、長期にわたって
安定した特性が維持できる。
As described above, according to the present invention, as an electrode for an electrolytic capacitor, the electrostatic capacitance per unit area can be increased, so that a small and large-capacity electrolytic capacitor can be obtained, especially in a low voltage region. In addition, the electrode surface is protected by niobium nitride and deterioration of the electrode surface such as hydration deterioration is prevented, so stable characteristics can be maintained over a long period of time.

Claims (1)

【特許請求の範囲】[Claims] (1) 高純度アルミニウム表面に、窒化ニオブ層を形
成したことを特徴とする電解コンデンサ用アルミニウム
電極。
(1) An aluminum electrode for an electrolytic capacitor, characterized in that a niobium nitride layer is formed on the surface of high-purity aluminum.
JP28955389A 1989-11-07 1989-11-07 Aluminum electrode for electrolytic capacitor Pending JPH03150822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28955389A JPH03150822A (en) 1989-11-07 1989-11-07 Aluminum electrode for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28955389A JPH03150822A (en) 1989-11-07 1989-11-07 Aluminum electrode for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH03150822A true JPH03150822A (en) 1991-06-27

Family

ID=17744728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28955389A Pending JPH03150822A (en) 1989-11-07 1989-11-07 Aluminum electrode for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH03150822A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038660A1 (en) * 1997-02-28 1998-09-03 Showa Denko Kabushiki Kaisha Capacitor
EP1184883A1 (en) * 1999-03-29 2002-03-06 Nippon Chemi-Con Corporation Solid electrolytic capacitor and production method thereof
US6423110B1 (en) 1999-12-08 2002-07-23 Showa Denko K.K. Powder composition for capacitor and sintered body using the composition, and capacitor using the sintered body
US6430026B1 (en) 1999-06-09 2002-08-06 Showa Denko K.K. Electrode material for capacitors and capacitor using the same
US6529367B1 (en) 1998-12-15 2003-03-04 Showa Denko Kabushiki Kaisha Niobium capacitor and method of manufacture thereof
US6540810B2 (en) 2000-04-21 2003-04-01 Showa Denko Kabushiki Kaisha Niobium powder for capacitor, sintered body using the powder and capacitor using the same
US6660057B1 (en) 1999-10-01 2003-12-09 Showa Denko K.K. Powder composition for capacitor, sintered body using the composition and capacitor using the sintered body
US6671164B2 (en) 2000-04-24 2003-12-30 Showa Denko Kabushiki Kaisha Niobium powder, sintered body using the powder, and capacitor using the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347032B2 (en) 1997-02-28 2002-02-12 Showa Denko Kabushiki Kaisha Capacitor
US7006343B2 (en) 1997-02-28 2006-02-28 Showa Denko Kabushiki Kaisha Capacitor
WO1998038660A1 (en) * 1997-02-28 1998-09-03 Showa Denko Kabushiki Kaisha Capacitor
US6452777B1 (en) 1997-02-28 2002-09-17 Showa Denko Kabushiki Kaisha Capacitor
US6856500B2 (en) 1997-02-28 2005-02-15 Showa Denko Kabushiki Kaisha Capacitor
US6661646B2 (en) 1998-12-15 2003-12-09 Showa Denko Kabushiki Kaisha Niobium capacitor and method of manufacture thereof
US6529367B1 (en) 1998-12-15 2003-03-04 Showa Denko Kabushiki Kaisha Niobium capacitor and method of manufacture thereof
EP1184883A1 (en) * 1999-03-29 2002-03-06 Nippon Chemi-Con Corporation Solid electrolytic capacitor and production method thereof
EP1184883A4 (en) * 1999-03-29 2004-09-08 Nippon Chemicon Solid electrolytic capacitor and production method thereof
US6430026B1 (en) 1999-06-09 2002-08-06 Showa Denko K.K. Electrode material for capacitors and capacitor using the same
US6660057B1 (en) 1999-10-01 2003-12-09 Showa Denko K.K. Powder composition for capacitor, sintered body using the composition and capacitor using the sintered body
US7011692B2 (en) 1999-10-01 2006-03-14 Showa Denko K.K. Powder composition for capacitor, sintered body using the composition and capacitor using the sintered body
US6423110B1 (en) 1999-12-08 2002-07-23 Showa Denko K.K. Powder composition for capacitor and sintered body using the composition, and capacitor using the sintered body
US6689185B2 (en) 2000-04-21 2004-02-10 Showa Denko Kabushiki Kaisha Niobium powder for capacitor, sintered body using the powder and capacitor using the same
US6540810B2 (en) 2000-04-21 2003-04-01 Showa Denko Kabushiki Kaisha Niobium powder for capacitor, sintered body using the powder and capacitor using the same
US7037355B2 (en) 2000-04-21 2006-05-02 Showa Denko Kabushiki Kaisha Niobium powder for capacitor, sintered body using the powder and capacitor using the same
US6671164B2 (en) 2000-04-24 2003-12-30 Showa Denko Kabushiki Kaisha Niobium powder, sintered body using the powder, and capacitor using the same

Similar Documents

Publication Publication Date Title
US6764712B2 (en) Method for producing high surface area foil electrodes
JP2745875B2 (en) Cathode materials for electrolytic capacitors
JPH03150822A (en) Aluminum electrode for electrolytic capacitor
JP3016421B2 (en) Aluminum cathode foil for electrolytic capacitors
JP2864477B2 (en) Aluminum electrode for electrolytic capacitors
JPH059790A (en) Production of base substance having metal oxide on surface
US6865071B2 (en) Electrolytic capacitors and method for making them
US3126503A (en) Electrical capacitor and electrode
US3256468A (en) Electrode for electrical capacitors and method of making the same
Vratny Deposition of Tantalum and Tantalum Oxide by Superimposed RF and D‐C Sputtering
JPH0291918A (en) Electrode material for electrolytic capacitor
EP1382048A2 (en) Electrolytic capacitors and method for making them
JPH0471213A (en) Aluminum electrode for electrolytic capacitor and its manufacture
JP2618281B2 (en) Aluminum electrode for electrolytic capacitor and method of manufacturing the same
JPS6353688B2 (en)
JP2687299B2 (en) Method for manufacturing aluminum electrode for electrolytic capacitor
JPH03150824A (en) Aluminum electrode for electrolytic capacitor
JPH03150823A (en) Aluminum electrode for electrolytic capacitor
JPH042109A (en) Aluminum electrode for electrolytic capacitor
JPH03150821A (en) Aluminum electrode for electrolytic capacitor
JPH059710A (en) Production of aluminum electrode for electrolytic capacitor
JP2734233B2 (en) Electrode materials for electrolytic capacitors
JPH03150828A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH042110A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH03150829A (en) Manufacture of aluminum electrode for electrolytic capacitor