JPH03150821A - Aluminum electrode for electrolytic capacitor - Google Patents

Aluminum electrode for electrolytic capacitor

Info

Publication number
JPH03150821A
JPH03150821A JP28955289A JP28955289A JPH03150821A JP H03150821 A JPH03150821 A JP H03150821A JP 28955289 A JP28955289 A JP 28955289A JP 28955289 A JP28955289 A JP 28955289A JP H03150821 A JPH03150821 A JP H03150821A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
electrode
aluminum
thin film
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28955289A
Other languages
Japanese (ja)
Inventor
Yutaka Yokoyama
豊 横山
Susumu Ando
進 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP28955289A priority Critical patent/JPH03150821A/en
Publication of JPH03150821A publication Critical patent/JPH03150821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To obtain an electrode for an electrolytic capacitor having large electrostatic capacity per unit area and high reliability by covering the surface of an aluminum electrode with a thin film of nitride of vanadium, and forming a thin film having high stability in characteristics. CONSTITUTION:A vanadium nitride layer is formed on the surface of high purity aluminum of an aluminum electrode. As a result, the electrode is formed on its surface with a thin spontaneous oxide film of high capacity or a metal aluminum surface of high conductivity not almost formed with a spontaneous oxide film on a specific microscopic part as it is to be stably protected by vanadium nitride. Thus, an electrostatic capacity per unit area can be enhanced as an electrode for an electrolytic capacitor, an electrolytic capacitor having a small size and a large capacity can be obtained particularly in a low voltage region, and stable characteristics are maintained for a long period.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は電解コンデンサに用いられるアルミニウム電
極であって、特に陰極に用いられるアルミニウム電極に
関する。
The present invention relates to an aluminum electrode used in an electrolytic capacitor, and particularly to an aluminum electrode used as a cathode.

【従来の技術】[Conventional technology]

電解コンデンサは、小型、大容量、安価で整流出力の平
滑用などの用途に優れた特性を示し、各種の電気・電子
機器の重要な構成要素の一つである。 電解コンデンサは、−1Gにアルミニウム等の絶縁性酸
化皮膜が形成され得る、いわゆる弁金属を陽極に用い、
前記絶縁性酸化皮膜を誘電体層として、集電用の陰極電
極との間にセパレータに保持された電解液を介在させて
コンデンサ素子を作成し、これを密閉容器内に収納して
構成される。 陽極材料は前述したように、アルミニウムをはじめ、タ
ンタル、ニオブ、チタンなどが使用される。また集電の
ための陰極電極材料には、陽極材料と同種の金属が用い
られる。 ところが、弁金属は一般に自然酸化による酸化皮膜層が
表面に形成される。この傾向はアルミニウムにおいて特
に顕著である。そしてこの自然酸化皮膜は極めて薄い絶
縁層のため、陰極側にも静電容量が形成され、電解コン
デンサは、陽極側の静電容量および陰極側の静電容量が
直列に接続された合成容量となり、所望の静電容量が得
られなくなる。また所望の静電容量を得るため、陽極側
の静電容量を必要以上に大きくする必要がある。 この影響を少なくするためには、陽極側の静電容量値に
比べ陰極側の静電容量値を著しく高くすれば、陰極側の
静電容量による影響は殆ど無視できることになるが、低
電圧用の電解コンデンサの陽極の単位面積あたりの静電
容量は相当に高い水準にあり、これをより高めるのは困
難で、合成容量による静電容量値の低下は免れ得ない。 そこで陰極側の静電容量値をより高くするために、陰極
電極表面をエツチング処理して表面積を拡大する方法が
ある。しかしこの表面積を拡大する技術は、現在では高
度に洗練されているが、この技術のみによって電解コン
デンサの静電容仝を飛躍的に増加させるのは次第に困難
になりつつある。 むしろ陰極との合成容量による静電容量の低下の問題の
解決のためには、陰極の表面部に絶縁性の酸化皮膜を形
成しない導電性の金属からなる薄膜で被覆することによ
って、合成容量による静電容量値の低下を防止すること
が考えられる。 このようなものとして、例えば特開昭60−1826号
公報のように、各種の導電性金属を真空蒸着するものが
知られている。また薄膜を形成するためには、前記の真
空蒸着によるもののほか、イオンブレーティング法、ス
パッタリング法あるいはプラズマCVD法などのような
各種の物理的方法がある。 しかしながら、導電性金属のうち、金、白金などのいわ
ゆる貴金属については、薬品との反応が殆どなく、電解
コンデンサとして長期間使用しても良好な導電性を保ち
得る。しかしながらこの種の貴金属は、安価で多量の生
産が要求される電解コンデンサには、経済的理由から採
用されるに到起き、表面の状態が経時変化するために、
腐食事故の発生や、電解コンデンサの特性が安定しない
という欠点があった。
Electrolytic capacitors are small, large-capacitance, inexpensive, and have excellent characteristics for applications such as smoothing rectified output, and are one of the important components of various electrical and electronic devices. Electrolytic capacitors use a so-called valve metal as an anode, on which an insulating oxide film such as aluminum can be formed at -1G.
A capacitor element is created by using the insulating oxide film as a dielectric layer and interposing an electrolytic solution held in a separator between it and a cathode electrode for current collection, and this is housed in a sealed container. . As mentioned above, the anode materials used include aluminum, tantalum, niobium, and titanium. Further, the same type of metal as the anode material is used for the cathode electrode material for current collection. However, valve metals generally have an oxide film layer formed on their surfaces due to natural oxidation. This tendency is particularly noticeable in aluminum. Since this natural oxide film is an extremely thin insulating layer, capacitance is also formed on the cathode side, and an electrolytic capacitor is a composite capacitance in which the capacitance on the anode side and the capacitance on the cathode side are connected in series. , the desired capacitance cannot be obtained. Furthermore, in order to obtain the desired capacitance, it is necessary to make the capacitance on the anode side larger than necessary. In order to reduce this effect, if the capacitance value on the cathode side is made significantly higher than the capacitance value on the anode side, the effect of the capacitance on the cathode side can be almost ignored. The electrostatic capacitance per unit area of the anode of an electrolytic capacitor is at a considerably high level, and it is difficult to further increase this, and a decrease in the capacitance value due to the combined capacitance is inevitable. Therefore, in order to increase the capacitance value on the cathode side, there is a method of enlarging the surface area by etching the surface of the cathode electrode. However, although this technique of increasing surface area is now highly sophisticated, it is becoming increasingly difficult to dramatically increase the capacitance of electrolytic capacitors using this technique alone. Rather, in order to solve the problem of the decrease in capacitance due to the combined capacitance with the cathode, it is possible to reduce the combined capacitance by coating the surface of the cathode with a thin film made of a conductive metal that does not form an insulating oxide film. It is possible to prevent a decrease in capacitance value. As such a device, a device in which various conductive metals are vacuum-deposited is known, for example, as disclosed in Japanese Unexamined Patent Publication No. 1826/1983. Further, in order to form a thin film, in addition to the above-mentioned method of vacuum evaporation, there are various physical methods such as an ion blasting method, a sputtering method, a plasma CVD method, and the like. However, among conductive metals, so-called noble metals such as gold and platinum hardly react with chemicals and can maintain good conductivity even when used as an electrolytic capacitor for a long period of time. However, this type of precious metal has come to be used in electrolytic capacitors, which are required to be produced in large quantities at low cost, for economic reasons, and because the surface condition changes over time,
The disadvantages were that corrosion accidents occurred and the characteristics of the electrolytic capacitor were unstable.

【発明が解決しようとする課題】[Problem to be solved by the invention]

この発明は、高純度アルミニウムの表面に導電性で、し
かも電解コンデンサとして使用した場合に特性上安定度
の高い薄膜を形成し、単位面積あたりの静電容量が大き
く、しかも信頼性の高い電解コンデンサ用電極を得るこ
とを目的としている。
This invention forms a thin film on the surface of high-purity aluminum that is conductive and has high stability when used as an electrolytic capacitor, resulting in an electrolytic capacitor that has a large capacitance per unit area and is highly reliable. The purpose is to obtain electrodes for

【課題を解決するための手段1 この発明は、窒化バナジウムがこの発明の目的に適合し
た薄膜を形成することに着目したもので、この発明の電
解コンデンサ用電極は、高純度アルミニウム表面に、窒
化バナジウム層を形成したことを特徴としている。 すなわちこの発明は、バナジウムの窒化物の薄膜により
アルミニウム電極表面を被覆することにより、この発明
の目的を達成している。 この発明によれば、被処理材料としては、通常の電解コ
ンデンサの陰極に用いる高純度で箔状あるいは板状のア
ルミニウムを用いることができる。 このアルミニウム表面は、あらかじめ脱脂処理等にをよ
り表面を清浄化しておく。またアルミニウム表面はエツ
チング処理を施しても良いし、プレーンのままであって
も使用可能である。ただ工・ノチングの際はエツチング
による凹凸の細かさの範囲を窒化バナジウム層を形成す
る手段によって選択する必要がある場合がある。 形成される窒化バナジウム層の厚さは、少なくともアル
ミニウム表面を均一に覆われる必要がある。また厚さが
必要以上になると、被覆処理に時間がかかることなどか
ら、好ましくは0.02ないし5μm、より好ましくは
0.1ないし2μmである。 窒化バナジウム薄膜を形成するための手段としては、各
種の手段が適用可能であるが、一般には薄膜ゆえ、厚さ
や状態の制御が容易な物理的手段によるドライプロセス
によるのが好適である。このような手段としては、真空
蒸着、陰極アーク蒸着、スパッタリング、イオンブレー
ティング、プラズマCVD法などが例示できる。 【作   用】 窒化バナジウムは、比抵抗値がおよそ86μΩ・cil
と低い抵抗値を有する硬質な化合物で、アルミニウムと
の反応性も良好なことから、アルミニウム表面に低比抵
抗の緻密な薄膜が形成される。 この結果、アルミニウム電極は表面に形成された高容量
の極めて薄い自然酸化皮膜か、あるいは特定の微小部分
については自然酸化皮膜が殆ど形成されない電導度の高
い金属アルミニウム表面がそのまま、窒化バナジウムに
よって安定して保護されることになり、電極全体として
高い静電容量値が得られるものと思われる。 また窒化バナジウムは、電解液との反応が起きにくく、
電極の表面状態を長期にわたって安定して維持させる。
[Means for Solving the Problems 1] This invention focuses on the fact that vanadium nitride forms a thin film that is suitable for the purpose of this invention. It is characterized by the formation of a vanadium layer. That is, the object of the present invention is achieved by coating the aluminum electrode surface with a thin film of vanadium nitride. According to the present invention, as the material to be treated, high-purity foil-like or plate-like aluminum, which is used for the cathode of an ordinary electrolytic capacitor, can be used. This aluminum surface is cleaned in advance by degreasing or the like. Further, the aluminum surface may be etched or left plain. When etching and notching, it may be necessary to select the range of fineness of the etching irregularities depending on the means for forming the vanadium nitride layer. The thickness of the vanadium nitride layer to be formed must be such that at least the aluminum surface is uniformly covered. Moreover, if the thickness is more than necessary, the coating process will take time, so the thickness is preferably 0.02 to 5 μm, more preferably 0.1 to 2 μm. Various methods can be used to form the vanadium nitride thin film, but since it is a thin film, it is generally preferable to use a dry process using physical means that allows easy control of thickness and condition. Examples of such means include vacuum evaporation, cathodic arc evaporation, sputtering, ion blasting, and plasma CVD. [Function] Vanadium nitride has a specific resistance value of approximately 86μΩ・cil.
It is a hard compound with a low resistance value and has good reactivity with aluminum, so a dense thin film with low resistivity is formed on the aluminum surface. As a result, the aluminum electrode has an extremely thin natural oxide film with high capacity formed on its surface, or in certain microscopic areas, the highly conductive metal aluminum surface with almost no natural oxide film is stabilized by vanadium nitride. It is thought that the electrode will be protected by a high capacitance value as a whole. Additionally, vanadium nitride is less likely to react with the electrolyte.
To maintain the surface condition of an electrode stably over a long period of time.

【実 施 例】【Example】

以下実施例に基づいて、この発明を更に詳細に説明する
。 この発明の窒化バナジウム薄膜を表面に形成した高純度
アルミニウム被処理材を以下の実施例1および2のごと
く作成した。また比較例として、窒化物でない金属バナ
ジウム層を形成したもの、従来から用いられている高純
度アルミニウム表面をエツチング処理のみ行ったものを
比較例1ないし3とした。 一災施拠土一 高純度のアルミニウム箔(純度99.95%、厚さ10
0μm)を50mm X 100圓に切断したものを被
処理材として使用し、窒素ガスを含む全圧が5X10−
’Torrのチャンバ中で、陰極アーク蒸着法を用いて
蒸着を行った。蒸着条件は、被処理材を200°Cに加
熱し、アーク放電電圧100■、アーク電流100Aで
蒸着速度を0.05μm/分で4分間蒸着を行った。 この結果表面に、膜厚0.2μmの窒化バナジウム層が
形成された。 一裏施1 実施例1と同じ高純度アルミニウムに、イオンブレーテ
ィング法によって、窒化バナジウム薄膜を形成した。 形成条件は、チャンバ中の窒素ガスを含む全圧が、I 
X 10− ”Torrの雰囲気で、被処理材と蒸着源
であるバナジウム電極間に1200 Vを印加して20
分間イオンブレーティングを行った。 この結果、表面に、膜厚0.2μmの窒化バナジウム層
が形成された。 一止較炎上一 被処理材には実施例と同じものを用い、これを常温状態
で、2 X 10−3Torrのアルゴンガス雰囲気の
チャンバ中で実施例1と同じ陰極アーク蒸着法によって
金属バナジウム薄膜を形成した。蒸着条件は、アーク放
電電圧100■、アーク電流100Aで蒸着温度を0.
02μm/分で10分間蒸着を行った。 この結果、膜厚0.2μmの金属バナジウム蒸着膜が形
成された。 一止較拠1一 実施例2と同じイオンブレーティング法によって金属バ
ナジウムの薄膜を形成した。 被処理材は、実施例1と同じものを用いた。薄膜形成条
件は、2 X 10− ”Torrのアルゴンガス雰囲
気中で、被処理材、蒸発源間に1200 Vの電圧を印
加して20分間蒸着を行った。 この結果、膜圧0.2μmの金属バナジウム膜が形成さ
れた。 一止較貫主一 実施例と同じ素材からなる高純度アルミニウム材表面を
交流電解法によってエツチング処理したものを準備した
。 これら、各実施例および比較例の被処理材について、各
々の単位面積あたりの静電容量値を測定したところ、第
1表に示す結果が得られた。 (第 1 表) この結果から明らかなように、この発明の実施例のもの
は、比較のものに比べていずれも単位面積あたりの静電
容量値が高いことがわかる。 次に、形成された薄膜の安定性を調べるために、これら
各被処理材を電解コンデンサの陰極に用いて電解コンデ
ンサを作成し、寿命試験を行って特性の変化を調べた。 作成した電解コンデンサは、リード線同一方向型の電解
コンデンサで、箔状の電極をセパレータと共に巻回した
素子に電解液を含浸し、金属ケース内に収納し、開口部
を封口ゴムで密閉したちのである。電解コンデンサを構
成する材料は、陰を箔として上記の各実施例ならびに比
較例のもの4用いた以外は全て共通のものを使用した。 また系立方法についても全て同じである。 電解コンデンサの定格電圧は6,3■、定格容もが47
μF、外形寸法が直径5mm、長さ7 mmであイ使用
した電解液の組成は、エチレングリコール7重量%、ア
ジピン酸アンモニウム10重量%、水1重量%の組成か
らなるもので、通常用いられるπ解法に比べて、水の含
有量を多くしである。こ才は、水による電極箔の水和劣
化の発生が顕著にぬるようにしたためである。 この電解コンデンサに定格電圧を印加し、11(°Cで
500時間の寿命試験を行った後の静電容量値と、初期
の静電容量値との変化率を調べた。この結果を第2表に
示す。 (第 表) この結果かられかるように、この発明のアルミニウム電
極を用いた電解コンデンサは、初期値においても、高い
静電容量値が得られるとともに、高温負荷寿命試験を行
った後も、電極表面に水和劣化等の特性劣化が生じない
ので、電気特性に変動が少なく、長期にわたって安定し
た特性が維持できることがわかる。
The present invention will be described in more detail below based on Examples. High-purity aluminum treated materials having the vanadium nitride thin film of the present invention formed on their surfaces were prepared as in Examples 1 and 2 below. Comparative Examples 1 to 3 were those in which a metal vanadium layer other than nitride was formed, and those in which only etching treatment was performed on the surface of conventionally used high-purity aluminum. High-purity aluminum foil (purity 99.95%, thickness 10
0μm) cut into 50mm x 100 circles is used as the material to be treated, and the total pressure including nitrogen gas is 5X10-
Deposition was performed using cathodic arc evaporation in a 'Torr chamber. The deposition conditions were as follows: The material to be treated was heated to 200° C., and the deposition was performed for 4 minutes at an arc discharge voltage of 100 μm, an arc current of 100 A, and a deposition rate of 0.05 μm/min. As a result, a vanadium nitride layer with a thickness of 0.2 μm was formed on the surface. First Application 1 A vanadium nitride thin film was formed on the same high-purity aluminum as in Example 1 by the ion blating method. The formation conditions are such that the total pressure including nitrogen gas in the chamber is I
In an atmosphere of
Ion blating was performed for a minute. As a result, a vanadium nitride layer with a thickness of 0.2 μm was formed on the surface. The same material as in Example 1 was used as the material to be treated, and a metal vanadium thin film was formed by the same cathodic arc evaporation method as in Example 1 in a chamber with an argon gas atmosphere of 2 x 10-3 Torr at room temperature. was formed. The deposition conditions were an arc discharge voltage of 100cm, an arc current of 100A, and a deposition temperature of 0.
Deposition was carried out for 10 minutes at 0.2 μm/min. As a result, a metal vanadium vapor deposited film having a film thickness of 0.2 μm was formed. First Comparison 11 A thin film of metal vanadium was formed by the same ion blating method as in Example 2. The same material as in Example 1 was used as the material to be treated. The thin film formation conditions were as follows: In an argon gas atmosphere of 2 x 10-'' Torr, a voltage of 1200 V was applied between the material to be treated and the evaporation source for 20 minutes. As a result, the film thickness was 0.2 μm. A metal vanadium film was formed.The surface of a high-purity aluminum material made of the same material as in Example 1 was etched by alternating current electrolysis method.These treated materials of each Example and Comparative Example When we measured the capacitance value per unit area for each, we obtained the results shown in Table 1. (Table 1) As is clear from the results, the examples of the present invention had It can be seen that the capacitance per unit area is higher in each case than in comparison.Next, in order to investigate the stability of the formed thin film, each of these treated materials was used as the cathode of an electrolytic capacitor. An electrolytic capacitor was created and a life test was conducted to examine changes in characteristics.The created electrolytic capacitor is an electrolytic capacitor with lead wires in the same direction, and an element in which a foil electrode is wound together with a separator is impregnated with electrolyte. The electrolytic capacitor was then housed in a metal case, and the opening was sealed with sealing rubber.The materials constituting the electrolytic capacitor were all the same except that the shade was used as a foil and that of each of the above embodiments and comparative example 4 was used. The rated voltage of the electrolytic capacitor is 6.3 mm, and the rated capacity is 47 mm.
μF, external dimensions are 5 mm in diameter and 7 mm in length, and the composition of the electrolyte used is 7% by weight of ethylene glycol, 10% by weight of ammonium adipate, and 1% by weight of water, which is commonly used. Compared to the π solution method, the water content is increased. The reason for this is that the electrode foil was made to be noticeably wetter so that hydration deterioration of the electrode foil due to water occurs. A rated voltage was applied to this electrolytic capacitor, and the rate of change between the capacitance value after a 500-hour life test at 11°C and the initial capacitance value was investigated. The results are shown in Table 1. As can be seen from the results, the electrolytic capacitor using the aluminum electrode of the present invention has a high capacitance value even at the initial value, and it also has a high capacitance value when subjected to a high temperature load life test. It can be seen that even after this, no characteristic deterioration such as hydration deterioration occurs on the electrode surface, so there is little variation in the electrical characteristics, and stable characteristics can be maintained over a long period of time.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、電解コンデンサ用
の電極として、単位面積あたりの静電容量を高めること
ができるので、特に低圧領域において小型大容量の電解
コンデンサが得られる。 また電極表面が窒化バナジウムによって保護され、水和
劣化等の電極表面の劣化が防止されるので、長期にわた
って安定した特性が維持できる。
As described above, according to the present invention, as an electrode for an electrolytic capacitor, the electrostatic capacitance per unit area can be increased, so that a small and large-capacity electrolytic capacitor can be obtained, especially in a low voltage region. Further, since the electrode surface is protected by vanadium nitride and deterioration of the electrode surface such as hydration deterioration is prevented, stable characteristics can be maintained over a long period of time.

Claims (1)

【特許請求の範囲】[Claims] (1) 高純度アルミニウム表面に、窒化バナジウム層
を形成したことを特徴とする電解コンデンサ用アルミニ
ウム電極。
(1) An aluminum electrode for an electrolytic capacitor, characterized in that a vanadium nitride layer is formed on the surface of high-purity aluminum.
JP28955289A 1989-11-07 1989-11-07 Aluminum electrode for electrolytic capacitor Pending JPH03150821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28955289A JPH03150821A (en) 1989-11-07 1989-11-07 Aluminum electrode for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28955289A JPH03150821A (en) 1989-11-07 1989-11-07 Aluminum electrode for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH03150821A true JPH03150821A (en) 1991-06-27

Family

ID=17744718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28955289A Pending JPH03150821A (en) 1989-11-07 1989-11-07 Aluminum electrode for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH03150821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518823A (en) * 1990-12-11 1996-05-21 Showa Aluminum Kabushiki Aluminum foil as electrolytic condenser electrodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518823A (en) * 1990-12-11 1996-05-21 Showa Aluminum Kabushiki Aluminum foil as electrolytic condenser electrodes

Similar Documents

Publication Publication Date Title
US6764712B2 (en) Method for producing high surface area foil electrodes
JP3016421B2 (en) Aluminum cathode foil for electrolytic capacitors
JPH03150822A (en) Aluminum electrode for electrolytic capacitor
EP1808876B1 (en) Electrodes, membranes, printing plate precursors and other articles including multi-strata porous coatings, and method for their manufacture
JP2864477B2 (en) Aluminum electrode for electrolytic capacitors
US6865071B2 (en) Electrolytic capacitors and method for making them
JPH0471213A (en) Aluminum electrode for electrolytic capacitor and its manufacture
WO2002067278A2 (en) Electrolytic capacitors and method for making them
JP2000114108A (en) Solid electrolytic capacitor and its manufacture
US3126503A (en) Electrical capacitor and electrode
JP2618281B2 (en) Aluminum electrode for electrolytic capacitor and method of manufacturing the same
JPH03150821A (en) Aluminum electrode for electrolytic capacitor
JP2687299B2 (en) Method for manufacturing aluminum electrode for electrolytic capacitor
JPS6353688B2 (en)
JPH03150823A (en) Aluminum electrode for electrolytic capacitor
JPH03150824A (en) Aluminum electrode for electrolytic capacitor
JPH042109A (en) Aluminum electrode for electrolytic capacitor
JPH059710A (en) Production of aluminum electrode for electrolytic capacitor
JPH042110A (en) Manufacture of aluminum electrode for electrolytic capacitor
JP5016472B2 (en) Method for producing electrode foil for electrolytic capacitor
JPH03150829A (en) Manufacture of aluminum electrode for electrolytic capacitor
JP2734233B2 (en) Electrode materials for electrolytic capacitors
JPH03150828A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH03150826A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH03150827A (en) Manufacture of aluminum electrode for electrolytic capacitor