JPH079870B2 - Method for manufacturing aluminum electrode for electrolytic capacitor - Google Patents

Method for manufacturing aluminum electrode for electrolytic capacitor

Info

Publication number
JPH079870B2
JPH079870B2 JP14056687A JP14056687A JPH079870B2 JP H079870 B2 JPH079870 B2 JP H079870B2 JP 14056687 A JP14056687 A JP 14056687A JP 14056687 A JP14056687 A JP 14056687A JP H079870 B2 JPH079870 B2 JP H079870B2
Authority
JP
Japan
Prior art keywords
aluminum
barium
electrolytic capacitor
aluminum electrode
lanthanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14056687A
Other languages
Japanese (ja)
Other versions
JPS63304613A (en
Inventor
隆 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP14056687A priority Critical patent/JPH079870B2/en
Publication of JPS63304613A publication Critical patent/JPS63304613A/en
Publication of JPH079870B2 publication Critical patent/JPH079870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電解コンデンサ用アルミニウム電極の製造方法
に関するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing an aluminum electrode for an electrolytic capacitor.

従来の技術 電解コンデンサの電極には、非常に薄い誘電体皮膜が電
気化学的に生成されるような金属が用いられ、現在はア
ルミニウムとタンタルが電極材料として工業化されてい
る。
2. Description of the Related Art Metals that produce a very thin dielectric film electrochemically are used for the electrodes of electrolytic capacitors, and currently aluminum and tantalum are industrialized as electrode materials.

このうちアルミニウム電極の誘電体であるAl2O3の比誘
電率はおよそ7〜10であり、他ので弁作用金属の比誘電
率よりも決して大きな値ではない。
Among them, the relative permittivity of Al 2 O 3 which is the dielectric of the aluminum electrode is about 7 to 10, and is not larger than the relative permittivity of the valve metal because of other factors.

たとえばTa2O5は比誘電率ε=25.2であり、TiO2のε=6
6.1である。このためアルミニウム電解コンデンサに用
いられるアルミニウム箔は静電容量増大のために高倍率
エッチング処理を行い、表面積を増大させている。
For example, Ta 2 O 5 has a relative permittivity ε = 25.2, and TiO 2 has ε = 6.
It is 6.1. For this reason, the aluminum foil used for the aluminum electrolytic capacitor is subjected to high-magnification etching treatment to increase the electrostatic capacity, thereby increasing the surface area.

このエッチング処理は箔厚を考慮し幾何学的に最も表面
積増大になるべく形状、すなわち理想エッチング状態に
すべく電気化学的あるいは化学的なエッチング方法の研
究が行われている。しかしながらエッチング技術はかな
り進歩し,現時点において現在の表面拡大率の2倍、3
倍とすることは単に表面を微細化させるのみでは不可能
になってきている。
In this etching process, studies have been conducted on an electrochemical or chemical etching method in order to geometrically maximize the surface area in consideration of the foil thickness, that is, to achieve an ideal etching state. However, the etching technology has progressed considerably, and is currently twice the current surface expansion rate,
The doubling has become impossible by simply making the surface fine.

発明が解決しようとする問題点 また仮により微細化することに成功したとしても、高い
電圧になるとエッチング孔のいわゆる目詰り現象によっ
てエッチング形状は生かせず、静電容量の低下を招く。
さらに電解コンデンサを作成した時も電解液との界面接
触が低下し、箔抵抗の増大、tanδの増大、インピーダ
ンス特性の低下など様々な諸特性の低下につながる。
Problems to be Solved by the Invention Even if the miniaturization is succeeded, the etching shape cannot be utilized due to the so-called clogging phenomenon of the etching holes at a high voltage, and the capacitance is lowered.
Further, even when an electrolytic capacitor is produced, the interface contact with the electrolytic solution is reduced, which leads to various foil characteristics such as increased foil resistance, tan δ, and impedance characteristics.

一方陽極酸化方法(化成方法)による静電容量の増大も
試みられている。これは純水ボイル処理によるベーマイ
ト皮膜と電気化学的生成皮膜との複合皮膜、ホウ酸溶液
による化成皮膜とリン酸溶液による化成皮膜との複合皮
膜、化成前処理に特殊薄膜を作成させて、該薄膜と電気
化学的皮膜との複合皮膜など様々な検討が行われてい
る。しかしながら大幅な静電容量の増加方法は見出され
ていない。
On the other hand, it has been attempted to increase the capacitance by an anodizing method (chemical conversion method). This is a composite film of a boehmite film and an electrochemically generated film by boiling pure water, a composite film of a chemical conversion film of a boric acid solution and a chemical conversion film of a phosphoric acid solution, and a special thin film is formed in the chemical conversion pretreatment, Various studies have been conducted such as a composite film of a thin film and an electrochemical film. However, a method of significantly increasing the capacitance has not been found.

このように現時点に使用されている99.99%あるいは99.
9%の高純度アルミニウム箔を用いた改良では大幅な静
電容量の増大にはかなりの困難に直面している。無理を
して静電容量の増大を図っても漏れ電流の増大、耐圧の
低下を起こし良好な結果は得られない。
Thus 99.99% or 99 is currently used.
The improvement using 9% high-purity aluminum foil faces considerable difficulty in increasing the capacitance significantly. Even if it is attempted to increase the electrostatic capacity, the leakage current increases and the breakdown voltage decreases, and good results cannot be obtained.

問題点を解決するための手段 本発明はこのような背景をもとに無理なく大きな静電容
量が得られる電解コンデンサ用アルミニウム電極の製造
方法を提供しようとするものである。
Means for Solving the Problems The present invention intends to provide a method of manufacturing an aluminum electrode for an electrolytic capacitor, which can reasonably obtain a large electrostatic capacitance based on such a background.

本発明の骨子は高誘電率を有するチタン酸バリウムまた
はランタン酸バリウムをアルミニウム表面上に溶射し、
0.1μm以下の薄膜となし、このままではチタン酸バリ
ウム、ランタン酸バリウム中にボイド、クラックなどが
残存したり、溶射未完成な部分があったりし、もともと
耐圧の低いものであるが故に、水溶液中にてアルミニウ
ムを陽極酸化し、耐電場強度をもたせ、高CVを有する電
解コンデンサ用電極を得ようとするものである。
The gist of the present invention is to spray barium titanate or barium lanthanate having a high dielectric constant onto an aluminum surface,
It is a thin film of 0.1 μm or less, and if it remains as it is, voids, cracks, etc. remain in barium titanate and barium lanthanate, and there are unfinished parts for thermal spraying. In order to obtain an electrode for an electrolytic capacitor having a high CV by anodizing aluminum to have an electric field strength.

すなわち、酸化アルミニウム薄膜中にチタン酸バリウム
またはランタン酸バリウムを混在させた誘電体皮膜を生
成させ、静電容量はチタン酸バリウムまたはランタン酸
バリウムにより大幅に増大せしめ、耐圧(耐電場強度)
は酸化アルミによってもたせようとするものである。
That is, a dielectric film in which barium titanate or barium lanthanate is mixed in an aluminum oxide thin film is produced, and the capacitance is significantly increased by barium titanate or barium lanthanate, and the dielectric strength (electric field strength) is increased.
Is intended to be supported by aluminum oxide.

またチタン酸バリウムなどはセラミックコンデンサに用
いられており、比誘電率は非常に大きいが、製品作成上
誘電体としての厚みが大きいため、 なる式からも判るようにdが大きいため、アルミニウム
電解コンデンサのエッチング処理を施したものと大差が
なくなっている。これは誘電体耐圧および誘電体作成時
におけるボイド、クラックなどの要因により厚くなって
いるものである。本発明はこうしたアルミニウムとセラ
ミックの双方の欠点を補い得るものである。
Also, barium titanate, etc. are used in ceramic capacitors and have a very high relative dielectric constant, but because of the large thickness as a dielectric in the production of products, As can be seen from the equation, since d is large, it is almost the same as that of the aluminum electrolytic capacitor subjected to the etching treatment. This is due to the dielectric breakdown voltage and the thickening due to factors such as voids and cracks during dielectric preparation. The present invention can make up for these drawbacks of both aluminum and ceramic.

しかしながら、本発明においてチタン酸バリウムまたは
ランタン酸バリウムと酸化アルミニウムはあくまで混在
させなければならず、双方がセパレータで直列系で配置
していると全く効果がないばかりか、静電容量の大幅な
低下を招く。
However, in the present invention, barium titanate or barium lanthanate and aluminum oxide must be mixed together, and if both of them are arranged in series by separators, there is no effect and a large decrease in capacitance. Invite.

本発明者はこの問題を解決すべく種々の検討を行った結
果、溶射して表面に付着するチタン酸バリウム、ランタ
ン酸バリウムの付着厚みを0.1μm以下とし、短時間で
適正な疎密度の酸化膜を形成すると、大幅に静電容量が
増大することを見出した。
As a result of various studies to solve this problem, the present inventor has determined that the deposition thickness of barium titanate and barium lanthanate deposited on the surface by thermal spraying is 0.1 μm or less, and that oxidation of a proper sparse density is achieved in a short time. It was found that forming a film significantly increases the capacitance.

アルミニウムに溶射する場合、溶射される厚みd′とし
てd′=14Å×V(Vは後に陽極酸化される電圧であ
る)が良好であった。
In the case of thermal spraying on aluminum, as the thermal sprayed thickness d ', d' = 14Å × V (V is a voltage to be anodized later) was good.

作用 このようにして作成した電極箔は溶射した金属の酸化物
皮膜と酸化アルミニウム皮膜によるコンデンサが等価的
に並列接続されるため、非常に高静電容量品となり、ま
た誘電体皮膜耐圧も良好で、大幅な電解コンデンサの小
型化が図れる。またエッチングされた表面にかなりの凹
凸を有するアルミニウム箔上にも溶射がスムーズに行わ
れるため、著しく小型化が図れた。
Action The electrode foil created in this way is a capacitor with a sprayed metal oxide film and aluminum oxide film that are equivalently connected in parallel, resulting in an extremely high capacitance product and a good dielectric film withstand voltage. The size of the electrolytic capacitor can be greatly reduced. Further, since the thermal spraying was smoothly performed even on the aluminum foil having a considerably uneven surface on the etched surface, the size was remarkably reduced.

実施例 純度99.99%、厚さ70μmのアルミニウム箔を塩酸を主
体とするエッチング液を用いて電解エッチングを行い、
約30倍の表面積を有するエッチング箔を作成した。次い
で約0.1μm厚になるようにチタン酸バリウムを表裏に
溶射した試料A、ランタン酸バリウムを溶射した試料b
を各々作成した。上記試料A、Bおよび溶射を行わない
試料CをpH=6.5のリン酸アンモニウム溶液で80V陽極酸
化を行い、皮膜特性を測定した。静電容量は5%ホウ酸
アンモニウム溶液中において120Hzで測定、皮膜耐圧は
上記化成液中で0.1mA/cm2で通電した時の電圧−時間特
性を測定し、電圧上昇停止点を被膜耐圧とした。また漏
れ電流は上記測定液で50V印加し2分後の値を読み取っ
た。その結果を表に示す。
Example Electrolytic etching was performed on an aluminum foil having a purity of 99.99% and a thickness of 70 μm using an etching solution mainly containing hydrochloric acid.
An etching foil having a surface area of about 30 times was prepared. Next, sample A having barium titanate sprayed on the front and back so as to have a thickness of about 0.1 μm, and sample b having barium lanthanate sprayed thereon.
Were created respectively. The above samples A and B and sample C not subjected to thermal spraying were subjected to 80 V anodic oxidation with an ammonium phosphate solution having a pH of 6.5, and the film characteristics were measured. The capacitance was measured at 120Hz in a 5% ammonium borate solution, and the film breakdown voltage was measured by voltage-time characteristics when energized at 0.1mA / cm 2 in the above chemical conversion solution. did. The leak current was applied 50 V with the above-mentioned measurement solution and the value was read after 2 minutes. The results are shown in the table.

発明の効果 表に示したように本発明の手法によって作成した電極は
大幅な静電容量の増大が図られ、製品とした場合も大幅
な小型化が図れるようになった。また他の電気的製品特
性も従来品と比べほとんど遜色なく、工業的かつ実用的
価値大なるものである。
EFFECTS OF THE INVENTION As shown in the table, the electrode produced by the method of the present invention has a large increase in capacitance, and can be made into a small size when it is used as a product. In addition, the characteristics of other electrical products are almost comparable to those of conventional products, and are of great industrial and practical value.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】アルミニウム金属の表面にチタン酸バリウ
ムまたはランタン酸バリウム、あるいはその双方を溶射
した後、陽極酸化処理し、弁作用金属との複合混在誘電
体皮膜を生成させることを特徴とする電解コンデンサ用
アルミニウム電極の製造方法。
1. Electrolysis characterized by spraying barium titanate or barium lanthanate, or both on the surface of aluminum metal, followed by anodizing to form a composite mixed dielectric film with a valve metal. Manufacturing method of aluminum electrode for capacitor.
【請求項2】上記アルミニウム金属をエッチング処理し
た後、該金属の表面にチタン酸バリウム、ランタン酸バ
リウムのうち一方またはその双方を溶射し、陽極酸化処
理を行うことを特徴とする特許請求の範囲第1項記載の
電解コンデンサ用アルミニウム電極の製造方法。
2. The method according to claim 1, wherein after the aluminum metal is etched, one or both of barium titanate and barium lanthanate is sprayed on the surface of the metal to carry out anodizing treatment. A method for manufacturing an aluminum electrode for an electrolytic capacitor according to the first aspect.
【請求項3】上記溶射されるチタン酸バリウム、ランタ
ン酸バリウムの厚みが0.1μm以下であることを特徴と
する特許請求の範囲第1項または第2項記載の電解コン
デンサ用アルミニウム電極の製造方法。
3. The method for producing an aluminum electrode for an electrolytic capacitor according to claim 1 or 2, wherein the thickness of the barium titanate or barium lanthanate sprayed is 0.1 μm or less. .
JP14056687A 1987-06-04 1987-06-04 Method for manufacturing aluminum electrode for electrolytic capacitor Expired - Fee Related JPH079870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14056687A JPH079870B2 (en) 1987-06-04 1987-06-04 Method for manufacturing aluminum electrode for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14056687A JPH079870B2 (en) 1987-06-04 1987-06-04 Method for manufacturing aluminum electrode for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS63304613A JPS63304613A (en) 1988-12-12
JPH079870B2 true JPH079870B2 (en) 1995-02-01

Family

ID=15271665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14056687A Expired - Fee Related JPH079870B2 (en) 1987-06-04 1987-06-04 Method for manufacturing aluminum electrode for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH079870B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4225920A1 (en) * 1992-08-05 1994-02-10 Roederstein Kondensatoren Capacitor, especially electrolytic capacitor
US6865071B2 (en) 1998-03-03 2005-03-08 Acktar Ltd. Electrolytic capacitors and method for making them
CN110565140A (en) * 2019-09-18 2019-12-13 南通海星电子股份有限公司 Preparation method of high-dielectric-constant composite film aluminum foil

Also Published As

Publication number Publication date
JPS63304613A (en) 1988-12-12

Similar Documents

Publication Publication Date Title
KR100647181B1 (en) Solid electrolyte capacitor and its manufacturing method
CA1244104A (en) Preparation of capacitor electrodes
JP3106559B2 (en) Method for producing base material having metal oxide on surface
WO2003042425A1 (en) Composite titanium oxide film and method for formation thereof and titanium electrolytic capacitor
JP3711964B2 (en) Manufacturing method of solid electrolytic capacitor
TWI254333B (en) Solid electrolytic capacitor and method of manufacturing same
US3085052A (en) Method for making film capacitors
JPH061751B2 (en) Anode material for electrolytic capacitors
JP2003224036A (en) Aluminum anode foil for electrolytic capacitor and its manufacturing method
JPH079870B2 (en) Method for manufacturing aluminum electrode for electrolytic capacitor
JP3198518B2 (en) Method for manufacturing solid electrolytic capacitor
KR101043935B1 (en) Production method of a capacitor
JPH0475645B2 (en)
JPH059710A (en) Production of aluminum electrode for electrolytic capacitor
KR101160907B1 (en) Preparation method of aluminum film with complex oxide dielectric using cathode electrolytic deposition and anodizing
JP2637207B2 (en) Solid electrolytic capacitors
JPH0320059B2 (en)
JPS63306614A (en) Manufacture of aluminum electrode for electrolytic capacitor
JP2001223140A (en) Tantalum solid electrolytic capacitor and method of manufacturing it
US3553087A (en) Method of manufacturing solid electrolytic capacitors
JPH0917686A (en) Capacitor
JP2741071B2 (en) Method for manufacturing solid electrolytic capacitor
JP2731243B2 (en) Method for manufacturing solid electrolytic capacitor
EP1909298B1 (en) Method for producing solid electrolytic capacitor
JPH08203783A (en) Solid electrolytic capacitor and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees