JP2007035902A - Method of manufacturing anode foil for aluminum electrolytic capacitor - Google Patents

Method of manufacturing anode foil for aluminum electrolytic capacitor Download PDF

Info

Publication number
JP2007035902A
JP2007035902A JP2005216741A JP2005216741A JP2007035902A JP 2007035902 A JP2007035902 A JP 2007035902A JP 2005216741 A JP2005216741 A JP 2005216741A JP 2005216741 A JP2005216741 A JP 2005216741A JP 2007035902 A JP2007035902 A JP 2007035902A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
foil
aluminum electrolytic
anode foil
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005216741A
Other languages
Japanese (ja)
Inventor
Toshikazu Morishita
利和 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2005216741A priority Critical patent/JP2007035902A/en
Publication of JP2007035902A publication Critical patent/JP2007035902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a formation method capable of restraining an increase of leakage current even in case of trying to obtain a high electrostatic capacity, by reducing the film thickness of an anodic oxidation film of an anode foil for an aluminum electrolytic capacitor. <P>SOLUTION: The method of manufacturing the anode foil for the aluminum electrolytic capacitor which forms an anodic oxidation film on an etched aluminum foil has a process for depositing silicon or silicon dioxide in the etching foil, a process for immersion in high temperature pure water, and a process for performing anodic oxidation. The thickness of the deposition layer of silicon or silicon dioxide is 5 to 200 nm, and the immersion duration in high temperature pure water is 5 to 30 minutes. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルミニウム電解コンデンサ用陽極箔(以下、陽極箔と称す)の製造方法に関するものであり、特に、静電容量向上に効果のある化成方法に関するものである。   The present invention relates to a method for producing an anode foil for an aluminum electrolytic capacitor (hereinafter referred to as anode foil), and more particularly to a chemical conversion method that is effective in improving capacitance.

従来、陽極箔は、エッチングされたアルミニウム箔(以下、エッチング箔という)を高温純水中に浸漬して疑似ベーマイト皮膜を形成した後、ホウ酸アンモニウム等のバリヤー皮膜生成溶液中で陽極酸化(化成)する方法により製造されている。
また、一般的な陽極酸化処理として、所定の化成電圧まで到達した後、加熱処理や酸浸漬処理等のいわゆるデポラリゼーション(減極)処理により、漏れ電流の原因となる酸化皮膜中のボイド、クラック等を露呈させ、更に修復化成を繰り返すことにより、所望の陽極酸化皮膜を形成している(例えば、非特許文献1参照)。
永田伊佐也著、「電解液陰極アルミニウム電解コンデンサ(アルミニウム乾式電解コンデンサ増補改訂版)」、日本蓄電器工業株式会社出版、1997年2月24日、第2版第1刷、p.310〜314
Conventionally, an anode foil is formed by immersing an etched aluminum foil (hereinafter referred to as an etching foil) in high-temperature pure water to form a pseudo boehmite film, and then anodizing (chemical conversion) in a barrier film forming solution such as ammonium borate. ).
In addition, as a general anodizing treatment, after reaching a predetermined formation voltage, voids in the oxide film that cause leakage current by so-called depolarization treatment such as heat treatment or acid immersion treatment, A desired anodic oxide film is formed by exposing cracks and the like and further repeating the repair formation (see, for example, Non-Patent Document 1).
Isada Nagata, “Electrolytic Cathode Aluminum Electrolytic Capacitor (Aluminum Dry Electrolytic Capacitor Supplement Revised Version)”, Nihon Denki Kogyo Kogyo Co., Ltd., February 24, 1997, 2nd edition, 1st edition, pages 310-314

携帯電話やノ−トパソコンなどに代表される昨今の電気、電子機器の小形化、軽量化の進行により、アルミニウム電解コンデンサも小形化、高静電容量化が要求されている。
それに伴い陽極箔においても、さらなる高静電容量化の要求が強い。
With the recent progress in miniaturization and weight reduction of electric and electronic devices such as mobile phones and notebook personal computers, miniaturization and high capacitance of aluminum electrolytic capacitors are required.
Accordingly, there is a strong demand for higher capacitance in the anode foil.

しかし、高い静電容量を有する陽極箔を得るためには、陽極酸化皮膜の結晶化度を高めて、耐電圧当たりの陽極酸化皮膜の膜厚を薄くしなければならない。
しかし、結晶化が進むにつれ、陽極酸化皮膜中のボイドやクラックが増大し、修復化成で修復しきれなかったボイドやクラックにより、漏れ電流が増加するという問題があった。
このため、従来の方法では漏れ電流を増加させることなく、静電容量を増加させることに限界があった。
However, in order to obtain an anode foil having a high capacitance, it is necessary to increase the crystallinity of the anodized film and reduce the film thickness of the anodized film per withstand voltage.
However, as crystallization progresses, voids and cracks in the anodized film increase, and there is a problem that leakage current increases due to voids and cracks that could not be repaired by the repair conversion.
For this reason, the conventional method has a limit in increasing the capacitance without increasing the leakage current.

上記のような問題があったため、陽極酸化皮膜の形成時に、耐電圧当たりの陽極酸化皮膜の膜厚を薄くした場合でも、酸化皮膜中のボイドやクラックが増大せず、漏れ電流の増加を抑制できる手段が求められていた。   Due to the above-mentioned problems, even when the thickness of the anodic oxide film per withstand voltage is reduced when forming the anodic oxide film, voids and cracks in the oxide film do not increase and the increase in leakage current is suppressed. There was a need for a means to do that.

本発明は上記課題を解決するもので、エッチングされたアルミニウム箔に、陽極酸化皮膜を形成するアルミニウム電解コンデンサ用陽極箔の製造方法において、
エッチング箔にケイ素、または二酸化ケイ素を蒸着する工程と、高温純水中に浸漬する工程と、陽極酸化する工程を有することを特徴とするアルミニウム電解コンデンサ用陽極箔の製造方法である。
The present invention solves the above problems, and in the method for producing an aluminum foil for an aluminum electrolytic capacitor, an anodized film is formed on an etched aluminum foil.
A method for producing an anode foil for an aluminum electrolytic capacitor, comprising the steps of depositing silicon or silicon dioxide on an etching foil, a step of immersing in high-temperature pure water, and an anodizing step.

また、上記のケイ素、または二酸化ケイ素の蒸着層の厚さが5〜200nm、高温純水中の浸漬時間が5〜30分であることを特徴とするアルミニウム電解コンデンサ用陽極箔の製造方法である。   The method for producing an anode foil for an aluminum electrolytic capacitor is characterized in that the deposited layer of silicon or silicon dioxide has a thickness of 5 to 200 nm and an immersion time of 5 to 30 minutes in high-temperature pure water. .

エッチング箔に陽極酸化皮膜を形成する前処理として、ケイ素、または二酸化ケイ素をエッチング箔に蒸着した後、高温純水中に浸漬処理して疑似ベーマイト皮膜を形成し、化成液中で所定の電圧まで陽極酸化(化成)することにより、ケイ素を含んだ疑似ベーマイト皮膜から変質した結晶性酸化皮膜を形成することができる。
よって、上記のケイ素を含んだ結晶性酸化皮膜により、漏れ電流を増加させることなく、耐電圧当たりの酸化皮膜厚さを薄くした陽極箔を製造することができ、電解コンデンサの高静電容量化、漏れ電流の低減化を図ることができる。
As a pretreatment to form an anodic oxide film on the etching foil, after silicon or silicon dioxide is deposited on the etching foil, it is immersed in high-temperature pure water to form a pseudo boehmite film, and up to a predetermined voltage in the chemical conversion liquid By anodizing (chemical conversion), a crystalline oxide film modified from a pseudo boehmite film containing silicon can be formed.
Therefore, the above-mentioned crystalline oxide film containing silicon can produce an anode foil with a reduced oxide film thickness per withstand voltage without increasing leakage current, and increase the capacitance of the electrolytic capacitor. , Leakage current can be reduced.

以下、本発明について実施例に基づき具体的に説明する。
面積比30倍にエッチング処理された電解コンデンサ用陽極アルミニウム箔を供試材とし、以下の方法にて化成処理を行った。
Hereinafter, the present invention will be specifically described based on examples.
The anode aluminum foil for electrolytic capacitors etched to an area ratio of 30 times was used as a test material, and a chemical conversion treatment was performed by the following method.

[実施例1〜9]
エッチング箔に、ケイ素を膜厚3〜300nmまで蒸着した。
次に、90±2℃の純水中に10分間浸漬し、疑似ベーマイト皮膜を形成する、水和処理を行った。
その後、比抵抗1,000Ω・cm、pH4.5に調整した、85±2℃のホウ酸アンモニウム水溶液中で500Vを印加し、同電圧を60分間保持した。
さらに、熱処理と酸浸漬処理のいわゆるデポラリゼーション(減極)処理により、酸化皮膜中のボイド、クラック等を露呈させ、上記ホウ酸水溶液で修復化成を2回行った。
[Examples 1 to 9]
Silicon was deposited on the etching foil to a thickness of 3 to 300 nm.
Next, a hydration treatment was performed by immersing in pure water at 90 ± 2 ° C. for 10 minutes to form a pseudo boehmite film.
Thereafter, 500 V was applied in an aqueous solution of ammonium borate at 85 ± 2 ° C. adjusted to a specific resistance of 1,000 Ω · cm and pH 4.5, and the same voltage was maintained for 60 minutes.
Furthermore, voids, cracks, etc. in the oxide film were exposed by so-called depolarization treatment (depolarization treatment) of heat treatment and acid soaking treatment, and restoration conversion was performed twice with the boric acid aqueous solution.

(従来例)
上記実施例と同様のエッチング箔を使用し、上記の蒸着処理は行わない以外は実施例と同様の条件で、疑似ベーマイト皮膜の形成、陽極酸化(化成)、デポラリゼーション処理、および修復化成を行った。
(Conventional example)
Using the same etching foil as in the above example, the formation of pseudo boehmite film, anodization (chemical conversion), depolarization treatment, and repair chemical conversion were performed under the same conditions as in the example except that the above vapor deposition treatment was not performed. went.

上記の実施例1〜9、従来例による陽極箔について、静電容量と400Vでの漏れ電流を測定した結果を表1に示す。   Table 1 shows the results of measuring the capacitance and leakage current at 400 V for the anode foils according to Examples 1 to 9 and the conventional example.

Figure 2007035902
Figure 2007035902

表1より明らかなように、本発明による実施例1では、ケイ素による蒸着層を形成した後、疑似ベーマイト皮膜を形成する工程を行うことにより、従来例と比較して漏れ電流は同等でありながら、静電容量を増加させることができる。
なお、上記の蒸着処理における膜厚は、5〜200nmの範囲が望ましい。膜厚3nmでは静電容量の改善効果が十分ではなく(実施例1)、また、300nmでは静電容量が改善されない上、コスト、工数の面で不利となる(実施例9)。
As is clear from Table 1, in Example 1 according to the present invention, the leakage current is equivalent to that of the conventional example by performing the process of forming the pseudo boehmite film after forming the deposited layer of silicon. The capacitance can be increased.
In addition, as for the film thickness in said vapor deposition process, the range of 5-200 nm is desirable. When the film thickness is 3 nm, the effect of improving the electrostatic capacity is not sufficient (Example 1), and when the film thickness is 300 nm, the electrostatic capacity is not improved and the cost and the man-hour are disadvantageous (Example 9).

[実施例10〜15]
次に、上記実施例6の条件で、疑似ベーマイト皮膜を形成する際の水和処理時間を3〜30分とし、静電容量と400Vでの漏れ電流を測定した結果を表2に示す。
[Examples 10 to 15]
Next, Table 2 shows the results of measuring the electrostatic capacity and the leakage current at 400 V with the hydration time when forming the pseudo boehmite film being 3 to 30 minutes under the conditions of Example 6 above.

Figure 2007035902
Figure 2007035902

表2より明らかなように、ケイ素による蒸着層を形成した後、水和処理による、疑似ベーマイト皮膜を形成する工程を5分以上行うことにより、従来例と比較して漏れ電流は同等でありながら、静電容量を増加させることができる。水和処理時間3分では静電容量が低下し(実施例10)、また、30分を超えると工数面で好ましくないため、上記の水和処理時間は5〜30分とするのが良い。   As is apparent from Table 2, the leakage current is equivalent to that of the conventional example by forming a pseudo-boehmite film by hydration after forming a deposited layer of silicon for 5 minutes or longer. The capacitance can be increased. When the hydration time is 3 minutes, the capacitance decreases (Example 10), and when it exceeds 30 minutes, it is not preferable from the viewpoint of man-hours. Therefore, the hydration time is preferably 5 to 30 minutes.

なお、上記実施例では、エッチングされたアルミニウム箔にケイ素を蒸着したが、二酸化ケイ素を蒸着使用しても、同様の効果を得ることができる。
In the above embodiment, silicon was vapor-deposited on the etched aluminum foil, but the same effect can be obtained even if silicon dioxide is vapor-deposited.

Claims (2)

エッチングされたアルミニウム箔に、陽極酸化皮膜を形成するアルミニウム電解コンデンサ用陽極箔の製造方法において、
エッチング箔にケイ素、または二酸化ケイ素を蒸着する工程と、高温純水中に浸漬する工程と、陽極酸化する工程を有することを特徴とするアルミニウム電解コンデンサ用陽極箔の製造方法。
In the method for producing an anode foil for an aluminum electrolytic capacitor in which an anodized film is formed on an etched aluminum foil,
A method for producing an anode foil for an aluminum electrolytic capacitor, comprising a step of depositing silicon or silicon dioxide on an etching foil, a step of immersing in high-temperature pure water, and an anodizing step.
請求項1記載のケイ素、または二酸化ケイ素の蒸着層の厚さが5〜200nm、高温純水中の浸漬時間が5〜30分であることを特徴とするアルミニウム電解コンデンサ用陽極箔の製造方法。   A method for producing an anode foil for an aluminum electrolytic capacitor, wherein the deposited layer of silicon or silicon dioxide according to claim 1 has a thickness of 5 to 200 nm and an immersion time of 5 to 30 minutes in high-temperature pure water.
JP2005216741A 2005-07-27 2005-07-27 Method of manufacturing anode foil for aluminum electrolytic capacitor Pending JP2007035902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216741A JP2007035902A (en) 2005-07-27 2005-07-27 Method of manufacturing anode foil for aluminum electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216741A JP2007035902A (en) 2005-07-27 2005-07-27 Method of manufacturing anode foil for aluminum electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2007035902A true JP2007035902A (en) 2007-02-08

Family

ID=37794794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216741A Pending JP2007035902A (en) 2005-07-27 2005-07-27 Method of manufacturing anode foil for aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2007035902A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256747A (en) * 2011-06-09 2012-12-27 Sanyo Electric Co Ltd Solid electrolytic capacitor and manufacturing method of the same
CN110565140A (en) * 2019-09-18 2019-12-13 南通海星电子股份有限公司 Preparation method of high-dielectric-constant composite film aluminum foil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215813A (en) * 1985-07-12 1987-01-24 昭和アルミニウム株式会社 Anode material for electrolytic capacitor
JPH065472A (en) * 1992-06-19 1994-01-14 Showa Alum Corp Electrode material for electrolytic capacitor and its manufacture
JP2000348984A (en) * 1999-06-08 2000-12-15 Nichicon Corp Manufacture of electrode foil for aluminum electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215813A (en) * 1985-07-12 1987-01-24 昭和アルミニウム株式会社 Anode material for electrolytic capacitor
JPH065472A (en) * 1992-06-19 1994-01-14 Showa Alum Corp Electrode material for electrolytic capacitor and its manufacture
JP2000348984A (en) * 1999-06-08 2000-12-15 Nichicon Corp Manufacture of electrode foil for aluminum electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256747A (en) * 2011-06-09 2012-12-27 Sanyo Electric Co Ltd Solid electrolytic capacitor and manufacturing method of the same
CN110565140A (en) * 2019-09-18 2019-12-13 南通海星电子股份有限公司 Preparation method of high-dielectric-constant composite film aluminum foil

Similar Documents

Publication Publication Date Title
JP2007214371A (en) Anode, its manufacturing method, and solid electrolytic capacitor
JP4653687B2 (en) Method for producing electrode foil for electrolytic capacitor
JP2000348984A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JP2015115475A (en) Electrode foil, electrolytic capacitor and manufacturing method of electrode foil
CN102893350A (en) Solid electrolytic capacitor
JP2009135343A (en) Method of manufacturing aluminum electrode foil for electrolytic capacitor
JP2007035902A (en) Method of manufacturing anode foil for aluminum electrolytic capacitor
JP4520385B2 (en) Method for producing aluminum electrode foil for electrolytic capacitor
JP2008140904A (en) Manufacturing method of aluminum electrode foil for electrolytic capacitor
JP2007036043A (en) Method for manufacturing electrode foil for aluminum electrolytic capacitor
JP4811939B2 (en) Formation method of electrode foil for electrolytic capacitor
JP2010196131A (en) Method of manufacturing electrode foil for electrolytic capacitor
JP2010003996A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP2007036048A (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP7227870B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP4754404B2 (en) Method for producing electrode foil for electrolytic capacitor
JP2005175330A (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP4576192B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JP4136912B2 (en) Method for producing anode foil for aluminum electrolytic capacitor
JP2005347681A (en) Method of manufacturing anode foil for aluminum electrolytic capacitor
JP3976534B2 (en) Anode foil for aluminum electrolytic capacitor and chemical conversion method thereof
JP4074588B2 (en) Method for producing anode foil for aluminum electrolytic capacitor
JP2008282994A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
KR101273348B1 (en) Electrode for aluminun electrolytic condenser and method thereof
JP4674863B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026