JP2008210924A - 圧電体薄膜素子及びそのエージング処理方法、インクジェットヘッド、並びにインクジェット式記録装置 - Google Patents

圧電体薄膜素子及びそのエージング処理方法、インクジェットヘッド、並びにインクジェット式記録装置 Download PDF

Info

Publication number
JP2008210924A
JP2008210924A JP2007045076A JP2007045076A JP2008210924A JP 2008210924 A JP2008210924 A JP 2008210924A JP 2007045076 A JP2007045076 A JP 2007045076A JP 2007045076 A JP2007045076 A JP 2007045076A JP 2008210924 A JP2008210924 A JP 2008210924A
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric thin
layer
film element
dew point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007045076A
Other languages
English (en)
Inventor
Shintaro Hara
慎太郎 原
Osamu Watanabe
渡邊  修
Akiyuki Fujii
映志 藤井
Kazumi Sadamatsu
和美 貞松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007045076A priority Critical patent/JP2008210924A/ja
Priority to US12/021,373 priority patent/US7837305B2/en
Priority to EP08101110.8A priority patent/EP1953839B1/en
Publication of JP2008210924A publication Critical patent/JP2008210924A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】水分による素子破壊を防止する低湿度周囲環境を有する圧電体薄膜素子及びそのエージング処理方法、インクジェットヘッド、並びにインクジェット式記録装置を得ること。
【解決手段】露点制御手段3で生成された乾燥気体は、圧電体薄膜素子1を収容するケース2の導入口4から供給され、排出口5から排出されることで、ケース2の内圧は、ケース外の圧力よりも高くなる。これによって、圧電体薄膜素子1の近傍雰囲気を長期に渡って安定して、露点が−40℃〜0℃の範囲内の低湿度に保つことが可能となる。
【選択図】図1

Description

本発明は、電気機械変換機能を呈する圧電体薄膜素子及びそのエージング処理方法、前記圧電体薄膜素子を用いたインクジェットヘッド、並びに前記インクジェットヘッドを印字手段として装備したインクジェット式記録装置に関するものである。
電気機械変換機能を呈する圧電体素子は、一般に、圧電体層をその厚み方向の両側を電極層でそれぞれ挟んだ積層体構造をしている。圧電体の材料には、ジルコン酸チタン酸鉛(PZT)等の圧電性セラミックが用いられる。なお、PZTに代表される鉛系の圧電性セラミックは、高い圧電定数を示す等の種々の優れた特性を有することから、圧電アクチュエーターや焦電型赤外線検出素子、不揮発性メモリー素子などの様々な電子部品に利用されている。例えば、(特許文献1)では、コンピュータの記憶装置等として用いられるディスク装置のディスクに対する情報の記録および再生に使用されるヘッドの支持機構に使用される薄膜圧電体アクチュエーターが開示されている。
ところで、圧電体素子は、湿度の高い雰囲気に長時間さらされた状態で高電圧を印加すると、圧電体層の電気絶縁性が低下して絶縁破壊が起こる場合があるので、従来から、絶縁破壊の発生を防止する様々な工夫がなされている。
その一つとして、絶縁破壊に最も関係深いとされている電極材の圧電体層へのマイグレーションの発生を防止するために、マイグレーションの起こり難い金や白金を電極材料に用いる措置が採られているが、電極材料に金や白金を用いて電極材の圧電体層へのマイグレーションを防止しても、圧電体層の電気絶縁性が低下することから、電気絶縁性が低下する主な原因は、水分が直接的に圧電体に作用することにあることが明らかになった。
そこで、水分が直接的に圧電体に作用することを防止するために、例えば、(特許文献2)では、圧電体素子全体を金属密閉容器に収納し、内部に乾燥剤を入れて完全に密閉する方法が提案されている。また、例えば、(特許文献3)では、キャップ部材等により圧電体素子を密封し、その密閉空間に乾燥流体や不活性ガス、水の蒸気圧が低下した流体等を封入する方法が提案されている。また、例えば、(特許文献4)では、圧電体素子の近傍を低湿度環境に保つために、乾燥気体を一定の流量で導入し、露点環境を−50℃以下に保つ方法についても提案されている。
そして、近年では、電子機器の小型化に伴って圧電体素子に対しても、小型化が強く要求されるようになってきた。その要求を満たすため、圧電体素子は、従来から多く使用されてきた焼結体に比べて著しく体積の小さい圧電体薄膜の形態、つまり圧電体薄膜素子として使用されるようになってきている。このような圧電体薄膜は、スパッタ法等の物理的気相成長法(PVD)や化学的気相成長法(CVD)、ゾルゲル法等で形成されている。また、フォトリソグラフィーやドライエッチング等による微細加工技術を適用して、素子の小型化、高密度化が図られている。
この圧電体薄膜素子に対しては、小型化のために、上記のように金属製の密閉容器に入れずに剥き出しの状態で使用できることが要望されているが、PZTに代表される鉛系の圧電セラミックには、次のような特性がある。
即ち、PZTに代表される鉛系の圧電セラミックは、Pb(鉛)が焼成、焼結、またはスパッタ法等の成膜時にPbO(酸化鉛)の形で抜けやすいので、化学量論的組成に制御することが困難である。鉛が化学量論的組成よりも少ない場合は、結晶配向特性や圧電特性、強誘電体特性、焦電特性の低下を招く。そのため、鉛は化学量論的組成よりも少し過剰に添加される場合が多い。例えば、PZT等の鉛化合物を含む圧電体は高温下で合成される。これは薄膜形態であっても同様である。
化学量論組成のPZTは、化学量論組成がPb(Zr1-XTiX)O3(0<x<1)であり、化学量論組成比Pb:Zr+Ti:Oが1:1:3であるが、高温時では鉛の蒸気圧が高いので、作製時の安定性などを考慮して、化学量論組成のPZTよりも幾分、鉛過剰の組成にすることが通常になっている(例えば、特許文献5参照)。
この鉛過剰の圧電薄膜を用いた圧電薄膜素子を金属製の密閉容器に入れずに使用し、湿気の高い環境下で高電圧を印加すると、次のようなメカニズムで絶縁破壊が起こる場合がある。
例えば、スパッタ法で作製された圧電体薄膜層は、粒子が膜厚方向の一端側から他端側に向かって柱状に連続的に成長している複数の柱状結晶によって構成された集合体からなる場合が多く、それらの柱状粒子同士の境界部分がリークパスとなる結晶粒界として存在する。また、柱状結晶の集合体の形態を示さない圧電体薄膜層であっても、多くの結晶粒界を有している。そして、薄膜形成時に存在する異物などの影響によって膜厚方向に小さな空孔などが存在する。そのような圧電体薄膜層の結晶粒界や空孔表面には、過剰の鉛が酸化物の形態で存在するので、圧電体薄膜層が湿気に曝されると、その結晶粒界や空孔表面に存在する鉛化合物が、湿気と反応して吸収された水分と電気化学的な反応を起こして変質することが起こる。
つまり、圧電体薄膜素子においては、密閉容器に入れずに高湿度環境下で使用すると、水分が電極膜のピンホールを通って圧電体薄膜層の結晶粒界に侵入し、その結晶粒界に存在している酸化鉛が、侵入した水分と電気化学的な反応を起こして水酸化鉛となり、さらに導電性を有する二酸化鉛に変質することが起こると、絶縁破壊が発生する。
この絶縁破壊発生のメカニズムからすると、PZTなどの鉛化合物を含む圧電体材料への水分による攻撃を無くす措置を採ればよいことになるので、そのような措置を講じて密閉容器に入れずに高湿度環境下で使用しても劣化しないようにする工夫もなされている(例えば特許文献6,7等)。
即ち、(特許文献6)では、圧電体薄膜素子を構成する圧電体薄膜層の傍に発熱膜を設け、この発熱膜によって圧電体薄膜層を積極的に加熱することで、圧電体薄膜層への湿気の吸着を防止する方法が提案されている。また、(特許文献7)では、空気中の水蒸気や結露した水成分等の浸入を防ぐために、SiN(窒化シリコン)膜などの無機材料、あるいは、ガスバリア性の高いといわれるポリパラキシリレン、あるいは、その誘導体からなる樹脂被膜でコートするような対策も提案されている。
特開2001−332041号公報 特開平4−349675号公報 特開平10−305578号公報 特開2004−322605号公報 特開2005−244174号公報 特開2000−43259号公報 特開平10−242539号公報
しかしながら、(特許文献2)や(特許文献3)に提案される圧電体素子を封入する方法では、次のような問題がある。即ち、封入時に外部環境とのリークパス等があると、封止後に直ぐに内部の湿度環境は変化してしまうので、キャップ部材等の封止材を接着剤等によって圧電体素子と接着して外部環境と遮断する必要があるが、そのリークパス有無の確認作業が面倒である。また、封入後に外部から接着剤の界面や接着剤そのものから侵入する水分により、内部環境は経時的に変化することが予想されるので、封入作業は水分の極めて少ない低湿度環境で行わなければならず、工場で量産する場合には手間がかかり製造費が増大する。加えて、素子封入後の圧電体素子近傍の湿度環境の変化に対応して、水分が起因となる破壊等の素子寿命が予測できないので、製品としての保証期限が設定できないなどの問題がある。
また、(特許文献4)に提案される外部から乾燥気体を導入し、圧電体素子近傍の露点環境を制御する方法は、上記で示したような封止による素子のばらつきや、経時的に湿度環境が変化する問題に対しては有効な手段であり、安定した湿度環境を提供できる。しかし、必要とされる露点−50℃以下という湿度環境を実現するには、エアフィルターやオイルミストフィルター等の付帯設備が必要になると記載されていることからも理解できるように、エアドライヤーの能力がかなり高くないと実現不可能である。また、ある一定の流量についても−50℃以下の露点環境を維持することが必要であるので、システムとしての負荷やコストがかなりかかることになる。
また、(特許文献7)に提案される空気中の水蒸気や結露した水成分等の浸入を防ぐためにガスバリア性の高い保護膜等を形成する方法では、圧電体薄膜素子の機械的変位を阻害しないような薄膜で圧電体薄膜素子表面の欠陥を完全に覆うことは難しい。また、インクジェットヘッドのように圧電体薄膜素子が複数個並列に形成される場合においては、各素子が独立に制御される必要があるので、各素子の電極上に形成される保護膜は絶縁性の高い膜が必要になる。この保護膜には、一般的には、樹脂や無機材料が選択されることになるが、これらはガスバリア性を保つためにある程度の膜厚が必要になるので、圧電体薄膜素子の機械的変位を阻害する要因になる。加えて、高湿度環境では、圧電体薄膜素子と保護膜との界面から水分の浸入が起こり、経時的に劣化、剥離が進行するので、圧電体薄膜素子と保護膜との密着性を保つ必要があり、この点も圧電体薄膜素子の機械的変位を阻害する要因になるなどの問題がある。
本発明は、上記に鑑みてなされたものであり、水分による素子破壊を防止する低湿度周囲環境を有する圧電体薄膜素子を得ることを目的とする。
また、本発明は、高湿度環境下での駆動信頼性を向上させる圧電体薄膜素子のエージング処理方法を得ることを目的とする。
また、本発明は、上記発明の圧電体薄膜素子を用いたインクジェットヘッド、および前記インクジェットヘッドを印字手段として装備したインクジェット式記録装置を得ることを目的とする。
上述した目的を達成するために、本発明は、所定膜厚の圧電体薄膜層と、前記圧電体薄膜層の膜厚方向両側の層面それぞれに成膜した電極層とを備えている圧電体薄膜素子において、近傍雰囲気の露点を−40℃〜0℃の範囲内に保持する手段を備えていることを特徴とする。
本発明によれば、水分による圧電体薄膜素子のリーク電流発生が抑えられ、安定的に駆動を行うことが可能になる。露点範囲の設定によって製品寿命の保証が行える。
本発明によれば、実際の駆動環境が高湿度であっても安定的に駆動を行うことが可能になるという効果を奏し、また製品寿命の保証が行えるという効果も奏する。
以下に図面を参照して、本発明にかかる圧電体薄膜素子及びそのエージング処理方法、インクジェットヘッド、並びにインクジェット式記録装置の好適な実施の形態を詳細に説明する。
(実施の形態1)
図1は、本発明の実施の形態1による低湿度周囲環境を有する圧電体薄膜素子の構成を示す一部断面図である。図1において、圧電体薄膜素子1を収容するケース2は、露点制御手段3が供給する乾燥気体を取り込む導入口4と排出口5とを有している。
なお、ケース2に収容する素子数は、1つでもよいが、2以上の圧電体薄膜素子1を収容する場合でも、その機械変位運動を阻害しない空間を保持した状態で収容できる構成であって、図示してないが、圧電体薄膜素子1を載置するケース2の載置面には、収容する各圧電体薄膜素子1の両電極層に駆動電圧を印加できる機構を備えている。
圧電体薄膜素子1は、例えば、後述する図3や図4に示すように構成されている。露点制御手段3が供給する乾燥気体は、露点が−40℃〜0℃の範囲内の乾燥空気や、窒素ガス、アルゴンガス等の低湿度気体である。
露点制御手段3は、例えば、露点が−40℃〜0℃の範囲内の乾燥気体を生成できるエアドライヤー(乾燥気体生成装置)、露点が−40℃〜0℃の範囲内の乾燥気体が封入されているボンベ、建物に設備として配置されている露点が−40℃〜0℃の範囲内の乾燥気体(窒素ガス、アルゴンガス等)を給送する配管等である。
なお、エアドライヤーについては、温度を下げることで気体中の水分を除去する冷凍式エアドライヤー、フィルターを通すことで気体中の水分を除去するフィルター式エアドライヤー、シリカゲルなどの吸着剤中を通過させることで気体中の水分を除去する吸着式エアドライヤーなどを用いることができる。
露点制御手段3で生成された乾燥気体は、ケース2の導入口4から供給され、排出口5から排出されることで、ケース2の内圧は、ケース外の圧力よりも高くなるので、圧電体薄膜素子1の近傍雰囲気を長期に渡って安定して、露点が−40℃〜0℃の範囲内の低湿度に保つことが可能となる。
これによって、低湿度周囲環境を有する圧電体薄膜素子1は、水分による素子破壊が防止されるので、安定して駆動することができ、製品寿命の保証が可能になる。また、露点として−45℃の確保は、−50℃の確保よりも安価に実現できる。なお、ケース2を設けずに、直接、露点制御手段3で生成された乾燥気体を圧電体薄膜素子1の近傍に吹きかけても同様の効果が得られる。
(実施の形態2)
図2は、本発明の実施の形態2による低湿度周囲環境を有する圧電体薄膜素子の構成を示す一部断面図である。図1において、圧電体薄膜素子1を載置したベース6にキャップ部材7の開口端を接着剤8で接着することで、圧電体薄膜素子1は、その機械変位運動を阻害されない状態で密閉空間内に収容されている。そして、この密閉空間内に乾燥剤9を封入することで、圧電体薄膜素子1の近傍雰囲気の露点を−40℃〜0℃の範囲内に低湿度環境に保つ構成となっている。
なお、ベース6には、図示してないが、収容する圧電体薄膜素子1の両電極層に駆動電圧を印加できる機構を備えている。
ここで、キャップ部材7は、水分を透過しにくく、ガスバリア性の高い樹脂やガラスやセラミックなどの無機材料、または金属ケースなどで出来ている。ベース6もキャップ部材7と同様の部材が使用されるが、圧電体薄膜素子1の基板の一部を用いることも可能である。
また、ベース6とキャップ部材7との接着剤8には、水分を透過しにくいエポキシ樹脂や接着シート等が用いられるが、その他、金属はんだや無機系の接着剤なども用いることができる。
密閉空間内に封入する乾燥剤9には、シリカゲル、塩化カルシウム、モレキュラーシーブ、酸化バリウム等が用いられる。
これによって、乾燥剤9を封入し、キャップ部材7とベース6とを接着した後は、密閉された空間の水分は、乾燥剤9に吸着されるので、収容する圧電体薄膜素子1の近傍空間は、露点が−40℃〜0℃の範囲内の低湿度環境に保たれることになる。
接着剤8の材料や接着面積、接着時の厚みを適切に設計、制御することによって外部から浸入する水分を極力少なくすることができ、侵入した水分も乾燥剤9により除去されるので、長期に渡って内部を低湿度環境に保つことが可能となる。また、封入時の露点環境を低湿度に保つことにより、さらに長期に渡って内部を低湿度環境に保つことが可能になる。
したがって、実施の形態1と同様に、圧電体薄膜素子1は、水分による素子破壊が防止されるので、安定して駆動することができ、製品寿命の保証が可能になる。また、安価な構成で、露点−40℃の確保が実現できる。
(実施の形態3)
図3は、本発明の実施の形態3による圧電体薄膜素子の構成を示す断面図である。この実施の形態3では、図1や図2に示した態様で用いる圧電体薄膜素子の構成例(その1)について説明する。
図3において、この実施の形態3による圧電体薄膜素子10は、基板11の上に、密着層12、下部電極である第1の電極層13、圧電体薄膜層14および上部電極である第2の電極層15をこの順に成膜して形成したものである。
基板11は、例えば、厚みが0.3mmで径が4インチの円盤状基板である。ここではシリコン基板を用いているが、ガラス基板や金属基板、セラミックス基板等も同様に用いることができる。
密着層12の膜厚は、ここでは0.02μmとしているが、0.005μm〜1μmの範囲内であればよい。密着層12に用いる材料は、ここではチタン(Ti)を用いているが、その他に、タンタル、鉄、コバルト、ニッケル若しくはクロムまたはそれらの化合物等でもよい。なお、密着層12は、基板11と第1の電極層13との密着性を高めるためのものであり、基板11と第1の電極層13との密着性に問題がなければ、設ける必要はない。
第1の電極層13の膜厚は、ここでは0.22μmとしているが、0.05〜2μmの範囲内であればよい。第1の電極層13に用いる導電性材料は、ここでは白金(Pt)を用いているが、Pt、イリジウム、パラジウム及びルテニウムの群から選ばれた少なくとも1種の貴金属又はそれらの化合物であればよい。
また、第2の電極層15の膜厚は、ここでは0.2μmとしているが、0.1μm〜0.4μmの範囲内であればよい。第2の電極層15に用いる導電性材料は、ここでは白金(Pt)を用いているが、任意の導電性材料を用いてよい。
さて、圧電体薄膜層14は、菱面体晶系または正方晶系のペロブスカイト型結晶構造を有するPZTを成膜したものである。膜厚は、ここでは3.5μmとしているが、0.5μm〜10.0μmの範囲内であればよい。また、構成材料は、PZTにLa、Sr、Nb、Alなどの添加物を含有したもののように、要するにPZTを主成分とした圧電材料であり、PMNであるかPZNであるかは問わない。
圧電体薄膜層14のPZTの組成(Zr/Ti)は、ここでは正方晶系と菱面体晶系との境界(モルフォトロピック相境界)付近の組成(Zr/Ti=53/47)としているが、Zr/Ti=30/70〜70/30の範囲内であればよい。
そして、圧電体薄膜層14は、化学量論組成と比較してPb組成量が異なる複数層の積層構造となっている。図3に示す例では、圧電体薄膜層14は、化学量論組成よりもPb組成量の多い層14aと、化学量論組成よりもPb組成量の少ない層14bとの2層構造になっている。なお、図3では、まず、化学量論組成よりもPb組成量の多い層14aを成膜し、その後、化学量論組成よりもPb組成量の少ない層14bを成膜するように示してあるが、これに限らず、積層する順番や積層数は任意である。
図3に示す例では、化学量論組成よりもPb組成量の多い層14aは、Pb組成量が10%モル過剰の組成で膜厚が3.0μmであり、化学量論組成よりもPb組成量の少ない層14bは、Pb組成量が2%モル少ない組成で膜厚が0.5μmである。なお、化学量論組成よりもPb組成量の多い層14aでのPb過剰量は、25モル%以下、より望ましくは15モル%以下であればよい。また、化学量論組成よりもPb組成量の少ない層14bでのPb欠損量は、10モル%以下、より望ましくは、5モル%以下であればよい。
化学量論組成よりもPb組成量の多い層14aと化学量論組成よりもPb組成量の少ない層14bは、共に、<111>面または<001>面のいずれかの同じ面に優先配向するように成膜されている。そして、各層は、共に柱状結晶の構造をしているが、その柱状粒子径は、化学量論組成よりもPb組成量の多い層14aが化学量論組成よりもPb組成量の少ない層14bよりも大きくなっている。ここでは、化学量論組成よりもPb組成量の多い層14aでの柱状粒子径は、0.4μmであるのに対し、化学量論組成よりもPb組成量の少ない層14bでの柱状粒子径は、0.2μmである。
また、各相での配向率は、化学量論組成よりもPb組成量の多い層14aの方が、化学量論組成よりもPb組成量の少ない層14bよりも高い。数値例で言えば、化学量論組成よりもPb組成量の多い層14aの方の配向率は70%以上が望ましく、化学量論組成よりもPb組成量の少ない層14bの方の配向率はそれよりも少ない50%以上が望ましい。
ここでは、<111>面に優先配向している場合を扱っており、<111>配向率は、化学量論組成よりもPb組成量の多い層14aでは99%であり、化学量論組成よりもPb組成量の少ない層14bでは70%である。
なお、<111>配向率をα<111>と表記し、<001>面での配向率をα<001>と表記すれば、α<111>=I<111>/ΣI(hkl)と定義している。ΣI(hkl)は、X線回折法において、Cu−Kα線を用いたときの2θが10°〜70°でのペロブスカイト型結晶構造のPZTにおける各結晶面からの回折ピーク強度の総和である。
このように、圧電体薄膜層14は、結晶粒が膜厚方向に沿って一端から他端に渡って柱状に連続的に成長した柱状結晶で構成されているので、優れた圧電特性を示すとともに、低湿度環境においては面内方向への水分の拡散が起きにくく、絶縁破壊の領域が進行しない特性が得られる。粒界が一方の前記電極層の層面側から略垂直に他方の前記電極層に向かって成長しているので、結晶配向性に優れ、より高い圧電特性を示す特性が得られる。
また、圧電体薄膜層14は、Pb、Ti、Zrを含有するので、高い圧電特性を示す組成の構成が可能となる。また、柱状結晶の構成や結晶配向性以外にも水分の拡散の仕方に違いがあり、Pb組成比が膜厚方向に異なる値で分布をしているので、欠陥部からの水分の浸入によってPbと反応したリークパスの生成を遅延、もしくは断絶することができ、Pb組成が膜厚方向に変化のない構成と比較してより長期の信頼性が確保できる。また、ZrとTiの組成比が膜厚方向に異なる値で分布をしているので、水分の浸入、拡散を遅延もしくは断絶することができ、同様の作用・効果によって長期の信頼性が確保できる。そして、高湿度環境においては、圧電体薄膜は、通常数μm程度であるので、その組成や素子構成による差は出難いが、低湿度間環境では、水分の拡散に差が生ずるので、上記構成の圧電体薄膜を用いることはより好ましい。
次に、以上の構成を有する圧電体薄膜素子の製造方法について説明する。圧電体薄膜素子の成膜法には、スパッタ法、真空蒸着法、レーザーアブレーション法、イオンプレーティング法、MBE法、PVD法、MOCVD法、プラズマCVD法などの気相成長法が用いられる。ここでは、スパッタ法を用いて、シリコン基板11上に、密着層12、第1の電極層13、圧電体薄膜層14及び第2の電極層15を順次成膜して形成した例を示す。
密着層12は、Tiターゲットを用いて、真空度1Paのアルゴンガス中において基板11を400℃に加熱しながら100Wの高周波電力を1分間印加して厚さ0.02μmに成膜した。第1の電極層13は、Ptターゲットを用い、真空度1Paのアルゴンガス中において基板11を400℃に加熱しながら200Wの高周波電力を12分間印加して厚さ0.22μに成膜した。第2の電極層15は、Ptターゲットを用い、真空度1Paのアルゴンガス中において、基板11を室温に維持して200Wの高周波電力を10分間印加して0.2μmに成膜した。
さて、厚さ3.2μmの圧電体薄膜層14は、多元スパッタ装置を用いて作製した。ターゲットには、化学量論組成よりもPb組成量の多い層14aは、PZT(Zr/Ti=53/47、Pb量が20モル%過剰)の焼結体ターゲットを用い、化学量論組成よりもPb組成量の少ない層14bは、PZT(Zr/Ti=53/47、Pb量が5モル%過剰)を用いた。
図3に示す構成であれば、まず化学量論組成よりもPb組成量の多い層14aを成膜し、その上に化学量論組成よりもPb組成量の少ない層14bを成膜することになる。まず、化学量論組成よりもPb組成量の多い層14aは、真空度0.3Paのアルゴンと酸素との混合雰囲気中(ガス体積比Ar:O2=15:5)において、基板11を580℃で加熱しながら、250Wの高周波電力を170分間印加して成膜した。次に、化学量論組成よりもPb組成量の少ない層14bは、真空度0.3Paのアルゴンと酸素との混合雰囲気中(ガス体積比Ar:O2=18:2)において、基板11を650℃で加熱しながら、200Wの高周波電力を45分間印加して成膜した。
そして、第2の電極層15を成膜する前に、以上のようなスパッタ成膜条件で作製した圧電体薄膜層14について各種の観察を行った。まず、X線マイクロアナライザーによって調べたPb組成は、化学量論組成よりもPb組成量の多い層14aは、Pb量が10モル%過剰の組成であり、化学量論組成よりもPb組成量の少ない層14bは、Pb量が2モル%少ない組成であった。
また、SEMによる観察結果、化学量論組成よりもPb組成量の多い層14aと化学量論組成よりもPb組成量の少ない層14bは、共に、柱状構造を有していた。そして、各層の柱状粒子径は、化学量論組成よりもPb組成量の多い層14aが0.4μmであり、化学量論組成よりもPb組成量の少ない層14bが0.2μmであった。また、各層の膜厚は、化学量論組成よりもPb組成量の多い層14aが3.2μmであり、化学量論組成よりもPb組成量の少ない層14bが0.5μmであり、圧電体薄膜層14のトータルの膜厚は、3.5μmであった。
圧電体薄膜層14の結晶構造、結晶配向性、内部応力をX線回折及びsin2ψ法によって調べた。その結果、得られた圧電体薄膜層14は、菱面体晶系ペロブスカイト型結晶構造を有し、<111>面に配向をしていた。また、<111>結晶配向性は、化学量論組成よりもPb組成量の多い層14aでは、<111>配向率が99%であり、化学量論組成よりもPb組成量の少ない層14bでは、<111>配向率が70%であった。
(A)適正な露点範囲決定のための駆動信頼性評価
以上のように作製した圧電体薄膜素子は、第1の電極層13と第2の電極層15との間に電圧を印加することで、圧電体薄膜層14が機械変位運動を行うが、次のような構造の試験用試料を作製して駆動信頼性を評価し、適正な露点範囲を定めた。
まず、第2の電極層上にレジスト塗布、パターニングを行った後、ドライエッチング装置を用いて電極のエッチング加工を行い、基板上に、0.1mm×1.2mmサイズの素子が均等に併設された状態にした。その後、レジストパターンを除去し、400素子を1基板としてダイシング加工によって切断、分割を行い、各々の基板を試験用試料とする。
即ち、各々の基板において、第1の電極層は共通電極として取り出し、第2の電極層は個別電極として各々電圧が印加できるように配線を行った。そして、1つの基板(400素子)を露点環境が制御可能な試験槽に入れ、400素子に同時にDC35Vの駆動電圧を印加して連続500時間駆動した後、各素子の外観観察(図4)、リーク電流測定(図5)及びSEM観察(図6)を行って駆動信頼性を評価した。これを、10基板(4000素子)について行った。
試験槽は、図1に示したような構成であって、ドライヤーで生成した乾燥空気と通常の圧縮空気とを混合した乾燥気体を導入口から導入し、試験槽の内圧を高い状態に維持しつつ、排出口から排出する構成となっている。
エアドライヤー(乾燥空気生成装置)には、CKD株式会社製のスーパードライヤユニットSU3015B7を用いた。この乾燥空気は、空気中の埃を除去するエアフィルタ、空気中の油成分を除去するオイルミストフィルタ、空気中の水分を除去するドライヤー本体、圧力を調整するレギュレーターから構成されている。
ドライヤー本体は、特殊な樹脂でできた多数の中空糸で構成されており、この中空糸を圧縮空気が通過する仕組みとなっている。中空糸を構成する樹脂は、水分のみを選択的に中空糸外部に通過させる性質を持っており、水を含んだ空気が中空糸を通過することにより空気中の水分が除去される。
露点環境の制御は、導入側の乾燥空気と圧縮空気との混合比や流量、排出側の流量を調整して行った。また、駆動試験は、露点環境が一定になってから1時間以上安定した状態を確認してから開始した。そして、駆動試験中も流量の微調整を行い、露点環境が一定になるようにした。
図4は、露点と破壊した素子数との関係を示す図である。横軸は露点[℃]であり、縦軸は破壊素子数[個]である。図4に示すように、露点を−50℃〜+30℃の範囲に変化させて試験した。図4では、露点環境が−50℃から0℃までは素子の破壊は起こらないが、それを越えると急激に素子破壊が増加していくことが示されている。
図5は、露点環境と1素子平均のリーク電流との関係を示す図である。横軸は露点[℃]であり、縦軸は絶縁破壊が生じた1素子の平均リーク電流[mA]である。図5に示すように、絶縁破壊が生じた1素子の平均リーク電流は、露点0℃以下では、数μA以下であるが、露点0℃を超えると、ばらつきが大きくなり、実用上問題が生じる数10μA以上のレベルの素子が多数出現してくることが示されている。
図6は、露点と素子破壊の程度との関係を示すSEM観察写真を示す図である。図6では、(a)露点0℃の場合と、(b)露点10℃の場合と、(c)露点30℃の場合とにおける素子破壊の状態(程度)が示されている。(a)露点0℃の場合は、一部が絶縁破壊(黒点)となっているがそれ以上は進行していない。(b)露点10℃の場合は、一部に破壊の進行した状態が観察され、黒点も多く存在している。(c)露点30℃の場合は、黒点が大きく成長し、ほぼ素子を横断する状態になっている。
以上の評価結果は、露点環境が0℃よりも低い場合は、仮に絶縁破壊箇所が発生してもその破壊の進行を加速させる水分が供給されず、実用上使用できるレベルにとどまっているが、露点環境が0℃よりも高くなると、水分によるリークパスの拡大によって絶縁破壊箇所が大きくなり、素子の横断的な破壊にまで至ることを示している。
したがって、露点環境としては0℃よりも低く、より低湿な環境がよいことが解る。しかし、非常に低湿な領域、例えば−40℃よりも低湿な環境を維持するのは非常にコストが高くなると予想される。
上記の試験において−50℃の露点環境を具現化する場合は、導入側には高性能な乾燥空気発生装置を用い、圧縮空気の混合は行っていないが、乾燥空気生成装置の能力が低い場合には、露点制御が困難になることが考えられる。これに対し、露点環境−40℃程度だと工場の配管等の露点制御手段から導入する乾燥窒素等で十分制御できる範囲になっているので、コストを低く抑えることが可能である。−40℃でも−50℃の露点環境と同じ結果を示すので、制御すべき露点環境は−40℃から0℃までが適している。このことから、図1(実施の形態1)や図2(実施の形態2)では、露点の範囲を−40℃〜0℃とした。
(B)駆動前のエージング処理の有無による駆動信頼性の評価
上記の評価試験(A)で用いた試験用試料と同じ仕様で作製した試験用試料、即ち、400素子を搭載する基板を10個作製し、各々の基板において第1の電極層は共通電極として取り出し、第2の電極層は個別電極として各々電圧が印加できるように配線を行い、10基板(4000素子)について、駆動時の露点環境を0℃と想定して露点環境を駆動前の−40℃(エージング処理)と駆動時の0℃とで駆動し、各素子の外観観察とリーク電流の測定とを行ってエージング処理の有無による駆動信頼性の評価を行った。
まず、1つの基板(400素子)を露点環境−40℃に保った試験槽に入れ、400素子に同時にDC40Vの駆動電圧を印加して連続1時間駆動してエージング処理を行い、その後、試験槽の露点環境を0℃に変更して1時間放置して安定させた後に、400素子に同時にDC35Vの駆動電圧を印加して連続500時間駆動することを10基板(4000素子)について行った。
素子の外観観察の結果、破壊した素子の数は8個であり、エージング処理を行わない場合、つまり上記の評価試験(A)での露点環境0℃のときの10個と比較してあまり変わっていなかった。しかし、リーク電流の測定結果では、エージング処理を行った素子は、1素子あたりの平均リーク電流が0.24μAであり、エージング処理を行わない場合の平均値2.1μAと比較してほぼ1桁低下していた。
このことは、実際の使用前に、露点環境が駆動時よりも低い環境(露点が−40℃〜0℃の範囲内の環境)で、駆動時よりも高いエージング電圧を印加するエージング処理を行えば、素子に存在する脆弱な部分が破壊(除外)されるので、実際の高湿度下での駆動時におけるリークパスの発生数を減らす効果があることを示している。
このように、予め露点環境が実際の駆動時よりも低い環境でエージング処理を行うことにより、高い露点環境である実際の駆動時においては、リーク電流の増加を抑えることができるので、安定した素子の駆動が可能となる。なお、エージング電圧は、交流電圧でもよいが、圧電体薄膜素子が機械的な振動によって破壊されるのを防止する観点から、直流電圧が望ましい。
(C)素子を低湿度環境で駆動信頼性を評価する他の例
ここでは、1個の素子毎に上記の評価試験(A)と同内容の評価試験を行う場合について説明する。まず、素子近傍雰囲気を低湿度環境に維持するために、外部の湿度環境から遮断する封止部材による素子封止を次のようにして行った。
即ち、各々の素子が駆動できるように配線を行った後、グローブボックス等の湿度環境を低湿度に維持する環境に入れ、表面に吸着した水分を置換する。グローブボックス内には乾燥空気もしくは乾燥窒素を導入し、露点環境が−40℃になるようにする。グローブボックスには、予め封止部材であるガラス基板や接着剤、乾燥剤を入れておき、同様に吸着した水分を置換しておく。封止部材は、2つのガラス部材からなり、1つはプレート状のガラス基板で、これがベースとなる。もう1つは、ガラス基板を素子の駆動エリアよりも大きい領域のエリアをエッチング加工にて凹ました封止キャップである。
乾燥剤は、予め封止キャップの凹部に収納しておき、封止後に圧電体薄膜素子に接触しないように必要な空間を確保しておく。乾燥剤は、ユニオン昭和株式会社製の合成ゼオライト(モレキュラーシーブ)をシート状に加工したものを用い、封止キャップの凹部に貼り付ける構成を取った。
次に、圧電体薄膜素子をベース上に固定し、封止キャップのベースと接着を行う領域に接着剤を塗付し、配線等を引き出してからベースと貼り合せる。貼りあわせた後は加重をかけ、接着剤の気泡等が発生しないように密着しつつ接着剤を硬化する。接着剤は、協立化学社製の8722V5でUV硬化、熱硬化併用タイプを用いた。
グローブボックス内でUVランプを所定の時間照射した後に、グローブボックスから取り出す。UV照射条件として300mW/cm2で20秒間照射を行った。取り出し後はさらにオーブンにて80℃で1時間の熱処理を行った。その後、ある電圧を印加して封止のリークチェックを行い、リークパスがなければ素子の駆動を開始し、上記の評価試験(A)と同内容の評価試験を行う。
なお、上述した封止方法では、ベースを圧電体薄膜素子とは別に用意したが、圧電体薄膜素子の基板をベースとして用いても良い。また、駆動する素子のエリア外周の余白に接着剤を塗付して、封止キャップを接着しても同様の効果が得られる。
(実施の形態4)
図7は、本発明の実施の形態4による圧電体薄膜素子の構成を示す断面図である。この実施の形態4では、図1や図2に示した態様で用いる圧電体薄膜素子の構成例(その2)について説明する。
図7に示すように、この実施の形態4による圧電体薄膜素子16は、図3(実施の形態3)に示した構成において、第1の電極層13と圧電体薄膜層14との間に、低誘電率層であるバッファー層17が設けられ、圧電体薄膜層14に代えて同様に2層構成であるがその内容を違えた圧電体薄膜層18が設けられている。
バッファー層17は、圧電体薄膜層18の結晶成長を促進する機能と、電圧印加時に圧電体薄膜層18に発生する応力を緩和して成膜後のクラック発生等を防止する機能とを有している。後者の機能によって、リークパスの生成速度が遅くなり、長期の駆動信頼性が確保できる。
このバッファー層17には、ペロブスカイト構造を有するチタン酸鉛(PT)のAサイトを10%だけLaで置換したPLTが用いられる。このPLTを用いたバッファー層17は、厚膜を0.2μmに成膜して測定した結果、<001>面に優先配向し、比誘電率は、450であった。なお、このバッファー層17は、圧電体薄膜層18の結晶成長を阻害しない他の材料も用いることができる。
圧電体薄膜層18は、図3(実施の形態3)にて示した構成と同様に、膜厚が3.2μmの菱面体晶系又は正方晶系のペロブスカイト型結晶構造を有するPZTからなる。そして、バッファー層17側の化学量論組成よりもPb組成量の多い層18aは、膜厚が0.3μmであり、Zr/Ti=70/30の組成からなり、第2の電極層15側の化学量論組成よりもPb組成量の多い層18bは、膜厚が3.2μmであり、Zr/Ti=53/47の組成比からなっている。なお,化学量論組成と比較したPb量は、化学量論組成よりもPb組成量の多い層18a,18b共に,10モル%過剰の組成である。また、圧電体薄膜層18の比誘電率を測定すると、950であった。
なお,圧電体薄膜層18でのZr組成比は、バッファー層17に近い方を大きくした方が好ましいが、バッファー層17が存在するので、Zr組成比が小さくても配向性等に問題はない。したがって、多層構成や膜厚方向に漸次Zr組成が変化する構成でも良い。また、絶縁性向上のため、バッファー層17に用いたPLTを圧電体薄膜層18の第2の電極層15側に積層してもよい。また、圧電体薄膜層18には、比誘電率が低い他の材料も用いることが可能である。
このような構成の圧電体薄膜素子についても、実施の形態3にて説明した駆動信頼性評価とエージング処理有無による評価を同様に行ったところ、実施の形態3にて説明したのと同様の結果が得られた。
(実施の形態5)
この実施の形態5では、実施の形態3,4による圧電体薄膜素子を低湿度環境下でインク吐出の駆動源として用いるインクジェットヘッドの構成例を示す。
まず、図8を参照して、インクジェットヘッドが備える圧電体薄膜素子に低湿度環境を提供する構成について説明する。なお、図8は、本発明の実施の形態5による低湿度周囲環境を有するインクジェットヘッドの構成を示す斜視図である。
図8において、この実施の形態5による低湿度周囲環境を有するインクジェットヘッド27は、ヘッドカバー28を取り付けたヘッドベース29にインクジェットヘッド(本体)30が取り付けられた構成である。ヘッドカバー28は、導入口31と排出口32とを備えている。
この構成によれば、インクジェットヘッド(本体)30を取り付けたヘッドベース29にヘッドカバー28を取り付け、導入口31に、乾燥空気生成装置やプラントにおける乾燥気体(窒素ガス、アルゴンガス等)の配管等の実施の形態に示した露点制御手段3から乾燥気体を供給し、排出口32から排出することによって、インクジェットヘッド(本体)30が備える圧電体薄膜素子近傍の露点環境を一定値に制御することができる。
次に、インクジェットヘッド(本体)30の構成を説明する。端的には、このインクジェットヘッド(本体)30は、実施の形態3又は実施の形態4による圧電体薄膜素子における両電極層のいずれか一方の電極層側の面に設けた振動板層と、前記振動板層の前記圧電体薄膜素子とは反対側の面に接合され、インクを収容する圧力室を有する圧力室部材とを備え、前記圧電体薄膜素子の圧電効果によって前記振動板層を層厚方向に変位させて前記圧力室のインクを吐出させるように構成される。以下、具体的な構成例(図9〜図11)を示す。
なお、図9は、図8に示すインクジェットヘッド本体の構成を示す斜視図である。図10は、図9に示すインクジェットヘッド本体の要部構成を示す断面図である。図11は、図9に示す要部のうち圧力室部材及びアクチュエータ部の構成を示す断面図である。
図9、図10に示すように、インクジェットヘッド(本体)30は、主な要素として、圧力室部材Aとアクチュエータ部Bとインク流路部材Cとノズル板Dとを備えている。なお、図9では、制御手段としてのICチップEも示されている。これらの要素は、図示例で言えば上下方向の下側から上側に向かって、ノズル板D、インク流路部材C、圧力室部材A、アクチュエータ部Bと積層配置され、アクチュエータ部Bの上部にICチップEが配置される。
図9、図10において、圧力室部材Aには、その厚み方向(上下方向)に貫通する多数の圧力室開口部101が千鳥状に形成されている。個別の圧力室102は、この多数の圧力室開口部101のそれぞれが、その上端開口部を共通に被覆するように配置されるアクチュエータ部Bと、その下端開口部を共通に被覆するように配置されるインク流路部材Cとによってその上下端が閉塞されることで構成される。
アクチュエータ部Bの上端面には、多数の個別電極103が圧力室102と1対1の関係で千鳥状に配置され、各個別電極103に対してICチップEからボンディングワイヤBWを通して電圧をそれぞれ供給するようになっている。個別電極103は、ここでは、第2の電極層103と称することもある。
インク流路部材Cは、インク供給方向に並ぶ圧力室102間で共用する共通液室105と、この共通液室105のインクを圧力室102に供給するための供給口106と、圧力室102内のインクを吐出させるためのインク流路107とを有している。ノズル板Dには、インク流路107に連通するノズル孔108が形成されている。
次に、図11では、図9に矢印で示すインク供給方向とは直交する方向でのアクチュエータ部Bの断面構成が示され、アクチュエータ部Bの直下に上記の直交方向に並ぶ4個の圧力室102を持つ圧力室部材Aが参照的に示されている。4個の圧力室102は、区画壁102aで仕切られている。
図11に示すように、アクチュエータ部Bは、各圧力室102に共通の天井面を構成する部材として、区画壁102aの上端面に接着剤114にて接着される中間層(区画壁102aの側壁面と面一に形成される)113と、その上に積層される振動層111と、その上に積層される共通電極112とを備えている。
そして、アクチュエータ部Bは、圧力室102毎に、共通電極112の上面における各圧力室102の直上位置に設けられる圧電体薄膜層110と、その上に積層される上記した個別電極103とを備えている。共通電極112は、ここでは、第1の電極層112と称することもある。
つまり、アクチュエータ部Bは、圧力室102毎の駆動手段として、第1の電極層112、圧電体薄膜層110及び第2の電極層103が順に積層される構成の圧電体薄膜素子に加えて、振動層111が共通電極である第1の電極層112側に設けられている。この圧電体薄膜素子の各層は、実施の形態3にて説明した圧電体薄膜素子10における同名の層にそれぞれ対応し、各構成材料も、構成元素の含有量が異なるものもあるが、それぞれ同様であり、圧電体薄膜層110も圧電体薄膜層14と同様の層構成である。
アクチュエータ部Bでは、この構成によれば、1つの圧力室102に対する圧電体薄膜層110の圧電効果によって振動層111が層厚方向に変位動することで、各圧力室102の容積を個別に変化させることができる。
なお、圧力室部材Aとアクチュエータ部Bとは、接着剤114によって接着されているが、各中間層113は、この接着剤114を用いた接着時に、その一部の接着剤114が区画壁102aの外方にはみ出した場合でも、この接着剤114が振動層111に付着しないで振動層111が所期通りの変位及び振動を起こすように、区画壁102aの上端面である圧力室102の上面と振動層111の下面との距離を拡げる役割を有している。したがって、中間層113を設けずに、区画壁102aの上端面に直接振動層111を支持させる構成を採る場合もある。
なお、ここでは、実施の形態3に示した圧電体薄膜素子10を用いる場合を示したが、実施の形態4に示した圧電体薄膜素子16も同様にして用いることができる。
次に、図8に示した低湿度周囲環境を有するインクジェットヘッド27と、図8に示した低湿度環境を有しないインクジェットヘッド、つまり、インクジェットヘッド(本体)30のみの場合とで動作信頼性の評価を行った。
図8において、露点を−40℃まで下げた乾燥空気を乾燥空気生成装置から導入口31に供給し、1時間乾燥気体を流し続けてヘッドベース29に取り付けたインクジェットヘッド(本体)30の近傍雰囲気を−40℃の低湿度環境にした状態で、直流電圧35Vを1時間印加してエージング処理を行った。その後、インクジェットヘッド(本体)30をヘッドベース29から取り外して40℃、湿度80%の環境試験槽に入れ、駆動周波数が20kHzの交流電圧20Vを10日間印加し続けた。10日後にインクの吐出状況を確認したが、インクの吐出不良は全くなく、吐出性能の低下は見られなかった。
一方、上記したエージング処理をしないインクジェットヘッド(本体)30を40℃、湿度80%の環境試験槽に入れ、駆動周波数が20kHzの交流電圧20Vを10日間印加し続けた。そうすると、400個ある全圧力室のうち約40%の圧力室に対応するノズルでインク吐出不良が発生した。この場合の吐出不良の原因が、インク詰まり等ではないことから、アクチュエータ部Bの圧電体薄膜素子に重大な絶縁破壊や大きな電流リークが発生したと考えられる。
したがって、図8に示した低湿度周囲環境を有するインクジェットヘッド27は、高湿度環境下での信頼性を高めることができる。また、エージング処理が行えるので、実際の駆動環境が高湿度であっても信頼性を高めることができる。
(実施の形態6)
この実施の形態6では、実施の形態5によるインクジェットヘッドを用いたインクジェット式記録装置の構成例を示す。端的には、このインクジェット式記録装置は、実施の形態3又は実施の形態4による圧電体薄膜素子を用いる実施の形態5による低湿度環境を有するインクジェットヘッドと、前記インクジェットヘッドと記録媒体とを相対移動させる相対移動手段とを備え、前記相対移動手段にて前記インクジェットヘッドが記録媒体に対して相対移動しているときに、前記インクジェットヘッドにおいて圧力室に連通するように設けたノズル孔から前記圧力室のインクを記録媒体に吐出させて記録を行うように構成される。以下、具体的な構成例(図12)を示す。
図12は、本発明の実施の形態6によるインクジェット式記録装置の構成を示す概略斜視図である。図12に示すインクジェット式記録装置140は、実施の形態5による低湿度周囲環境を有するインクジェットヘッド27を備えている。この低湿度周囲環境を有するインクジェットヘッド27において圧力室(実施の形態5における圧力室102)に連通するように設けたノズル孔(実施の形態5におけるノズル孔108)から当該圧力室内のインクを記録用紙等の記録媒体141に吐出させて記録を行うように構成されている。
低湿度周囲環境を有するインクジェットヘッド27は、主走査方向Xに延びるキャリッジ軸142に設けられたキャリッジ143に搭載され、このキャリッジ143がキャリッジ軸142に沿って往復動するのに応じて主走査方向Xに往復動するように構成されている。つまり、キャリッジ143は、低湿度周囲環境を有するインクジェットヘッド27と記録媒体141とを主走査方向Xに相対移動させる相対移動手段を構成している。
また、このインクジェット式記録装置140は、記録媒体141を低湿度周囲環境を有するインクジェットヘッド27の主走査方向X(幅方向)と略垂直方向の副走査方向Yに移動させる複数のローラ144を備えている。つまり、複数のローラ144は、低湿度周囲環境を有するインクジェットヘッド27と記録媒体141とを副走査方向Yに相対移動させる相対移動手段を構成している。なお、図12中、Zは上下方向である。
そして、低湿度周囲環境を有するインクジェットヘッド27がキャリッジ143によって主走査方向Xに移動しているときに低湿度周囲環境を有するインクジェットヘッド27のノズル孔からインクを記録媒体141に吐出させ、この一走査の記録が終了すると、上記ローラ144によって記録媒体141を所定量移動させて次の一走査の記録を行うように、上記相対移動手段が制御される。
このように、実施の形態6によるインクジェット式記録装置140は、実施の形態5による低湿度周囲環境を有するインクジェットヘッド27を備えるので、高湿度環境下において良好な印字性能及び耐久性を有することができる。
なお、この明細書では、実施の形態3,4による圧電体薄膜素子の好適な適用例として、インクジェットヘッド及びインクジェット式記録装置への適用例を示したが、本発明はこれに限定されるものではなく、薄膜コンデンサ、不揮発性メモリ素子の電荷蓄積キャパシタ、各種アクチュエータ、赤外センサー、超音波センサー、圧力センサー、角速度サンセー、加速度センサー、流量センサー、ショックセンサー、圧電トランス、圧電点火素子、圧電スピーカー、圧電マイクロフォン、圧電フィルタ、圧電ピックアップ、音叉発振子、遅延線等にも適用可能である。特に、例えば(特許文献1)に開示されるディスク装置用薄膜圧電体アクチュエータに好適である。
以上のように、本発明にかかる圧電体薄膜素子は、高湿度環境下において安定して駆動するのに有用であり、特に、インクジェットヘッド及びインクジェット式記録装置の耐久性能を向上させるのに適している。
また、本発明にかかる圧電体薄膜素子のエージング処理方法は、予め圧電体薄膜素子に存在する脆弱な部分を除外し、実際の駆動時に、リークパスの成長を抑制してリーク電流の増大を防ぐのに有用である。
本発明の実施の形態1による低湿度周囲環境を有する圧電体薄膜素子の構成を示す一部断面図 本発明の実施の形態2による低湿度周囲環境を有する圧電体薄膜素子の構成を示す一部断面図 本発明の実施の形態3による圧電体薄膜素子の構成を示す断面図 露点と破壊した素子数との関係を示す図 露点環境と1素子平均のリーク電流との関係を示す図 露点と素子破壊の程度との関係を示すSEM観察写真を示す図 本発明の実施の形態4による圧電体薄膜素子の構成を示す断面図 本発明の実施の形態5による低湿度周囲環境を有するインクジェットヘッドの構成を示す斜視図 図8に示すインクジェットヘッド本体の構成を示す斜視図 図9に示すインクジェットヘッド本体の要部構成を示す断面図 図9に示す要部のうち圧力室部材及びアクチュエータ部の構成を示す断面図 本発明の実施の形態6によるインクジェット式記録装置の構成を示す概略斜視図
符号の説明
1 圧電体薄膜素子
2 ケース
3 露点制御手段
4 導入口
5 排出口
6 ベース
7 キャップ部材
8 接着剤
9 乾燥剤
10 圧電体薄膜素子
11 基板
12 密着層
13 第1の電極層(下部電極)
14 圧電体薄膜層
14a 化学量論組成よりもPb組成量の多い層
14b 化学量論組成よりもPb組成量の少ない層
15 第2の電極層(上部電極)
16 圧電体薄膜素子
17 バッファー層
18 圧電体薄膜層
18a、18b 化学量論組成よりもPb組成量の多い層
27 低湿度周囲環境を有するインクジェットヘッド
28 ヘッドカバー
29 ヘッドベース
30 インクジェットヘッド本体
31 導入口
32 排出口
101 圧力室開口部
102 圧力室
102a 区画壁
103 個別電極(第2の電極層)
105 共通液室
106 供給口
107 インク流路
108 ノズル孔
110 圧電体薄膜層
111 振動層
112 共通電極(第1の電極層)
113 中間層(縦壁)
114 接着剤
140 インクジェット式記録装置
141 記録媒体
142 キャリッジ軸
143 キャリッジ(X方向での相対移動手段)
144 ローラー(Y方向での相対移動手段)
A 圧力室部材
B アクチュエータ部
C インク流路部材
D ノズル板
E ICチップ

Claims (16)

  1. 所定膜厚の圧電体薄膜層と、前記圧電体薄膜層の膜厚方向両側の層面それぞれに成膜した電極層とを備えている圧電体薄膜素子において、近傍雰囲気の露点を−40℃〜0℃の範囲内に保持する手段を備えていることを特徴とする圧電体薄膜素子。
  2. 前記圧電体薄膜層は、結晶粒が膜厚方向に沿って一端から他端に渡って柱状に成長した柱状結晶で構成されていることを特徴とする請求項1に記載の圧電体薄膜素子。
  3. 前記圧電体薄膜層は、粒界が、一方の前記電極層の層面側から略垂直に他方の前記電極層に向かって成長していることを特徴とする請求項2に記載の圧電体薄膜素子。
  4. 前記圧電体薄膜層は、Pb、Ti、Zrを含有することを特徴とする請求項2に記載の圧電体薄膜素子。
  5. 前記圧電体薄膜層は、Pb組成比が膜厚方向に異なる値で分布をしていることを特徴とする請求項4に記載の圧電体薄膜素子。
  6. 前記圧電体薄膜層は、ZrとTiの組成比が膜厚方向に異なる値で分布をしていることを特徴とする請求項4に記載の圧電体薄膜素子。
  7. 前記圧電体薄膜層は、膜厚方向の少なくとも一端側に低誘電率層が成膜されていることを特徴とする請求項2〜6のいずれか一つに記載の圧電体薄膜素子。
  8. 前記圧電体薄膜層は、スパッタ法、真空蒸着法、レーザーアブレーション法、イオンプレーティング法、MBE法、MOCVD法、プラズマCVD法等の気相成長法を用いて成膜されていることを特徴とする請求項1に記載の圧電体薄膜素子。
  9. 前記近傍雰囲気の露点環境を保持する手段は、前記圧電体薄膜素子の近傍雰囲気に乾燥気体を導入する手段であることを特徴とする請求項1に記載の圧電体薄膜素子。
  10. 前記近傍雰囲気の露点環境を保持する手段は、
    導入口及び排出口を備え、前記圧電体薄膜素子の周囲に振動を阻害しない程度の空間を確保したケースと、
    前記導入口に露点が−40℃〜0℃の範囲内にある乾燥気体の供給を継続して行い前記ケース内の内圧を外圧よりも高く保持される状態に制御する手段と
    を備えていることを特徴とする請求項1に記載の圧電体薄膜素子。
  11. 前記近傍雰囲気の露点環境を保持する手段は、
    前記圧電体薄膜素子の周囲に振動を阻害しない程度の空間であって外部から湿気の侵入を阻止できる密閉空間を形成する封止部材と、
    前記密閉空間の封入され前記圧電体薄膜素子の近傍雰囲気の露点を−40℃〜0℃の範囲内に維持する乾燥剤と
    を備えていることを特徴とする請求項1に記載の圧電体薄膜素子。
  12. 請求項2〜7のいずれか一つに記載の圧電体薄膜素子の使用前に、駆動時の露点環境よりも低い露点環境で、駆動電圧よりも高いエージング電圧を印加することを特徴とする圧電体薄膜素子のエージング処理方法。
  13. 前記エージング電圧は、直流電圧であることを特徴とする請求項12に記載の圧電体薄膜素子のエージング処理方法。
  14. 前記低い露点環境は、露点が−40℃〜0℃の範囲内であることを特徴とする請求項12に記載の圧電体薄膜素子のエージング処理方法。
  15. 請求項2〜7のいずれか一つに記載の圧電体薄膜素子と、
    前記圧電体薄膜素子のいずれか一方の電極層側の面に設けられた振動板層と、
    前記振動板層の前記圧電体薄膜素子とは反対側の面に接合され、前記圧電体薄膜素子の圧電効果による前記振動板層の層厚方向への変位に応じてインク吐出を行う圧力室とを備えるインクジェットヘッドであって、
    前記圧電体薄膜素子の近傍雰囲気の露点を−40℃〜0℃の範囲内に保持する手段
    を備えていることを特徴とするインクジェットヘッド。
  16. 請求項15に記載のインクジェットヘッドと、
    前記インクジェットヘッドと記録媒体とを相対移動させる相対移動手段と、
    前記相対移動手段によってインクジェットヘッドが記録媒体に対して相対移動しているときに、前記インクジェットヘッドにおいて圧力室に連通するように設けたノズル孔から前記圧力室のインクを記録媒体に吐出させて記録を行うように前記インクジェットヘッドが備える2〜7のいずれか一つに記載の圧電体薄膜素子を駆動する手段と、
    を備えていることを特徴とするインクジェット式記録装置。
JP2007045076A 2007-01-30 2007-02-26 圧電体薄膜素子及びそのエージング処理方法、インクジェットヘッド、並びにインクジェット式記録装置 Pending JP2008210924A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007045076A JP2008210924A (ja) 2007-02-26 2007-02-26 圧電体薄膜素子及びそのエージング処理方法、インクジェットヘッド、並びにインクジェット式記録装置
US12/021,373 US7837305B2 (en) 2007-01-30 2008-01-29 Piezoelectric element, ink jet head, and ink jet recording device
EP08101110.8A EP1953839B1 (en) 2007-01-30 2008-01-30 Piezoelectric Element, Ink Jet Head, and Ink Jet Recording Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007045076A JP2008210924A (ja) 2007-02-26 2007-02-26 圧電体薄膜素子及びそのエージング処理方法、インクジェットヘッド、並びにインクジェット式記録装置

Publications (1)

Publication Number Publication Date
JP2008210924A true JP2008210924A (ja) 2008-09-11

Family

ID=39786993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045076A Pending JP2008210924A (ja) 2007-01-30 2007-02-26 圧電体薄膜素子及びそのエージング処理方法、インクジェットヘッド、並びにインクジェット式記録装置

Country Status (1)

Country Link
JP (1) JP2008210924A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084160A (ja) * 2008-09-29 2010-04-15 Fujifilm Corp 鉛含有ペロブスカイト型酸化物膜の成膜方法、圧電素子、および液体吐出装置
JP2010103546A (ja) * 2009-12-08 2010-05-06 Fujifilm Corp 圧電体膜の製造方法
JP2012503341A (ja) * 2008-09-19 2012-02-02 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 電気活性ポリマー変換器
US8354777B2 (en) 2008-09-29 2013-01-15 Fujifilm Corporation Piezoelectric film and piezoelectric device including the same, and liquid discharge apparatus
US9479135B2 (en) * 2009-09-14 2016-10-25 Murata Manufacturing Co., Ltd. Method for manufacturing piezoelectric vibration device
WO2017002738A1 (ja) * 2015-06-29 2017-01-05 株式会社ユーテック 強誘電体セラミックス及びその製造方法
JP2019193910A (ja) * 2018-04-30 2019-11-07 セイコーエプソン株式会社 精密機器及びこれに用いる吸湿剤、並びに吸湿剤の製造方法及び精密機器の製造方法
WO2022070521A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 圧電膜付き基板及び圧電素子

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021745A (ja) * 2005-07-12 2007-02-01 Matsushita Electric Ind Co Ltd インクジェットヘッド検査方法、エージング装置及び記録装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021745A (ja) * 2005-07-12 2007-02-01 Matsushita Electric Ind Co Ltd インクジェットヘッド検査方法、エージング装置及び記録装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503341A (ja) * 2008-09-19 2012-02-02 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 電気活性ポリマー変換器
JP2010084160A (ja) * 2008-09-29 2010-04-15 Fujifilm Corp 鉛含有ペロブスカイト型酸化物膜の成膜方法、圧電素子、および液体吐出装置
US8354777B2 (en) 2008-09-29 2013-01-15 Fujifilm Corporation Piezoelectric film and piezoelectric device including the same, and liquid discharge apparatus
US9479135B2 (en) * 2009-09-14 2016-10-25 Murata Manufacturing Co., Ltd. Method for manufacturing piezoelectric vibration device
JP2010103546A (ja) * 2009-12-08 2010-05-06 Fujifilm Corp 圧電体膜の製造方法
JP4564580B2 (ja) * 2009-12-08 2010-10-20 富士フイルム株式会社 圧電体膜の製造方法およびそれにより製造された圧電体膜
WO2017002738A1 (ja) * 2015-06-29 2017-01-05 株式会社ユーテック 強誘電体セラミックス及びその製造方法
TWI713509B (zh) * 2015-06-29 2020-12-21 日商前進材料科技股份有限公司 強介電體陶瓷及其製造方法
JP2019193910A (ja) * 2018-04-30 2019-11-07 セイコーエプソン株式会社 精密機器及びこれに用いる吸湿剤、並びに吸湿剤の製造方法及び精密機器の製造方法
WO2022070521A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 圧電膜付き基板及び圧電素子

Similar Documents

Publication Publication Date Title
EP1953839A1 (en) Piezoelectric Element, Ink Jet Head, and Ink Jet Recording Device
JP2008210924A (ja) 圧電体薄膜素子及びそのエージング処理方法、インクジェットヘッド、並びにインクジェット式記録装置
JP2007335779A (ja) 圧電体薄膜素子、インクジェットヘッドおよびインクジェット式記録装置
KR100581257B1 (ko) 압전소자, 잉크젯헤드, 각속도센서 및 이들의 제조방법,그리고 잉크젯방식 기록장치
JP5265163B2 (ja) 圧電デバイスおよび液体吐出ヘッド
US7348715B2 (en) Piezoelectric element and method for manufacturing the same, and ink jet head and ink jet recording apparatus using the piezoelectric element
KR100643825B1 (ko) 유전체 박막 소자, 압전 액추에이터 및 액체 토출 헤드와그 제조 방법
US20130269859A1 (en) Multi-Layer Electronic Component and Method for Manufacturing the Same
US8567026B2 (en) Piezoelectric film poling method
JP4250593B2 (ja) 誘電体素子、圧電体素子、インクジェットヘッド及びその製造方法
WO2016190110A1 (ja) 圧電薄膜、圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび圧電アクチュエータの製造方法
US20040051763A1 (en) Piezoelectric thin film element, actuator, ink-jet head and ink-jet recording apparatus therefor
US7187024B2 (en) Piezoelectric element, ink jet recording head and method for manufacturing piezoelectric element
JP2008041921A (ja) 圧電薄膜素子およびその製造方法、ならびにインクジェットヘッドおよびインクジェット式記録装置
JP2005354026A (ja) 圧電素子及びインクジェットヘッド並びにそれらの製造方法、並びにインクジェット式記録装置
JP2008211965A (ja) 圧電体素子、インクジェットヘッドおよびインクジェット式記録装置
US7399066B2 (en) Piezoelectric element, ink jet recording head and producing method for piezoelectric element
JP2004186646A (ja) 圧電素子、インクジェットヘッド及びこれらの製造方法、並びにインクジェット式記録装置
JP2008066623A (ja) 圧電体素子、インクジェットヘッド、およびインクジェット式記録装置
JP5194463B2 (ja) 圧電体薄膜素子の製造方法
JP2008028285A (ja) 圧電体薄膜素子、インクジェットヘッドおよびインクジェット式記録装置
US7023036B2 (en) Ferroelectric element and actuator using the same, and ink jet head and ink jet recording device
JP2009262421A (ja) インクジェットヘッドおよびインクジェット式記録装置
JP2007331318A (ja) インクジェットヘッドユニット、インクジェット式記録装置、インクジェットヘッドの製造方法
JP6221270B2 (ja) 電気−機械変換素子の製造装置、電気−機械変換素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130409