JP2008199400A - 信号受信装置 - Google Patents

信号受信装置 Download PDF

Info

Publication number
JP2008199400A
JP2008199400A JP2007033870A JP2007033870A JP2008199400A JP 2008199400 A JP2008199400 A JP 2008199400A JP 2007033870 A JP2007033870 A JP 2007033870A JP 2007033870 A JP2007033870 A JP 2007033870A JP 2008199400 A JP2008199400 A JP 2008199400A
Authority
JP
Japan
Prior art keywords
section
signal
filter bank
unit
ofdm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007033870A
Other languages
English (en)
Other versions
JP4322928B2 (ja
Inventor
Hideo Kasami
英男 笠見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007033870A priority Critical patent/JP4322928B2/ja
Priority to US11/858,778 priority patent/US7907674B2/en
Publication of JP2008199400A publication Critical patent/JP2008199400A/ja
Application granted granted Critical
Publication of JP4322928B2 publication Critical patent/JP4322928B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03611Iterative algorithms
    • H04L2025/03617Time recursive algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26534Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/2654Filtering per subcarrier, e.g. filterbank multicarrier [FBMC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】電力消費の低い信号受信装置を提供する。
【解決手段】区間設定部5は、1OFDMシンボル区間のうち信号を受信する区間を設定する。電力制御部6は、1OFDMシンボル区間のうち信号受信区間では、周波数変換部2およびA/D変換部3への電力の供給を行い、アンテナ1で受信した信号の周波数変換およびA/D変換が行われるようにする。一方、電力制御部6は、信号受信区間以外の区間では、周波数変換部2およびA/D変換部3への電力の供給を停止する。復調処理は、周波数変換およびA/D変換された信号受信区間の信号を用いて行う。1OFDMシンボル区間のうち、一部の区間の信号を用いて復調処理を行ない、復調処理に用いない区間では周波数変換部2およびA/D変換部3への電力供給を行わないため、電力消費の低減化を図ることができる。
【選択図】図1

Description

本発明は、信号受信装置に係わり、特に無線信号を受信する場合の消費電力を低減化することを可能とする信号受信装置に関する。
無線信号を受信する信号受信装置の低消費電力化の方法として、信号送信装置から時分割で複数のデータを伝送する際に、送信するデータの構成(データ位置)に関する情報をフレームの先頭に挿入し、信号受信装置では、そのデータ位置に関する情報に基づいて、必要なデータだけを受信する方法が提案されている(例えば、特許文献1を参照)。このようにすることで、信号受信装置側では、不要なデータを受信するタイミングにおいては、受信動作を停止することができるため、低消費電力化を図ることが可能になる。
特開2001−69023号公報(4頁、図1)
しかしながら、上述した技術は、送信側から送信されるデータを選択的に受信する場合のデータ送受信において用いることができるに過ぎず、例えば、送信されたデータをすべて受信する必要がある場合には適用することはできない。
本発明は、上記従来技術の問題点を解決するためになされたものであって、OFDM(Orthogonal Frequency Division Multiplexing)シンボルの一部の区間に対応するOFDM信号を受信して、受信した一部のOFDM信号から原シンボルを復調することで、信号を受信しない区間において信号受信動作を停止して低消費電力化を実現することを可能とした信号受信装置を提供することを目的とする。
本発明の信号受信装置は、1OFDM(Orthogonal Frequency Division Multiplex)シンボル区間のうちのOFDM信号を受信するべき第1の区間を設定する設定手段と、OFDM信号を受信するアンテナと、前記アンテナで受信したOFDM信号を周波数変換して、変換OFDM信号を得る周波数変換手段と、前記変換OFDM信号をA/D変換して、デジタルOFDM信号を得るA/D変換手段と、前記デジタルOFDM信号からOFDMシンボルを復調する復調手段と、前記周波数変換手段と前記A/D変換手段への電力の供給を制御する電力制御手段とを備え、前記電力制御手段は、前記区間設定手段で設定されたOFDMシンボル区間中の第1の区間では前記周波数変換手段および前記A/D変換手段への電力の供給を行い、前記第1の区間以外の第2の区間では、前記周波数変換手段および前記A/D変換手段の少なくとも一部への電力の供給を停止し、前記復調手段は、前記デジタルOFDM信号のうち前記第1の区間に対応するOFDM信号からOFDMシンボルを復調することを特徴とする。
本発明によれば、OFDM信号を受信する信号受信装置において、OFDMシンボルの一部の区間に対応するOFDM信号を受信して、受信した一部のOFDM信号から原シンボルを復調することで、信号を受信しない区間において信号受信動作を停止して電力の消費を低減化することが可能となる。
以下、図面を参照しながら本発明の実施形態に係わる信号受信装置について詳細に説明する。なお、以下の実施形態中では、同一の番号を付した部分については同様の動作を行うものとして、重ねての説明を省略する。
(第1の実施形態)
本発明の第1の実施形態の信号受信装置について説明する。この第1の実施形態に係わる信号受信装置は、「連続受信モード」と「間欠受信モード」とを有する。「連続受信モード」においては、常時、無線信号を受信して信号の復調動作を行うが、「間欠受信モード」では、間欠的に無線信号を受信し、受信した時間区間の信号から原信号を復調する。そして、信号を受信しない時間区間においては、信号受信装置の一部に対する電力供給を停止し、電力消費の低減化を図る。「連続受信モード」と「間欠受信モード」の切替えは区間設定部5で行われるが、区間設定部5におけるモードの切替え動作や、各モードにおける各部の動作の詳細については後述する。
図1は、本発明の第1の実施形態に係わる信号受信装置の構成を示すブロック図である。以下、図1を参照して、本発明の第1の実施形態に係わる信号受信装置の構成および動作について説明する。
アンテナ1で受信されたOFDM信号は、周波数変換部2でIF信号またはベースバンド信号に変換され、続いて、A/D変換部3で、アナログ信号からデジタル信号に変換される。
A/D変換部3で変換されたデジタル信号は、「連続受信モード」では、スイッチ4を介してシンボル同期部50に入力される。シンボル同期部50は、OFDMシンボルの同期を行い、シンボル同期信号を生成する。
図2に、シンボル同期部50の構成を示す。シンボル同期部50は、少なくとも1OFDMシンボル区間の受信信号を用いてシンボル同期信号を生成する。すなわち、受信信号を遅延部20で有効シンボル時間分だけ遅延させ、相関算出部21で受信信号と遅延信号との相関値を算出する。相関値は、時刻ごとに、その時刻からOFDM信号のガードインターバル(GI)と同じ長さの時間区間だけ過去の時刻までの信号を用いて算出する。ここで、1OFDMシンボルには、ガードインターバル(図3の「X」の区間)と、そのガードインターバルと同じデータが含まれる区間(図3の「Y」の区間)とが含まれているため、受信信号と遅延信号との間の相関値を算出すると、図3に示すように、相関値には周期的にピークが表れる。そのピークをピーク検出部22で検出することで、各OFDMシンボルの先頭位置を知ることができる。そして、ピーク検出部22は、検出したピークを用いてシンボル同期信号を生成する。なお、このようなシンボル同期は、「連続受信モード」において行われ、「間欠受信モード」では行われない。
区間設定部5は、図4に示すように、シンボル同期部50で生成されたシンボル同期信号に基づいて、OFDMシンボル区間のうち、OFDM信号を受信すべき区間「A」を設定する。区間「A」の区間長「L」は、1OFDMシンボル区間のうちガードインターバル区間を除いた区間の区間長の1/2以上となるように設定する。これは、後述する信号復調処理において、有効シンボル長の1/2の長さの区間の信号を用いて信号の復調を行うことによる。なお、区間設定方法については後述する。
区間設定部5は、OFDM信号を連続して受信する「連続受信モード」と、間欠的に受信する「間欠受信モード」の切替えも行う。
「連続受信モード」では、電力制御部6により、周波数変換部2およびA/D変換部3は常にオンの状態(電力が供給される状態)に設定される。そして、スイッチ4が接続されて、シンボル同期部50によるシンボル同期の更新や区間設定部5による区間「A」の設定の更新が継続して行われる。
このとき、スイッチ7aは、FFT部8側へ接続される。すなわち、A/D変換部3を経由した信号は、FFT部8へ入力され、FFT部8で有効シンボル区間の受信信号が周波数領域の信号に変換される。FFT部8からの出力信号は、次に、複素除算部9に入力され、複素除算部9でチャネル推定値による1タップ等化処理が行われる。そして、判定部10におけるビット判定処理を経て、ビタビ復号部11で誤り訂正処理が行われ、原信号が復調される。
一方、「間欠受信モード」では、区間「A」では、電力制御部6により、周波数変換部2およびA/D変換部3などへの電力供給がなされ、OFDM信号の受信が行われるが、区間「A」以外の区間では、周波数変換部2およびA/D変換部3の少なくとも一部の部分への電力供給がオフに設定され、OFDM信号の受信動作が停止される。
一般的に、図5に示すように、高周波信号を処理するデバイスほど過渡応答が早いので、電力供給をオフにできる時間が長い。例えば、RF帯のLNA(Low Noise Amplifier)やミキサーは過渡応答が早く、ベースバンドのアンプは過渡応答が遅い。そこで、例えば、周波数変換部2に含まれるLNAへは、区間「A」でのみ電力の供給を行い、区間「A」以外の区間では電力供給を停止するようにしてもよい。そして、それ以外の部分(アンプなど)への電力供給は区間によらず常に行うようにすることにより、LNAにおける電力消費を低減させるとともに、電力供給の切替えにともなう過渡応答の遅れにより、信号受信装置の動作が不安定になることを避けることが可能となる。
また、バイアス回路は過渡応答が遅い(数百μsecオーダー)ので、周波数変換部2やA/D変換部3のバイアス回路へは常に電力を供給するとともに、区間「A」以外の区間では、これらの各部のトランジスタ回路への電力供給を停止するようにしてもよい。この場合、図6に示すように、バイアス回路からの出力のスイッチを切替えることにより、トランジスタ回路への電力の供給を切替えられるようにすることが好ましい。
そして、区間「A」で受信したOFDM信号からOFDMサブキャリア間の干渉を低減して原信号が復調される。
ここで、電力制御部6における電力供給制御の切替えは、アナログ部(周波数変換部2やA/D変換部3など)の過渡応答特性を考慮して、図7に示すように、区間「A」が開始するよりも早いタイミングで行うようにするとよい。また、アナログ部の過渡特性を信号受信装置の電源投入時に自動的に測定するようにしておき、その測定された過渡応答特性に基づいて、電源をオンにするタイミングを設定できるようにしてもよい。
また、「間欠受信モード」では、スイッチ4が解除され、シンボル同期部50におけるシンボル同期や区間設定部5における区間設定は行われない。
ここで、OFDMシンボルのうち、一部のシンボルを用いて原信号を復調する方法としては、例えば、「笠見ほか、“OFDMにおけるガードインターバルを超えるマルチパス遅延に対するフィルタバンクを用いた適応等化方式の検討”、2005年電子情報通信学会ソサイエティ大会、B−5−71」に記載された方法を用いることができる。ただし、上記文献に記載された方法では、図8に示すように、遅延波が先行波のガードインターバルを超える伝播環境を想定しており、有効シンボル区間のうち、遅延波による前シンボルからの干渉が含まれない区間を等化に用いている点で本実施形態と異なる。
以下、OFDMシンボル区間の一部の区間に対応する信号からOFDMシンボルを復調する方法について簡単に説明する。
まず、スイッチ7aがフィルタバンク12側へと接続される。そして、フィルタバンク12が、区間「A」に含まれる信号のうち、有効シンボル長の1/2の長さの区間を抽出して、その抽出された区間に含まれる信号を周波数変換する。続いて、最尤推定部13が、フィルタバンク12からの出力ごとに、チャネル推定値とフィルタバンクの周波数特性およびサブキャリアの変調信号の候補から複数のレプリカを生成し、フィルタバンク出力とレプリカとの間の誤差が最小となるレプリカを選択する。さらに、選択したレプリカから、サブキャリアの変調信号を選択する。最尤推定部13でサブキャリアの変調信号が選択されると、次に、判定部14がビット判定処理を行い、ビタビ復号部11で誤り訂正処理が行われ、原信号が復調される。
なお、上述した例では、フィルタバンク12が、区間「A」から、ひとつの区間だけを抽出して周波数変換する場合について説明したが、図9に示すように、フィルタバンク12で区間「A」から有効シンボル長の1/2の長さの区間を、時間をずらしながら(τ,τ,...,τ)複数区間抽出し、最尤推定部13において、抽出された複数の区間ごとにフィルタバンク出力とレプリカとの間の誤差を求め、それらの誤差の平均が最小となるレプリカを選択するようにしてもよい。
このように、「間欠受信モード」において、OFDMシンボルの一部である区間「A」から原信号を復調し、区間「A」以外の区間では、信号の受信動作を停止することで、区間「A」以外の区間において、電力の消費を低減化することが可能となる。ここで、周波数変換部2とA/D変換部3の消費電力は、デジタル信号を処理するほかの各部の消費電力の約10倍程度であり、全体の消費電力の大部分を占めるので、このような間欠受信動作を行うことにより、信号受信装置の大幅な低消費電力化を図ることができる。
次に、図10を用いて、区間設定部5による区間設定方法を示す。
区間設定部5は、シンボル同期信号に基づいてOFDMシンボル区間のうちガードインターバル区間を除いた区間の中央を含む区間長「L」の区間を区間「A」として設定する。例えば、図10に示すように、OFDMシンボル区間のうちガードインターバル区間を除いた区間の中央を中心として、前後に「L/2」の区間を有する区間を区間「A」として設定する。このように、区間「A」を、ガードインターバル区間を除いた区間の中央部に位置させることにより、シンボル同期が一度確立された後に、伝搬環境の変化によりシンボル同期にずれが生じた場合にも、当該OFDMシンボルの前後に送信されたシンボルからの影響を受けにくくなるため、同期ずれによるシンボル間干渉の発生を回避することが可能となる。
図11は、区間設定部5による別の区間設定方法を示す図である。
図11に示す例では、区間設定部5は、ガードインターバルを含むOFDMシンボル区間の中央を中心として、前後に「L/2」の区間を有する区間を区間「A」として設定している。このようにすることで、遅延波の遅延時間が小さい伝搬環境において、特に、当該OFDMシンボルの後に送信されたシンボルによる干渉の発生を回避することが可能となる。
次に、図12を用いて、区間設定部5におけるモード切替えの方法を説明する。
区間設定部5は、あらかじめ定めた時間「T」ごとに「間欠受信モード」と「連続受信モード」を切り替えるようにする。上述したように、「連続受信モード」では、シンボル同期部50がシンボル同期を行う。そのため、伝搬環境の変化などによりシンボル同期がずれた場合でも、「連続受信モード」と「間欠受信モード」を周期的に切替えることにより、「連続受信モード」において定期的なシンボル同期を行うことができる。また、「間欠受信モード」と「連続受信モード」を切り替える時間「T」を大きい値に設定すれば、「間欠受信モード」における電力消費低減化の効果を長時間得ることができるようになるため、望ましい。
このような区間設定部5における「間欠受信モード」と「連続受信モード」を切替える時間の設定や、「間欠受信モード」における信号を受信する区間「A」の区間長の設定は、受信したOFDM信号の品質を品質測定部15で測定し、測定された品質に基づいて行うことが好適である。以下、品質測定部15と、品質測定部15で測定された品質情報に基づく区間設定部5の動作について説明する。
品質測定部15は、受信したOFDM信号の品質を測定し、測定された品質情報を区間設定部5へ送る。ここで、信号品質としては、復調信号の受信電力、EVM(Error Value Magnitude:変調誤差)、最尤推定における尤度などが用いられる。品質測定部15から送られた品質情報は区間設定部5に入力され、区間設定部5において、モードの切替え時間「T」に反映される。具体的には、品質測定部15から入力された信号品質が低い場合には、モード切替え時間「T」を小さい値に設定し、「連続受信モード」におけるシンボル同期が頻繁に行われるようにして、信号品質の劣化を回避できるようにする。また、信号品質が低い場合には、区間長「L」を長い値に設定するようにしてもよい。このようにすることで、OFDMサブキャリア間干渉を低減する能力が大きくなるので、信号品質を改善することが可能となる。
なお、上述した実施形態では、区間「A」以外の区間において、周波数変換部2およびA/D変換部3への電力供給を停止する場合の実施形態について説明したが、デジタル信号を処理する部分(例えば、フィルタバンク12、最尤推定部13など)についても、復調処理が完了後に電力供給を停止して、低消費電力化することも可能である。
最後に、図13を用いて、本発明の第1の実施形態に係わる信号受信装置の動作の流れについて説明する。ここで、図13は、本発明の第1の実施形態に係わる信号受信装置の動作を示すフローチャートである。
まず、区間設定部5において、「連続受信モード」と「間欠受信モード」の設定が行われる(ステップS101)。信号の受信を開始した段階では、まずシンボル同期を行う必要があるため、「連続受信モード」に設定される。
「連続受信モード」に設定されると、アンテナ1でOFDM信号が受信され(ステップS102)、受信された信号が周波数変換部2、A/D変換部3へと送られる。「連続受信モード」では、電力制御部6により、周波数変換部2およびA/D変換部3への電力供給が行われているので、受信された信号の周波数変換(ステップS103)およびA/D変換(ステップS104)が行われる。
そして、A/D変換部3でA/D変換された信号は、FFT部8、複素除算部9、判定部10、ビタビ復号部11を経て原信号へ復調される(ステップS105)。
また、A/D変換部3でA/D変換された信号は、別途シンボル同期部50にも送られ、シンボル同期が行われる(ステップS106)。そして、シンボル同期された信号に基づいて、区間設定部5において、「間欠受信モード」おける信号を受信する区間「A」が設定される(ステップS107)。
次に、あらかじめ定められた時間が経過すると、区間設定部5は、「連続受信モード」から「間欠受信モード」へとモードを切替える(ステップS101)。
「間欠受信モード」では、電力制御部6から周波数変換部2およびA/D変換部3への電力の供給が制御される。すなわち、信号を受信する区間「A」では、周波数変換部2およびA/D変換部3への電力の供給が行われ、アンテナで受信された(ステップS108)信号の周波数変換(ステップS109a)およびA/D変換(ステップS109b)が行われる。一方、信号の受信を停止する区間では、周波数変換部2およびA/D変換部3への電力供給が停止される(ステップS109c)。
「間欠受信モード」における信号の復調は、区間「A」で受信した信号を用いて、フィルタバンク12、最尤推定部13、判定部14、ビタビ復号部11を介して行われる(ステップS110)。
そして、さらにあらかじめ定められた時間が経過すると区間設定部5は、「間欠受信モード」から「連続受信モード」へとモードを切替え、上述した動作を繰り返す。
以上が、本発明の第1の実施形態に係わる信号受信装置の動作の流れである。
なお、この信号受信装置は、例えば、汎用のコンピュータ装置を基本ハードウェアとして用いることでも実現することが可能である。すなわち、区間設定部5、電力制御部6、FFT部8、複素除算部9、判定部10、14、ビタビ復号部11、フィルタバンク12、最尤推定部13、品質測定部15、および、シンボル同期部50は、上記のコンピュータ装置に搭載されたプロセッサにプログラムを実行させることにより実現することができる。このとき、信号受信装置は、上記のプログラムをコンピュータ装置にあらかじめインストールすることで実現してもよいし、CD−ROMなどの記憶媒体に記憶して、あるいはネットワークを介して上記のプログラムを配布して、このプログラムをコンピュータ装置に適宜インストールすることで実現してもよい。
(第2の実施形態)
本発明の第2の実施形態の信号受信装置について説明する。
図14は、本発明の第2の実施形態に係わる信号受信装置の構成を示すブロック図である。第1の実施形態と異なる点は、レプリカ減算部16とビタビ復号部17である。
「間欠受信モード」において、レプリカ減算部16は、最尤推定部13で選択されたレプリカ成分から復調対象のサブキャリアに対応する成分を除いた残りのレプリカ成分をフィルタバンク出力から減算する。これにより、OFDMサブキャリア間の干渉が低減された軟判定値が生成される。軟判定値はビタビ復号部17に入力され、ビタビ復号部17は、軟判定ビタビ復号処理を行う。
このように本発明の第2の実施形態に係わる信号受信装置によれば、軟判定ビタビ復号処理を行うので、ビタビ復号のパスメトリックを計算する際に雑音の影響も加味することができ、信号受信性能を改善することが可能となる。
(第3の実施形態)
本発明の第3の実施形態の信号受信装置について説明する。
図15は、本発明の第3の実施形態に係わる信号受信装置の構成を示すブロック図である。第1の実施形態と異なる点は、最小誤差検出部18とビタビ復号部19である。
「間欠受信モード」において、最小誤差検出部18は、最尤推定部13で計算された誤差から復調対象のサブキャリアの変調信号の候補の各々に対する誤差の最小値を検出する。これにより、変調信号の候補の各々に対するメトリックが生成される。メトリックはビタビ復号部19に入力され、ビタビ復号部17は、尤度を考慮したビタビ復号処理を行う。
このように本発明の第3の実施形態に係わる信号受信装置によれば、尤度を考慮してビタビ復号処理を行うので、ビタビ復号のパスメトリックを計算する際に信頼度が低いデータの影響を小さくすることができ、信号受信性能を改善することが可能となる。
(第4の実施形態)
本発明の第4の実施形態の信号受信装置について説明する。
図16は、本発明の第4の実施形態に係わる信号受信装置の構成を示すブロック図である。第1の実施形態と異なる点は、線形変換部30と判定部31である。
「間欠受信モード」において、区間設定部5で設定された区間「A」(区間長「L」)の受信信号は、線形変換部30に入力され、線形変換部30において線形変換処理が行われる。以下に、線形変換処理の例を示す。
有効シンボル長をN、データサブキャリア数をMとすると、OFDM信号の有効シンボル区間のうち、区間「A」(区間長「L」)に対応する送信信号s(n)(n=0,1,...,L−1)は、(1)式で与えられる。ただし、区間長「L」は、N>L≧Mとなるように設定されるものとする。
Figure 2008199400
x(k)は、例えば、IQコンスタレーション上のマッピング点を示し、データが割り当てられないサブキャリア(k=M,M+1,...,N−1)に関してはx(k)=0であるものとする。
(1)式を行列表現すると(2)式を得る。
Figure 2008199400
このとき、本実施形態に係わる線形変換のための線形行列は(3)式で与えられる。
Figure 2008199400
(3)式において、Hは行列の複素共役転置、E{・}は期待値、Iは単位行列を表す。また、pは想定される雑音電力を表す。
ここで、特に、x(0),x(1),...,x(M−1)が互いに無相関であり、かつ、送信信号の平均電力をpと仮定すると、(4)式が得られる。
Figure 2008199400
さらに、p=1、p=0と仮定すると、(5)式が得られる。
Figure 2008199400
このとき、線形変換部30で行われる線形変換は、線形行列Bを用いて(6)式で与えられる。ここで、y(n)(n=0,1,...,L−1)は、送信信号s(n)に対応する受信信号である。また、x´(n)(n=0,1,...,M−1)は、送信側のサブキャリア変調信号x(n)に対応する推定値である。
Figure 2008199400
このようにして、線形変換部30において(6)式で表される線形変換処理が行われ、線形変換後の信号が判定部31へと入力される。
判定部31は、ビット判定処理を行い、ビット判定処理後の信号がビタビ復号部11に入力され、復号される。
このように本発明の第4の実施形態に係わる信号受信装置によれば、受信信号を線形変換処理して復調を行なうことにより、区間「A」の受信信号を用いて、通常のFFT処理に相当する処理を行ない、受信信号の周波数成分を抽出することができるので、復調のための演算量を削減することができる。
(第5の実施形態)
本発明の第5の実施形態の信号受信装置について説明する。
図17は、本発明の第5の実施形態に係わる信号受信装置の構成を示すブロック図である。第1の実施形態と異なる点は、電力制御部40、アンテナ41、周波数変換部42、D/A変換部43、他通信システムの変復調部44である。
本実施形態では、「間欠受信モード」において、区間「A」以外の区間では、他の無線通信システムからのデータの送信または受信を行う。すなわち、アンテナ41および周波数変換部42は、区間「A」以外の区間では、他の無線通信システムが送受信するOFDM信号の搬送波の周波数帯が設定される。この区間において、他の無線通信システムが受信を行う場合には、アンテナ41において設定された周波数帯の信号が受信される。受信された信号は、周波数変換部42およびA/D変換部3を経て、スイッチ7aを介して他の無線通信システムの変復調部44に送られる。一方、この区間において送信を行う場合には、他の無線通信システムの変復調部44から送信された信号がD/A変換部43でアナログ信号に変換され、周波数変換部42で周波数変換されて、アンテナ41から送信される。
電力制御部40は、このように区間「A」以外の区間において、他の無線通信システムからのデータの送受信を行う場合には、周波数変換部42やA/D変換部3への電力の供給を継続する。一方、区間「A」以外の区間において、他の無線通信システムによるデータの送受信を行わない場合には、周波数変換部42やA/D変換部3への電力の供給を停止し、電力消費の低減化を図る。
このように本発明の第5の実施形態に係わる信号受信装置によれば、アンテナ41、周波数変換部42、A/D変換部3を異なるシステム間で共有することができるので、電力消費の低減化とともに、無線通信システムを低コスト化することが可能になる。
(第6の実施形態)
本発明の第6の実施形態の信号受信装置について説明する。
本実施形態の信号受信装置について図18を参照して説明する。
本実施形態の信号受信装置は、区間設定部5とシンボル同期部50との間に、区間指示部1801を新たに設置している点が第1の実施形態の装置と異なる。この区間指示部1801の指示により、間欠受信区間を前方に設定する。
区間指示部1801は、シンボル同期部50から遅延プロファイルを受け取り、間欠受信区間を決定し、この間欠受信区間を区間設定部5に渡す。すなわち、区間指示部1801は、間欠受信区間の時間幅(区間長とも呼ぶ)LONと間欠受信区間の開始時刻とを区間設定部5に渡す。なお、遅延プロファイルは、信号受信装置が受け取った電波のパスがどれくらいの時間差で到来しているかを示している。図19を参照してより詳細に説明する。
本実施形態のシンボル同期部50、区間指示部1801の詳細について図19を参照して説明する。
シンボル同期部50は、遅延部20,相関算出部21,プロファイル検出部1901,先行波検出部1902,最大遅延時間遅延波検出部1903を含んでいる。
プロファイル検出部1901は、相関算出部21が算出した、受信信号と遅延信号との相関値を受け取り、相関値の周期的なピークが現れている遅延プロファイルを検出する。
先行波検出部1902は、先行波の有効シンボル区間を検出する。先行波検出部1902は、例えば、先行波の有効シンボル区間の先頭を検出する。
最大遅延時間遅延波検出部1903は、遅延波の先頭から遅延波の最後尾までの時間(最大遅延時間)を検出する。
(1)区間指示部1801は、先行波検出部1902が検出した有効シンボル区間の先頭を間欠受信区間の開始時刻とする。しかしながら、少し余裕を持たせ、有効シンボル区間の先頭から少し後方にずらした時刻を間欠受信区間の開始時刻としてもよい。区間指示部1801は、この間欠受信区間の開始時刻と間欠時間幅LONとを区間設定部5に渡す。後に示す図23が対応する。
(2)区間指示部1801は、最大遅延時間遅延波検出部1903が検出した最大遅延時間がガードインターバルよりも小さいか否かを判定する。最大遅延時間がガードインターバルよりも小さい場合には、区間指示部1801は、さらに、最大遅延時間がガードインターバルよりもどれだけ時間が小さいかを測定する。この場合、区間指示部1801は、この時間だけ間欠受信区間の開始位置をガードインターバルの終端時刻から前方にずらす指示を生成する。すなわち、間欠受信区間の開始位置をガードインターバルの終端時刻からこの時間だけ早める指示を生成する。もちろん、ガードインターバルにマージンを持たせている場合には、最大遅延時間が、ガードインターバルからマージンを引いた時間よりもどれだけ小さいかを判定する。後に示す図22が対応する。
区間指示部1801は、通常、上記(1)の処理を行い、上位から指令により上記(2)の処理を行う。また、区間指示部1801は、伝搬路の遅延広がりがある閾値より小さい判定した場合には上記(2)の処理を行い、閾値より小さくない場合には上記(1)の処理を行うようにしてもよい。
次に、間欠受信区間の設定位置の一例について図20を参照して説明する。第1の実施形態と異なる点は、間欠受信区間を前方に設定している点である。
本実施形態では、区間設定部5は、間欠受信区間の時間幅LONを、1OFDMシンボル区間のうちガードインターバル区間を除く長さLFFTの区間のうちの有効シンボル区間の中央より前方を中心とする、区間長LONを有する区間に設定する。間欠受信区間を有効シンボル区間の前方に限定することにより、有効シンボル区間のうちの間欠受信区間に含まれない区間を信号処理の時間に充てることができる。したがって、高性能な信号処理を行うことができ、受信性能が上がる。逆に言えば、一定の受信性能を得る状況下では、高性能な信号処理を行うことができれば、その分、間欠受信区間を短くすることができる。
間欠受信区間を有効シンボル区間の前方に限定することにより、信号処理の時間を増やすことができ、高性能な信号処理を行うことができるので、受信性能が上がり、その分、間欠受信の区間を狭めることができる。したがって、無線部および/またはA/D変換器を更に低消費電力化できる。信号処理の時間増加により信号処理部の消費電力が増加するが、無線部とA/D変換器の消費電力に対する信号処理部の消費電力は1/10程度と小さいので、信号受信装置全体としては低消費電力化できる。
別の効果として、信号処理の内容が同一の場合は、処理時間に余裕ができるので、時間内に処理を完了するために従来パラレル処理を行っていたところを、シリアル処理に変更することができるので、信号処理部の回路規模、つまり、チップサイズを小さくすることができ、チップコストを削減することができる。
比較のため、従来の受信装置における受信処理の開始時刻の一例について図21を参照して説明する。従来では有効シンボル区間の終了と同時に信号処理を開始するが、本実施形態では、間欠受信区間を有効シンボル区間の前方に設定して間欠受信区間が終了すると同時に信号処理を開始する。すなわち、本実施形態の方が従来に比較して信号処理を開始する時刻が早くなる。
次に、上記(2)の場合に対応する間欠受信区間の設定位置の一例について図22を参照して説明する。
図22において、間欠受信区間を、1OFDMシンボル区間の中央より前方を中心とする、区間長LONを有する区間に設定している。
このようにすることで、間欠受信区間の開始時刻をガードインターバルまで前方にすることができるので、さらに高性能な信号処理を行うことができる。したがって、受信性能が上がり、その分、間欠受信の区間を狭めることができるので、信号受信装置全体としては低消費電力化できる。特に、伝搬路の遅延広がりが小さい場合はシンボル間干渉が発生しないので有効である。
次に、上記(1)の場合に対応する間欠受信区間の設定位置の一例について図23を参照して説明する。
図23において、1OFDMシンボル区間のうちガードインターバル区間を除く区間、すなわち、有効シンボル区間の先頭を間欠受信区間の開始時刻とする、区間長LONを有する区間に設定している。図23とは異なり、ガードインターバルの終了時刻から少し有効シンボル区間にずれた位置を間欠受信区間の開始時刻に設定してもよい。
このようにすることで、間欠受信区間の区間長に関わらず、間欠受信区間の先頭がガードインターバル区間に入り込まない。通常、遅延波の遅延時間がガードインターバルを超えないようにシステム設計されているからシンボル間干渉が発生しない。
以下に、間欠受信区間を有効シンボル区間の前方に限定することにより生じた時間を信号処理時間にさらに付加することにより可能となる高性能な信号処理について、具体的な例をあげて説明する。
本実施形態における、高性能な信号処理を行うMLSE等化器(フィルタバンク12、最尤推定部13)の一例について図24を参照して説明する。ここでは、簡単のため、3つのFFT出力のみを示している。
間欠受信区間nをn≦n≦nとする。この場合、間欠受信区間長LONはLON=n−n+1となる。間欠受信区間長LONは、FFTサイズLFFTに対して70%以上の大きさに設定するのが好適である。
なお、LFFTポイントのIFFT(inverse fast Fourier transform)の出力は次式で与えられる。
Figure 2008199400
ここで、X(k)はk番目のサブキャリアの変調信号である。続いて、長さLCPのガードインターバルがIFFT出力の先頭に挿入される。
Figure 2008199400
間欠受信区間における受信信号は次式で与えられる。この受信信号はフィルタバンク12の入力となる。
Figure 2008199400
ここで、H(k)はk番目のサブキャリアのチャネル応答である。簡単のため、雑音は無視している。
図24において、まず、間欠受信区間における受信信号はLFFTポイントのフィルタバンク12に入力される。ここで、受信信号はLONポイントなので、LFFT−LONポイントは0が入力される。本実施形態では、FFT処理に明示的には窓を付けていないが、長さLONの矩形窓w=1を付けていると考えることができる。そこで、FFT出力をフィルタバンク出力と呼ぶことにする。フィルタバンク出力は次式(10)で与えられる。
Figure 2008199400
ここで、W(k)はw’の周波数特性であり、w’は次式(11)で与えられる。
Figure 2008199400
ここで、LONを奇数サンプルに設定すると、フィルタバンクの窓関数の係数w’を左右対称とすることができ、したがって、フィルタバンクの周波数特性が実数になる。後述するように、レプリカを生成する際にフィルタバンクの周波数特性を用いるので、フィルタバンクの周波数特性が実数になることでレプリカ生成の回路規模を削減できる。
続いて、フィルタバンク出力に対してMLSE2410,2411,2412が適用され、信号が復調される。窓関数の周波数特性により、各フィルタバンク出力にはα個離れた隣接サブキャリア成分のみが漏れ込む。そこで、上記式(10)は次式(12)のように書き換えられる。
Figure 2008199400
上式を用いてMLSEにおけるレプリカは次式(13)で与えられる。
Figure 2008199400
ここで、
Figure 2008199400
Figure 2008199400
はk番目のサブキャリアにおけるチャネル推定値と変調信号の候補である。フィルタバンク出力に対するレプリカの誤差は次式で与えられる。
Figure 2008199400
式(14)を用いて、2α+1個のサブキャリアが推定され、そのうち、m番目のサブキャリアが復調信号として出力される。
本実施形態では、MLSEの演算量を削減するため、次式(15)を用いた推定を行う。
Figure 2008199400
ここで、βはαより小さい値(β<α)である。式(15)を用いると、MLSEで考慮する隣接サブキャリア成分の範囲が狭くなるので、β−α個の隣接サブキャリアの残留成分の影響で推定精度は劣化する。
図25は残留成分の影響を示す図である。そこで、MLSEの推定値を確定値として用いるのではなく、仮判定値として用いる。すなわち、MLSEの推定値を用いて残留サブキャリア成分が計算され、さらに、フィルタバンク出力から減算される。上側成分は上側レプリカ生成部2404,2405,2406で生成され、下側成分は下側レプリカ生成部2407,2408,2409で生成される。残留ICI成分が除去されたフィルタバンク出力は次式(16)で与えられる。
Figure 2008199400
ここで、
Figure 2008199400
Figure 2008199400
は下側残留ICIと上側残留ICIであり、次式(17)で与えられる。
Figure 2008199400
ここで、
Figure 2008199400
Figure 2008199400
は隣接フィルタバンクZ(m−1)、Z(m+1)においてMLSEで推定された信号成分である。
残留ICI成分が除去されたフィルタバンク出力Z’(m)は、m番目のチャネル推定値
Figure 2008199400
の大きさに基づいて除算部2413,2414,2415により信頼度の重み付けが行われる。例えば、変調信号がQPSK信号の場合は次式(18)で与えられる重み付けが行われる。
Figure 2008199400
上式はフィルタバンク出力の軟判定値と考えることができ、軟判定値が軟判定ビタビ復号器に入力され、誤り訂正が行われた復号ビットは出力される。
(変形例1)
図26に示すように、式(17)における
Figure 2008199400
Figure 2008199400
は、それぞれZ(m−1)、Z(m+1)に対応する式(14)の誤差ε(m−1)、ε(m+1)の大きさに基づいて、誤差部2601,2602,2603が信頼度の重み付けをすることもできる。例えば、次式(19)、(20)で与えられる重み付けが行われる。
Figure 2008199400
誤差が大きいレプリカ成分をフィルタバンクから減算すると、かえって特性が劣化する場合がある。そこで、誤差が大きいときは減算する成分を小さくする。このようにすることで、受信性能を向上することができる。
(変形例2)
図27に示すように、ビタビ復号器2701の出力を用いて、変調信号を再変調部2702で再変調して
Figure 2008199400
を得る。
Figure 2008199400
を用いて、式(17)を次式(21)に示すように変更し、上側レプリカ生成部2404,2405,2406、下側レプリカ生成部2407,2408,2409がそれぞれ残留成分を生成、減算して、再度、軟判定ビタビ復号を行う。
Figure 2008199400
このようにすることで、誤り訂正後の信号が誤っている確率は小さいので、誤り訂正後の信号成分をフィルタバンクから減算することで、受信性能を向上することができる。別の効果として、等化処理に誤り訂正処理を組み合わせることで、等化処理の等化能力を下げて回路規模を削減しつつ受信性能を向上することができる。
(変形例3)
図28に示すように、ビタビ復号器2701の各出力に対応する尤度情報を用いて、変調信号を再変調部2801で再変調して
Figure 2008199400
を得る。
Figure 2008199400
を用いて、式(17)を次式に示すように変更し、上側レプリカ生成部2404,2405,2406、下側レプリカ生成部2407,2408,2409がそれぞれ残留成分を生成、減算して、再度、軟判定ビタビ復号を行う。
Figure 2008199400
誤差が大きいレプリカ成分をフィルタバンクから減算すると、かえって特性が劣化する場合がある。そこで、誤差が大きいときは減算する成分を小さくする。このようにすることで、受信性能を向上することができる。
(変形例4)
図29に示すように、復号器2903の前段にデインターリーバ2902を備え、復調対象のサブキャリアに対応する信号成分を除く信号成分のうち、誤り訂正の処理が完了している信号成分を、部分再変調部2904で生成し、部分レプリカ生成部2905に入力して残留成分を生成し、フィルタバンク出力から減算して軟判定値を生成し、生成された軟判定値を用いて、再度、復号器2903で誤り訂正を行う。
このようにすることで得られる効果は以下のとおりである。送信側が信号系列の順番を入れ替えるインターリーバを備えている場合、受信側では、信号系列の順番を元に戻すデインターリーバを備え、デインターリーバの処理後、誤り訂正部に入力するのが一般的である。この場合、現OFDM信号に対応する誤り訂正後の信号は、すぐに出力される信号と、数シンボル後に出力される信号とがある。したがって、1OFDM信号に対応する全ての誤り訂正後の信号が揃うまで待っていると数シンボル分の時間を要する。そこで、すぐに出力される信号だけを用いることで、処理時間が短縮し、かつ、受信性能を向上することができる。
図30にインターリーバを備えたシステムにおいて、1OFDM信号に対応する誤り訂正後の信号が揃うまでに要するシンボル数の例を示す。ここでは、1OFDM信号に16個のサブキャリアが含まれている。丸は各サブキャリアに対応する誤り訂正後の信号が出力されるタイミングを示しており、全ての信号が揃うまでに4シンボル分の時間を要する。したがって、黒丸で示すサブキャリア成分を再変調部2904に入力する。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
本発明の第1の実施形態に係わる信号受信装置の構成を示すブロック図。 本発明の第1の実施形態のシンボル同期部の構成を示すブロック図。 本発明の第1の実施形態のシンボル同期の方法を示す図。 本発明の第1の実施形態における1OFDMシンボル中の信号受信区間を示す図。 本発明の第1の実施形態の構成要素の過渡応答の速さ示す図。 本発明の第1の実施形態の電力供給の制御方法を示す図。 本発明の第1の実施形態の電力供給の制御方法を示す図。 OFDMシンボルの一部から原信号を復調する方法の一例を示す図。 本発明の第1の実施形態の原信号の復調方法の一例を示す図。 本発明の第1の実施形態の信号受信区間の一設定例を示す図。 本発明の第1の実施形態の信号受信区間の一設定例を示す図。 本発明の第1の実施形態のモード切替えの方法を示す図。 本発明の第1の実施形態の動作を示すフローチャート。 本発明の第2の実施形態に係わる信号受信装置の構成を示すブロック図。 本発明の第3の実施形態に係わる信号受信装置の構成を示すブロック図。 本発明の第4の実施形態に係わる信号受信装置の構成を示すブロック図。 本発明の第5の実施形態に係わる信号受信装置の構成を示すブロック図。 本発明の第6の実施形態に係わる信号受信装置の構成を示すブロック図。 本発明の第6の実施形態のシンボル同期部の構成を示すブロック図。 本発明の第6の実施形態における間欠受信区間の設定位置の一例を示す図。 従来の受信処理のタイミングを示す図。 本発明の第6の実施形態における間欠受信区間の設定位置の一例を示す図。 本発明の第6の実施形態における間欠受信区間の設定位置の一例を示す図。 本発明の第6の実施形態に係わる高性能な信号処理を行うMLSE等化器の構成を示すブロック図。 残留成分の影響を示す図。 本発明の第6の実施形態の変形例1に係わる高性能な信号処理を行うMLSE等化器の構成を示すブロック図。 本発明の第6の実施形態の変形例2に係わる高性能な信号処理を行うMLSE等化器の構成を示すブロック図。 本発明の第6の実施形態の変形例3に係わる高性能な信号処理を行うMLSE等化器の構成を示すブロック図。 本発明の第6の実施形態の変形例4に係わる信号受信装置の構成を示すブロック図。 1OFDM信号に対応する誤り訂正後の信号が揃うまでに要するシンボル数の一例を示す図。
符号の説明
1,41・・・アンテナ、2,42・・・周波数変換部、3・・・A/D変換部、4,7a,7b・・・スイッチ、5・・・区間設定部、6,40・・・電力制御部、8・・・FFT部、9・・・複素除算部、10,14,31・・・判定部、11,17,19,2701・・・ビタビ復号部、12・・・フィルタバンク、13・・・最尤推定部、15・・・品質測定部、16・・・レプリカ減算部、18・・・最小誤差検出部、20・・・遅延部、21・・・相関算出部、22・・・ピーク検出部、30・・・線形変換部、43・・・D/A変換部、44・・・他システム変復調部、50・・・シンボル同期部、1801・・・区間指示部、1901・・・プロファイル検出部、1902・・・先行波検出部、1903・・・最大遅延時間遅延波検出部、2404,2405,2406・・・上側レプリカ生成部、2407,2408,2409・・・下側レプリカ生成部、2413,2414,2415・・・除算部、2601,2602,2603・・・誤差部、2702,2801,2904・・・再変調部、2902・・・デインターリーバ、2903・・・復号器、2904・・・部分再変調部、2905・・・部分レプリカ生成部。

Claims (13)

  1. OFDM(Orthogonal Frequency Division Multiplex)信号の1OFDMシンボル区間のうちの、受信するべき第1の区間を設定する設定手段と、
    前記OFDM信号を受信するアンテナと、
    前記アンテナで受信した前記OFDM信号を周波数変換して、変換OFDM信号を得る周波数変換手段と、
    前記変換OFDM信号をA/D変換して、デジタルOFDM信号を得るA/D変換手段と、
    前記デジタルOFDM信号の前記第1の区間に対応するデジタルOFDM信号からOFDMシンボルを復調する復調手段と、
    前記周波数変換手段と前記A/D変換手段への電力の供給を制御する電力制御手段とを備え、
    前記電力制御手段は、前記区間設定手段で設定されたOFDMシンボル区間中の第1の区間では前記周波数変換手段および前記A/D変換手段への電力の供給を行い、前記第1の区間以外の第2の区間では、前記周波数変換手段および前記A/D変換手段の少なくとも一部への電力の供給を停止する
    ことを特徴とする信号受信装置。
  2. 1OFDMシンボル区間のうちのガードインターバル区間を除く区間の中央より前方を中心とする、あらかじめ定めた区間長を有する区間を前記第1の区間に設定することを前記設定手段に指示する指示手段をさらに備えることを特徴とする請求項1に記載の信号受信装置。
  3. 1OFDMシンボル区間のうちのガードインターバル区間を含む区間の中央より前方を中心とする、あらかじめ定めた区間長を有する区間を前記第1の区間に設定することを前記設定手段に指示する指示手段をさらに備えることを特徴とする請求項1に記載の信号受信装置。
  4. 1OFDMシンボル区間のうちのガードインターバル区間を除く区間の先頭を区間の開始とする、あらかじめ定めた区間長を有する区間を前記第1の区間に設定することを特徴とすることを前記設定手段に指示する指示手段をさらに備えることを特徴とする請求項1に記載の信号受信装置。
  5. 前記設定手段は、第1の区間の区間長を、1OFDMシンボル区間のうちガードインターバル区間を除く区間の区間長の1/2以上に設定することを特徴とする請求項1から請求項4のいずれか1項に記載の信号受信装置。
  6. 前記復調手段は、
    前記デジタルOFDM信号のうちの前記第1の区間に含まれる、ある長さの第3の区間に対応するOFDM信号を周波数変換して複数のフィルタバンク出力を得、
    前記フィルタバンク出力ごとに、チャネル推定値と前記フィルタバンクの周波数特性およびサブキャリアの変調信号の候補から複数のレプリカを生成し、
    前記フィルタバンク出力ごとに、前記フィルタバンク出力と前記レプリカとの間の誤差が最小となるレプリカを選択し最小レプリカを得、
    前記フィルタバンク出力ごとに最小レプリカから、サブキャリアの変調信号を選択し選択変調信号を得、
    前記選択変調信号を用いてOFDMシンボルの復調を行う
    ことを特徴とする請求項1に記載の信号受信装置。
  7. 前記復調手段は、
    前記デジタルOFDM信号のうちの前記第1の区間から前記長さの第3の区間を複数抽出し、抽出された区間ごとに前記複数のフィルタバンク出力を得、
    前記レプリカを選択する際には、前記第3の区間ごとに前記フィルタバンク出力と前記生成されたレプリカとの間の誤差を求め、それらの誤差の和が最小となるレプリカを選択する
    ことを特徴とする請求項6に記載の信号受信装置。
  8. 前記復調手段は、
    前記デジタルOFDM信号のうちの前記第1の区間に含まれる、ある長さの第3の区間に対応するOFDM信号を周波数変換して複数のフィルタバンク出力を得、
    前記フィルタバンク出力ごとに、チャネル推定値と前記フィルタバンクの周波数特性およびサブキャリアの変調信号の候補から複数のレプリカを生成し、
    前記フィルタバンク出力ごとに、前記フィルタバンク出力と前記レプリカとの間の誤差が最小となるレプリカを選択し最小レプリカを得、
    前記フィルタバンク出力ごとに最小レプリカに含まれる成分のうち、復調対象のサブキャリアに対応する成分を除く成分を前記フィルタバンク出力から減算して軟判定値を生成し、
    前記軟判定値を用いてOFDMシンボルの復調を行う
    ことを特徴とする請求項1に記載の信号受信装置。
  9. 前記復調手段は、
    前記デジタルOFDM信号のうちの前記第1の区間に含まれる、ある長さの第3の区間に対応するOFDM信号を周波数変換して複数のフィルタバンク出力を得、
    前記フィルタバンク出力ごとに、チャネル推定値と前記フィルタバンクの周波数特性およびサブキャリアの変調信号の候補から複数のレプリカを生成し、
    前記フィルタバンク出力ごとに、前記フィルタバンク出力と前記レプリカとの間の誤差を算出し、
    前記誤差から復調対象であるサブキャリアの変調信号の候補の各々に対する誤差の最小値を求め、
    前記最小値を用いてOFDMシンボルの復調を行う
    ことを特徴とする請求項1に記載の信号受信装置。
  10. 前記設定手段は、第1の区間の区間長を、奇数サンプルに設定することを特徴とする請求項6から請求項9のいずれか1項に記載の信号受信装置。
  11. 前記フィルタバンク出力から減算する成分を、対応する前記レプリカの誤差の大きさに応じてレベル調整するレベル調整部をさらに備えることを特徴とする請求項8に記載の信号受信装置。
  12. 前記復調手段は、誤り訂正を行う誤り訂正部をさらに備え、誤り訂正した信号成分のうち、復調対象のサブキャリアに対応する成分を除く成分を前記フィルタバンク出力から減算して軟判定値を生成し、前記生成された軟判定値を用いて、再度、誤り訂正を行う、ことを特徴とする請求項8に記載の信号受信装置。
  13. 前記復調手段は、前記誤り訂正部の前段にデインターリーバをさらに備え、復調対象のサブキャリアに対応する信号成分を除く信号成分のうち、誤り訂正の処理が完了している信号成分を、前記フィルタバンク出力から減算して軟判定値を生成し、前記生成された軟判定値を用いて、再度、誤り訂正を行う、ことを特徴とする請求項8に記載の信号受信装置。
JP2007033870A 2007-02-14 2007-02-14 信号受信装置 Expired - Fee Related JP4322928B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007033870A JP4322928B2 (ja) 2007-02-14 2007-02-14 信号受信装置
US11/858,778 US7907674B2 (en) 2007-02-14 2007-09-20 Orthogonal frequency division multiplexing (OFDM) signal receiver having reduced power consumption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007033870A JP4322928B2 (ja) 2007-02-14 2007-02-14 信号受信装置

Publications (2)

Publication Number Publication Date
JP2008199400A true JP2008199400A (ja) 2008-08-28
JP4322928B2 JP4322928B2 (ja) 2009-09-02

Family

ID=39685808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033870A Expired - Fee Related JP4322928B2 (ja) 2007-02-14 2007-02-14 信号受信装置

Country Status (2)

Country Link
US (1) US7907674B2 (ja)
JP (1) JP4322928B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010268177A (ja) * 2009-05-14 2010-11-25 Fujitsu Ltd 半導体集積回路及び受信信号処理方法
JP2010268059A (ja) * 2009-05-12 2010-11-25 Fujitsu Ltd 半導体集積回路及び受信信号処理方法
JP2013509770A (ja) * 2009-10-30 2013-03-14 バンガー ユニバーシティ 光周波数分割多重送信システムにおける同期プロセス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136085B2 (ja) * 2008-01-25 2013-02-06 富士通株式会社 受信装置及び移動端末装置並びに同期タイミング検出方法
ATE536069T1 (de) * 2008-06-05 2011-12-15 Ericsson Telefon Ab L M Verfahren und anordnung in einem zellularen kommunikationssystem
JP6160461B2 (ja) * 2013-11-29 2017-07-12 富士通株式会社 尤度重み付け回路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001251275A (ja) * 2000-03-08 2001-09-14 Matsushita Electric Ind Co Ltd ディジタル復調装置
JP2006246364A (ja) * 2005-03-07 2006-09-14 Sanyo Electric Co Ltd ダイバーシティ受信装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563862B1 (en) * 1998-10-21 2003-05-13 Thomson Licensing Sa Digital variable symbol rate modulation
US6269132B1 (en) * 1999-04-26 2001-07-31 Intellon Corporation Windowing function for maintaining orthogonality of channels in the reception of OFDM symbols
EP1071221B1 (en) * 1999-07-23 2006-08-30 Matsushita Electric Industrial Co., Ltd. Method to reduce the power consumption of radio receiver
US8036710B2 (en) * 2004-05-07 2011-10-11 Qualcomm, Incorporated Power-efficient multi-antenna wireless device
GB2439685B (en) * 2005-03-24 2010-04-28 Siport Inc Low power digital media broadcast receiver with time division
JP4245602B2 (ja) * 2005-11-25 2009-03-25 シャープ株式会社 デジタル復調装置、デジタル受信装置、デジタル復調装置の制御方法、デジタル復調装置の制御プログラム、及び、この制御プログラムを記録した記録媒体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001251275A (ja) * 2000-03-08 2001-09-14 Matsushita Electric Ind Co Ltd ディジタル復調装置
JP2006246364A (ja) * 2005-03-07 2006-09-14 Sanyo Electric Co Ltd ダイバーシティ受信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
堀川征一郎、笠見英男、鶴田誠、松岡秀浩、庄木裕樹: "OFDMにおけるガードインターバルを越えるマルチパス遅延に対するフィルタバンクを用いた適応等化方式", 電子情報通信学会技術研究報告, vol. 105, no. 559, JPN6008051424, 9 November 2006 (2006-11-09), JP, pages 25 - 30, ISSN: 0001310934 *
堀川征一郎、笠見英男、鶴田誠、松岡秀浩、庄木裕樹: "長遅延マルチパス伝搬環境におけるOFDM適応等化", 2006年電子情報通信学会総合大会講演論文集, vol. 通信1, JPN6008051425, 8 March 2006 (2006-03-08), JP, pages 451, ISSN: 0001310935 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010268059A (ja) * 2009-05-12 2010-11-25 Fujitsu Ltd 半導体集積回路及び受信信号処理方法
JP2010268177A (ja) * 2009-05-14 2010-11-25 Fujitsu Ltd 半導体集積回路及び受信信号処理方法
JP2013509770A (ja) * 2009-10-30 2013-03-14 バンガー ユニバーシティ 光周波数分割多重送信システムにおける同期プロセス

Also Published As

Publication number Publication date
US7907674B2 (en) 2011-03-15
US20080192866A1 (en) 2008-08-14
JP4322928B2 (ja) 2009-09-02

Similar Documents

Publication Publication Date Title
JP4421416B2 (ja) Ofdm方式の受信装置
JP5098553B2 (ja) Ofdm受信装置およびofdm受信方法
US20070086533A1 (en) Phase noise canceling OFDM receiver
JP2004266814A (ja) 通信装置
US8611475B2 (en) Channel estimation and symbol boundary detection method
RU2007137486A (ru) Коррекции хронирования в системе с множественными несущими и распространение на временной фильтр оценки канала
JPH11239115A (ja) 信号受信装置および方法、並びに提供媒体
WO2005117381A1 (en) A method for signal processing and a signal processor in an ofdm system
AU2007304830A1 (en) Improving receiver performance in a communication network
JP4322928B2 (ja) 信号受信装置
JP2007318315A (ja) Ofdm受信機
JP2008306318A (ja) 無線受信装置、無線受信装置の制御方法、無線受信装置の制御プログラム、および半導体集積回路
WO2011111583A1 (ja) 受信装置、受信方法、受信プログラム、及びプロセッサ
CN102263725B (zh) 移动ofdm接收机
JP4695523B2 (ja) 信号受信装置、信号受信方法および信号受信プログラム
JP2008227622A (ja) 受信装置及び通信方法
JP2009141740A (ja) Ici量推定装置、推定方法、およびこれを用いた受信装置
JP3795885B2 (ja) 受信装置および受信制御方法
JPWO2006092830A1 (ja) 受信装置
JP2005286362A (ja) デジタル受信機
JP5347720B2 (ja) 復調回路、復調方法、及び受信システム
JP2008092227A (ja) 無線通信装置
US8467478B2 (en) Propagation channel estimation apparatus, receiver, and propagation channel estimation method
KR101098760B1 (ko) 왜곡 파일럿 복구를 통해 채널을 추정하는 채널 추정기, 그채널 추정기를 포함한 ofdm 수신장치, 및 왜곡 파일럿보상을 통한 채널추정방법
US9794008B2 (en) Noise power estimator, receiver and method for noise power estimation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees