JP2008189482A - 石英ガラスおよび石英ガラス成形品 - Google Patents

石英ガラスおよび石英ガラス成形品 Download PDF

Info

Publication number
JP2008189482A
JP2008189482A JP2007022813A JP2007022813A JP2008189482A JP 2008189482 A JP2008189482 A JP 2008189482A JP 2007022813 A JP2007022813 A JP 2007022813A JP 2007022813 A JP2007022813 A JP 2007022813A JP 2008189482 A JP2008189482 A JP 2008189482A
Authority
JP
Japan
Prior art keywords
quartz glass
concentration
less
light
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007022813A
Other languages
English (en)
Inventor
Tadashi Enomoto
正 榎本
Koji Kusunoki
浩二 楠
Iwao Okazaki
巌 岡崎
Toru Adachi
徹 足立
Kazuya Kuwabara
一也 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007022813A priority Critical patent/JP2008189482A/ja
Publication of JP2008189482A publication Critical patent/JP2008189482A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

【課題】 十分な耐紫外線特性を有し、かつ紫外吸収端近傍における透過特性と製造性を高い次元で両立し得る新規な合成石英ガラスを提供する。
【解決手段】 波長170nmから380nmの全域における透過率が80%以上、163nmの吸収ピークが実質的に存在せず、OH含有量:30wtppm以下、Cl含有量:10wtppm以下、フッ素含有量:7000wtppm以上、30000wtppm以下、であることを特徴とする石英ガラスとした。
【選択図】 なし

Description

本発明はフッ素含有石英ガラスに関し、例えば、Xe エキシマランプユニットなどの発光手段に好適に用いることができる石英ガラスおよびその成形品に関する。
従来から、紫外線透過用の光学材料として、高純度石英ガラスが用いられている。
一方、近年においては、半導体製造技術の進展と共に、光洗浄や光エッチング等においてXe エキシマランプなどの短波長光源が使用される方向にある。
フッ素添加(含有)石英ガラスは、紫外吸収端が短波長側に制御されることが知られており、Xe エキシマランプのように、石英ガラスの紫外吸収端近傍における透過特性の制御が重要となる発光手段に対する光学材料として注目されている。石英ガラスの紫外吸収端近傍の透過特性が問われる用途としてはその他に、Fレーザー、Xe エキシマレーザー、重水素ランプ、および、これら発光手段に付随する光学部材等がある。
このような紫外線透過特性を有するフッ素添加石英ガラスが、特許文献1に開示されている。
特開2005−306650号公報
例えば、145−160nmという石英ガラスの紫外吸収端における放射光が存在するXe エキシマランプのような発光手段に石英ガラスを用いる場合を考える。Xe エキシマからの放射光は、まず放電容器を形成する石英管に到達するため、放電容器を形成する石英管が最も大きな影響を受ける。Xe エキシマからの放射光の発光エネルギーの一部は石英管に吸収されるため、石英管の温度上昇が発生する。石英ガラスの紫外吸収端は、温度の上昇にしたがって長波長側にシフトする。石英ガラスの紫外吸収端が長波長側にシフトするとXe エキシマからの放射光のより多くの部分を吸収してしまうため、石英管の温度はさらに上昇してしまう。つまり、石英管の温度上昇とそれによる紫外透過特性の悪化という悪循環が発生する。従来の石英ガラスにおいてはこのような悪循環が生じやすく、石英ガラスの紫外透過特性が加速度的に悪化しやすいという問題があった。
さらに、石英ガラスの紫外吸収端は、石英ガラスの仮想温度が上昇するにつれて長波長側へシフトすることが知られており、Xe エキシマランプのように石英ガラスの紫外吸収端における放射光が存在する発光手段に用いる石英ガラスにおいては、紫外吸収端をより精緻に制御するために仮想温度を制御することも重要となる。ここで、仮想温度は低ければ低いほど良いのは言うまでもないが、より低い仮想温度の石英ガラス材を得ようとすると、仮想温度を低下させるための加工時間が指数関数的に増大するという産業上の問題があった。
また、例えば、Fレーザーは波長157nmと短いが、スペクトルは鋭い。これに対して、Xe エキシマランプのようなランプ用途を考える際には、ブロードな発光に石英ガラスが耐える必要が生じる。このため、使用する石英ガラスについては、レーザー発振波長という特定の波長においてのみではなく、150nm〜190nmといった広い波長範囲の全域における透過特性を制御する必要もある。
従来のフッ素添加石英ガラスにおいては、このような問題について十分に検討されているとは言えず、これらの問題を解消した石英ガラスの提供が望まれていた。
本発明はこのような従来事情に鑑みて成されたもので、その目的とする処は、十分な耐紫外線特性を有し、かつ紫外吸収端における透過特性と製造性を高い次元で両立し得る新規な合成石英ガラスを提供することにある。
以上の目的を達成するために、本発明者らは鋭意研究を続け、所定の光学特性を備え、且つ、OH濃度、Cl濃度、F濃度を適切な範囲とすることで、前述の課題を達成し得ることを知見し、本発明を完成するに至った。
すなわち、本発明に係る石英ガラスは、波長170nmから380nmの全域における透過率が80%以上であり、
163nmの吸収ピークが実質的に存在せず、
OH含有量が30wtppm以下、
Cl含有量が10wtppm以下、
F含有量が7000wtppm以上、30000wtppm以下、
であることを特徴とする。
本発明によれば、波長170nmから380nmの全域にわたって、透過率が80%以上であるため、得られた石英ガラスの紫外透明性が確保される。このため、Xe エキシマのように広い波長領域にわたる発光スペクトルを有する場合であっても、不要な光学吸収が生ぜず、石英ガラスの温度上昇、紫外線吸収端の長波長側偏移という現象も生じにくい。この波長領域における光学吸収の原因は、パーオキシリンケージ(≡SiOOSi≡)、E’センター(≡Si・)、パーオキシラジカル(≡SiOO・)、NBOHCと呼ばれる非架橋酸素ホール中心(≡SiO・)、溶存塩素分子,等の化学的欠陥の存在があげられる。
また、本発明によれば、OH濃度、Cl濃度、F濃度が前記した適切な範囲に設定されているため、透過特性の紫外吸収端が短波長側に制御された石英ガラスが実現される。さらに、F濃度が高く石英ガラスの粘性が下がるため、短時間の加熱処理で所望の仮想温度とし、同時に、紫外吸収端をより精緻に制御することが可能な石英ガラスが実現される。
また、本発明に係る石英ガラス成形品は、前記石英ガラスを成形加工してなり、波長190nm以下の紫外光を放射する発光手段およびこれら発光手段に付随する光学部材として用いられる石英ガラス成形品であって、
163nmに吸収ピークを実質的に有さず、且つ、163nm以下の放射光の透過比率が0.05以上であることを特徴とする。
「163nm以下の放射光の透過比率」とは、光源からの放射光が本発明の石英ガラスを透過した場合に、その透過光における163nm以下の光の透過比率を表すものである(以下、単に「163nm以下比率」という)。「163nm以下比率」は、たとえば、光源がXe エキシマの場合は、Xe エキシマが本発明の石英ガラスに封入されてXe エキシマランプを形成していたとすると、本発明の石英ガラスを透過したXe エキシマランプからの全放射光に対する163nm以下の放射光の透過比率をいうことになる。
本発明では、「163nm以下比率」が0.05以上である場合を透過特性が良好と判定した。
さらに、Xe エキシマランプを例に取って「163nm以下比率」の計算方法を説明すると、Xe エキシマランプからの全放射光は、H.Esromにより、文献A(Appl.Sur.Sci.54(1992) P440)に開示されている。また、163nm比率は下記式〔数1〕により求める値である。
Figure 2008189482
ここで、I(λ)は、下記式〔数2〕で表されるXe の発光強度スペクトル、T(λ)はF添加石英ガラスの透過スペクトルを表す。また、λ、λはそれぞれ出力強度を実質的に求めるときの短波長側限界波長、長波長側限界波長をそれぞれ示す。λは150nm以下の波長、λは190nm以上の波長とすることが好ましく、ここでは、λ=150nm、λ=200nmとして評価するものとする。
Figure 2008189482
本発明によれば、例えば、Xe エキシマからの放射光を受けた際の163nm以下の光に対する吸収が小さく、かつ優れた耐紫外線特性を有する石英ガラスを実現できる。紫外吸収端が短波長側に精緻に制御されると、紫外吸収端近傍の光を照射された際に石英ガラスに吸収されるエネルギーが減少し、このような光を照射された際の石英ガラスの温度の上昇幅は減少する。石英ガラスの温度上昇幅が減少すると紫外吸収端の長波長側へのシフトが抑制されるため、吸収エネルギーの増加が抑制され、ガラス温度の上昇をさらに抑制することができるという好ましい循環が得られる。よって、所定の紫外線を受けた際の紫外吸収端近傍における透過特性の変化が低く抑制された、優れた耐紫外線特性を有する石英ガラスが実現される。
また、本発明の石英ガラス成形品は、波長190nm以下の紫外光を放射する発光手段およびこれら発光手段に付随する光学部材として好適に用いることができる。
本発明によれば、発光手段からの放射光のエネルギーを石英ガラスが吸収することに起因するガラスネットワーク中の構造変化が抑制されるため、構造変化によって生じる応力集中を未然に防止することができる。例えば、Xe エキシマランプの放電容器に当該石英ガラスを用いる場合には、Xe エキシマからの放射光のエネルギーを吸収することによる応力集中によって放電容器を形成する石英管にクラックが生じる確率を、低く抑制することが可能となる。その結果、従来よりも長寿命のXe エキシマランプを実現することが可能となる。
本発明に係る石英ガラスは以上説明したように、所定の光学特性を備え、且つ、OH濃度、Cl濃度、F濃度を適切な範囲とすることで、十分な耐紫外線特性を有し、かつ紫外吸収端近傍における透過特性と製造性を高い次元で両立することができる。よって、例えば、Fレーザー、Xe エキシマレーザー、Xe エキシマランプ、重水素ランプ等の発光手段に対する光学部材などとして好適に用いることができるなど、多くの効果を奏する。
以下、実施形態例などに基づき本発明について詳述する。
本発明においては、石英ガラスの紫外吸収端近傍における透過特性を精緻に制御し、優れた紫外透過特性を有する光学部材を得ることを要件とする。
また、本発明においては、前述した光学特性に加え、F濃度、OH濃度、Cl濃度を適切な範囲とすることが重要であり、以下、その点について説明する。
(F濃度)
石英ガラスに係る組成ネットワークの終端元素であるFを添加すると、SiOのネットワークの構造緩和が進み、紫外吸収端が短波長側にシフトする。ここで、Si−Fの結合のバンドギャップは、石英ガラスを構成するSi−O結合よりも大きい。バンドギャップが大きい方が、VUV領域の光による結合の切断や構造欠陥が生成する可能性が低く、過酷な条件下での使用に好ましい石英ガラスとなる。すなわち、F添加量は、基本的には多い方が好ましい。
石英ガラスのF添加量においては、約6000ppmにシリカネットワーク緩和速度の時定数のF濃度依存性に変曲点が存在する。このため、F濃度を7000ppm以上とすることで仮想温度の低下が容易となり、製造プロセス時間を短縮することができる。つまり、適度なF濃度範囲とすることにより初めて、紫外吸収端近傍における透過特性と、製造性とを高い次元で両立させることができる。この点において、F濃度を10000ppm以上とするとさらに好適である。
但し、F濃度が30000ppmを超えると、2Si−F → Si−Si+Fの反応の進行が顕著になり、加熱加工時に不良が発生し、結果として、Si−Si型の酸素欠乏欠陥に起因する163nmの吸収やF分子による288nmの吸収が現れ易くなる。よって、広く380nm以下の紫外用途に用いることを考慮すれば、F濃度が30000ppmを超えると好ましくない。
(OH濃度)
石英ガラスにおけるO−H結合のバンドギャップは、Si−O結合と比較して小さい。このためOH基が多量に存在すると、紫外吸収端が長波長側にシフトする。よって、OH濃度を所定濃度以下とすることは、紫外吸収端の制御に必須の要件である。
その一方、OH基はF同様にSiOのネットワークを切断する効果を有する。OH濃度が30wtppm以下であれば、OHによる紫外吸収端のシフトは実質的に無視することができ、かつ、OH基によるSiOネットワークの緩和効果も期待することができる。
(Cl濃度)
石英ガラス成分中にSi−Clが存在すると、OH基同様、150−170nmの波長域における透過特性を低下させる。また、Si−Clの結合エネルギーはSi−O結合と比較して小さいため、紫外線が照射されるとSi−Cl結合は破壊され易く、破壊されるとE’センターと呼ばれる構造欠陥が生成される。このような構造欠陥が生じると215nm付近に光学吸収を生じるという問題が顕在化する。また、構造欠陥の生成に起因する体積変化つまり内部歪みの発生につながる。このような現象は、例えば、Xe エキシマランプの放電容器を形成する石英管にクラックが生じやすくなる、つまりランプ寿命が短くなるという問題として顕在化する。
Cl濃度を10ppm以下とすれば、Si−Cl結合の破壊による悪影響は実質的に無視することができる。
本発明に係る石英ガラスの製造方法の一例を説明すれば、まず、SiClを火炎中で加水分解するスート法を用いてガラス微粒子堆積体を製造する。原料としてはシロキサン等を使用することも可能である。次に、ガラス微粒子堆積体を焼結炉に挿入し、SiF等のF添加剤含有雰囲気下でF添加処理、透明化ガラス化処理を行い、石英ガラス母材を得る。SiF等のF添加剤の添加濃度、加熱条件等は、所望のF添加量が得られるように適宜調整する。このような製法を用いることで、Al,Ca,Fe,Cu,Ni,Cr,Mg,Mn,Co,Ti,Na,K,LiおよびZnそれぞれの濃度が5wtppb以下の高純度の石英ガラスを得ることが可能である。これら金属不純物が石英ガラスに混入すると紫外〜可視の波長域に多様な吸収を生じるため、可能な限り濃度を低く抑制することが肝要である。
得られた石英ガラス母材は、所定の成形加工工程により、所望の形状に成形加工することができる。例えば、中空の石英管を製造する場合には、ピアッシング法や機械的に穿孔した後、内圧加圧延伸法等で薄肉細径化し、所望の形状の一次加工品を得る。続いてこの一次加工品を酸素濃度100%および温度1000℃の雰囲気とした石英炉心管を有する加熱炉内に5時間保持し、その後、処理温度を維持したまま雰囲気をNに置換して5時間保持し、さらに冷却速度を制御しながら温度を下降させることにより仮想温度を調整することで、最終的な石英ガラスの成形品としての石英管を得ることができる。また、板材のような管状以外の成形品についても、所望の形状に成形加工した後に、上述のような処理雰囲気でのアニール処理を行い、最終的な石英ガラスの成形品を得ることができる。
以下、より具体的な実験結果に基づき、本発明について詳述する。
まず、上記スート法により得られた石英ガラス母材から石英管(試料No.1〜21)を作製した。それぞれの試料における石英ガラス体としての特性(添加元素、仮想温度など)を表1中に示す。
Figure 2008189482
仮想温度は、以下のように、各試料の赤外透過スペクトルを測定し、2260cm−1の吸収帯のピーク位置から求めることが可能である。
(F添加石英における仮想温度決定方法)
F添加石英の仮想温度決定方法としては、赤外分光分析で測定される2260cm−1の吸収ピーク位置を用い、下記式〔数3〕により求めることが可能である。
Figure 2008189482
ここで、T は仮想温度[℃]、ν2260 は2260cm−1 吸収ピークの吸収波数[cm−1]を示す。また、α、βにはそれぞれ下記式〔数4〕により求められるものを採用する。
Figure 2008189482
ここで、[F]はフッ素濃度[mol%]を示す。
赤外分光分析により 2260cm−1 吸収ピーク位置を求めるための、測定条件(典型例)を下記表2に示す。
Figure 2008189482
上記条件で、1試料につき5回ずつの測定を行う。測定データから2260cm−1 吸収ピーク波数を求めるには、2260cm−1 帯吸収ピーク位置付近の吸光度スペクトルを拡大し、その頭頂部(吸収最大値)を与える波数を読みとることにより行う。
実際には、吸収ピーク測定波数のばらつきが若干認められることから、測定5回のうち、最小値と最大値を除いた3回分の測定を平均することで、求める仮想温度とする。
表1の「163nm以下比率」とは、前述のように光源からの放射光が本発明の石英ガラスを透過した場合に、その透過光における163nm以下の光の透過比率を表すものである。この場合、光源は、Xe エキシマであり、「163nm以下比率」は、Xe エキシマランプからの全放射光に対する163nm以下の放射光の透過比率をいう。表1の「163nm以下比率」では、この値が0.05以上である場合を透過特性が良好と判定した。具体的な計算方法は段落0011〜0014で述べたとおりである。
以下、各試料による条件と評価について説明する。
含有するF濃度の好適範囲について、以下の試料で比較検討を行った。
(実施例)
試料No.3〜試料No.9の石英ガラスは、いずれも本発明における好適な範囲でF添加されたものである。紫外吸収端が十分に制御されるため163nm以下比率が0.05より大きくなっている。さらにこれらの石英ガラスを用いてXe エキシマランプ管を製造する場合には、短いアニール時間で仮想温度を1000℃以下に制御できるという高い製造性を兼ね備える。加えて、仮想温度が制御されることによって紫外吸収端がより精緻に制御されることから、ランプの長寿命化という効果も奏する。特に、F添加濃度が10000wtppm以上の試料No.6〜試料No.9では、アニール後の仮想温度をさらに下げることができ、それに対応するように寿命がさらに長くなり、特に好ましいことが確認できる。
(比較例)
試料No.1の石英ガラスは、Fが添加されていないものである。試料No.2は、F添加濃度を5000wtppmとしたものである。これらの試料のようにF添加量が少ない場合、F添加に伴う脱OHが不十分であり、OH基が100ppm以上残留している。その結果、紫外吸収端の制御が不十分となり163nm以下比率が低く、本発明の課題を解決しない石英ガラスとなっている。また、試料No.3〜9と同等のアニール時間で加熱処理しても仮想温度が1000℃以下に低下しておらず、仮想温度の制御が重要な用途に対しては、F濃度が好適な範囲にある試料No.3〜9に対して製造性で劣ることがわかる。
また、試料No.10の石英ガラスは、F添加濃度を36000wtppmとしたものである。F濃度が20000wtppmより高濃度になると163nm吸収が増加する傾向が現れ、36000wtppmにおいて実際に透過特性に影響を与えうる程度の163nm吸収ピークが現れる。この影響で163nm以下比率が低下するため、本発明の課題を解決しない石英ガラスとなっている。
次に、含有するOH濃度の好適範囲について、F添加濃度を同一とし、OH残留量(OH含有量)を変えた試料で比較検討を行った。
(実施例)
OH残留量が1wtppm(試料No.7)、10wtppm(試料No.16)、30wtppm(試料No.17)のいずれにおいても、163nm以下比率は0.05以上となり、好適な範囲であることが確認できる。
(比較例)
OH残留量が40wtppm(試料No.18)では、163nm以下比率が0.05を割りこみ、良好特性とはならないことが確認できる。
次に、含有するCl濃度の好適範囲について比較検討する。残留Cl濃度(Cl含有量)の異なる石英ガラスは、ガラス微粒子堆積体にF添加処理する際に、SiFのようなF添加剤とClの共存雰囲気とし、さらにこの際のCl濃度を調整することにより製造することができる。
(実施例)
Clを添加していない試料No.7の石英ガラスには163nm吸収が殆どなく、163nm以下比率が良好である。また、Cl濃度が10ppmと、本発明の好適な範囲にある試料No.19の石英ガラスもまた163nm以下比率が良好である。
(比較例)
No.19〜21の試料を比較すると、Cl濃度の増加に伴って酸素欠乏欠陥に起因する163nm吸収が増加することがわかる。試料No.20および21のようにCl濃度が20wtppm以上の石英ガラスでは、実際に透過特性に影響を与えうる程度の163nmにおける吸収が発生し、163nm以下比率の点で特性良好とならない。
次に、仮想温度について検討する。
No.11〜15の試料は、F濃度、OH濃度、Cl濃度が本発明の好適な範囲に含まれる試料であり、アニール条件を調整することによって仮想温度を750℃から1150℃まで変化させたものである。いずれの試料においても163nm以下比率が0.05以上となっており、本発明の好適な範囲に含まれているが、仮想温度を低下させることにより163nm以下比率はさらに向上することがわかる。仮想温度を制御することにより、紫外吸収端における透過特性がより精緻に制御された結果である。
仮想温度を1150℃とした試料No.15の場合には、当該石英ガラスを用いてXe エキシマランプの石英管を形成すると、ランプ寿命が3000時間を割り込むという問題が生じる。仮想温度はガラスの構造緩和の指標であるため、仮想温度が高い石英ガラスには、内部歪みが相対的に高いレベルで残留していると考えられる。145−160nmという石英ガラスの紫外吸収端に放射スペクトルを有するXe エキシマランプの場合には、Xe エキシマからの放射光の一部は必ず石英管に吸収され、内部歪みが増加する。内部歪みが限界に到達した時に石英管にクラックが生じてランプが破損すると考えられることから、仮想温度の高い石英管を用いたXe エキシマランプにおいて、ランプ寿命が低下するものと考えられる。
つまり、Xe エキシマランプに対して本発明の石英ガラスを使用する場合には、ランプユニットに装着される状態において仮想温度を1000℃以下に制御することにより、ランプ寿命を3000時間以上とすることが可能となり、Xe エキシマからの発光のなかでも短波長の成分の透過特性が高く、かつ透過特性の劣化が低く、かつランプ寿命の長い高性能のランプが実現できる。本発明の開示する石英ガラスは、F濃度を7000ppm以上、30000ppm以下とすることにより石英ガラスの粘性が低くなっているため、短時間のアニール処理で、つまり高い製造性の下で1000℃以下の仮想温度とすることが可能である。
以上の結果から、本発明に係る石英ガラスの優位性を確認することができた。
以上、本発明の実施形態例を説明したが、本発明は前記した形態例、試験例に限定されるものではなく、特許請求の範囲に記載された技術的思想の範疇において各種の変更が可能であることは言うまでもない。

Claims (2)

  1. 波長170nmから380nmの全域における透過率が80%以上であり、
    163nmの吸収ピークが実質的に存在せず、
    OH含有量が30wtppm以下、
    Cl含有量が10wtppm以下、
    F含有量が7000wtppm以上、30000wtppm以下、
    であることを特徴とする石英ガラス。
  2. 請求項1記載の石英ガラスを成形加工してなり、波長190nm以下の紫外光を放射する発光手段およびこれら発光手段に付随する光学部材として用いられる石英ガラス成形品であって、
    163nmに吸収ピークを実質的に有さず、且つ、163nm以下の放射光の透過比率が0.05以上であることを特徴とする石英ガラス成形品。
JP2007022813A 2007-02-01 2007-02-01 石英ガラスおよび石英ガラス成形品 Pending JP2008189482A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022813A JP2008189482A (ja) 2007-02-01 2007-02-01 石英ガラスおよび石英ガラス成形品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022813A JP2008189482A (ja) 2007-02-01 2007-02-01 石英ガラスおよび石英ガラス成形品

Publications (1)

Publication Number Publication Date
JP2008189482A true JP2008189482A (ja) 2008-08-21

Family

ID=39749954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022813A Pending JP2008189482A (ja) 2007-02-01 2007-02-01 石英ガラスおよび石英ガラス成形品

Country Status (1)

Country Link
JP (1) JP2008189482A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192351A (ja) * 2007-02-01 2008-08-21 Ushio Inc 放電ランプ
JP2010056008A (ja) * 2008-08-29 2010-03-11 Ehime Univ 無水銀殺菌ランプおよび殺菌装置
JP2014030763A (ja) * 2013-10-25 2014-02-20 Ehime Univ 殺菌装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311801A (ja) * 2000-04-28 2001-11-09 Asahi Glass Co Ltd 合成石英ガラス
JP2001316123A (ja) * 2000-03-01 2001-11-13 Asahi Glass Co Ltd 合成石英ガラス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316123A (ja) * 2000-03-01 2001-11-13 Asahi Glass Co Ltd 合成石英ガラス
JP2001311801A (ja) * 2000-04-28 2001-11-09 Asahi Glass Co Ltd 合成石英ガラス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192351A (ja) * 2007-02-01 2008-08-21 Ushio Inc 放電ランプ
JP2010056008A (ja) * 2008-08-29 2010-03-11 Ehime Univ 無水銀殺菌ランプおよび殺菌装置
JP2014030763A (ja) * 2013-10-25 2014-02-20 Ehime Univ 殺菌装置

Similar Documents

Publication Publication Date Title
WO2009096557A1 (ja) エネルギー伝送用または紫外光伝送用光ファイバプリフォームおよびその製造方法
JP5706623B2 (ja) 合成シリカガラス及びその製造方法
JP3893816B2 (ja) 合成石英ガラスおよびその製造方法
JP4066632B2 (ja) 合成石英ガラス光学体およびその製造方法
KR20170134428A (ko) 유리 물품
JP2008189482A (ja) 石英ガラスおよび石英ガラス成形品
JP2005298330A (ja) 合成石英ガラスおよびその製造方法
JP4946960B2 (ja) 合成石英ガラスおよびその製造方法
JP2005170706A (ja) 紫外線吸収合成石英ガラス及びその製造方法
JP6824822B2 (ja) フォトマスク用シリカガラス部材
US8635886B2 (en) Copper-containing silica glass, method for producing the same, and xenon flash lamp using the same
JP4085633B2 (ja) 光学部材用合成石英ガラス
JP3926371B2 (ja) シリカガラス板材及びその製造方法
JP2009203142A (ja) フッ素添加石英ガラス
TW201714847A (zh) 高透過玻璃
JP2001311801A (ja) 合成石英ガラス
JP4364583B2 (ja) 耐紫外光ガラス材の製造方法
JP6569459B2 (ja) シリカガラスの製造方法及びシリカガラス
JP4459608B2 (ja) 合成石英ガラス部材の製造方法
JP5181729B2 (ja) 放電ランプおよび光放射装置
JP2003201125A (ja) 合成石英ガラスおよびその製造方法
JP2005306650A (ja) 合成石英管
JP2005310455A (ja) 紫外線ランプ
JP4166456B2 (ja) 真空紫外光用合成石英ガラス、その製造方法及びこれを用いた真空紫外光用マスク基板
JP4093393B2 (ja) 真空紫外光用高均質合成石英ガラス、その製造方法及びこれを用いた真空紫外光用マスク基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100125

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717