JP2008188498A - Treatment method and treatment equipment for water to be treated - Google Patents

Treatment method and treatment equipment for water to be treated Download PDF

Info

Publication number
JP2008188498A
JP2008188498A JP2007023156A JP2007023156A JP2008188498A JP 2008188498 A JP2008188498 A JP 2008188498A JP 2007023156 A JP2007023156 A JP 2007023156A JP 2007023156 A JP2007023156 A JP 2007023156A JP 2008188498 A JP2008188498 A JP 2008188498A
Authority
JP
Japan
Prior art keywords
water
tank
membrane separation
denitrification
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007023156A
Other languages
Japanese (ja)
Other versions
JP4536740B2 (en
Inventor
Atsushi Kawashima
淳 川嶋
Tetsuo Yamashita
哲生 山下
Katsuyoshi Tanida
克義 谷田
Akira Ishiyama
明 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2007023156A priority Critical patent/JP4536740B2/en
Publication of JP2008188498A publication Critical patent/JP2008188498A/en
Application granted granted Critical
Publication of JP4536740B2 publication Critical patent/JP4536740B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method for water to be treated and treatment equipment for the water to be treated which can suppress precipitation of phosphate in a membrane surface or the like in membrane separation of the water to be treated after denitrification treatment. <P>SOLUTION: The treatment method for the water to be treated is provided for denitrifying the water to be treated containing phosphate, phosphoric ions produced from phosphate and metal ions, and a nitrogen compound or ions corresponding thereto in a denitrification tank thereby obtaining denitrified water, then subjecting the denitrified water to membrane separation while air-diffusing the denitrified water in a membrane separation tank, wherein the membrane separation is performed under the conditions where the solubility of the phosphate to a liquid phase including the denitrified water in the separation tank reaches the solubility of the phosphate to the liquid phase including the water to be treated in the denitrification tank or above. The treatment equipment 1 for the water to be treated uses the method and comprises: the denitrification tank 5; the membrane separation tank 6 where, while the denitrified water is air-diffused, it is subjected to solid-liquid separation by a membrane; and a regulation means 101a where the solubility of phosphate to the liquid phase including the denitrified water in the membrane separation tank 6 is regulated so that the solubility of the phosphate to the liquid phase in the membrane separation tank 6 becomes the solubility of the phosphate in the denitrification tank or above. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被処理水の処理方法および処理設備に関する。   The present invention relates to a treatment method and treatment equipment for water to be treated.

従来、窒素化合物やそのイオンを含む有機性廃液や有機性固形物等は、嫌気性微生物を含む汚泥の存在下での嫌気性処理、生物学的な硝化および生物学的な脱窒を行ない、窒素化合物を除去する処理がなされている(例えば、特許文献1など)。また、前記特許文献1に記載の処理方法などを行なった場合、窒素化合物の除去後に得られた汚泥を含む処理水は、沈殿法または膜分離法(例えば、特許文献2など)による固液分離が施され、より清澄な処理水とされる。なかでも、膜分離法は、沈殿法に比べ、より清澄度の高い処理水を安定的に迅速に得ることができるため、固液分離の際に、多用されている。   Conventionally, organic waste liquids and organic solids containing nitrogen compounds and their ions are subjected to anaerobic treatment in the presence of sludge containing anaerobic microorganisms, biological nitrification and biological denitrification, A treatment for removing a nitrogen compound is performed (for example, Patent Document 1). In addition, when the treatment method described in Patent Document 1 is performed, the treated water containing sludge obtained after removing the nitrogen compound is separated into solid and liquid by a precipitation method or a membrane separation method (for example, Patent Document 2). Is applied to make the treated water clearer. Among these, the membrane separation method is frequently used in solid-liquid separation because it can stably and rapidly obtain treated water with higher clarity than the precipitation method.

しかしながら、前記特許文献2に記載の方法のように、膜分離法による固液分離を行なう場合、窒素化合物含有廃液の組成によっては、膜分離槽内で散気させながら膜分離を行なうと、膜分離槽内の液中に溶解していた二酸化炭素が大気中に移行されて膜分離槽内液のpHが上昇し塩類の溶解度が低下するため、膜表面などにスケールが生じ、膜分離の処理効率が著しく低下することがあるという欠点がある。また、前記特許文献1に記載の処理方法では、上述のように、膜表面などにおいて、スケールが発生した場合には、膜表面の薬品洗浄頻度が増加し、処理に要するコストが増大するという欠点がある。さらには、膜表面へのスケーリング及び薬品洗浄頻度の増加により、膜の寿命も短くなり、膜の交換コストも増大するという欠点がある。
特開2003−71497号公報 特開2005−118719号公報
However, in the case of performing solid-liquid separation by a membrane separation method as in the method described in Patent Document 2, depending on the composition of the nitrogen compound-containing waste liquid, if membrane separation is performed while being diffused in the membrane separation tank, Since carbon dioxide dissolved in the liquid in the separation tank is transferred to the atmosphere, the pH of the liquid in the membrane separation tank rises and the solubility of salts decreases, resulting in a scale on the membrane surface, etc. There is a drawback that the efficiency may be significantly reduced. Further, in the treatment method described in Patent Document 1, as described above, when scale is generated on the film surface or the like, the frequency of chemical cleaning on the film surface increases and the cost required for the treatment increases. There is. Furthermore, due to scaling to the membrane surface and increasing chemical cleaning frequency, there is a disadvantage that the lifetime of the membrane is shortened and the replacement cost of the membrane is also increased.
JP 2003-71497 A JP 2005-118719 A

本発明は、例えば、被処理水中にリン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有する場合でも、脱窒処理後の膜分離に際して、膜表面などにおけるリン酸塩の析出を抑制することができる、被処理水の処理方法を提供することを1つの課題とする。また、本発明は、例えば、被処理水中にリン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有する場合でも、当該被処理水の処理設備の使用に伴う膜の薬品洗浄の頻度を低減できる、被処理水の処理設備を提供することを他の課題とする。   The present invention provides, for example, membrane separation after denitrification treatment even in the case where the treated water contains phosphates, phosphate ions and metal ions that can be generated from the phosphates, and nitrogen compounds or corresponding ions. At this time, an object is to provide a method for treating water to be treated, which can suppress precipitation of phosphate on the film surface and the like. Moreover, even if this invention contains the phosphate ion and metal ion which can arise from a phosphate or this phosphate in a to-be-processed water, and a nitrogen compound or the ion corresponding to it, the said to-be-processed water is included, for example Another object is to provide a treatment facility for water to be treated that can reduce the frequency of chemical cleaning of the membrane associated with the use of the treatment facility.

本発明は、リン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有する被処理水を、脱窒槽で処理して得られた脱窒処理水を膜分離槽内で散気させながら処理するに際して、
該膜分離槽内の脱窒処理水を含む液相に対する該リン酸塩の溶解度を、該脱窒槽内の被処理水を含む液相に対する該リン酸塩の溶解度以上となる条件下で膜分離を行なうことを特徴とする、被処理水の処理方法に関する。また、本発明は、リン酸塩または該リン酸塩から生じうるリン酸イオンと金属イオンと窒素化合物またはそのイオンとを含有する被処理水を脱窒させるための脱窒槽と、
該脱窒槽で処理して得られた脱窒処理水を、散気させながら、膜により固液分離させるための膜分離槽と、
該膜分離槽内の脱窒処理水を含む液相に対する該リン酸塩の溶解度を、該脱窒槽内の被処理水を含む液相に対する該リン酸塩の溶解度以上となるように調整するための調整手段と、
を備えてなる、被処理水の処理設備に関する。
The present invention relates to a denitrification obtained by treating a treated water containing a phosphate or a phosphate ion and a metal ion that can be generated from the phosphate and a nitrogen compound or a corresponding ion in a denitrification tank. When treating the treated water while aeration in the membrane separation tank,
Membrane separation under conditions where the solubility of the phosphate in the liquid phase containing denitrified water in the membrane separation tank is equal to or higher than the solubility of the phosphate in the liquid phase containing water to be treated in the denitrification tank It is related with the processing method of to-be-processed water characterized by performing. Further, the present invention provides a denitrification tank for denitrifying a water to be treated containing phosphate or a phosphate ion, a metal ion, and a nitrogen compound or the ion that can be generated from the phosphate,
A membrane separation tank for solid-liquid separation by a membrane while aerating the denitrification water obtained by treatment in the denitrification tank;
In order to adjust the solubility of the phosphate in the liquid phase containing denitrified water in the membrane separation tank to be equal to or higher than the solubility of the phosphate in the liquid phase containing water to be treated in the denitrification tank Adjusting means,
The present invention relates to a treatment facility for water to be treated.

本発明の被処理水の処理方法によれば、膜分離槽内の脱窒処理水を含む液相に対するリン酸塩の溶解度を、脱窒槽内の被処理水を含む液相に対するリン酸塩の溶解度以上となる条件下で膜分離が行なわれるため、例えば、被処理水中にリン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有する場合でも、脱窒処理後の膜分離に際して、膜表面などにおけるリン酸塩の析出を抑制することができるという優れた効果を奏する。また、本発明の被処理水の処理設備は、膜分離槽内の脱窒処理水を含む液相に対するリン酸塩の溶解度を、脱窒槽内の被処理水を含む液相に対する該リン酸塩の溶解度以上となるように調整するための調整手段を備えているため、本発明の被処理水の処理設備によれば、例えば、被処理水中にリン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有する場合でも、当該被処理水の処理設備の使用に伴う膜の薬品洗浄の頻度を低減できるという優れた効果を奏する。   According to the method for treating water to be treated according to the present invention, the solubility of phosphate in the liquid phase containing denitrified water in the membrane separation tank is determined by the phosphate solubility in the liquid phase containing water to be treated in the denitrification tank. Since membrane separation is performed under conditions that result in solubility or higher, for example, phosphate or metal ions that can be generated from phosphate or the phosphate and nitrogen compounds or corresponding ions are contained in the water to be treated Even in this case, there is an excellent effect that the precipitation of phosphate on the membrane surface or the like can be suppressed during membrane separation after the denitrification treatment. In addition, the treatment facility of the water to be treated according to the present invention has a phosphate solubility in the liquid phase containing the denitrification water in the membrane separation tank, and the phosphate in the liquid phase containing the water to be treated in the denitrification tank. Therefore, according to the treated water treatment facility of the present invention, for example, phosphate in the treated water or phosphorus that can be generated from the phosphate is provided. Even when it contains an acid ion and a metal ion, and a nitrogen compound or a corresponding ion, an excellent effect of reducing the frequency of chemical cleaning of the membrane associated with the use of the treatment facility for the water to be treated can be obtained.

本発明の被処理水の処理方法は、前記のように、リン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有する被処理水を、脱窒槽で処理して得られた脱窒処理水を膜分離槽内で散気させながら処理するに際して、
該膜分離槽内の脱窒処理水を含む液相に対する該リン酸塩の溶解度を、該脱窒槽内の被処理水を含む液相に対する該リン酸塩の溶解度以上となる条件下で膜分離を行なうことを特徴とする方法である。
As described above, the method for treating water to be treated of the present invention comprises treating water containing a phosphate or a metal ion and a phosphate ion that can be generated from the phosphate, and a nitrogen compound or a corresponding ion. In the treatment with the denitrification water obtained by treatment in the denitrification tank being diffused in the membrane separation tank,
Membrane separation under conditions where the solubility of the phosphate in the liquid phase containing denitrified water in the membrane separation tank is equal to or higher than the solubility of the phosphate in the liquid phase containing water to be treated in the denitrification tank It is the method characterized by performing.

前記被処理水としては、特に限定されないが、例えば、有機性廃水(下水、工場排水等)及び、この生物処理に伴い発生する汚泥、し尿、糞尿、生ごみ、焼酎かすなどの有機性廃棄物を含有した廃水原水、該廃水原水をメタン発酵などを介して分解処理して得られた分解処理水、ごみ埋立地から発生する溶出水(埋立地浸出水)などが挙げられる。本発明の被処理水の処理方法によれば、被処理水が、リン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有した被処理水である場合、脱窒処理後の膜分離に際して、膜におけるスケールの発生を抑制することができる。   The treated water is not particularly limited. For example, organic waste water (sewage, factory effluent, etc.) and organic waste such as sludge, human waste, manure, garbage, shochu lees, etc. generated by this biological treatment Waste water containing water, decomposition treated water obtained by decomposing the raw waste water through methane fermentation, etc., elution water (landfill leachate) generated from a landfill site, and the like. According to the method for treating water to be treated of the present invention, the water to be treated contains a phosphate, a phosphate ion and a metal ion that can be generated from the phosphate, and a nitrogen compound or a corresponding ion. In the case of water, scale separation in the membrane can be suppressed during membrane separation after the denitrification treatment.

本発明の被処理水の処理方法によれば、前記被処理水を、脱窒槽で処理して得られた脱窒処理水を膜分離槽内で散気させながら処理するに際して、該膜分離槽内の脱窒処理水を含む液相に対するリン酸塩の溶解度を、該脱窒槽内の被処理水を含む液相に対するリン酸塩の溶解度以上となる条件下で膜分離が行なわれるため、脱窒処理後の膜分離に際して、膜におけるスケールの発生を抑制することができるという優れた効果を発揮する。さらに膜表面の薬品洗浄頻度を低減でき(洗浄に要するコストを低減でき)、膜の寿命も維持できる(膜の交換コストも抑えることができる)という優れた効果を発揮する。   According to the method for treating water to be treated according to the present invention, when treating the water to be treated while denitrifying water obtained by treating in the denitrification tank is diffused in the membrane separation tank, the membrane separation tank Since membrane separation is performed under the condition that the solubility of phosphate in the liquid phase containing denitrified water in the inside is higher than the solubility of phosphate in the liquid phase containing treated water in the denitrification tank, In the membrane separation after the nitriding treatment, an excellent effect that scale generation in the membrane can be suppressed is exhibited. Furthermore, the chemical cleaning frequency of the film surface can be reduced (the cost required for cleaning can be reduced), and the film life can be maintained (the replacement cost of the film can be suppressed).

前記リン酸塩としては、特に限定されないが、例えば、リン酸マグネシウム、リン酸マグネシウムアンモニウム、リン酸カルシウム、リン酸ナトリウムなどが挙げられる。かかるリン酸塩は、脱窒反応の後に得られる脱窒処理水中に析出しうる塩である。なかでも、本発明の被処理水の処理方法は、リン酸塩がリン酸マグネシウムである場合、少ない頻度のpHの調整で広い範囲の溶解度調整が可能である点で有利である。   The phosphate is not particularly limited, and examples thereof include magnesium phosphate, magnesium ammonium phosphate, calcium phosphate, and sodium phosphate. Such phosphate is a salt that can be precipitated in the denitrification water obtained after the denitrification reaction. Especially, the processing method of the to-be-processed water of this invention is advantageous at the point that solubility adjustment of a wide range is possible by adjustment of pH of a low frequency, when a phosphate is magnesium phosphate.

本明細書において、「リン酸塩から生じうるリン酸イオンおよび金属イオン」とは、リン酸塩が、溶液、例えば、水に溶解した際に生じるリン酸イオンと金属イオンとを意図する。前記金属イオンとしては、マグネシウムイオン、カルシウムイオン、ナトリウムイオン、カリウムイオンなどが挙げられる。   In the present specification, “phosphate ions and metal ions that can be generated from phosphate” intends phosphate ions and metal ions that are generated when the phosphate is dissolved in a solution, for example, water. Examples of the metal ions include magnesium ions, calcium ions, sodium ions, and potassium ions.

前記窒素化合物としては、特に限定されないが、例えば、アンモニア、亜硝酸、硝酸などが挙げられる。   Although it does not specifically limit as said nitrogen compound, For example, ammonia, nitrous acid, nitric acid, etc. are mentioned.

前記窒素化合物に対応するイオンとしては、特に限定されないが、例えば、アンモニウムイオン、亜硝酸イオン、硝酸イオンなどが挙げられる。   Although it does not specifically limit as an ion corresponding to the said nitrogen compound, For example, ammonium ion, nitrite ion, nitrate ion etc. are mentioned.

本明細書において、前記「溶解度」とは、一定温度で、溶媒100gに溶ける溶質の質量(g)で表わされる値をいう。前記膜分離槽内の脱窒処理水を含む液相に対するリン酸塩の溶解度は、pH、温度条件を変え、各条件における溶液中の溶解リン酸塩濃度を測定することにより求められる。また、前記脱窒槽内の被処理水を含む液相に対するリン酸塩の溶解度は、pH、温度条件を変え、各条件における溶液中の溶解リン酸塩濃度を測定することにより求められる。   In the present specification, the “solubility” refers to a value represented by the mass (g) of a solute dissolved in 100 g of a solvent at a constant temperature. The solubility of phosphate in the liquid phase containing denitrified water in the membrane separation tank is determined by changing the pH and temperature conditions and measuring the concentration of dissolved phosphate in the solution under each condition. Moreover, the solubility of the phosphate with respect to the liquid phase containing the to-be-processed water in the said denitrification tank is calculated | required by changing the pH and temperature conditions, and measuring the dissolved phosphate concentration in the solution in each condition.

本発明の被処理水の処理方法においては、前記膜分離における条件の調整は、前記膜分離槽内の液相のpHを、少なくとも前記脱窒槽内の液相のpHと同じになるように調整すること(以下、「方法1」ともいう)、または該膜分離槽内の液相の温度を、該脱窒槽内の液相の温度に対して、異なるように調整すること(以下、「方法2」ともいう)により行なわれうる。   In the method for treating water to be treated according to the present invention, the adjustment of the conditions in the membrane separation is performed so that the pH of the liquid phase in the membrane separation tank is at least the same as the pH of the liquid phase in the denitrification tank. (Hereinafter also referred to as “method 1”), or adjusting the temperature of the liquid phase in the membrane separation tank to be different from the temperature of the liquid phase in the denitrification tank (hereinafter referred to as “method”). 2 ”).

前記方法1において、膜分離槽内の液相のpHの調整は、硫酸、塩酸などのpH調整剤を、前記膜分離槽内に添加すること;前記脱窒槽で得られた脱窒処理水が膜分離槽に導入される前に該pH調整剤を脱窒処理水に添加することなどにより行われうる。前記リン酸塩が、例えば、リン酸マグネシウムである場合、硫酸を脱窒処理水に添加して脱窒槽と同じpHまたはそれ以下になるように調整すればよい。   In the method 1, the pH of the liquid phase in the membrane separation tank is adjusted by adding a pH adjusting agent such as sulfuric acid or hydrochloric acid to the membrane separation tank; the denitrification treated water obtained in the denitrification tank is This may be performed by adding the pH adjuster to denitrification water before being introduced into the membrane separation tank. When the phosphate is, for example, magnesium phosphate, sulfuric acid may be added to the denitrification water to adjust the pH to be equal to or lower than that of the denitrification tank.

また、前記方法2において、膜分離槽内の液相の温度の調整は、膜分離槽内の液相の温度を、該脱窒槽内の液相の温度に対して、異なるように調整するための温度調整手段を用いることにより行なわれる。前記温度調整手段は、例えば、冷熱媒体を流通させる外套を膜分離槽に周設したり、冷熱媒体を流通させる配管を膜分離槽内に設置したり、膜分離槽内の液を熱交換するための熱交換器を膜分離槽の外部に設置したりすればよい。前記リン酸塩が、例えば、リン酸マグネシウムである場合、膜分離槽内の液相の温度を、脱窒槽内の液相の温度に比べ、低くなるように調整すればよい。   In the method 2, the temperature of the liquid phase in the membrane separation tank is adjusted so that the temperature of the liquid phase in the membrane separation tank is different from the temperature of the liquid phase in the denitrification tank. The temperature adjusting means is used. For example, the temperature adjusting means may include a jacket for circulating a cooling medium in the membrane separation tank, a pipe for circulating the cooling medium in the membrane separation tank, or heat exchange of the liquid in the membrane separation tank. For example, a heat exchanger may be installed outside the membrane separation tank. When the phosphate is, for example, magnesium phosphate, the temperature of the liquid phase in the membrane separation tank may be adjusted to be lower than the temperature of the liquid phase in the denitrification tank.

本発明の被処理水の処理方法は、例えば、メタン発酵などの嫌気性生物処理;硝化、脱窒などの生物学的脱窒素処理;活性汚泥法などによる有機物の好気性生物処理;凝集沈殿などによる脱リン処理などのプロセスをさらに含みうる。本発明の被処理水の処理方法としては、具体的には、例えば、
リン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有する被処理水を、脱窒槽内で生物学的に(脱窒菌により)脱窒させ、脱窒処理水を得るステップ(以下、「脱窒ステップ」ともいう)、および
前記脱窒ステップで得られた脱窒処理水を、散気させながら、膜分離槽内で処理するに際して、該膜分離槽内の脱窒処理水を含む液相に対する該リン酸塩の溶解度を、該脱窒槽内の被処理水を含む液相に対する該リン酸塩の溶解度以上となる条件下で膜により固液分離を行なうステップ(以下、「膜分離ステップ」ともいう)
を含む方法;
リン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有する被処理水を、嫌気性生物処理槽内で、メタン発酵などの嫌気性生物処理で分解させ、嫌気性生物処理水を得るステップ(以下、「嫌気性生物処理ステップ」ともいう)、
前記嫌気性生物処理ステップで得られた嫌気性生物処理水と後述する硝化処理水の一部とを第一脱窒槽内に投入し、第一脱窒槽内で、硝化処理水中の硝酸態窒素を、嫌気性生物処理水中の水素供与体を利用して生物学的に脱窒させ、第一脱窒処理水を得るステップ(以下、「第一脱窒ステップ」という)、
前記第一脱窒ステップで得られた第一脱窒処理水を、硝化槽内で生物学的に硝化させ、硝化処理水を得るステップ(以下、「硝化ステップ」という)、
前記硝化ステップで得られた硝化処理水を、脱窒槽内で生物学的に脱窒させ、脱窒処理水を得るステップ(以下、「脱窒ステップ」ともいう)、
前記脱窒ステップで得られた脱窒処理水を、散気させながら、膜分離槽内で処理するに際して、該膜分離槽内の脱窒処理水を含む液相に対する該リン酸塩の溶解度を、該脱窒槽内の被処理水を含む液相に対する該リン酸塩の溶解度以上となる条件下で膜により固液分離を行なうステップ(以下、「膜分離ステップ」ともいう)、および
前記膜分離ステップで得られた膜分離処理水を、脱リン槽内で脱リンさせるステップ(以下、「脱リンステップ」ともいう)
を含む方法などが挙げられる。
The treatment method of the water to be treated of the present invention includes, for example, anaerobic biological treatment such as methane fermentation; biological denitrification treatment such as nitrification and denitrification; aerobic biological treatment of organic matter by activated sludge method; It may further include a process such as dephosphorization treatment. As a method for treating the water to be treated of the present invention, specifically, for example,
Denitrifying biologically (by denitrifying bacteria) the water to be treated containing phosphates and phosphate ions and metal ions that can be generated from the phosphates, and nitrogen compounds or their corresponding ions. A step of obtaining denitrification treated water (hereinafter also referred to as “denitrification step”), and the denitrification treatment water obtained in the denitrification step in the membrane separation tank while being diffused, The solubility of the phosphate in the liquid phase containing denitrified water in the membrane separation tank is greater than the solubility of the phosphate in the liquid phase containing water to be treated in the denitrification tank. Step for solid-liquid separation (hereinafter also referred to as “membrane separation step”)
A method comprising:
An anaerobic organism such as methane fermentation is carried out in an anaerobic biological treatment tank containing treated water containing a phosphate or a phosphate ion and a metal ion that can be generated from the phosphate, and a nitrogen compound or a corresponding ion. A step of decomposing by treatment to obtain anaerobic biological treatment water (hereinafter also referred to as “anaerobic biological treatment step”),
The anaerobic biological treatment water obtained in the anaerobic biological treatment step and a part of the nitrification water described later are introduced into the first denitrification tank, and nitrate nitrogen in the nitrification water is removed in the first denitrification tank. , A step of biologically denitrifying using a hydrogen donor in the anaerobic biological treated water to obtain a first denitrified treated water (hereinafter referred to as “first denitrifying step”),
The first denitrification treated water obtained in the first denitrification step is biologically nitrified in a nitrification tank to obtain nitrification treated water (hereinafter referred to as “nitrification step”),
The step of biologically denitrifying the nitrification water obtained in the nitrification step in a denitrification tank to obtain denitrification water (hereinafter also referred to as “denitrification step”),
When the denitrification water obtained in the denitrification step is treated in the membrane separation tank while being diffused, the solubility of the phosphate in the liquid phase containing the denitrification water in the membrane separation tank is determined. , A step of performing solid-liquid separation with a membrane under conditions that are higher than the solubility of the phosphate in the liquid phase containing water to be treated in the denitrification tank (hereinafter also referred to as “membrane separation step”), and the membrane separation The step of dephosphorizing the membrane separation treated water obtained in the step in the dephosphorization tank (hereinafter also referred to as “dephosphorization step”)
And the like.

本発明の被処理水の処理設備は、リン酸塩または該リン酸塩から生じうるリン酸イオンと金属イオンと窒素化合物またはそのイオンとを含有する被処理水を脱窒させるための脱窒槽と、
該脱窒槽で処理して得られた脱窒処理水を、散気させながら、膜により固液分離させるための膜分離槽と、
該膜分離槽内の脱窒処理水を含む液相に対する該リン酸塩の溶解度を、該脱窒槽内の被処理水を含む液相に対する該リン酸塩の溶解度以上となるように調整するための調整手段と、
を備えた処理設備である。
A treatment facility for treated water according to the present invention includes a denitrification tank for denitrifying treated water containing a phosphate or a phosphate ion that can be generated from the phosphate, a metal ion, and a nitrogen compound or the ion. ,
A membrane separation tank for solid-liquid separation by a membrane while aerating the denitrification water obtained by treatment in the denitrification tank;
In order to adjust the solubility of the phosphate in the liquid phase containing denitrified water in the membrane separation tank to be equal to or higher than the solubility of the phosphate in the liquid phase containing water to be treated in the denitrification tank Adjusting means,
Is a processing facility.

本発明の被処理水の処理設備は、膜分離槽内の脱窒処理水を含む液相に対するリン酸塩の溶解度を、脱窒槽内の被処理水を含む液相に対するリン酸塩の溶解度以上となるように調整するための調整手段を備えているため、例えば、被処理水中にリン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有する場合でも、当該被処理水の処理設備の使用に伴う膜の薬品洗浄の頻度を低減できるという優れた効果を発揮する。さらに、本発明の被処理水の処理設備は、膜の寿命も維持できる(膜の交換コストも抑えることができる)という優れた効果を発揮する。   The treatment facility of the water to be treated according to the present invention has a phosphate solubility in a liquid phase containing denitrified water in a membrane separation tank that is equal to or higher than a phosphate solubility in a liquid phase containing water to be treated in a denitrification tank. For example, a phosphate in the water to be treated or a phosphate ion and a metal ion that can be generated from the phosphate, and a nitrogen compound or a corresponding ion are included in the water to be treated. Even if it contains, the outstanding effect that the frequency of the chemical | medical agent washing | cleaning of the film | membrane accompanying use of the said treated water treatment facility can be reduced is exhibited. Furthermore, the treated water treatment facility of the present invention exhibits an excellent effect that the life of the membrane can be maintained (the membrane replacement cost can also be suppressed).

本発明の被処理水の処理設備において、前記調整手段としては、具体的には、膜分離槽内の液相のpHを、該脱窒槽内の液相のpHと同じになるように調整するためのpH調整手段、膜分離槽内の液相の温度を、該脱窒槽内の液相の温度に対して、異なるように調整するための温度調整手段が挙げられる。   In the treatment water treatment facility of the present invention, as the adjusting means, specifically, the pH of the liquid phase in the membrane separation tank is adjusted to be the same as the pH of the liquid phase in the denitrification tank. And a temperature adjusting means for adjusting the temperature of the liquid phase in the membrane separation tank to be different from the temperature of the liquid phase in the denitrification tank.

前記調整手段が、pH調整手段である場合、該pH調整手段は、該脱窒槽から該膜分離槽に導入された該脱窒処理水のpHを該膜分離槽内で調整するように配置されてもよい。   When the adjustment means is a pH adjustment means, the pH adjustment means is arranged to adjust the pH of the denitrification treated water introduced from the denitrification tank into the membrane separation tank. May be.

前記pH調整手段は、前段の脱窒槽と後段の膜分離槽とに、それぞれpH測定電極を設置し、膜分離槽内の液相のpHが脱窒槽内の液相のpHと同等またはそれより低い値になるようにpH調整剤の酸を注入する手段による。なお、pH調整剤の注入は、例えば、定量ポンプ(ダイヤフラムポンプ等)等より、設定pH値まで自動注入することにより行なわれる。   The pH adjusting means is provided with a pH measurement electrode in each of the preceding denitrification tank and the subsequent membrane separation tank, and the pH of the liquid phase in the membrane separation tank is equal to or more than the pH of the liquid phase in the denitrification tank. By means of injecting the acid of the pH adjusting agent so as to be a low value. In addition, injection | pouring of a pH adjuster is performed by automatically inject | pouring to a preset pH value, for example from a metering pump (diaphragm pump etc.) etc.

前記調整手段が、温度調整手段である場合、該温度調整手段は、例えば、膜分離槽に周設されうる。   When the adjusting means is a temperature adjusting means, the temperature adjusting means can be provided, for example, in a membrane separation tank.

前記温度調整手段は、前段の脱窒槽と後段の膜分離槽とに、それぞれ温度測定器を設置し、膜分離槽内の液温が脱窒槽内の液温と異なるように温度調整できる手段であればよい。前記温度調整手段としては、例えば、冷熱媒体を流通させる外套、冷熱媒体を流通させる配管、膜分離槽内の液を熱交換するための熱交換器を膜分離槽などが挙げられる。前記冷熱媒体を流通させる外套は、例えば、膜分離槽に周設されうる。また、前記冷熱媒体を流通させる配管は、例えば、膜分離槽内に設置されうる。さらに、前記膜分離槽内の液を熱交換するための熱交換器は、膜分離槽の外部に設置されうる。前記温度調整手段が熱交換器である場合、例えば、膜分離槽内液の液温を下げる場合、該熱交換器により冷却水と膜分離槽内液の熱交換が行なわれ、それにより、膜分離槽内液の液温が、設定温度まで自動的に低下する。   The temperature adjusting means is a means capable of adjusting the temperature so that the temperature of the liquid in the membrane separation tank is different from the temperature of the liquid in the denitrification tank by installing a temperature measuring device in each of the preceding denitrification tank and the subsequent membrane separation tank. I just need it. Examples of the temperature adjusting means include a mantle that circulates a cooling medium, piping that circulates the cooling medium, and a membrane separation tank as a heat exchanger for heat exchange of the liquid in the membrane separation tank. The outer jacket through which the cooling medium is circulated can be provided, for example, in a membrane separation tank. Moreover, the piping which distribute | circulates the said cooling-heat medium can be installed in a membrane separation tank, for example. Furthermore, a heat exchanger for exchanging heat in the liquid in the membrane separation tank can be installed outside the membrane separation tank. When the temperature adjusting means is a heat exchanger, for example, when the temperature of the liquid in the membrane separation tank is lowered, heat exchange between the cooling water and the liquid in the membrane separation tank is performed by the heat exchanger, thereby The temperature of the liquid in the separation tank is automatically lowered to the set temperature.

本発明の被処理水の処理設備の実施態様の一例としては、例えば、図1〜3に概略的に示される被処理水の処理設備などが挙げられる。以下、図1〜3それぞれに示される実施態様の被処理水の処理設備を一例として挙げて説明するが、本発明は、かかる実施態様に限定されるものではない。   As an example of the embodiment of the to-be-treated water treatment facility of the present invention, for example, the to-be-treated water treatment facility schematically shown in FIGS. Hereinafter, although the treatment facility of the to-be-treated water of the embodiments shown in FIGS. 1 to 3 will be described as an example, the present invention is not limited to such embodiments.

図1に示される被処理水の処理設備1は、リン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有する被処理水をメタン発酵により処理するためのメタン発酵槽2と、
メタン発酵槽2で得られたメタン発酵処理水中の有機物を水素供与体として利用して、後述する硝化槽4で得られた硝化処理水の一部の硝酸態窒素を生物学的に脱窒するための第1脱窒槽3と、
第1脱窒槽3で得られた脱窒処理水を生物学的に硝化するための硝化槽4と、
硝化槽4で得られた硝化処理水を生物学的に脱窒するための第2脱窒槽5と、
第2脱窒槽5で得られた脱窒処理水を散気させながら膜により固液分離を行なうための膜分離槽6と、
膜分離槽6で分離された膜分離処理水からリンを除去するための脱リン槽7と
を備えたものである。また、前記膜分離槽内には固液分離を行なうための膜分離装置103と膜分離装置103の膜面に気泡を散気して膜面洗浄するための散気装置102とが設置されており、さらに該膜分離槽外には、該膜分離槽6内の脱窒処理水を含む液相に対するリン酸塩の溶解度を、第2脱窒槽5内の硝化処理水を含む液相に対するリン酸塩の溶解度以上となるように調整するためのpH調整手段101aが付帯されている。
A treatment facility 1 shown in FIG. 1 treats treated water containing phosphates or phosphate ions and metal ions that can be generated from the phosphates, and nitrogen compounds or ions corresponding thereto with methane fermentation. Methane fermentation tank 2 for processing by
Biologically denitrifying a portion of nitrate nitrogen in the nitrification water obtained in the nitrification tank 4 described later using the organic matter in the methane fermentation treatment water obtained in the methane fermentation tank 2 as a hydrogen donor. A first denitrification tank 3 for
A nitrification tank 4 for biologically nitrifying the denitrification water obtained in the first denitrification tank 3,
A second denitrification tank 5 for biologically denitrifying the nitrification water obtained in the nitrification tank 4,
A membrane separation tank 6 for performing solid-liquid separation with a membrane while aeration of the denitrification water obtained in the second denitrification tank 5;
A dephosphorization tank 7 for removing phosphorus from the membrane separation treated water separated in the membrane separation tank 6 is provided. Further, in the membrane separation tank, a membrane separation device 103 for performing solid-liquid separation and an air diffusion device 102 for cleaning the membrane surface by aerating bubbles on the membrane surface of the membrane separation device 103 are installed. Further, outside the membrane separation tank, the phosphate solubility in the liquid phase containing the denitrification water in the membrane separation tank 6 is set to the phosphorus solubility in the liquid phase containing the nitrification water in the second denitrification tank 5. PH adjusting means 101a for adjusting so as to be higher than the solubility of the acid salt is attached.

図1に示される被処理水の処理設備1では、リン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有する被処理水が、メタン発酵槽2に導入されて、該被処理水がメタン発酵により処理され、
該メタン発酵槽2から排出されたメタン発酵処理水が、必要により、夾雑物が除かれ、第1脱窒槽3に導入されるとともに、硝化槽4で得られた硝化処理水の一部が第1脱窒槽3に導入されて、該メタン発酵処理水中の有機物を水素供与体として利用して硝化処理水中の硝酸態窒素が生物学的に脱窒され、
該第1脱窒槽3から排出された脱窒処理水が、硝化槽4に導入されて、該脱窒処理水が生物学的に硝化され、
該硝化槽4から排出された硝化処理水が、第2脱窒槽5に導入されて、該硝化処理水が生物学的に脱窒され、
該第2脱窒槽5から排出された脱窒処理水が、膜分離槽6に導入され、該膜分離槽6内の脱窒処理水を含む液相に対するリン酸塩の溶解度が、第2脱窒槽5内の硝化処理水を含む液相に対するリン酸塩の溶解度以上となるように膜分離槽6内の液相のpHがpH調整手段101aにより調整され、膜面洗浄のために散気装置102により散気されながら、該膜分離装置103の膜により、固液分離が行なわれ、
該膜分離槽で得られた膜分離処理水が、脱リン槽7に導入されて、例えば、リン酸イオンと反応して固形塩を生成する薬剤を添加することにより脱リンされるように配置された構成を有する。したがって、図1に示される被処理水の処理設備1によれば、膜分離槽中の膜分離装置の膜におけるスケールの発生を抑制することができる。
In the treatment facility 1 shown in FIG. 1, the treatment water containing phosphate or a phosphate ion and a metal ion that can be generated from the phosphate, and a nitrogen compound or a corresponding ion is methane. Introduced into the fermenter 2, the treated water is treated by methane fermentation,
The methane fermentation treated water discharged from the methane fermentation tank 2 is introduced into the first denitrification tank 3 after removing impurities as necessary, and a part of the nitrification treated water obtained in the nitrification tank 4 is first. 1 Introduced into the denitrification tank 3, the nitrate nitrogen in the nitrification water is biologically denitrified using the organic matter in the methane fermentation treatment water as a hydrogen donor,
The denitrification water discharged from the first denitrification tank 3 is introduced into the nitrification tank 4, and the denitrification water is biologically nitrified,
The nitrification water discharged from the nitrification tank 4 is introduced into the second denitrification tank 5, and the nitrification water is biologically denitrified,
The denitrification treated water discharged from the second denitrification tank 5 is introduced into the membrane separation tank 6, and the solubility of the phosphate in the liquid phase containing the denitrification treated water in the membrane separation tank 6 is changed to the second denitrification tank 6. The pH of the liquid phase in the membrane separation tank 6 is adjusted by the pH adjusting means 101a so as to be equal to or higher than the solubility of phosphate in the liquid phase containing the nitrifying water in the nitrogen tank 5, and a diffuser for cleaning the membrane surface. The solid-liquid separation is performed by the membrane of the membrane separation device 103 while being diffused by 102,
The membrane separation treated water obtained in the membrane separation tank is introduced into the dephosphorization tank 7 and arranged so as to be dephosphorized, for example, by adding a chemical that reacts with phosphate ions to form a solid salt. It has the structure made. Therefore, according to the treatment facility 1 of the water to be treated shown in FIG. 1, generation of scale in the membrane of the membrane separation apparatus in the membrane separation tank can be suppressed.

なお、脱リン槽7にて薬剤(例えば、消石灰)を添加することにより脱リンされた処理水は、酸を添加することによりpH調整された後、系外へ放流されることになる。前記被処理水の処理設備1では、膜分離槽でpH調整剤の酸が添加されるため、脱リン工程後のpH調整剤の添加量がその分低減できるという優れた効果を発揮する。   In addition, the treated water dephosphorized by adding a chemical | medical agent (for example, slaked lime) in the dephosphorization tank 7 will be discharged | emitted out of the system, after adjusting pH by adding an acid. In the said to-be-processed water processing equipment 1, since the acid of a pH adjuster is added in a membrane separation tank, the outstanding effect that the addition amount of the pH adjuster after a dephosphorization process can be reduced by that much is exhibited.

図1に示される被処理水の処理設備1において、pH調整手段101aは、第2脱窒槽5から脱窒処理水が導入され、膜分離槽6内の液相に対するリン酸塩の溶解度が、第2脱窒槽5内の硝化処理水を含む液相に対するリン酸塩の溶解度以上となるpHとなるように調整されればよい。これにより、図1に示される被処理水の処理設備1によれば、膜分離槽6内の膜分離装置103の膜表面におけるスケールの発生を抑制することができるという優れた効果が発揮される。pH調整手段101aは、第2脱窒槽5内の液相のpHを測定する第2脱窒槽pH計201と、膜分離槽6内の液相のpHを測定する膜分離槽pH計202と、膜分離槽6内の液相にpH調整剤を添加するためのpH調整剤槽203aおよびpH調整剤添加手段204a(本実施形態ではポンプ)と、第2脱窒槽pH計201および膜分離槽pH計202の測定値に基づき、pH調整剤添加手段204aを制御するための制御装置205とを備えている。   In the treatment facility 1 shown in FIG. 1, the pH adjustment unit 101 a is introduced with denitrification water from the second denitrification tank 5, and the solubility of phosphate in the liquid phase in the membrane separation tank 6 is What is necessary is just to adjust so that it may become the pH which becomes more than the solubility of the phosphate with respect to the liquid phase containing the nitrification water in the 2nd denitrification tank 5. FIG. Thereby, according to the to-be-processed water processing equipment 1 shown in FIG. 1, the outstanding effect that generation | occurrence | production of the scale in the membrane surface of the membrane separation apparatus 103 in the membrane separation tank 6 can be suppressed is exhibited. . The pH adjusting means 101a includes a second denitrification tank pH meter 201 that measures the pH of the liquid phase in the second denitrification tank 5, a membrane separation tank pH meter 202 that measures the pH of the liquid phase in the membrane separation tank 6, A pH adjuster tank 203a and a pH adjuster adding means 204a (pump in this embodiment) for adding a pH adjuster to the liquid phase in the membrane separation tank 6, a second denitrification tank pH meter 201, and a membrane separation tank pH A control device 205 for controlling the pH adjusting agent adding means 204a based on the measured value of the total 202 is provided.

図2に示される被処理水の処理設備1は、第2脱窒槽5と膜分離槽6との間にpH調整槽8が配置され、
該第2脱窒槽5から排出された脱窒処理水が、pH調整槽8に導入されて、該膜分離槽6内の脱窒処理水を含む液相に対するリン酸塩の溶解度が、該第2脱窒槽5内の硝化処理水を含む液相に対するリン酸塩の溶解度以上となるように該膜分離槽6内の液相のpHが調整され、得られたpH調整水が、膜分離槽6に導入され、散気装置102により散気されながら、該膜分離装置103の膜により、固液分離が行なわれるように配置された構成を有する点で、図1に示される被処理水の処理設備1とは異なるものである。
In the treated water treatment facility 1 shown in FIG. 2, a pH adjustment tank 8 is disposed between the second denitrification tank 5 and the membrane separation tank 6,
The denitrification water discharged from the second denitrification tank 5 is introduced into the pH adjustment tank 8, and the solubility of phosphate in the liquid phase containing the denitrification water in the membrane separation tank 6 is the first. 2 The pH of the liquid phase in the membrane separation tank 6 is adjusted so as to be equal to or higher than the solubility of phosphate in the liquid phase containing the nitrification water in the denitrification tank 5, and the obtained pH adjusted water is used as the membrane separation tank. 1, and the water to be treated shown in FIG. 1 is arranged so that solid-liquid separation is performed by the membrane of the membrane separation device 103 while being diffused by the air diffusion device 102. This is different from the processing facility 1.

pH調整手段101bは、第2脱窒槽5内の液相のpHを測定する第2脱窒槽pH計201と、膜分離槽6内の液相のpHを測定する膜分離槽pH計202と、pH調整槽8内の液相にpH調整剤を添加するためのpH調整剤槽203bおよびpH調整剤添加手段204b(本実施形態ではポンプ)と、第2脱窒槽pH計201および膜分離槽pH計202の測定値に基づき、pH調整剤添加手段204bを制御するための制御装置204bとを備えている。   The pH adjusting means 101b includes a second denitrification tank pH meter 201 for measuring the pH of the liquid phase in the second denitrification tank 5, a membrane separation tank pH meter 202 for measuring the pH of the liquid phase in the membrane separation tank 6, A pH adjuster tank 203b and a pH adjuster adding means 204b (pump in this embodiment) for adding a pH adjuster to the liquid phase in the pH adjuster tank 8, a second denitrification tank pH meter 201, and a membrane separation tank pH A control device 204b for controlling the pH adjusting agent adding means 204b based on the measured value of the total 202 is provided.

図3に示される被処理水の処理設備1は、リン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有する被処理水をメタン発酵により処理するためのメタン発酵槽2と、
メタン発酵槽2で得られたメタン発酵処理水中の有機物を水素供与体として利用して、後述する硝化槽4で得られた硝化処理水の一部の硝酸態窒素を生物学的に脱窒するための第1脱窒槽3と、
第1脱窒槽3で得られた脱窒処理水を生物学的に硝化するための硝化槽4と、
硝化槽4で得られた硝化処理水を生物学的に脱窒するための第2脱窒槽5と、
第2脱窒槽5で得られた脱窒処理水を散気させながら膜により固液分離を行なうための膜分離槽6と、
膜分離槽6で分離された膜分離処理水からリンを除去するための脱リン槽7と
を備えたものである。
The treatment facility 1 shown in FIG. 3 uses methane fermentation of treated water containing phosphate or phosphate ions and metal ions that can be generated from the phosphate, and nitrogen compounds or ions corresponding thereto. Methane fermentation tank 2 for processing by
Biologically denitrifying a portion of nitrate nitrogen in the nitrification water obtained in the nitrification tank 4 described later using the organic matter in the methane fermentation treatment water obtained in the methane fermentation tank 2 as a hydrogen donor. A first denitrification tank 3 for
A nitrification tank 4 for biologically nitrifying the denitrification water obtained in the first denitrification tank 3,
A second denitrification tank 5 for biologically denitrifying the nitrification water obtained in the nitrification tank 4,
A membrane separation tank 6 for performing solid-liquid separation with a membrane while aeration of the denitrification water obtained in the second denitrification tank 5;
A dephosphorization tank 7 for removing phosphorus from the membrane separation treated water separated in the membrane separation tank 6 is provided.

また、膜分離槽内には固液分離を行なうための膜分離装置103と膜分離装置103の膜面に気泡を散気し膜面洗浄するための散気装置102とが設置されており、さらに該膜分離槽には該膜分離槽6内の脱窒処理水を含む液相に対するリン酸塩の溶解度を、第2脱窒槽5内の硝化処理水を含む液相に対するリン酸塩の溶解度以上となるように調整するための温度調整手段101cの一部を構成する、冷熱媒体が供給される外套(ジャケット)が周設されている。前記温度調整手段101cは、前記外套(ジャケット)以外に、第2脱窒槽5の内部の液相の温度を測定する温度計301と、膜分離槽6の内部の液相の温度を測定する温度計302と、外套(ジャケット)へ冷熱媒体を供給する冷熱媒体供給手段303と、冷熱媒体供給手段の運転を制御する制御装置304とを備えている。また、外套(ジャケット)への冷熱媒体供給手段303からの冷熱媒体の供給量、温度などは、温度計301と温度計302とにより測定された温度に基づき、制御装置304により制御される。   Further, in the membrane separation tank, a membrane separation device 103 for performing solid-liquid separation and an air diffusion device 102 for aerating bubbles and cleaning the membrane surface on the membrane surface of the membrane separation device 103 are installed. Further, the solubility of the phosphate in the liquid phase containing the denitrification treated water in the membrane separation tank 6 is set in the membrane separation tank, and the solubility of the phosphate in the liquid phase containing the nitrification treated water in the second denitrification tank 5. A mantle (jacket) that is a part of the temperature adjusting means 101c for adjusting so as to be as described above and that is supplied with a cooling medium is provided. In addition to the jacket (jacket), the temperature adjusting unit 101c includes a thermometer 301 that measures the temperature of the liquid phase inside the second denitrification tank 5, and a temperature that measures the temperature of the liquid phase inside the membrane separation tank 6. There are provided a total 302, a cooling medium supply means 303 for supplying a cooling medium to a jacket (jacket), and a control device 304 for controlling the operation of the cooling medium supply means. Further, the supply amount and temperature of the cooling medium from the cooling medium supply means 303 to the jacket (jacket) are controlled by the control device 304 based on the temperatures measured by the thermometer 301 and the thermometer 302.

図3に示される被処理水の処理設備1では、
リン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有してもよい被処理水が、メタン発酵槽2に導入されて、該被処理水がメタン発酵により処理され、
該メタン発酵槽2から排出されたメタン発酵処理水が、必要により、夾雑物が除かれ、第1脱窒槽3に導入されるとともに、硝化槽4で得られた硝化処理水の一部が第1脱窒槽3に導入されて、該メタン発酵処理水中の有機物を水素供与体として利用して硝化処理水中の硝酸態窒素が生物学的に脱窒され、
該第1脱窒槽3から排出された脱窒処理水が、硝化槽4に導入されて、該脱窒処理水が生物学的に硝化され、
該硝化槽4から排出された硝化処理水が、第2脱窒槽5に導入されて、該硝化処理水が生物学的に脱窒され、
該第2脱窒槽5から排出された脱窒処理水が、第2脱窒槽5内の硝化処理水を含む液相に対するリン酸塩の溶解度以上となるように、該温度調節手段101cにより内部の液相の温度が調整された膜分離槽6に導入され、散気装置102により散気されながら、該膜分離装置103の膜により、固液分離が行なわれ、
該膜分離槽6で得られた膜分離処理水が、脱リン槽7に導入されて、例えば、リン酸イオンと反応して固形塩を生成する薬剤を添加することにより脱リンされるように配置された構成を有する。したがって、図3に示される被処理水の処理設備1によれば、膜分離槽中の膜分離装置の膜におけるスケールの発生を抑制することができる。
In the treated water treatment facility 1 shown in FIG.
Water to be treated, which may contain a phosphate or a phosphate ion and a metal ion that can be generated from the phosphate, and a nitrogen compound or a corresponding ion, is introduced into the methane fermenter 2 and the treated water Water is treated by methane fermentation,
The methane fermentation treated water discharged from the methane fermentation tank 2 is introduced into the first denitrification tank 3 after removing impurities as necessary, and a part of the nitrification treated water obtained in the nitrification tank 4 is first. 1 Introduced into the denitrification tank 3, the nitrate nitrogen in the nitrification water is biologically denitrified using the organic matter in the methane fermentation treatment water as a hydrogen donor,
The denitrification water discharged from the first denitrification tank 3 is introduced into the nitrification tank 4, and the denitrification water is biologically nitrified,
The nitrification water discharged from the nitrification tank 4 is introduced into the second denitrification tank 5, and the nitrification water is biologically denitrified,
The temperature adjusting means 101c allows the denitrification treated water discharged from the second denitrification tank 5 to be equal to or higher than the solubility of phosphate in the liquid phase containing the nitrification treated water in the second denitrification tank 5. Solid-liquid separation is performed by the membrane of the membrane separation device 103 while being introduced into the membrane separation tank 6 in which the temperature of the liquid phase is adjusted and diffused by the air diffusion device 102,
The membrane separation treated water obtained in the membrane separation tank 6 is introduced into the dephosphorization tank 7 so that it is dephosphorized by adding a chemical that reacts with phosphate ions to form a solid salt, for example. It has an arranged configuration. Therefore, according to the treatment facility 1 of the water to be treated shown in FIG. 3, it is possible to suppress the generation of scale in the membrane of the membrane separation device in the membrane separation tank.

図3に示される被処理水の処理設備1において、温度調整手段101cの配置は、膜分離槽6の内部の液相の温度が、第2脱窒槽5内の硝化処理水を含む液相に対するリン酸塩の溶解度以上となるように温度が調整されるような配置であればよい。これにより、図3に示される被処理水の処理設備1によれば、膜分離槽6内の膜分離装置103の膜表面におけるスケールの発生を抑制することができるという優れた効果が発揮される。   In the treatment water treatment facility 1 shown in FIG. 3, the temperature adjusting means 101 c is arranged so that the temperature of the liquid phase inside the membrane separation tank 6 is relative to the liquid phase containing the nitrification water in the second denitrification tank 5. Any arrangement may be used as long as the temperature is adjusted to be equal to or higher than the solubility of phosphate. Thereby, according to the to-be-processed water processing equipment 1 shown in FIG. 3, the outstanding effect that generation | occurrence | production of the scale in the membrane surface of the membrane separation apparatus 103 in the membrane separation tank 6 can be suppressed is exhibited. .

なお、本発明に適用される膜分離装置103には、膜の種類としては、限外ろ過(UF)膜、精密ろ過(MF)膜等、形式としては中空糸膜、平膜等、また、膜の材質としては、フッ素樹脂(例えば、PVDF等)、ポリプロピレン、ポリエチレン等が挙げられるが、特に限定されるものではない。   In the membrane separation apparatus 103 applied to the present invention, the type of membrane is an ultrafiltration (UF) membrane, a microfiltration (MF) membrane, etc., and the form is a hollow fiber membrane, a flat membrane, etc. Examples of the material of the film include, but are not particularly limited to, a fluororesin (for example, PVDF), polypropylene, polyethylene, and the like.

以下、本発明を実施例に基づき詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.

(実施例1)
図4に示される被処理水の処理設備1において、被処理水(原水)、第1脱窒槽3、硝化槽4(4a〜4c)、第2脱窒槽5(本発明における脱窒槽)および膜分離槽6それぞれの液相のpH、該液相中におけるカルシウムイオン濃度、マグネシウムイオン濃度、硫酸イオン濃度およびリン酸イオン濃度それぞれを測定した。なお、カルシウムイオン濃度は、フレーム原子吸光分析法(JIS K0102 50.2)により測定した。マグネシウムイオン濃度は、フレーム原子吸光分析法(JIS K0102 51.2)により測定した。硫酸イオン濃度は、イオンクロマトグラフ分析法(JIS K0102 41.3)により測定した。リン酸イオン濃度は、モリブデン青(アスコルビン酸還元)吸光光度法(JIS K0102 46.1.1)により測定した。なお、原水は、生ゴミ、糞尿及び下水汚泥の混合物のメタン発酵処理水であり、膜分離槽6の膜分離装置103の膜表面にはスケールが発生していた。また、膜分離装置103には、MF膜(PVDF製中空糸膜)を使用した。その結果を、図5および図6に示す。図5および図6中、DN1は、第1脱窒槽3、N1は、硝化槽4a、N2は、硝化槽4b、N3は、硝化槽4c、DN2は、第2脱窒槽5を示す。
(Example 1)
In the treatment facility 1 shown in FIG. 4, the treated water (raw water), the first denitrification tank 3, the nitrification tank 4 (4a to 4c), the second denitrification tank 5 (denitrification tank in the present invention), and the membrane The pH of the liquid phase of each separation tank 6, the calcium ion concentration, the magnesium ion concentration, the sulfate ion concentration, and the phosphate ion concentration in the liquid phase were measured. The calcium ion concentration was measured by flame atomic absorption spectrometry (JIS K0102 50.2). Magnesium ion concentration was measured by flame atomic absorption spectrometry (JIS K0102 51.2). The sulfate ion concentration was measured by an ion chromatographic analysis method (JIS K0102 41.3). The phosphate ion concentration was measured by molybdenum blue (ascorbic acid reduction) absorptiometry (JIS K0102 46.1.1). The raw water was methane fermentation treated water that was a mixture of raw garbage, manure and sewage sludge, and scale was generated on the membrane surface of the membrane separation device 103 of the membrane separation tank 6. The membrane separator 103 was an MF membrane (PVDF hollow fiber membrane). The results are shown in FIG. 5 and FIG. 5 and 6, DN 1 indicates the first denitrification tank 3, N 1 indicates the nitrification tank 4 a, N 2 indicates the nitrification tank 4 b, N 3 indicates the nitrification tank 4 c, and DN 2 indicates the second denitrification tank 5.

その結果、図5および図6に示されるように、第2脱窒槽5から膜分離槽6にいたるわずかなpHの変化で、マグネシウムイオン濃度(図5の凡例:黒四角)およびリン酸イオン濃度(図6の凡例:黒三角)が減少しているため、膜分離槽6において、リン酸マグネシウムが析出していることが考えられる。したがって、膜分離槽6におけるリン酸マグネシウムの溶解度を高く維持することにより、膜分離槽6の膜分離装置103の膜表面でのスケールの発生を抑制できることが示唆される。   As a result, as shown in FIG. 5 and FIG. 6, the magnesium ion concentration (legend of FIG. 5: black square) and phosphate ion concentration with a slight change in pH from the second denitrification tank 5 to the membrane separation tank 6. (Legend in FIG. 6: black triangles) is reduced, so it is considered that magnesium phosphate is precipitated in the membrane separation tank 6. Therefore, it is suggested that generation of scale on the membrane surface of the membrane separation apparatus 103 in the membrane separation tank 6 can be suppressed by maintaining the solubility of magnesium phosphate in the membrane separation tank 6 high.

(実施例2)
図4に示される被処理水の処理設備1における膜分離槽6内の膜分離装置103の膜表面を、エネルギー分散型蛍光X線分析装置(商品名:EMAX−5770W、堀場製作所社製)を用いて、加速電圧:15kV、分析方法:ポイント分析、測定時間:100秒の条件で分析した。その結果を、図7に示す。
(Example 2)
The membrane surface of the membrane separation device 103 in the membrane separation tank 6 in the treatment water treatment facility 1 shown in FIG. 4 is subjected to an energy dispersive X-ray fluorescence analyzer (trade name: EMAX-5770W, manufactured by Horiba, Ltd.). The sample was analyzed under the conditions of acceleration voltage: 15 kV, analysis method: point analysis, measurement time: 100 seconds. The result is shown in FIG.

その結果、図7に示されるように、膜表面には、マグネシウム、リン、および酸素が存在し、膜の成分である炭素、フッ素は検出されず、被処理水に含まれる他の成分であるカルシウム、硫黄および窒素も検出されないことがわかる。したがって、スケールの成分は、リン酸マグネシウムであることが示唆される。   As a result, as shown in FIG. 7, magnesium, phosphorus, and oxygen are present on the film surface, and carbon and fluorine, which are components of the film, are not detected and are other components contained in the water to be treated. It can be seen that calcium, sulfur and nitrogen are also not detected. Thus, it is suggested that the scale component is magnesium phosphate.

(試験例1)
図4に示される被処理水の処理設備1の第2脱窒槽5および膜分離槽6それぞれの液相のpHおよび温度を測定した。第2脱窒槽5の液相のpHは、7.8であり、温度は、40℃であり、膜分離槽6の液相のpHは、8.1であり、温度は、40℃であった。
(Test Example 1)
The pH and temperature of the liquid phase of each of the second denitrification tank 5 and the membrane separation tank 6 of the treatment water treatment facility 1 shown in FIG. 4 were measured. The pH of the liquid phase of the second denitrification tank 5 is 7.8, the temperature is 40 ° C., the pH of the liquid phase of the membrane separation tank 6 is 8.1, and the temperature is 40 ° C. It was.

また、このときの第2脱窒槽5および膜分離槽6それぞれの液相中のリン酸マグネシウムの溶解度を測定した。その結果、第2脱窒槽5の液相中のリン酸マグネシウムの溶解度は、281mg/l、膜分離槽6の液相のリン酸マグネシウムの溶解度は、252mg/lであった。   Moreover, the solubility of the magnesium phosphate in each liquid phase of the 2nd denitrification tank 5 and the membrane separation tank 6 at this time was measured. As a result, the solubility of magnesium phosphate in the liquid phase of the second denitrification tank 5 was 281 mg / l, and the solubility of magnesium phosphate in the liquid phase of the membrane separation tank 6 was 252 mg / l.

ついで、前記処理設備1の膜分離槽6の液相の温度を変化させず(液温40℃)に、膜分離槽6の液相に硫酸(濃度:10重量%)を添加して、第2脱窒槽5の液相のpHと同じpH(pH7.8)になるように調整した。その後、リン酸マグネシウムの溶解度およびリン酸マグネシウム析出量を測定した。これらの結果(膜分離槽6の液相のリン酸マグネシウムの溶解度およびリン酸マグネシウム析出量)ならびに膜分離槽6の液相の温度およびpHを表1に示す。   Next, sulfuric acid (concentration: 10% by weight) was added to the liquid phase of the membrane separation tank 6 without changing the temperature of the liquid phase of the membrane separation tank 6 of the treatment facility 1 (liquid temperature 40 ° C.) 2 It adjusted so that it might become the same pH (pH 7.8) as the pH of the liquid phase of the denitrification tank 5. Thereafter, the solubility of magnesium phosphate and the amount of precipitated magnesium phosphate were measured. Table 1 shows these results (the solubility of magnesium phosphate in the liquid phase of the membrane separation tank 6 and the amount of precipitated magnesium phosphate), and the temperature and pH of the liquid phase of the membrane separation tank 6.

Figure 2008188498
Figure 2008188498

(試験例2)
試験例1と同様に、まず、図4に示される被処理水の処理設備1の第2脱窒槽5および膜分離槽6それぞれの液相のpHおよび温度を測定した。第2脱窒槽5の液相のpHは、7.8であり、温度は、40℃であった。また、膜分離槽6の液相のpHは、8.1であり、温度は、40℃であった。また、このときの第2脱窒槽5および膜分離槽6それぞれの液相中のリン酸マグネシウムの溶解度を測定した。第2脱窒槽5の液相のリン酸マグネシウムの溶解度は、281mg/l、膜分離槽6の液相のリン酸マグネシウムの溶解度は、252mg/lであった。
(Test Example 2)
As in Test Example 1, first, the pH and temperature of the liquid phase of each of the second denitrification tank 5 and the membrane separation tank 6 of the treatment facility 1 shown in FIG. 4 were measured. The pH of the liquid phase of the second denitrification tank 5 was 7.8, and the temperature was 40 ° C. Moreover, pH of the liquid phase of the membrane separation tank 6 was 8.1, and temperature was 40 degreeC. Moreover, the solubility of the magnesium phosphate in each liquid phase of the 2nd denitrification tank 5 and the membrane separation tank 6 at this time was measured. The solubility of magnesium phosphate in the liquid phase of the second denitrification tank 5 was 281 mg / l, and the solubility of magnesium phosphate in the liquid phase of the membrane separation tank 6 was 252 mg / l.

ついで、前記処理設備1の膜分離槽6の液相のpHは変化させず(pH8.1)、膜分離槽6の液相の温度を、膜分離槽6の液を熱交換器に流通させ冷却した後、冷却された液を膜分離槽へ返送することにより、第2脱窒槽5の液相の温度より10℃低い温度(30℃)に調整した。その後、リン酸マグネシウムの溶解度を測定した。これらの結果(膜分離槽6の液相のリン酸マグネシウムの溶解度およびリン酸マグネシウム析出量)ならびに膜分離槽6の液相の温度およびpHを表2に示す。   Next, the pH of the liquid phase in the membrane separation tank 6 of the treatment facility 1 is not changed (pH 8.1), the temperature of the liquid phase in the membrane separation tank 6 is passed through the heat exchanger. After cooling, the cooled liquid was returned to the membrane separation tank to adjust to a temperature (30 ° C.) lower by 10 ° C. than the liquid phase temperature of the second denitrification tank 5. Thereafter, the solubility of magnesium phosphate was measured. Table 2 shows these results (the solubility of magnesium phosphate in the liquid phase of the membrane separation tank 6 and the amount of precipitated magnesium phosphate), and the temperature and pH of the liquid phase of the membrane separation tank 6.

Figure 2008188498
Figure 2008188498

その結果、膜分離槽6の液相のpHを第2脱窒槽5と同等以下に調整することにより、膜分離槽6内の膜分離装置103の膜表面におけるスケールの発生を防ぐことができることがわかる。また、第2脱窒槽5の液相の温度が20〜40℃の範囲、即ち、生物学的脱窒処理が行われる温度範囲であれば、膜分離槽6の液相の温度を第2脱窒槽5より10℃以上低く調整することにより、膜分離槽6内の膜分離装置103の膜表面におけるスケールの発生を防ぐことができることがわかる。   As a result, by adjusting the pH of the liquid phase of the membrane separation tank 6 to be equal to or lower than that of the second denitrification tank 5, it is possible to prevent the generation of scale on the membrane surface of the membrane separation apparatus 103 in the membrane separation tank 6. Recognize. Further, if the temperature of the liquid phase in the second denitrification tank 5 is in the range of 20 to 40 ° C., that is, the temperature range in which biological denitrification treatment is performed, the temperature of the liquid phase in the membrane separation tank 6 is changed to the second denitrification tank 6. It can be seen that the generation of scale on the membrane surface of the membrane separation apparatus 103 in the membrane separation tank 6 can be prevented by adjusting the temperature lower than the nitrogen tank 5 by 10 ° C. or more.

本発明は、例えば、リン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有する場合もあるような廃液の水処理に利用することができる。   The present invention can be used for water treatment of waste liquid that may contain, for example, phosphates or phosphate ions and metal ions that can be generated from the phosphates, and nitrogen compounds or corresponding ions. it can.

図1は、本発明の被処理水の処理設備の一実施態様を示す概略図である。FIG. 1 is a schematic view showing an embodiment of the treatment facility for water to be treated according to the present invention. 図2は、本発明の被処理水の処理設備の一実施態様を示す概略図である。FIG. 2 is a schematic view showing an embodiment of the treatment facility for water to be treated according to the present invention. 図3は、本発明の被処理水の処理設備の一実施態様を示す概略図である。FIG. 3 is a schematic view showing one embodiment of the treatment facility for water to be treated according to the present invention. 図4は、被処理水の処理設備の例を示す概略図である。FIG. 4 is a schematic diagram illustrating an example of the treatment facility of water to be treated. 図5は、被処理水(原水)、図4に示される被処理水の処理設備1の第1脱窒槽3、硝化槽4(4a〜4c)、第2脱窒槽5および膜分離槽6それぞれの液相のpH(凡例:黒丸)、該液相中におけるカルシウムイオン濃度(凡例:黒三角)、およびマグネシウムイオン濃度(凡例:黒四角)それぞれの変動を示す図である。図中、DN1は、第1脱窒槽3、N1は、硝化槽4a、N2は、硝化槽4b、N3は、硝化槽4c、DN2は、第2脱窒槽5を示す。5 shows the water to be treated (raw water), the first denitrification tank 3, the nitrification tank 4 (4a to 4c), the second denitrification tank 5 and the membrane separation tank 6 of the treatment equipment 1 shown in FIG. FIG. 6 is a graph showing fluctuations in pH of each liquid phase (legend: black circle), calcium ion concentration (legend: black triangle), and magnesium ion concentration (legend: black square) in the liquid phase. In the figure, DN1 indicates a first denitrification tank 3, N1 indicates a nitrification tank 4a, N2 indicates a nitrification tank 4b, N3 indicates a nitrification tank 4c, and DN2 indicates a second denitrification tank 5. 図6は、被処理水(原水)、図4に示される被処理水の処理設備1の第1脱窒槽3、硝化槽4(4a〜4c)、第2脱窒槽5および膜分離槽6それぞれの液相のpH(凡例:黒丸)、該液相中における硫酸イオン濃度(凡例:黒三角)およびリン酸イオン濃度(凡例:黒四角)それぞれの変動を示す図である。図中、DN1は、第1脱窒槽3、N1は、硝化槽4a、N2は、硝化槽4b、N3は、硝化槽4c、DN2は、第2脱窒槽5を示す。6 shows the water to be treated (raw water), the first denitrification tank 3, the nitrification tank 4 (4a to 4c), the second denitrification tank 5, and the membrane separation tank 6 of the treatment equipment 1 shown in FIG. FIG. 6 is a graph showing fluctuations in pH of the liquid phase (legend: black circle), sulfate ion concentration (legend: black triangle) and phosphate ion concentration (legend: black square) in the liquid phase. In the figure, DN1 indicates a first denitrification tank 3, N1 indicates a nitrification tank 4a, N2 indicates a nitrification tank 4b, N3 indicates a nitrification tank 4c, and DN2 indicates a second denitrification tank 5. 図7は、図4に示される被処理水の処理設備1の膜分離槽6内の膜分離装置103の膜表面のエネルギー分散型蛍光X線分析結果を示す図である。FIG. 7 is a diagram showing an energy dispersive X-ray fluorescence analysis result of the membrane surface of the membrane separation device 103 in the membrane separation tank 6 of the treatment facility 1 of the water to be treated shown in FIG.

符号の説明Explanation of symbols

1 被処理水の処理設備
2 メタン発酵槽
3 第1脱窒槽
4 硝化槽
5 第2脱窒槽
6 膜分離槽
101 調整手段
102 散気装置
103 膜分離装置
DESCRIPTION OF SYMBOLS 1 Processing equipment of treated water 2 Methane fermentation tank 3 1st denitrification tank 4 Nitrification tank 5 2nd denitrification tank 6 Membrane separation tank 101 Adjustment means 102 Aeration apparatus 103 Membrane separation apparatus

Claims (8)

リン酸塩または該リン酸塩から生じうるリン酸イオンおよび金属イオンと、窒素化合物またはそれに対応するイオンとを含有する被処理水を、脱窒槽で処理して得られた脱窒処理水を膜分離槽内で散気させながら処理するに際して、
該膜分離槽内の脱窒処理水を含む液相に対する該リン酸塩の溶解度を、該脱窒槽内の被処理水を含む液相に対する該リン酸塩の溶解度以上となる条件下で膜分離を行なうことを特徴とする、被処理水の処理方法。
Denitrification treated water obtained by treating in a denitrification tank membranes treated water containing phosphate ions and metal ions that can be generated from the phosphates, and nitrogen compounds or corresponding ions. When processing with aeration in the separation tank,
Membrane separation under conditions where the solubility of the phosphate in the liquid phase containing denitrified water in the membrane separation tank is equal to or higher than the solubility of the phosphate in the liquid phase containing water to be treated in the denitrification tank A method for treating water to be treated, characterized in that:
該膜分離槽内の液相のpHを、少なくとも該脱窒槽内の液相のpHと同じになるように調整する、請求項1記載の被処理水の処理方法。   The method for treating water to be treated according to claim 1, wherein the pH of the liquid phase in the membrane separation tank is adjusted to be at least the same as the pH of the liquid phase in the denitrification tank. 該膜分離槽内の液相の温度を、該脱窒槽内の液相の温度に対して、異なるように調整する、請求項1記載の被処理水の処理方法。   The processing method of the to-be-processed water of Claim 1 which adjusts the temperature of the liquid phase in this membrane separation tank so that it may differ with respect to the temperature of the liquid phase in this denitrification tank. リン酸塩または該リン酸塩から生じうるリン酸イオンと金属イオンと窒素化合物またはそのイオンとを含有する被処理水を脱窒させるための脱窒槽と、
該脱窒槽で処理して得られた脱窒処理水を、散気させながら、膜により固液分離させるための膜分離槽と、
該膜分離槽内の脱窒処理水を含む液相に対する該リン酸塩の溶解度を、該脱窒槽内の被処理水を含む液相に対する該リン酸塩の溶解度以上となるように調整するための調整手段と、
を備えてなる、被処理水の処理設備。
A denitrification tank for denitrifying water to be treated containing phosphate ions, metal ions and nitrogen compounds or ions thereof, which can be generated from the phosphates;
A membrane separation tank for solid-liquid separation by a membrane while aerating the denitrification water obtained by treatment in the denitrification tank;
In order to adjust the solubility of the phosphate in the liquid phase containing denitrified water in the membrane separation tank to be equal to or higher than the solubility of the phosphate in the liquid phase containing water to be treated in the denitrification tank Adjusting means,
A facility for treating water to be treated.
該調整手段が、該膜分離槽内の液相のpHを、該脱窒槽内の液相のpHと同じになるように調整するためのpH調整手段である、請求項4記載の被処理水の処理設備。   The treated water according to claim 4, wherein the adjusting means is a pH adjusting means for adjusting the pH of the liquid phase in the membrane separation tank to be the same as the pH of the liquid phase in the denitrification tank. Processing equipment. 該pH調整手段が、該脱窒槽から該膜分離槽に導入された脱窒処理水のpHを該膜分離槽内で調整するように配置されてなる、請求項5記載の被処理水の処理設備。   The treatment of water to be treated according to claim 5, wherein the pH adjusting means is arranged so as to adjust the pH of the denitrification treated water introduced from the denitrification tank into the membrane separation tank. Facility. 該調整手段が、該膜分離槽内の液相の温度を、該脱窒槽内の液相の温度に対して、異なるように調整するための温度調整手段である、請求項4記載の被処理水の処理設備。   The to-be-processed object of Claim 4 which is a temperature adjustment means for this adjustment means to adjust the temperature of the liquid phase in this membrane separation tank so that it may differ with respect to the temperature of the liquid phase in this denitrification tank. Water treatment facility. 該温度調整手段が、該膜分離槽に周設されてなる、請求項4記載の処理設備。   The processing equipment according to claim 4, wherein the temperature adjusting means is provided around the membrane separation tank.
JP2007023156A 2007-02-01 2007-02-01 Treatment method and treatment equipment for treated water Expired - Fee Related JP4536740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007023156A JP4536740B2 (en) 2007-02-01 2007-02-01 Treatment method and treatment equipment for treated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007023156A JP4536740B2 (en) 2007-02-01 2007-02-01 Treatment method and treatment equipment for treated water

Publications (2)

Publication Number Publication Date
JP2008188498A true JP2008188498A (en) 2008-08-21
JP4536740B2 JP4536740B2 (en) 2010-09-01

Family

ID=39749113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007023156A Expired - Fee Related JP4536740B2 (en) 2007-02-01 2007-02-01 Treatment method and treatment equipment for treated water

Country Status (1)

Country Link
JP (1) JP4536740B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010115319A1 (en) * 2009-04-09 2010-10-14 北京汉青天朗水处理科技有限公司 Sewage treatment process and system
JP2010253428A (en) * 2009-04-28 2010-11-11 Asahi Kasei Chemicals Corp Wastewater treatment apparatus and wastewater treatment method
JP2013215681A (en) * 2012-04-10 2013-10-24 Hitachi Power Solutions Co Ltd Ammonium magnesium phosphate generation suppression system and methane fermentation system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174282A (en) * 1982-04-02 1983-10-13 Mitsubishi Heavy Ind Ltd Treatment of waste water
JPS61181590A (en) * 1985-02-08 1986-08-14 Kurita Water Ind Ltd Treatment of organic waste liquid
JPS61204081A (en) * 1985-03-07 1986-09-10 Kurita Water Ind Ltd Treatment of night soil sewage
JPS63302996A (en) * 1987-06-04 1988-12-09 Ebara Infilco Co Ltd Treatment of organic sewage
JPH05285490A (en) * 1992-04-03 1993-11-02 Fujita Corp Method for highly treating organic waste water
JPH11216493A (en) * 1998-01-29 1999-08-10 Kurita Water Ind Ltd Intermittent-aeration activated sludge treatment
JPH11267687A (en) * 1998-03-24 1999-10-05 Japan Organo Co Ltd Biologically nitrogen-removing device
JP2000024646A (en) * 1998-07-13 2000-01-25 Matsushita Electric Ind Co Ltd Waste water discharging section
JP2000189998A (en) * 1999-01-05 2000-07-11 Kubota Corp Method and device for concentrating sludge
JP2002292399A (en) * 2001-03-30 2002-10-08 Sumitomo Heavy Ind Ltd Organic wastewater disposal equipment
JP2003266096A (en) * 2002-03-18 2003-09-24 Japan Organo Co Ltd Wastewater treatment apparatus
JP2004097856A (en) * 2002-09-04 2004-04-02 Masuda Shokai:Kk Equipment and method for waste liquid treatment
JP2004148144A (en) * 2002-10-29 2004-05-27 Kubota Corp Method for treating sewage
JP2005118719A (en) * 2003-10-17 2005-05-12 Kurita Water Ind Ltd Treatment method and apparatus for nitrogen containing organic wastewater

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174282A (en) * 1982-04-02 1983-10-13 Mitsubishi Heavy Ind Ltd Treatment of waste water
JPS61181590A (en) * 1985-02-08 1986-08-14 Kurita Water Ind Ltd Treatment of organic waste liquid
JPS61204081A (en) * 1985-03-07 1986-09-10 Kurita Water Ind Ltd Treatment of night soil sewage
JPS63302996A (en) * 1987-06-04 1988-12-09 Ebara Infilco Co Ltd Treatment of organic sewage
JPH05285490A (en) * 1992-04-03 1993-11-02 Fujita Corp Method for highly treating organic waste water
JPH11216493A (en) * 1998-01-29 1999-08-10 Kurita Water Ind Ltd Intermittent-aeration activated sludge treatment
JPH11267687A (en) * 1998-03-24 1999-10-05 Japan Organo Co Ltd Biologically nitrogen-removing device
JP2000024646A (en) * 1998-07-13 2000-01-25 Matsushita Electric Ind Co Ltd Waste water discharging section
JP2000189998A (en) * 1999-01-05 2000-07-11 Kubota Corp Method and device for concentrating sludge
JP2002292399A (en) * 2001-03-30 2002-10-08 Sumitomo Heavy Ind Ltd Organic wastewater disposal equipment
JP2003266096A (en) * 2002-03-18 2003-09-24 Japan Organo Co Ltd Wastewater treatment apparatus
JP2004097856A (en) * 2002-09-04 2004-04-02 Masuda Shokai:Kk Equipment and method for waste liquid treatment
JP2004148144A (en) * 2002-10-29 2004-05-27 Kubota Corp Method for treating sewage
JP2005118719A (en) * 2003-10-17 2005-05-12 Kurita Water Ind Ltd Treatment method and apparatus for nitrogen containing organic wastewater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010115319A1 (en) * 2009-04-09 2010-10-14 北京汉青天朗水处理科技有限公司 Sewage treatment process and system
US9045356B2 (en) 2009-04-09 2015-06-02 Youfeng Sun Sewage treatment process and system
JP2010253428A (en) * 2009-04-28 2010-11-11 Asahi Kasei Chemicals Corp Wastewater treatment apparatus and wastewater treatment method
JP2013215681A (en) * 2012-04-10 2013-10-24 Hitachi Power Solutions Co Ltd Ammonium magnesium phosphate generation suppression system and methane fermentation system

Also Published As

Publication number Publication date
JP4536740B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US8246830B2 (en) Method and device for removing biological nitrogen and support therefor
JP4644107B2 (en) Method for treating wastewater containing ammonia
JP6862594B2 (en) Wastewater treatment method
JP6720100B2 (en) Water treatment method and water treatment device
JP5727291B2 (en) Method for denitrification of wastewater containing ammoniacal nitrogen and calcium, and its treatment equipment
Xu et al. The development of a reverse anammox sequencing partial nitrification process for simultaneous nitrogen and COD removal from wastewater
JP2010063987A (en) Waste water treatment device and treatment method
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
KR20140063454A (en) Apparatus and method for treatment wastewater
JP4536740B2 (en) Treatment method and treatment equipment for treated water
Rodríguez et al. Comparative study of the use of pure oxygen and air in the nitrification of a MBR system used for wastewater treatment
EP3354625A1 (en) Method for treating ammoniacal nitrogen in wastewater
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
WO2014030583A1 (en) System and method for treating wastewater containing suspended organic substance
JP2008036517A (en) Wastewater treatment apparatus and method
EP3689830A1 (en) Device and method for shortcut nitrogen removal and nitrite-oxidizing bacteria activity inhibition
JP2017018861A (en) Method for removing nitrogen and nitrogen removal device
JP2006289277A (en) Nitrate forming nitrification/denitrification method, method for nitrifying/denitrifying ammonia nitrogen-containing liquid and nitrate forming nitrification/denitrification equipment
KR20150022188A (en) Method for fabricating of aerobic granule sludge and sequencing batch reactor apparatus
JP5782415B2 (en) Method and apparatus for treating water to be treated
JP2003071492A5 (en)
JP2016112556A (en) Method for biologically treating water to be treated by using aerobic fluidized bed
JP5782416B2 (en) Method and apparatus for treating water to be treated
Cui et al. Comparative study on SBNR, GSBR and Anammox for combined treatment of anaerobic digester effluent

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100611

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4536740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees