JP6862594B2 - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP6862594B2
JP6862594B2 JP2020072323A JP2020072323A JP6862594B2 JP 6862594 B2 JP6862594 B2 JP 6862594B2 JP 2020072323 A JP2020072323 A JP 2020072323A JP 2020072323 A JP2020072323 A JP 2020072323A JP 6862594 B2 JP6862594 B2 JP 6862594B2
Authority
JP
Japan
Prior art keywords
tank
nitrification
nitrification tank
denitrification
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020072323A
Other languages
Japanese (ja)
Other versions
JP2020116578A (en
Inventor
本間 康弘
康弘 本間
良夫 矢口
良夫 矢口
洋太郎 丸山
洋太郎 丸山
正宏 若菜
正宏 若菜
一将 蒲池
一将 蒲池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Publication of JP2020116578A publication Critical patent/JP2020116578A/en
Application granted granted Critical
Publication of JP6862594B2 publication Critical patent/JP6862594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、最終処分場浸出水処理施設、し尿処理施設、産業廃水処理施設等の溶解性蒸発残留物および/またはカリウムイオン濃度が高い廃水を対象に生物学的硝化脱窒処理する方法に係わり、硝化槽のアンモニア濃度をアンモニウムイオン電極で測定し、硝化槽への酸素含有気体供給量の制御を行う廃水処理方法に関するものである。 The present invention relates to a method for bionitrifying and denitrifying wastewater having a high concentration of soluble evaporation residue and / or potassium ion in a final disposal site leachate treatment facility, urine treatment facility, industrial wastewater treatment facility, etc. The present invention relates to a wastewater treatment method in which the ammonia concentration in the nitrification tank is measured with an ammonium ion electrode and the amount of oxygen-containing gas supplied to the nitrification tank is controlled.

従来より、生物学的硝化脱窒素法の硝化反応の制御としては、硝化反応を行う生物反応槽(以下、硝化槽とも記す)のDO(溶存酸素)制御およびpH制御が使用されていた。そして近年、下水処理では、硝化反応の制御としてアンモニウムイオン電極(アンモニアセンサー、NH4センサー、NH4計、アンモニア計ともいう)の導入が進みつつある。 Conventionally, as the control of the nitrification reaction of the biological nitrification denitrification method, DO (dissolved oxygen) control and pH control of a biological reaction tank (hereinafter, also referred to as a nitrification tank) for performing a nitrification reaction have been used. In recent years, in sewage treatment, the introduction of ammonium ion electrodes ( also called ammonia sensor, NH 4 sensor, NH 4 meter, and ammonia meter) is progressing to control the nitrification reaction.

特許文献1や特許文献2では下水処理場での硝化脱窒素処理を対象とし、アンモニアセンサー等を用い、気体供給量等を制御する方法が記載されている。また特許文献3では、微生物フロックに紫外線を照射することで微生物が発生する生物蛍光体の蛍光量を測定する蛍光測定センサーにより送風量を制御する方法が記載されており、補助センサーとしてアンモニア濃度を測定するアンモニアセンサーを用いている。 Patent Document 1 and Patent Document 2 describe a method of controlling a gas supply amount or the like by using an ammonia sensor or the like for nitrification and denitrification treatment in a sewage treatment plant. Further, Patent Document 3 describes a method of controlling the amount of air blown by a fluorescence measurement sensor that measures the amount of fluorescence of a biological phosphor generated by a microorganism by irradiating the microorganism floc with ultraviolet rays, and uses an ammonia concentration as an auxiliary sensor. An ammonia sensor for measurement is used.

また非特許文献1では、下水処理での空気量制御にNOX-N計とNH4-N計を使用する方法であり、深槽曝気槽好気部での硝化脱窒同時処理についての記載がある。また非特許文献2では、下水処理における空気量制御にNH4-N計を使用し、好気槽での硝化脱窒同時処理、硝化内生脱窒法でのNH4-N最適値の存在、空気量制御手法としての、DO制御に対するNH4-N制御の優位性についての記載がある。また非特許文献3では、し尿の脱水ろ液を7倍希釈後に下水と混合して受け入れているOD法の処理場において、自動測定器としてアンモニア性窒素、硝酸性窒素、カリウムのイオンセンサーを設置し、運転データを可視化することでの処理状況が改善された事例について報告されている。 Further, Non-Patent Document 1 describes a method of using a NO X- N meter and an NH 4- N meter for air volume control in sewage treatment, and describes simultaneous nitrification and denitrification treatment in the aerobic part of a deep aeration tank. There is. In Non-Patent Document 2, an NH 4- N meter is used to control the amount of air in sewage treatment, simultaneous nitrification and denitrification treatment in an aerobic tank, and the existence of an optimum NH 4-N value in the nitrification endonitrification method. There is a description about the superiority of NH 4- N control over DO control as an air volume control method. Further, in Non-Patent Document 3, an ion sensor of ammonia nitrogen, nitrate nitrogen, and potassium is installed as an automatic measuring instrument in the treatment plant of the OD method in which the dehydrated filtrate of human waste is diluted 7-fold and then mixed with sewage and accepted. However, there have been reports of cases where the processing status has been improved by visualizing operation data.

特開2012−135717号公報Japanese Unexamined Patent Publication No. 2012-135717 特開2015−16410号公報Japanese Unexamined Patent Publication No. 2015-16410 特許第4381473号公報Japanese Patent No. 4381473

葛西孝司,曽根啓一,鈴木重浩,高橋宏幸,黒住光浩,坂根良平:好気タンク内の脱窒を利用した新たな高度処理技術(同時硝化脱窒処理)の開発,下水道協会誌,Vol.52,No.635,pp.114‐121,(2015)Takashi Kasai, Keiichi Sone, Shigehiro Suzuki, Hiroyuki Takahashi, Mitsuhiro Kurosumi, Ryohei Sakane: Development of new advanced treatment technology (simultaneous nitrification denitrification treatment) using denitrification in aerobic tank, Journal of Sewerage Association, Vol. 52, No. 635, pp. 114-121, (2015) 蒲池一将,本間康弘,鈴村悟:アンモニアセンサーを使用した空気量制御運転の活性汚泥モデルによる最適化,学会誌「EICA」,第20巻、第2・3合併号,pp.3‐10,(2015)Kazuko Kamachi, Yasuhiro Homma, Satoru Suzumura: Optimization of air volume control operation using an ammonia sensor using an activated sludge model, Journal of the Society "EICA", Vol. 20, No. 2 and 3 merger, pp. 3-10, (2015) 松井稔,本多淳二,木内誠治:OD法における窒素除去の運転条件について,第50回下水道研究発表会講演集,pp.811‐813,(2013)Minoru Matsui, Junji Honda, Seiji Kiuchi: Lectures at the 50th Sewerage Research Presentation on the operating conditions for nitrogen removal in the OD method, pp. 811-813, (2013)

上述のように、生物学的硝化脱窒素法の硝化反応の制御としては、硝化槽DO制御およびpH制御が使用されていた。しかし、DO制御やpH制御ではアンモニア性窒素濃度を把握できないため、硝化槽に十分な空気を供給し、DO濃度を2mg/L程度の高めに設定することで、硝化菌の作用によりほぼ全てのアンモニア性窒素を硝酸性窒素へと転換していた。そのため、硝化槽では多大な空気量が必要となっていた。 As described above, nitrification tank DO control and pH control have been used to control the nitrification reaction of the biological nitrification denitrification method. However, since the ammonia nitrogen concentration cannot be grasped by DO control or pH control, by supplying sufficient air to the nitrifying tank and setting the DO concentration to a high level of about 2 mg / L, almost all of the nitrifying bacteria act. Ammonia nitrogen was converted to nitrate nitrogen. Therefore, a large amount of air is required in the nitrification tank.

下水処理では、この問題点を改善するために、NH4センサーの採用が進みつつあるが、最終処分場浸出水処理施設、し尿処理施設、産業廃水処理施設等で処理対象となる溶解性蒸発残留物および/またはカリウムイオン濃度が高い廃水の場合では、共存イオンおよび/またはカリウムイオンの影響でNH4センサーの適用は困難であり、また、溶解性蒸発残留物および/またはカリウムイオン濃度が高い廃水に適用できるNH4センサーの報告例は無い。 In sewage treatment, the adoption of NH 4 sensors is progressing in order to improve this problem, but the soluble evaporation residue to be treated at final disposal site leachate treatment facilities, urine treatment facilities, industrial wastewater treatment facilities, etc. In the case of wastewater with a high concentration of substances and / or potassium ions, it is difficult to apply the NH 4 sensor due to the influence of coexisting ions and / or potassium ions, and wastewater with a high concentration of soluble evaporation residue and / or potassium ions. There are no reported examples of NH 4 sensors that can be applied to.

本発明は、溶解性蒸発残留物および/またはカリウムイオン濃度が高い廃水に対しても、アンモニア濃度を正確に測定でき、硝化槽のDO値を過度に高めることなく、安定した硝化反応の進行と、硝化脱窒同時進行が生じ、窒素除去・濃度低減効果を高めることができる廃水処理方法の提供を目的とする。 According to the present invention, the ammonia concentration can be accurately measured even for wastewater having a high soluble evaporation residue and / or potassium ion concentration, and the stable progress of the nitrification reaction can be achieved without excessively increasing the DO value of the nitrification tank. It is an object of the present invention to provide a wastewater treatment method capable of enhancing the effect of removing nitrogen and reducing the concentration by causing simultaneous progress of nitrification and denitrification.

本発明にかかる廃水処理方法は、溶解性蒸発残留物500〜30,000mg/Lおよび/またはカリウムイオン濃度40〜600mg/Lの廃水を、少なくとも、脱窒素槽から、硝化槽、二次脱窒素槽、再曝気槽に導入することで生物学的硝化脱窒素処理を行う廃水処理方法において、硝化槽のアンモニア濃度を測定する液体分析計として、液絡部を介して外部と連通する空間内に内部液である塩化カリウム飽和液と当該内部液に接触する内部極であるAg/AgCl電極とを備えた比較電極と、応答膜によって外部から仕切られた空間内に内部液として塩化アンモニウム水溶液と当該内部液に接触する内部極としてAg/AgCl電極とを備えたアンモニウムイオン電極と、アンモニウムイオンに対するカリウムイオンの干渉を補正するために用いられるカリウムイオンによる電位を測定するカリウムイオン電極と、を具備する構成の液体分析計を用い、前記液体分析計により測定した硝化槽のアンモニア性窒素濃度が120mg/Lとなるように硝化槽への酸素含有気体供給量を制御し、かつ、硝化槽のDO値が1mg/L以下になるように制御することによって、硝化槽において硝化反応と脱窒素反応を同時に進行させることを特徴としている。
なお、測定対象のアンモニウムイオンの測定可能な濃度範囲は、前記比較電極の内部液中の塩化物イオン濃度よりも低いことが好ましい。また、前記アンモニウムイオン電極の内部液は、アンモニウムイオンと塩化物イオンとを含有しており、前記アンモニウムイオン電極の内部液は、前記アンモニウムイオン電極の内部液の浸透圧と等温交点とが所望の値になり、かつ、当該等温交点が前記測定可能な濃度範囲内に含まれているように、前記アンモニウムイオン電極の内部液中のアンモニウムイオンの濃度と塩素イオンの濃度が調整されたものであり、当該塩素イオンの濃度が、前記比較電極の内部液中の塩素イオンの濃度とは異なっていることが好ましい。
上記本発明にかかる液体分析計によれば、溶解性蒸発残留物および/またはカリウムイオン濃度が高い廃水に対しても、共存イオンおよび/またはカリウムイオンの影響を受けずにアンモニア濃度を正確に測定することができることを実験によって確認した。このため、硝化槽に対する酸素含有気体の供給量を硝化槽のNH4濃度に応じて正確に制御することが可能になる。
そして、硝化槽のNH4濃度に応じて酸素含有気体の供給量を制御することで、従来のように硝化槽のDO値を高める必要が無くなる。即ち、硝化槽のDO値を1mg/L以下と、従来よりも低く保つことが可能となり、硝化槽において安定した硝化反応の進行が図れ、また硝化槽での硝化脱窒同時進行が生じ、窒素除去濃度低減効果を高めることが可能となる。
The wastewater treatment method according to the present invention removes wastewater having a soluble evaporation residue of 500 to 30,000 mg / L and / or a potassium ion concentration of 40 to 600 mg / L from at least a nitrification tank, a nitrification tank, and a secondary denitrification tank. As a liquid analyzer that measures the ammonia concentration in the nitrification tank in the wastewater treatment method that performs biological nitrification and denitrification treatment by introducing it into the re-absorption tank, it is inside the space that communicates with the outside through the liquid junction. A comparative electrode provided with a saturated potassium chloride solution which is a liquid and an Ag / AgCl electrode which is an internal electrode in contact with the internal liquid, and an ammonium chloride aqueous solution and the inside as an internal liquid in a space partitioned from the outside by a response film. A configuration including an ammonium ion electrode having an Ag / AgCl electrode as an internal electrode in contact with a liquid, and a potassium ion electrode for measuring the potential of potassium ions used for correcting interference of potassium ions with ammonium ions. The amount of oxygen-containing gas supplied to the nitrification tank is controlled so that the concentration of ammoniacal nitrogen in the nitrification tank measured by the liquid analyzer is 1 to 20 mg / L, and the DO of the nitrification tank is used. By controlling the value to 1 mg / L or less, the nitrification reaction and the denitrification reaction proceed simultaneously in the nitrification tank.
The measurable concentration range of the ammonium ion to be measured is preferably lower than the chloride ion concentration in the internal liquid of the comparative electrode. Further, the internal liquid of the ammonium ion electrode contains ammonium ions and chloride ions, and it is desirable that the internal liquid of the ammonium ion electrode has an isothermal intersection point with the osmotic pressure of the internal liquid of the ammonium ion electrode. The concentration of ammonium ion and the concentration of chlorine ion in the internal liquid of the ammonium ion electrode are adjusted so that the value becomes a value and the isothermal intersection point is included in the measurable concentration range. It is preferable that the concentration of the chlorine ion is different from the concentration of the chlorine ion in the internal liquid of the comparative electrode.
According to the above-mentioned liquid analyzer according to the present invention, the ammonia concentration can be accurately measured even for wastewater having a high soluble evaporation residue and / or potassium ion concentration without being affected by coexisting ions and / or potassium ions. It was confirmed by experiment that it can be done. Therefore, the amount of oxygen-containing gas supplied to the nitrification tank can be accurately controlled according to the NH 4 concentration of the nitrification tank.
Then, by controlling the supply amount of the oxygen-containing gas according to the NH 4 concentration of the nitrification tank, it is not necessary to increase the DO value of the nitrification tank as in the conventional case. That is, the DO value of the nitrification tank can be kept lower than the conventional value of 1 mg / L or less, the nitrification reaction can proceed stably in the nitrification tank, and the nitrification and denitrification simultaneous progress in the nitrification tank occurs, and nitrogen. It is possible to enhance the effect of reducing the removal concentration.

また硝化槽のNH4濃度に応じて酸素含有気体の供給量を制御することで、従来のように硝化槽のDO値を高める必要が無くなる。即ち、硝化槽のDO値を従来よりも低く保つことが可能となり、硝化槽において安定した硝化反応の進行が図れ、また硝化槽での硝化脱窒同時進行が生じ、窒素除去濃度低減効果を高めることが可能となる。 Further, by controlling the supply amount of the oxygen-containing gas according to the NH 4 concentration of the nitrification tank, it is not necessary to increase the DO value of the nitrification tank as in the conventional case. That is, it is possible to keep the DO value of the nitrification tank lower than before, the nitrification reaction can proceed stably in the nitrification tank, and the nitrification denitrification simultaneous progress occurs in the nitrification tank, which enhances the effect of reducing the nitrogen removal concentration. It becomes possible.

また本発明は、前記硝化槽を機能的に複数に分割し、分割した硝化槽前半部分でのアンモニア性窒素濃度が1〜20mg/Lとなるように硝化槽への酸素含有気体供給量を制御し、かつ、硝化槽前半部分のDO値を1mg/L以下とすることによって、硝化槽前半部分おいて硝化反応と脱窒素反応を同時に進行させ、一方、分割した硝化槽後半部分で、DO値が1〜3mg/Lになるように酸素含有気体供給量を制御して硝化槽前半部分に残留したNH4-NをNOX-Nに硝化することを特徴としている。これによって、放流水のNH4-N+NOX-N値を小さくでき、さらに良好な窒素除去を達成することができる。 Further, in the present invention, the nitrification tank is functionally divided into a plurality of parts, and the amount of oxygen-containing gas supplied to the nitrification tank is controlled so that the ammonia nitrogen concentration in the first half of the divided nitrification tanks is 1 to 20 mg / L. However, by setting the DO value of the first half of the nitrification tank to 1 mg / L or less, the nitrification reaction and the denitrification reaction proceed simultaneously in the first half of the nitrification tank, while the DO value in the second half of the divided nitrification tank. It is characterized in that NH 4- N remaining in the first half of the nitrification tank is nitrified to NO X- N by controlling the supply amount of oxygen-containing gas so that the value becomes 1 to 3 mg / L. As a result, the NH 4- N + NO X- N value of the discharged water can be reduced, and even better nitrogen removal can be achieved.

本発明によれば、溶解性蒸発残留物および/またはカリウムイオン濃度が高い廃水に対しても、共存イオンおよび/またはカリウムイオンの影響を受けずにアンモニア濃度を正確に測定でき、従来のように硝化槽のDO値を過度に高めることが無く、硝化槽における安定した硝化反応の進行と、硝化槽での硝化脱窒同時進行が生じ、窒素除去・濃度低減効果を高めることができる。 According to the present invention, even for wastewater having a high soluble evaporation residue and / or potassium ion concentration, the ammonia concentration can be accurately measured without being affected by coexisting ions and / or potassium ions, as in the conventional case. The DO value of the nitrification tank is not excessively increased, the stable progress of the nitrification reaction in the nitrification tank and the simultaneous progress of nitrification and denitrification in the nitrification tank occur, and the effect of removing nitrogen and reducing the concentration can be enhanced.

液体分析計(NH4センサー)100の斜視図である。It is a perspective view of the liquid analyzer (NH 4 sensor) 100. NH4センサー100の使用状態を示す図である。It is a figure which shows the use state of NH 4 sensor 100. NH4センサー100の先端面を示す図(但し、センサーS2を取り外した状態)である。It is a figure which shows the tip surface of the NH 4 sensor 100 (however, the state where the sensor S2 is removed). 図3のA−A断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIG. 図1のB−B断面図(又はC−C断面図)である。FIG. 1 is a sectional view taken along the line BB (or a sectional view taken along the line CC) of FIG. 標準脱窒素処理方式による処理フローの一例を示す図である。It is a figure which shows an example of the processing flow by a standard denitrification treatment method. 膜分離高負荷脱窒素処理方式による処理フローの一例を示す図である。It is a figure which shows an example of the processing flow by the membrane separation high load denitrification treatment method. 前脱水+標準脱窒素処理方式による処理フローの一例を示す図である。It is a figure which shows an example of the processing flow by the pre-dehydration + standard denitrification treatment method. 散気式曝気装置400の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the aeration type aeration apparatus 400. ポンプ循環式曝気装置430の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a pump circulation type aeration apparatus 430. 空気注入式曝気装置460の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the air injection type aeration apparatus 460. NH4センサー測定値と水質分析結果の比較を示す図である。It is a figure which shows the comparison of the NH 4 sensor measurement value and the water quality analysis result. NH4センサー100の性能測定結果を示す図である。It is a figure which shows the performance measurement result of NH 4 sensor 100. NH4センサー100を使用したNH4-N濃度による空気量制御運転の結果を示す図である。It is a figure which shows the result of the air amount control operation by the NH 4- N concentration using the NH 4 sensor 100. 硝化槽NH4-N濃度による空気量制御と、硝化槽DO濃度による空気量制御の結果を比較して示す図である。It is a figure which compares and shows the result of the air amount control by a nitrification tank NH 4-N concentration, and the air amount control by a nitrification tank DO concentration. 硝化槽NH4-N濃度による空気量制御と、硝化槽DO濃度による空気量制御の結果を比較して示す図である。It is a figure which compares and shows the result of the air amount control by a nitrification tank NH 4-N concentration, and the air amount control by a nitrification tank DO concentration. 生物反応槽に流入するし尿等の流量を下げて、硝化槽270のDO値を1mg/L以下に設定した場合の各測定値を示す図である。It is a figure which shows each measured value when the DO value of the nitrification tank 270 is set to 1 mg / L or less by reducing the flow rate of human waste which flows into a biological reaction tank. 硝化槽270のNH4-N設定値を上げて、硝化槽270のDO値を1mg/L以下に設定した場合の各測定値を示す図である。It is a figure which shows each measured value at the time of raising the NH 4- N set value of a nitrification tank 270, and setting the DO value of a nitrification tank 270 to 1 mg / L or less. NH4センサー100に対して行われた試験の試験結果を示す図である。It is a figure which shows the test result of the test performed on NH 4 sensor 100. 硝化槽の機能を分割した標準脱窒素処理方式による処理フローの一例を示す図である。It is a figure which shows an example of the processing flow by the standard denitrification treatment method which divided the function of a nitrification tank. 硝化槽の機能を分割した前脱水+標準脱窒素処理方式による処理フローの一例を示す図である。It is a figure which shows an example of the treatment flow by the pre-dehydration + standard denitrification treatment method which divided the function of a nitrification tank. 標準脱窒素処理方式での、硝化槽DO濃度による空気量制御と、硝化槽NH4-N濃度による空気量制御と、硝化槽をDO濃度により2つのゾーンに分割する空気量制御の結果を比較して示す図である。Compare the results of air volume control based on the nitrification tank DO concentration, air volume control based on the nitrification tank NH 4- N concentration, and air volume control that divides the nitrification tank into two zones according to the DO concentration in the standard denitrification treatment method. It is a figure which shows. 前脱水+標準脱窒素処理方式での、硝化槽DO濃度による空気量制御と、硝化槽NH4-N濃度による空気量制御と、硝化槽をDO濃度により2つのゾーンに分割する空気量制御の結果を比較して示す図である。Pre-dehydration + standard denitrification treatment method, air volume control by nitrification tank DO concentration, air volume control by nitrification tank NH 4- N concentration, and air volume control by dividing the nitrification tank into two zones according to DO concentration. It is a figure which compares and shows the result.

以下、本発明の実施の形態を説明するが、本発明はこれに限定されない。
本発明において処理の対象となる被処理水(分析対象液)は、溶解性蒸発残留物および/またはカリウムイオン濃度が高い被処理水であり、具体的には、最終処分場浸出水処理施設、し尿処理施設、産業廃水処理施設等に排出される廃水が挙げられる。本発明においては、し尿や浄化槽汚泥を含む汚水を処理することを「し尿処理」と称し、従来からのし尿処理場や汚泥再生処理センター(し尿・浄化槽汚泥の他に生ごみ等有機性廃棄物を対象)での処理を意味する。また、し尿処理場や汚泥再生処理センターで処理対象となるし尿や浄化槽汚泥を含む汚水を「し尿等」とも称する。
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.
The water to be treated (liquid to be analyzed) to be treated in the present invention is water to be treated having a high concentration of soluble evaporation residue and / or potassium ion. Examples include wastewater discharged to human waste treatment facilities and industrial wastewater treatment facilities. In the present invention, the treatment of sewage containing human waste and septic tank sludge is referred to as "human waste treatment", and is a conventional human waste treatment plant or sludge regeneration treatment center (organic waste such as kitchen waste in addition to human waste and septic tank sludge). Means the processing in). In addition, sewage containing human waste and septic tank sludge to be treated at a human waste treatment plant or a sludge recycling treatment center is also referred to as “human waste, etc.”.

近年、本発明に係るNH4センサーを導入しようとする下水処理場の反応槽内の溶解性蒸発残留物はおおよそ100〜400mg/L、カリウムイオン濃度はおおよそ10〜30mg/Lである。また、最終処分場浸出水では溶解性蒸発残留物が60,000mg/Lに達する場合もあるが、生物学的硝化脱窒処理を行う場合には、反応槽内の溶解性蒸発残留物が30,000mg/L以下になるように希釈を行う。最終処分場浸出水の反応槽内のカリウムイオン濃度はおおよそ10〜60mg/Lである。また、し尿処理では反応槽内の溶解性蒸発残留物はおおよそ500〜10,000mg/L、 カリウムイオン濃度はおおよそ40〜600mg/Lである。つまり、本発明で、溶解性蒸発残留物が高いとは、溶解性蒸発残留物がおおよそ500mg/L以上の場合をいい、カリウムイオン濃度が高いとは、カリウムイオン濃度がおおよそ40mg/L以上の場合をいうこととする。 In recent years, the soluble evaporation residue in the reaction vessel of the sewage treatment plant where the NH 4 sensor according to the present invention is to be introduced is about 100 to 400 mg / L, and the potassium ion concentration is about 10 to 30 mg / L. In addition, the soluble evaporation residue in the final disposal site leachate may reach 60,000 mg / L, but in the case of biological nitrification denitrification treatment, the soluble evaporation residue in the reaction vessel is 30,000 mg. Dilute to less than / L. The potassium ion concentration in the reaction tank of the final disposal site leachate is approximately 10 to 60 mg / L. In the urine treatment, the soluble evaporation residue in the reaction vessel is about 500 to 10,000 mg / L, and the potassium ion concentration is about 40 to 600 mg / L. That is, in the present invention, a high soluble evaporation residue means a case where the soluble evaporation residue is about 500 mg / L or more, and a high potassium ion concentration means that the potassium ion concentration is about 40 mg / L or more. Let's say the case.

図1は本発明に用いる液体分析計(以下「NH4センサー」という)100の斜視図、図2はNH4センサー100の使用状態を示す図、図3はNH4センサー100の先端面を示す図(但し、センサーS2を取り外した状態)、図4は図3のA−A断面図、図5は図1のB−B断面図(又はC−C断面図)である。これらの図に示すように、NH4センサー100は、3つのセンサーS1、S2、S3が一体となったものであって、センサーS1、S2、S3として、基準電位を測定するための基準電極(比較電極)S3と、アンモニウムイオンによる電位を測定するためのアンモニウムイオン電極S1と、アンモニウムイオンに対するカリウムイオンの干渉を補正するために用いられるカリウムイオンによる電位を測定するためのカリウムイオン電極S2とを備えている。測定対象溶液のカリウムイオン濃度が高い場合には、アンモニウムイオン濃度測定に対するカリウムイオンの干渉の影響が大きくなり、アンモニウムイオン測定の妨げとなる恐れが生じる。 Figure 1 is a perspective view of a liquid analyzer (hereinafter referred to as "NH 4 sensor") 100 for use in the present invention, FIG, 3 2 showing a state of use of NH 4 sensor 100 indicates a distal end surface of the NH 4 Sensor 100 FIG. 4 is a sectional view taken along the line AA of FIG. 3 and FIG. 5 is a sectional view taken along the line BB (or a sectional view taken along the line CC) of FIG. As shown in these figures, the NH 4 sensor 100 is a combination of three sensors S1, S2, and S3, and is a reference electrode for measuring a reference potential as the sensors S1, S2, and S3. Comparative electrode) S3, an ammonium ion electrode S1 for measuring the potential due to ammonium ions, and a potassium ion electrode S2 for measuring the potential due to potassium ions used for correcting the interference of potassium ions with ammonium ions. I have. When the potassium ion concentration of the solution to be measured is high, the influence of potassium ion interference on the ammonium ion concentration measurement becomes large, which may interfere with the ammonium ion measurement.

NH4センサー100は、概略細円筒状の筐体を有し、その基端側(図1では下側)に持ち運び用の鎖が設けてあり、その反対側の先端面に3つのセンサーS1、S2、S3のセンサー面SP1、SP2、SP3が外側へ露出するように設置してある。なお、本実施形態においてセンサー面SP1、SP2、SP3とは、各電極の応答膜S11、S21や液絡部S31が形成されている面のことを指す。 The NH 4 sensor 100 has a substantially thin cylindrical housing, a chain for carrying is provided on the base end side (lower side in FIG. 1), and three sensors S1 are provided on the tip surface on the opposite side. The sensor surfaces SP1, SP2, and SP3 of S2 and S3 are installed so as to be exposed to the outside. In the present embodiment, the sensor surfaces SP1, SP2, and SP3 refer to the surfaces on which the response films S11, S21 and the liquid junction S31 of each electrode are formed.

そして図2に示すようにNH4センサー100の先端面が分析対象液(被処理液)L中において鉛直下向きとなるように浸され、各センサーS1、S2、S3のセンサー面SP1、SP2、SP3が分析対象液L中に浸された状態で各電位の測定を行い、分析対象液L中のアンモニウムイオン濃度を測定する。図1及び図2からも分かるように、3つのセンサーS1、S2、S3のうち2つについては分析中にセンサー面SP1、SP2に気泡が溜まるのを防ぐためにセンサー面SP1、SP2を筐体の軸方向に対して傾斜して設けてある。さらに、傾斜している2つのセンサー面SP1、SP2についてはその向きが同じ所定方向を向くように構成してある。 Then, as shown in FIG. 2, the tip surface of the NH 4 sensor 100 is immersed in the analysis target liquid (processed liquid) L so as to face vertically downward, and the sensor surfaces SP1, SP2, SP3 of each of the sensors S1, S2, and S3. Each potential is measured while being immersed in the analysis target liquid L, and the ammonium ion concentration in the analysis target liquid L is measured. As can be seen from FIGS. 1 and 2, two of the three sensors S1, S2, and S3 have the sensor surfaces SP1 and SP2 of the housing in order to prevent bubbles from accumulating on the sensor surfaces SP1 and SP2 during analysis. It is provided at an angle with respect to the axial direction. Further, the two inclined sensor surfaces SP1 and SP2 are configured so that their directions face the same predetermined direction.

NH4センサー100の先端面は円形状に形成され、その中心線上に基準電極S3のセンサー面SP3と、後述する温度計保護管Pとが並んで配置してある。また、前記中心線に直交する中心線よりもややずれた位置に一列に並んでアンモニウムイオン電極S1の先端部と、カリウムイオン電極S2の先端部とが並んで配置してある。 The tip surface of the NH 4 sensor 100 is formed in a circular shape, and the sensor surface SP3 of the reference electrode S3 and the thermometer protection tube P described later are arranged side by side on the center line thereof. Further, the tip portion of the ammonium ion electrode S1 and the tip portion of the potassium ion electrode S2 are arranged side by side in a line at a position slightly deviated from the center line orthogonal to the center line.

図4,図5に示すように、NH4センサー100は、基端側に中空部を有し、先端側に中実部が形成された概略円筒形状をしたボディ1と、前記ボディ1に差し込まれた3つのセンサーS1、S2、S3と、前記ボディ1の先端側を覆うように設けられているキャップ状の押圧機構2とを具備して構成されている。押圧機構2は、前記3つのセンサーS1、S2、S3を前記ボディ1に対して押圧して固定する。 As shown in FIGS. 4 and 5, the NH 4 sensor 100 is inserted into the body 1 having a substantially cylindrical shape having a hollow portion on the base end side and a solid portion formed on the tip end side, and the body 1. It is configured to include three sensors S1, S2, and S3, and a cap-shaped pressing mechanism 2 provided so as to cover the tip end side of the body 1. The pressing mechanism 2 presses and fixes the three sensors S1, S2, and S3 against the body 1.

前記ボディ1には軸方向に延びる4つの差し込み穴PH1、PH2、PH3、PH4が形成されており、概略円筒状をなす3つのセンサーS1、S2、S3と前記温度計保護管Pがそれぞれ対応する差し込み穴PH1、PH2、PH3、PH4に差し込んである。また、この差し込み穴PH1、PH2、PH3にはめねじは形成されておらず、各センサーS1、S2、S3が単に差し込まれるだけである。なお、温度計保護管Pについては外れないように差し込み穴PH4に対して固定してある。また、温度計保護管Pの内部には、前記各センサーS1、S2、S3の測定値に対して温度補償をする際に用いられる温度を測定する温度センサーTSが収容してある。 Four insertion holes PH1, PH2, PH3, and PH4 extending in the axial direction are formed in the body 1, and three sensors S1, S2, and S3 having a substantially cylindrical shape correspond to the thermometer protection tube P, respectively. It is inserted into the insertion holes PH1, PH2, PH3, and PH4. Further, no female screw is formed in the insertion holes PH1, PH2, and PH3, and the sensors S1, S2, and S3 are simply inserted. The thermometer protection tube P is fixed to the insertion hole PH4 so as not to come off. Further, inside the thermometer protection tube P, a temperature sensor TS for measuring the temperature used for temperature compensation for the measured values of the sensors S1, S2, and S3 is housed.

3つのセンサーS1、S2、S3について共通している部分について説明すると、各図からも分かるように各センサーS1、S2、S3は概略円筒形状に形成された樹脂製の支持管S12、S22、S32を有し、当該支持管S12、S22、S32の内部には内部液S13、S23、S33と、当該内部液S13、S23、S33に浸漬された内部電極S1E、S2E、S3Eとが収容されている。前記支持管S12、S22、S32の先端には開口部が形成されており、この開口部を塞ぐように応答膜S11、S21又は液絡部S31が設けてある。また、支持管S12、S22、S32の外周面にOリングが設けてあり、前記差し込み穴PH1、PH2、PH3との間で軸シールをなすように構成してある。さらに、各センサーS1、S2、S3の基端は前記差し込み穴PH1、PH2、PH3の最奥において電極端子Dと接触し、取得された各電位がその電極端子Dから外部の演算装置へと伝達されるようにしてある。また、支持管S12、S22、S32の外観形状について共通している部分についてさらに詳述すると、各センサーS1、S2、S3の支持管S12、S22、S32は、先端部が基端部側よりも直径の大きい太円筒部S14、S24、S34を有し、この太円筒部S14、S24、S34の基端側端面が前記差し込み穴PH1、PH2、PH3に形成された段部に係合して前記ボディ1と接触するボディ接触面S17、S27、S37としての機能を果たす。また太円筒部S14、S24、S34の外周面中央部には半径方向に突出したリング状の突出部S15、S25、S35が形成してあり、この突出部S15、S25、S35の先端側平面が前記押圧機構2と係合する係合部S16、S26、S36として構成してある。すなわち、この係合部S16、S26、S36が前記押圧機構2により前記ボディ1側へと押されることにより、前記ボディ接触面S17、S27、S37がボディ1へと押しつけられ、各センサーS1、S2、S3がボディ1に対して所定の力で固定されることになる。 Explaining the common parts of the three sensors S1, S2, and S3, as can be seen from each figure, the sensors S1, S2, and S3 are resin support tubes S12, S22, and S32 formed in a substantially cylindrical shape. The internal liquids S13, S23, and S33 and the internal electrodes S1E, S2E, and S3E immersed in the internal liquids S13, S23, and S33 are housed inside the support pipes S12, S22, and S32. .. An opening is formed at the tip of the support pipes S12, S22, and S32, and a response film S11, S21, or a liquid connection portion S31 is provided so as to close the opening. Further, an O-ring is provided on the outer peripheral surfaces of the support tubes S12, S22, and S32, and is configured to form a shaft seal between the insertion holes PH1, PH2, and PH3. Further, the base ends of the sensors S1, S2, and S3 come into contact with the electrode terminal D at the innermost part of the insertion holes PH1, PH2, and PH3, and the acquired potentials are transmitted from the electrode terminals D to an external arithmetic unit. It is designed to be done. Further, the parts common to the appearance shapes of the support tubes S12, S22, and S32 will be described in more detail. The tips of the support tubes S12, S22, and S32 of the sensors S1, S2, and S3 are closer to the base end side than the base end side. It has thick cylindrical portions S14, S24, S34 having a large diameter, and the end faces on the base end side of the thick cylindrical portions S14, S24, S34 engage with the step portions formed in the insertion holes PH1, PH2, and PH3. It functions as body contact surfaces S17, S27, and S37 that come into contact with the body 1. Further, ring-shaped protrusions S15, S25, and S35 protruding in the radial direction are formed in the central portion of the outer peripheral surface of the thick cylindrical portions S14, S24, and S34, and the tip-side planes of the protrusions S15, S25, and S35 are formed. It is configured as engaging portions S16, S26, and S36 that engage with the pressing mechanism 2. That is, when the engaging portions S16, S26, and S36 are pushed toward the body 1 by the pressing mechanism 2, the body contact surfaces S17, S27, and S37 are pressed against the body 1, and the sensors S1 and S2 are pressed. , S3 is fixed to the body 1 with a predetermined force.

3つのセンサーS1、S2、S3の内、前記基準電極S3は、その中心線(延伸軸線)に対して垂直な方向にセンサー面SP3が形成されており、図4に示すように液絡部S31が支持管S32の先端から着脱可能に構成してあり、連続使用による汚れ等により液絡部S31としての機能が低下してきた場合には交換できるようにしてある。 Of the three sensors S1, S2, and S3, the reference electrode S3 has a sensor surface SP3 formed in a direction perpendicular to the center line (extension axis) of the reference electrode S3. Is configured to be removable from the tip of the support tube S32, and can be replaced when the function as the liquid connection portion S31 deteriorates due to dirt or the like due to continuous use.

アンモニウムイオン電極S1及びカリウムイオン電極S2は、図5に示すように、応答膜S11、S21が設けられており、そのセンサー面SP1、SP2はセンサーS1、S2の中心軸(延伸軸線)に対して傾斜して設けてある。両センサーS1,S2の形状は略同じ形状をしている。 As shown in FIG. 5, the ammonium ion electrode S1 and the potassium ion electrode S2 are provided with response films S11 and S21, and the sensor surfaces SP1 and SP2 thereof are relative to the central axes (stretched axes) of the sensors S1 and S2. It is provided at an angle. The shapes of both sensors S1 and S2 are substantially the same.

押圧機構2は、全てのセンサーS1、S2、S3を一括して前記ボディ1に対して押圧するものである。断面図においては、アンモニア計100の先端面において概略コの字状の部材として示されるものであり、前記ボディ1の先端部を略覆うものである。また、前記ボディ1の先端部を覆った状態において各センサーS1、S2、S3のセンサー面SP1、SP2、SP3と前記温度計保護管Pの先端とを外部へと露出させるための貫通孔TH1、TH2、TH3、TH4を4つ備えている。 The pressing mechanism 2 collectively presses all the sensors S1, S2, and S3 against the body 1. In the cross-sectional view, it is shown as a roughly U-shaped member on the tip surface of the ammonia meter 100, and substantially covers the tip portion of the body 1. Further, through holes TH1 for exposing the sensor surfaces SP1, SP2, SP3 of the sensors S1, S2, S3 and the tip of the thermometer protection tube P to the outside while covering the tip of the body 1. It has four TH2, TH3, and TH4.

本実施形態のアンモニウムイオン電極S1の内部液S13には、塩化アンモニウムが含まれており、内部電極S1EとしてはAg/AgCl電極が用いられている。また、応答膜S11は、選択的にアンモニウムイオンに応答する膜であり、半透膜としての性質を有する。このような各イオンに対応する膜としては、具体的には、例えば有機溶媒とそれらを担持するポリ塩化ビニル樹脂やシリコーンゴム等からなるものが挙げられる。一方、基準電極S3の内部液S33としては過飽和の塩化カリウム溶液が用いられ、内部電極S3EとしてはAg/AgCl電極が用いられている。 The internal liquid S13 of the ammonium ion electrode S1 of the present embodiment contains ammonium chloride, and an Ag / AgCl electrode is used as the internal electrode S1E. Further, the response membrane S11 is a membrane that selectively responds to ammonium ions and has properties as a semipermeable membrane. Specific examples of the film corresponding to each of such ions include those made of an organic solvent and a polyvinyl chloride resin or silicone rubber that supports them. On the other hand, a supersaturated potassium chloride solution is used as the internal liquid S33 of the reference electrode S3, and an Ag / AgCl electrode is used as the internal electrode S3E.

当該アンモニウムイオン電極S1の応答膜S11の膜電位(mV)は下記式(1)で表すことができる。 The membrane potential (mV) of the response film S11 of the ammonium ion electrode S1 can be represented by the following formula (1).

Figure 0006862594
Figure 0006862594

ここで、式(1)中の各パラメータはそれぞれ以下のとおりである。
E:アンモニウムイオン電極S1の応答膜S11の膜電位(mV)
OIon:アンモニウムイオン電極S1の標準電極電位(mV)
R:気体定数
F:ファラデー定数
T:絶対温度(K)
N, Sample:分析対象液L中のNH4 +のイオン活量(moL/L)
N, Ion:アンモニウムイオン電極S1の内部液S13中のNH4 +のイオン活量(moL/L)
Cl, Ref:基準電極S3の内部液S33中のClのイオン活量(moL/L)
Cl, Ion:アンモニウムイオン電極S1の内部液S13中のClのイオン活量(moL/L)
Here, each parameter in the equation (1) is as follows.
E: Membrane potential (mV) of the response film S11 of the ammonium ion electrode S1
E O Ion: Standard electrode potential (mV) of ammonium ion electrode S1
R: Gas constant F: Faraday constant T: Absolute temperature (K)
a N, Sample: analyte solution NH 4 + ion activity in L (moL / L)
a N , Ion : Ion activity of NH 4 + in the internal liquid S13 of the ammonium ion electrode S1 (moL / L)
a Cl , Ref : Ion activity of Cl − in the internal liquid S33 of the reference electrode S3 (moL / L)
a Cl , Ion : Ion activity of Cl − in the internal liquid S13 of the ammonium ion electrode S1 (moL / L)

本実施形態においては、式(1)中の実線で囲まれたB項全体が1になる点が測定可能な濃度範囲内に入るように各イオンのイオン活量(イオン濃度)が調整されていることにより、分析対象液L中のアンモニウムイオンの濃度範囲内、すなわち測定レンジ内で、等温交点を得ることができる。更に、本実施形態では、内部液S13の浸透圧が分析対象液Lの浸透圧と同程度になるように、内部液S13中のアンモニウムイオンの濃度と塩化物イオンの濃度とが調整されている。なお、式(1)に基づいてシミュレーションを行い、等温交点が測定レンジ内に入るように内部液を調製してもよい。 In the present embodiment, the ion activity (ion concentration) of each ion is adjusted so that the point where the entire B term surrounded by the solid line in the formula (1) becomes 1 is within the measurable concentration range. As a result, an isothermal intersection can be obtained within the concentration range of ammonium ions in the solution L to be analyzed, that is, within the measurement range. Further, in the present embodiment, the concentration of ammonium ion and the concentration of chloride ion in the internal liquid S13 are adjusted so that the osmotic pressure of the internal liquid S13 becomes the same as the osmotic pressure of the liquid L to be analyzed. .. A simulation may be performed based on the equation (1), and the internal liquid may be prepared so that the isothermal intersection is within the measurement range.

このように構成した本実施形態のアンモニウム計100によれば、アンモニウムイオン電極S1の内部液S13中のアンモニウムイオンの濃度と塩化物イオンの濃度とを変動させることにより、内部液S13の浸透圧を分析対象液Lの浸透圧と同程度になるように調製しながら、分析対象液L中のアンモニウムイオンの濃度範囲内で等温交点が得られるので、溶解性蒸発残留物および/またはカリウムイオン濃度が高い廃水を対象とした場合でも共存イオンおよび/またはカリウムイオンの影響を受けずにアンモニア濃度を正確に測定できることを本願発明者は見出した。 According to the ammonium meter 100 of the present embodiment configured as described above, the osmotic pressure of the internal liquid S13 is increased by varying the concentration of ammonium ions and the concentration of chloride ions in the internal liquid S13 of the ammonium ion electrode S1. While adjusting the osmotic pressure to the same level as the osmotic pressure of the solution L to be analyzed, an isothermal intersection point can be obtained within the concentration range of ammonium ions in the solution L to be analyzed, so that the concentration of soluble evaporation residue and / or potassium ion can be increased. The inventor of the present application has found that the ammonia concentration can be accurately measured without being affected by coexisting ions and / or potassium ions even when targeting high waste water.

上記NH4センサー100においては、以下のような試験が行われている。即ち、基準電極(比較電極)S3として、内部液S33が3.33Mの塩化カリウム溶液であるものが使用された。一方、アンモニウムイオン電極S1の内部液S13は、等温交点が0.0000714M(1ppm・N)で、浸透圧が塩濃度0.03Mの水溶液と同一になるように調製された。上記の構成を有する基準電極S3とアンモニウムイオン電極S1とを用いて、温度を変化させながら電極の応答が計算式(1)に従っているかどうかが確認された。その結果は、図19に示すように、アンモニウムイオン濃度0.0000714M(1ppm・N)に等温交点を持つことが確認されている。なお、等温交点が測定可能な濃度範囲からずれると、測定可能な濃度範囲内の測定値Eが式(1)に完全に従わない場合には、式(1)から予想されるEと、実際の測定値Eとの間にずれが大きくなるので測定誤差が大きくなる。 The following tests have been performed on the NH 4 sensor 100. That is, as the reference electrode (comparison electrode) S3, a solution in which the internal solution S33 was 3.33 M potassium chloride solution was used. On the other hand, the internal liquid S13 of the ammonium ion electrode S1 was prepared so that the isothermal intersection was 0.0000714M (1ppm · N) and the osmotic pressure was the same as that of the aqueous solution having a salt concentration of 0.03M. Using the reference electrode S3 and the ammonium ion electrode S1 having the above configuration, it was confirmed whether or not the response of the electrode according to the calculation formula (1) while changing the temperature. As a result, as shown in FIG. 19, it is confirmed that the ammonium ion concentration has an isothermal intersection at 0.0000714M (1ppm · N). If the isothermal intersection deviates from the measurable concentration range, and the measured value E within the measurable concentration range does not completely follow the equation (1), the E expected from the equation (1) is actually used. Since the deviation from the measured value E of is large, the measurement error becomes large.

即ち、NH4センサー100において、測定対象のアンモニウムイオンの測定可能な濃度範囲は、基準電極(比較電極)S3の内部液S33中の塩化物イオン濃度よりも低いことが好ましい。また、アンモニウムイオン電極S1の内部液S13は、アンモニウムイオンと塩化物イオンとを含有しており、アンモニウムイオン電極S1の内部液S13は、アンモニウムイオン電極S1の内部液S13の浸透圧と等温交点とが所望の値になり、かつ、当該等温交点が前記測定可能な濃度範囲内に含まれているように、前記アンモニウムイオン電極S1の内部液S13中のアンモニウムイオンの濃度と塩素イオンの濃度が調整されたものであり、当該塩素イオンの濃度が、前記基準電極S3の内部液S33中の塩素イオンの濃度とは異なっていることが好ましい。 That is, in the NH 4 sensor 100, the measurable concentration range of the ammonium ion to be measured is preferably lower than the chloride ion concentration in the internal liquid S33 of the reference electrode (comparative electrode) S3. Further, the internal liquid S13 of the ammonium ion electrode S1 contains ammonium ions and chloride ions, and the internal liquid S13 of the ammonium ion electrode S1 has an isotherm with the osmotic pressure of the internal liquid S13 of the ammonium ion electrode S1. The concentration of ammonium ions and the concentration of chlorine ions in the internal liquid S13 of the ammonium ion electrode S1 are adjusted so that the desired value is obtained and the isothermal intersection point is within the measurable concentration range. It is preferable that the concentration of the chlorine ions is different from the concentration of the chlorine ions in the internal liquid S33 of the reference electrode S3.

ところで従来、生物学的窒素除去の処理方式としては、浮遊生物を利用した活性汚泥法、浮遊生物と流動型生物膜を利用した担体利用処理法、生物膜を利用した接触酸化法が用いられる。本願発明の溶解性蒸発残留物および/またはカリウムイオン濃度が高い廃水を対象とした前述のNH4センサー100を使用する硝化槽の空気量制御方法はどの処理方式にも適用可能である。 By the way, conventionally, as a treatment method for removing biological nitrogen, an activated sludge method using planktonic organisms, a carrier utilization treatment method using planktonic organisms and a fluid biofilm, and a catalytic oxidation method using a biofilm are used. The above-mentioned method for controlling the amount of air in a nitrification tank using the NH 4 sensor 100 for wastewater having a high concentration of soluble evaporation residue and / or potassium ion of the present invention can be applied to any treatment method.

前述のように、測定対象溶液のカリウムイオン濃度が高い場合には、アンモニウムイオン濃度測定に対するカリウムイオンの干渉の影響が大きく、アンモニウムイオン測定の妨げとなるため、カリウムイオン濃度が高いし尿処理では、NH4センサー100でのアンモニア濃度測定がより困難になると思われる。そのため、し尿処理に関し、詳細な説明を行う。 As described above, when the potassium ion concentration of the solution to be measured is high, the influence of potassium ion interference on the ammonium ion concentration measurement is large, which hinders the ammonium ion measurement. It seems that it will be more difficult to measure the ammonia concentration with the NH 4 sensor 100. Therefore, a detailed explanation will be given regarding the treatment of human waste.

し尿等の主な性状は一例として、pH:7〜8、SS:5,000mg/L〜15,000mg/L、BOD:2,000〜15,000mg/L、アンモニア性窒素:500〜5,000mg/Lである。 As an example, the main properties of urine and the like are pH: 7 to 8, SS: 5,000 mg / L to 15,000 mg / L, BOD: 2,000 to 15,000 mg / L, and ammoniacal nitrogen: 500 to 5,000 mg / L.

し尿処理の生物学的脱窒素処理方式としては、活性汚泥法である循環式硝化脱窒素法を適用し、標準脱窒素処理方式、高負荷脱窒素処理方式、膜分離高負荷脱窒素処理方式、浄化槽汚泥の混入比率の高い脱窒素処理方式、前脱水+標準脱窒素処理方式などが適用されている。 As a biological denitrification treatment method for human waste treatment, a circulating nitrification denitrification method, which is an activated sludge method, is applied, and a standard denitrification treatment method, a high-load denitrification treatment method, a membrane separation high-load denitrification treatment method, A denitrification treatment method with a high mixing ratio of septic tank sludge, a pre-dehydration + standard denitrification treatment method, etc. are applied.

〔標準脱窒素処理方式〕
図6は標準脱窒素処理方式による処理フローの一例を示す図である。同図に示すように、この標準脱窒素処理方式による処理フローは、脱窒素槽210と、硝化槽220と、二次脱窒素槽230と、再曝気槽240と、沈殿池250とを設置して、この順番に処理を行う構成となっている。
[Standard denitrification method]
FIG. 6 is a diagram showing an example of a processing flow by the standard denitrification treatment method. As shown in the figure, in the treatment flow by this standard denitrification treatment method, a denitrification tank 210, a nitrification tank 220, a secondary denitrification tank 230, a reaeration tank 240, and a settling basin 250 are installed. Therefore, the processing is performed in this order.

即ち、スクリーン等でし渣等を除去した前処理後のし尿及び浄化槽汚泥(以下「し尿等」ともいう)を希釈水とともに脱窒素槽210に供給する。脱窒素槽210に流入するし尿等の量の1〜10倍の希釈水を供給する。希釈水としては井戸水等が用いられるが、この他に雑排水(脱水ろ液、機器洗浄水など場内で発生する排水)も希釈水と一緒に供給される。以下、雑排水を含めて希釈水と呼ぶこととする。脱窒素槽210には沈殿池250から返送される返送汚泥及び硝化槽220の末端から循環される硝化液(硝化循環液)も流入する。脱窒素槽210は無酸素状態下で撹拌され、脱窒素菌がし尿および浄化槽汚泥中のBOD成分を利用しながら循環された硝化液中の硝酸性窒素および亜硝酸性窒素(以下、NOX-N)を窒素ガスに転換する脱窒素処理を行う。 That is, the pretreated human waste and septic tank sludge (hereinafter, also referred to as “human waste”) from which the residue and the like have been removed by a screen or the like are supplied to the denitrification tank 210 together with the diluted water. Diluted water that flows into the denitrification tank 210 and is 1 to 10 times the amount of human waste is supplied. Well water or the like is used as the diluted water, but in addition to this, miscellaneous wastewater (drainage generated in the field such as dehydration filtrate and equipment washing water) is also supplied together with the diluted water. Hereinafter, it will be referred to as diluted water including miscellaneous wastewater. The returned sludge returned from the settling basin 250 and the nitrification liquid (nitrification circulation liquid) circulated from the end of the nitrification tank 220 also flow into the denitrification tank 210. The denitrification tank 210 is agitated under anoxic conditions, and nitrate nitrogen and nitrite nitrogen in the nitrifying liquid circulated while utilizing the BOD component in the denitrifying bacteria urine and septic tank sludge (hereinafter, NO X- Perform denitrification treatment to convert N) to nitrogen gas.

次に、脱窒素槽210から流出した混合液は硝化槽220に導入され、曝気される。ここでは、脱窒素槽210で除去しきれなかったBODが除去されるとともに、硝化菌の作用によりアンモニア性窒素(以下、「NH4-N」という)がNOX-Nに酸化される。なお、硝化槽220には、DO計223と、pH計225と、前記NH4センサー100が設置され、また下記する曝気装置によって空気が供給される。 Next, the mixed solution flowing out of the denitrification tank 210 is introduced into the nitrification tank 220 and aerated. Here, BOD that could not be completely removed in the denitrification tank 210 is removed, and ammoniacal nitrogen (hereinafter referred to as "NH 4- N") is oxidized to NO X-N by the action of nitrifying bacteria. The nitrification tank 220 is equipped with a DO meter 223, a pH meter 225, and the NH 4 sensor 100, and air is supplied by the aeration device described below.

硝化槽220で硝化が進行した混合液の大部分は、硝化液循環配管221によって、前記脱窒素槽210に循環され、残りは二次脱窒素槽230に流入する。脱窒素槽210と同様に無酸素状態である二次脱窒素槽230では、硝化槽220から流入したNOX-Nが脱窒素される。ここでの脱窒素では内生呼吸型脱窒素も行われるが、メタノール等の水素供与体を添加することで、脱窒素反応の効率化を図ることが好適である。 Most of the mixed liquid in which nitrification has progressed in the nitrification tank 220 is circulated to the denitrification tank 210 by the nitrification liquid circulation pipe 221 and the rest flows into the secondary denitrification tank 230. In the secondary denitrification tank 230, which is in an oxygen-free state like the denitrification tank 210, NO X- N flowing from the nitrification tank 220 is denitrified. In the denitrification here, endogenous respiratory denitrification is also performed, but it is preferable to improve the efficiency of the denitrification reaction by adding a hydrogen donor such as methanol.

次に、二次脱窒素槽230で残留したメタノール等の有機物は、再曝気槽240で曝気処理することで除去される。 Next, organic substances such as methanol remaining in the secondary denitrification tank 230 are removed by aeration treatment in the re-aeration tank 240.

次に、再曝気槽240からの流出水は沈澱池250に導かれ、ここで汚泥と処理水に分離される。沈殿池250で濃縮された汚泥の一部は、汚泥返送管251によって、返送汚泥として脱窒素槽210に送られ、残りは余剰汚泥として汚泥処理される。沈殿池250から越流した処理水は、凝集沈殿処理等の高度処理を経た後、放流される。 Next, the effluent from the reaeration tank 240 is guided to the settling basin 250, where it is separated into sludge and treated water. A part of the sludge concentrated in the settling basin 250 is sent to the denitrification tank 210 as return sludge by the sludge return pipe 251 and the rest is treated as excess sludge. The treated water overflowing from the settling basin 250 is discharged after undergoing advanced treatment such as coagulation sedimentation treatment.

標準脱窒素処理方式のMLSS(Mixed Liquor Suspended Solids)は、6000mg/L程度で運転されることが多い。 MLSS (Mixed Liquor Suspended Solids), which is a standard denitrification treatment method, is often operated at about 6000 mg / L.

生物学的硝化脱窒素法での各反応槽の液温は、投入するし尿等や希釈水よりも高くなる。これは、硝化反応および脱窒素反応は発熱反応であり、各反応槽での生物反応により生じる発生熱、および、曝気装置で発生する吹き込み空気の熱量などの反応槽への流入熱が、曝気による排気ガスの持ち出す熱量などの反応槽からの流出熱よりも大きくなるためである。亜硝酸菌の活性は38℃まで高くなるが、38℃を超えると低下するため、硝化槽220の処理の安定化のため、生物学的硝化脱窒処理の液温の上限は38℃とするのが好適である。 The liquid temperature of each reaction tank in the biological nitrification denitrification method is higher than that of human waste or diluted water. This is because the nitrification reaction and denitrification reaction are exothermic reactions, and the heat generated by the biological reaction in each reaction tank and the heat flowing into the reaction tank such as the amount of heat of the blown air generated by the aeration device are due to aeration. This is because the amount of heat taken out by the exhaust gas is larger than the heat flowing out from the reaction tank. The activity of nitrite bacteria increases up to 38 ° C, but decreases above 38 ° C. Therefore, in order to stabilize the treatment of the nitrification tank 220, the upper limit of the liquid temperature for the biological nitrification denitrification treatment is 38 ° C. Is preferable.

〔高負荷脱窒素処理方式、膜分離高負荷脱窒素処理方式〕
高負荷脱窒素処理方式や膜分離高負荷脱窒素処理方式の高負荷処理方式では、前処理したし尿等を無希釈のまま高容積負荷の硝化脱窒素設備で処理し、固液分離後の分離水を凝集沈殿処理等の高度処理を経た後、放流する方式である。高負荷処理方式では、高容積負荷運転を可能とするため、MLSSを8,000〜20,000mg/Lに維持する必要がある。この高MLSSの活性汚泥の固液分離方式としては、高負荷脱窒素処理方式では、遠心濃縮機等の機械分離方式の採用が一般的であり、膜分離高負荷脱窒素処理方式では、精密ろ過膜(MF膜)や限外ろ過膜(UF膜)による膜分離方式が採用される。
[High-load denitrification treatment method, membrane separation high-load denitrification treatment method]
High-load denitrification treatment method and membrane separation In the high-load treatment method of high-load denitrification treatment method, pretreated urine is treated with a high-volume load nitrification denitrification facility without dilution, and separation after solid-liquid separation. This is a method in which water is discharged after undergoing advanced treatment such as coagulation sedimentation treatment. In the high load processing method, it is necessary to maintain MLSS at 8,000 to 20,000 mg / L in order to enable high volume load operation. As a solid-liquid separation method for activated sludge with high MLSS, a mechanical separation method such as a centrifugal concentrator is generally adopted in the high-load denitrification treatment method, and microfiltration in the membrane separation high-load denitrification treatment method. A membrane separation method using a membrane (MF membrane) or an ultrafiltration membrane (UF membrane) is adopted.

図7は膜分離高負荷脱窒素処理方式による処理フローの一例を示す図である。同図に示すように、この膜分離高負荷脱窒素処理方式による処理フローは、脱窒素槽260と、硝化槽270と、膜分離原水槽280と、二次硝化槽290と、二次脱窒素槽300と、再曝気槽310と、沈殿池320とを設置して、この順番に処理を行う構成となっている。処理の基本原理は前記標準脱窒素処理方式に準じている。 FIG. 7 is a diagram showing an example of a processing flow by the membrane separation high load denitrification treatment method. As shown in the figure, the treatment flow by this membrane separation high load denitrification treatment method is as follows: denitrification tank 260, nitrification tank 270, membrane separation raw water tank 280, secondary nitrification tank 290, and secondary denitrification. A tank 300, a re-aeration tank 310, and a settling basin 320 are installed, and the treatment is performed in this order. The basic principle of the treatment is based on the standard denitrification treatment method.

即ち、前処理したし尿等を脱窒素槽260に流入させる。脱窒素槽260ではし尿等のBODを利用して、嫌気的条件下で硝化槽270からの循環液中のNOX-Nを脱窒素する。脱窒素槽260の流出液は硝化槽270に流入し、好気的条件下でNH4-NがNOX-Nに硝化される。NOX-Nを含む混合液は、硝化液循環配管271によって、脱窒素槽260へ循環される。この処理フローでは、膜分離原水槽280から脱窒素槽260へ循環するフローとなっているが、硝化槽270から脱窒素槽260に循環する方式としてもよい。 That is, the pretreated human waste and the like are allowed to flow into the denitrification tank 260. In the denitrification tank 260, NO X- N in the circulating fluid from the nitrification tank 270 is denitrified under anaerobic conditions using BOD such as human waste. The effluent from the denitrification tank 260 flows into the nitrification tank 270, and NH 4- N is nitrified to NO X-N under aerobic conditions. The mixed liquid containing NO X- N is circulated to the denitrification tank 260 by the nitrifying liquid circulation pipe 271. In this treatment flow, the flow is circulated from the membrane separation raw water tank 280 to the denitrification tank 260, but a method of circulating from the nitrification tank 270 to the denitrification tank 260 may be used.

硝化槽270からの流出液は膜分離原水槽280を経て膜分離装置281で固液分離される。膜分離装置281で分離された透過水は後段の二次硝化槽290に流入し、膜で濃縮された汚泥の一部は返送汚泥として脱窒素槽260に戻され、残りは余剰汚泥として汚泥処理される。脱窒素槽260および硝化槽270のMLSSは8,000〜12,000mg/Lで運転されることが多い。高負荷脱窒素処理方式では、反応液温よりも水温の低い希釈水を用いないため、反応槽液温を38℃以下に保つために冷却装置を備えている。 The effluent from the nitrification tank 270 is solid-liquid separated by the membrane separation device 281 via the membrane separation raw water tank 280. The permeated water separated by the membrane separation device 281 flows into the secondary nitrification tank 290 in the subsequent stage, part of the sludge concentrated by the membrane is returned to the denitrification tank 260 as return sludge, and the rest is treated as excess sludge. Will be done. The MLSS of the denitrification tank 260 and the nitrification tank 270 is often operated at 8,000 to 12,000 mg / L. Since the high-load denitrification treatment method does not use diluted water having a water temperature lower than the reaction liquid temperature, a cooling device is provided to keep the reaction tank liquid temperature at 38 ° C. or lower.

膜分離装置281で分離された透過水は、雑排水とともに二次硝化槽290へ流入する。二次硝化槽290では好気的条件下でNH4-NがNOX-Nに硝化される。二次脱窒素槽300、再曝気槽310、沈殿池320、汚泥返送管321の機能は、上記標準脱窒素処理方式と同様である。二次硝化槽290、二次脱窒素槽300、再曝気槽310のMLSSは、4,000〜6,000mg/Lで運転される。 The permeated water separated by the membrane separation device 281 flows into the secondary nitrification tank 290 together with the miscellaneous wastewater. In the secondary nitrification tank 290, NH 4- N is nitrified to NO X-N under aerobic conditions. The functions of the secondary denitrification tank 300, the reaeration tank 310, the settling basin 320, and the sludge return pipe 321 are the same as those of the standard denitrification treatment method. The MLSS of the secondary nitrification tank 290, the secondary denitrification tank 300, and the reaeration tank 310 is operated at 4,000 to 6,000 mg / L.

〔浄化槽汚泥の混入比率の高い脱窒素処理方式、前脱水+標準脱窒素処理方式〕
浄化槽汚泥の混入比率の高い脱窒素処理方式や前脱水+標準脱窒素処理方式では、生物学的硝化脱窒素処理の前に前処理後のし尿等の濃縮や脱水の固液分離処理を行い、固形物の除去を行う。これにより、生物処理への流入水の性状が安定し、生物学的硝化脱窒処理の負荷が軽減できる。また、余剰汚泥を前処理後のし尿等とともに脱水する方式の場合、汚泥脱水設備を一元化できる。
[Denitration treatment method with high mixing ratio of septic tank sludge, pre-dehydration + standard denitrification treatment method]
In the denitrification treatment method and the pre-dehydration + standard denitrification treatment method, which have a high mixing ratio of septic tank sludge, before the biological nitrification denitrification treatment, concentration of human waste after pretreatment and solid-liquid separation treatment of dehydration are performed. Remove solids. As a result, the properties of the inflow water to the biological treatment are stabilized, and the load of the biological nitrification denitrification treatment can be reduced. Further, in the case of a method of dehydrating excess sludge together with human waste after pretreatment, the sludge dewatering equipment can be unified.

図8は前脱水+標準脱窒素処理方式による処理フローの一例を示す図である。同図に示すように、この前脱水+標準脱窒素処理方式による処理フローは、脱水機330と、脱窒素槽340と、硝化槽350と、二次脱窒素槽360と、再曝気槽370と、沈殿池380とを設置して、この順番に処理を行う構成となっている。処理の基本原理は前記標準脱窒素処理方式に準じている。 FIG. 8 is a diagram showing an example of a treatment flow by the pre-dehydration + standard denitrification treatment method. As shown in the figure, the treatment flow by this pre-dehydration + standard denitrification treatment method includes a dehydrator 330, a denitrification tank 340, a nitrification tank 350, a secondary denitrification tank 360, and a re-aeration tank 370. , A settling basin 380 is installed, and processing is performed in this order. The basic principle of the treatment is based on the standard denitrification treatment method.

この処理フローの場合、前処理後のし尿等を脱水機330で脱水(以下、前脱水)し、脱水後の分離液を脱窒素槽340に流入させる。脱水時の汚泥の調質には無機凝集剤と高分子凝集剤を併用させることが好ましい。 In the case of this treatment flow, the pre-treated human waste and the like are dehydrated by the dehydrator 330 (hereinafter referred to as pre-dehydration), and the dehydrated separation liquid flows into the denitrification tank 340. It is preferable to use an inorganic flocculant and a polymer flocculant in combination for preparing sludge during dehydration.

前脱水処理では生物学的硝化脱窒処理での負荷量が軽減するため、井戸水等の希釈水を使用せずに、機器洗浄水など場内で発生する排水を雑排水として供給する場合が多い。脱窒素槽340以降の機能は、図6に示す前記標準脱窒素処理方式での処理フローと同様なので、その説明は省略する。 In the pre-dehydration treatment, since the load in the biological nitrification denitrification treatment is reduced, wastewater generated in the site such as equipment washing water is often supplied as miscellaneous wastewater without using diluted water such as well water. Since the functions after the denitrification tank 340 are the same as the treatment flow in the standard denitrification treatment method shown in FIG. 6, the description thereof will be omitted.

前記硝化槽や再曝気槽で用いる曝気装置としては、散気式曝気装置やポンプ循環式曝気装置、空気注入式曝気装置などがある。曝気装置は、し尿等中のBOD除去及び窒素化合物の硝化を生物学的に行うための酸素を槽内液に溶解する装置で、硝化槽で必要とする酸素をできるだけ均一に十分供給でき、また、汚泥、砂等が沈殿することなく、槽内汚泥濃度が実用上十分な均一性を保つような攪拌能力を有するものとする。硝化槽では、し尿等中のBOD除去以外にアンモニア性窒素の硝化を行うため、一般の活性汚泥法の曝気槽に比べ同一のし尿処理量に対して格段に多量の酸素を必要とする。また、総窒素−MLSS負荷や好気性汚泥日令を必要な範囲に保つためには、MLSS濃度を高く維持することが求められる。従って、曝気装置は、高いMLSS濃度の槽内液に対して必要な酸素の供給が十分に可能なものでなくてはならず、また、上述のように多量の酸素を必要とするので、省エネルギーの観点からも酸素溶解効率のよいものが要求される。 Examples of the aeration device used in the vitrification tank and the re-aeration tank include an aeration type aeration device, a pump circulation type aeration device, and an air injection type aeration device. The aeration device is a device that dissolves oxygen in the liquid in the tank for biologically removing BOD in urine and nitrifying nitrogen compounds, and can supply the oxygen required in the nitrification tank as uniformly and sufficiently as possible. , Sludge, sand, etc. shall not settle, and the sludge concentration in the tank shall have a stirring ability to maintain sufficient uniformity for practical use. In the nitrification tank, in addition to removing BOD in human waste, ammonia nitrogen is nitrified, so a much larger amount of oxygen is required for the same amount of human waste treated than in the aeration tank of the general activated sludge method. In addition, in order to keep the total nitrogen-MLSS load and the aerobic sludge age within the required range, it is necessary to maintain a high MLSS concentration. Therefore, the aeration device must be capable of sufficiently supplying the necessary oxygen to the liquid in the tank having a high MLSS concentration, and also requires a large amount of oxygen as described above, thus saving energy. From this point of view, a product with high oxygen dissolution efficiency is required.

散気式曝気装置は、ブロワから送気管を経て送られた空気を、散気装置で槽内液中に放出し、槽内を攪拌すると同時に酸素溶解を行う。散気装置は、ブロワから送られてくる空気を細かい気泡にして硝化槽に吹き込み、水面に向かって上昇する気泡のエアーリフト効果により槽内に旋回流を形成して槽内液の攪拌混合を行い、且つ液と気泡の接触によって酸素を溶解させる。空気注入式曝気装置も、ブロワにより曝気槽への空気の供給を行う。ポンプ循環方式ではポンプ循環流路でエジェクタ等により空気を吸引することで曝気槽への空気の供給を行う。空気量の制御は配管中のバルブ開度の調整やブロワやポンプのインバータによる出力制御により行うが、インバータによる出力制御での電力削減効果が大きい。 In the aeration type aeration device, the air sent from the blower through the air supply tube is discharged into the liquid in the tank by the aeration device, and the inside of the tank is agitated and oxygen is dissolved at the same time. The air diffuser makes the air sent from the blower into fine bubbles and blows them into the nitrification tank, and the air lift effect of the bubbles rising toward the water surface forms a swirling flow in the tank to stir and mix the liquid in the tank. And the oxygen is dissolved by the contact between the liquid and the air bubbles. The air injection type aeration device also supplies air to the aeration tank by a blower. In the pump circulation method, air is supplied to the aeration tank by sucking air with an ejector or the like in the pump circulation flow path. The amount of air is controlled by adjusting the valve opening in the piping and controlling the output by the inverter of the blower or pump, but the power reduction effect by the output control by the inverter is large.

図9は散気式曝気装置400の一例を示す概略構成図、図10はポンプ循環式曝気装置430の一例を示す概略構成図、図11は空気注入式曝気装置460の一例を示す概略構成図である。図9に示す散気式曝気装置400は、ブロワ405から送気管407を経て槽(硝化槽等)401内に送られた空気を、散気装置403で槽内液中に放出する構成となっている。図10に示すポンプ循環式曝気装置430は、槽(硝化槽等)431内の液体を循環ポンプ配管435に取り出して循環ポンプ433によって循環すると共に、循環ポンプ433の下流側の循環ポンプ配管435に設置したエジェクタ437によって循環する液体内に空気を取り込み、この空気の気泡を槽431内に供給する構成となっている。図11に示す空気注入式曝気装置460は、ブロワ463から送気管465を経て槽(硝化槽等)461内に送られた空気を、回転空気分離機467で回転する気泡として槽内液中に放出する構成となっている。空気注入式曝気装置には、この回転空気分散式の他に、ドラフトチューブ式や加圧曝気式や、ディープシャフト式等もある。 9 is a schematic configuration diagram showing an example of an aeration type aeration device 400, FIG. 10 is a schematic configuration diagram showing an example of a pump circulation type aeration device 430, and FIG. 11 is a schematic configuration diagram showing an example of an air injection type aeration device 460. Is. The aeration type aeration device 400 shown in FIG. 9 has a configuration in which the air sent from the blower 405 to the tank (nitrification tank or the like) 401 via the air supply pipe 407 is discharged into the liquid in the tank by the air diffuser 403. ing. In the pump circulation type aeration device 430 shown in FIG. 10, the liquid in the tank (nitration tank or the like) 431 is taken out to the circulation pump pipe 435 and circulated by the circulation pump 433, and at the same time, the liquid is circulated in the circulation pump pipe 435 on the downstream side of the circulation pump 433. Air is taken into the liquid circulated by the installed ejector 437, and bubbles of this air are supplied into the tank 431. In the air injection type aeration device 460 shown in FIG. 11, the air sent from the blower 463 through the air supply pipe 465 into the tank (nitrification tank or the like) 461 is put into the liquid in the tank as bubbles rotating by the rotating air separator 467. It is configured to be released. In addition to this rotary air dispersion type, the air injection type aeration device includes a draft tube type, a pressurized aeration type, a deep shaft type, and the like.

上記したNH4センサー100は、硝化槽のNH4-N濃度を把握する目的で設置され、その設置箇所は、硝化槽内のNH4-N濃度を把握できる位置が好ましく、硝化槽内(末端部が好適)、又は硝化液循環配管中、又は硝化液循環配管を分岐した位置に設置した図示しない水質計測器設置槽内、又は前記ポンプ循環式曝気装置430の循環ポンプ配管435中、又は循環ポンプ配管435を分岐した図示しない水質計測器設置水槽内、又は別途設けた図示しない水質計測用配管内、又はこの水質計測配管を分岐した図示しない水質計測器設置槽内がよい(このいずれかにNH4センサーを設置した状態を「硝化槽のNH4センサー」とも称す)。 NH 4 sensor 100 described above is installed for the purpose of grasping the NH 4 -N concentration of the nitrification tank, its installation location is preferably NH 4 -N concentration can grasp the position of the nitrification tank, nitrification tank (terminal (Preferably), or in the nitrification liquid circulation pipe, in the water quality measuring instrument installation tank (not shown) installed at the branch position of the nitrification liquid circulation pipe, or in the circulation pump pipe 435 of the pump circulation type air exposure device 430, or circulation. It is preferable to use a water quality measuring instrument installation tank (not shown) in which the pump pipe 435 is branched, a water quality measurement pipe (not shown) provided separately, or a water quality measuring instrument installation tank (not shown) in which the water quality measurement pipe is branched. The state in which the NH 4 sensor is installed is also called the " NH 4 sensor in the nitrification tank").

NH4センサー以外のpH計やDO計も、上記NH4センサーと同じ位置に設置できる。ちなみに、DO計は隔膜ポーラロ式DO計や光学式DO計が用いられ、本願発明の対象となる溶解性蒸発残留物および/またはカリウムイオン濃度が高い廃水に対しても良好なDO測定が可能である。 NH 4 pH meter or DO meter other than the sensor can also be placed in the same position as the NH 4 sensors. By the way, a diaphragm polaro type DO meter or an optical DO meter is used as the DO meter, and it is possible to perform good DO measurement even for the soluble evaporation residue and / or the wastewater having a high potassium ion concentration, which is the subject of the present invention. is there.

上記図7に示す高負荷脱窒素処理方式では、二次硝化槽290にもNH4センサーを設置することができる。しかし、二次硝化槽290に比べ硝化槽270での空気量が圧倒的に多いため、NH4センサー設置による空気量削減効果は、硝化槽270に設置したNH4センサーの寄与が圧倒的に大きい。 In the high-load denitrification treatment method shown in FIG. 7, the NH 4 sensor can also be installed in the secondary nitrification tank 290. However, since many overwhelmingly air amount in the nitrification tank 270 than in the secondary nitrification tank 290, the air amount reduction effect by NH 4 sensor installation is largely overwhelmingly contribution NH 4 sensors installed in the nitrification tank 270 ..

本発明に係る廃水処理方法は、硝化槽のNH4センサーによるNH4-N測定値に応じて空気量を制御する方法である。具体的には、所定の値に設定した硝化槽NH4-N設定値よりもNH4センサーによる測定値が大きい場合には、前記曝気装置によるブロワ等のインバータ出力制御等により、硝化槽に供給する空気量を増やし、一方、硝化槽NH4-N所定値よりもNH4センサーによる測定値が小さい場合には、前記曝気装置によるブロワ等のインバータ出力制御等により、硝化槽に供給する空気量を減らす制御を行う。これによって、硝化槽内の被処理液のNH4-N濃度が、硝化槽のNH4-N設定濃度となるようにする。 The wastewater treatment method according to the present invention is a method of controlling the amount of air according to the NH 4- N measurement value by the NH 4 sensor of the nitrification tank. Specifically, when the value measured by the NH 4 sensor is larger than the value set in the nitrification tank NH 4- N set to a predetermined value, it is supplied to the nitrification tank by controlling the output of an inverter such as a blower by the aeration device. If the value measured by the NH 4 sensor is smaller than the predetermined value of the nitrification tank NH 4- N, the amount of air supplied to the nitrification tank is controlled by the inverter output control of the blower or the like by the aeration device. Control to reduce. As a result, the NH 4- N concentration of the liquid to be treated in the nitrification tank becomes the NH 4- N set concentration of the nitrification tank.

また、硝化槽に供給する空気量に応じて、硝化槽のDO値も変化し、硝化槽に供給する空気量を増やす場合には硝化槽のDO値は高くなる傾向にあり、硝化槽に供給する空気量を減らす場合には硝化槽のDO値は低くなる傾向にある。 In addition, the DO value of the nitrification tank changes according to the amount of air supplied to the nitrification tank, and when the amount of air supplied to the nitrification tank is increased, the DO value of the nitrification tank tends to be high and is supplied to the nitrification tank. When reducing the amount of air to be used, the DO value of the nitrification tank tends to be low.

NH4センサーでの硝化槽NH4-N測定時には、硝化槽NH4-N設定値の他に、硝化槽NH4-N設定値よりも高い値である硝化槽NH4-N警報値を設定するのが好ましい。何故なら、硝化槽のNH4-Nの測定値が硝化槽NH4-N設定値を超えて硝化槽に供給する空気量が高まり、硝化槽に十分量の空気が供給されているにもかかわらず、硝化槽のNH4-Nが次第に高くなり、硝化槽NH4-N警報値に達する場合は、生物反応槽に流入するし尿等の窒素濃度が高い、あるいは生物反応槽に流入するし尿等の流量が多いため、生物反応槽の窒素負荷が高くなっていると考えられる。この様な場合は、反応槽に流入するし尿等の流入量を下げることで、生物反応槽の窒素負荷を低減し、適正な窒素負荷とすることで硝化槽NH4-Nは硝化槽NH4-N警報値を下回ることができ、安定した生物学的硝化脱窒処理の継続が可能となるからである。これに対して、従来のDO制御で同様の運転を行う場合には、反応槽に流入する窒素負荷が高くなると、硝化槽内のDOが所定値以下に下がるので、硝化槽の空気量を増やし硝化槽のDOを回復させる。しかし、反応槽への流入窒素負荷が硝化菌の能力を上回る場合には、硝化槽に流入するNH4-NをNOX-Nに硝化しきれずにNH4-Nが残留しているにもかかわらず、硝化に必要な空気量は供給されているため、硝化槽のDOは2mg/L以上に保たれる状況が生じることもある。そのため、DO制御では、反応槽への流入窒素負荷への対応が難しく、処理水水質の悪化を招くこともある。この様な観点からも、本発明のように、硝化槽のNH4-NをNH4センサーで監視し、反応槽に流入する窒素負荷を適宜調整することで、生物学的硝化脱窒処理の安定化を図ることは、運転管理上好ましい。 NH 4 During the nitrification reactor NH 4 -N measurement at the sensor, in addition to the nitrification tank NH 4 -N setpoint, set the nitrification tank NH 4 -N alarm value is higher than the nitrification tank NH 4 -N setpoint It is preferable to do so. This is because the measured value of NH 4- N in the nitrification tank exceeds the set value of NH 4- N in the nitrification tank, and the amount of air supplied to the nitrification tank increases, even though a sufficient amount of air is supplied to the nitrification tank. If the NH 4- N in the nitrification tank gradually increases and reaches the NH 4- N alarm value in the nitrification tank, the nitrogen concentration of urine, etc. that flows into the nitrification tank is high, or the urine, etc. that flows into the biological reaction tank. It is considered that the nitrogen load in the biological reaction tank is high due to the high flow rate of. In such a case, the nitrogen load in the biological reaction tank is reduced by reducing the inflow of urine, etc. that flows into the reaction tank, and the nitrogen load in the biological reaction tank is adjusted so that the nitrification tank NH 4- N becomes the nitrification tank NH 4 This is because the value can be lower than the -N alarm value, and stable biological nitrification and denitrification treatment can be continued. On the other hand, when the same operation is performed with the conventional DO control, when the nitrogen load flowing into the reaction tank becomes high, the DO in the nitrification tank drops below a predetermined value, so that the amount of air in the nitrification tank is increased. Restore DO in the nitrification tank. However, if the nitrogen load into the reaction vessel exceeds the capacity of the nitrifying bacteria, the NH 4- N flowing into the nitrifying vessel cannot be completely nitrified into NO X- N, and NH 4- N remains. Regardless, since the amount of air required for nitrification is supplied, the DO of the nitrification tank may be maintained at 2 mg / L or more. Therefore, it is difficult for DO control to cope with the inflow nitrogen load into the reaction vessel, which may lead to deterioration of the treated water quality. From this point of view, as in the present invention, the NH 4- N of the nitrification tank is monitored by the NH 4 sensor, and the nitrogen load flowing into the reaction tank is appropriately adjusted to perform the biological nitrification denitrification treatment. Stabilization is preferable in terms of operation management.

従来のDO制御では、硝化槽のDO値を2〜3mg/Lに維持し、ほぼ全てのアンモニア性窒素を硝酸性窒素に酸化していた。これに対して本願発明によれば、アンモニア性窒素濃度により空気量を制御できるため、硝化槽のDO値は1mg/L以下でも安定した硝化反応が達成できる。し尿処理では硝化槽DO値が1mg/L以下になると、硝化槽では硝化反応と同時に脱窒素反応も生じ、従来法に比べ硝化槽のNOX-Nが明らかに低減することを確認した。し尿処理においては、反応槽の液温が25〜38℃と高く、MLSS濃度が6,000〜20,000mg/Lと高いため、硝化反応が起こっている条件でも同時に脱窒反応が進みやすいと考えられる。そして硝化槽で硝化反応と脱窒反応が進行すると、硝化槽から流出するNH4-N+NOX-N濃度が低減する。その結果、硝化槽後段の二次脱窒素槽で必要となるメタノールを削減することが可能となる。 In the conventional DO control, the DO value of the nitrification tank was maintained at 2 to 3 mg / L, and almost all ammoniacal nitrogen was oxidized to nitrate nitrogen. On the other hand, according to the present invention, since the amount of air can be controlled by the concentration of ammoniacal nitrogen, a stable nitrification reaction can be achieved even if the DO value of the nitrification tank is 1 mg / L or less. It was confirmed that when the DO value of the nitrification tank was 1 mg / L or less in the urine treatment, a denitrification reaction occurred at the same time as the nitrification reaction in the nitrification tank, and NO X-N in the nitrification tank was clearly reduced as compared with the conventional method. In the urine treatment, the liquid temperature in the reaction tank is as high as 25 to 38 ° C, and the MLSS concentration is as high as 6,000 to 20,000 mg / L. Conceivable. When the nitrification reaction and the denitrification reaction proceed in the nitrification tank, the concentration of NH 4- N + NO X-N flowing out from the nitrification tank decreases. As a result, it becomes possible to reduce the amount of methanol required in the secondary denitrification tank after the nitrification tank.

硝化槽での硝化脱窒同時進行は、本願発明のように、硝化槽にNH4センサーを設置し、硝化槽のアンモニア性窒素濃度を管理することで達成できるものであり、従来法のDO制御により硝化槽での硝化脱窒同時進行を行う場合には、硝化槽でのアンモニア性窒素残留の危険性があり、処理水水質悪化を招く可能性が大きい。また、二次脱窒素槽への流入水のNOX-N濃度を硝酸センサーで測定し、二次脱窒素槽へのメタノール注入量を制御することで、二次脱窒素槽でのメタノール注入量の適正化を図れるため、更なるメタノール使用量の削減が見込まれる。 Simultaneous progress of nitrification and denitrification in the nitrification tank can be achieved by installing an NH 4 sensor in the nitrification tank and controlling the ammonia nitrogen concentration in the nitrification tank as in the present invention. When nitrification and denitrification proceed simultaneously in the nitrification tank, there is a risk of residual ammoniacal nitrogen in the nitrification tank, and there is a high possibility that the quality of treated water will deteriorate. In addition, the NO X- N concentration of the inflow water into the secondary denitrification tank is measured with a nitric acid sensor, and the amount of methanol injected into the secondary denitrification tank is controlled to control the amount of methanol injected into the secondary denitrification tank. It is expected that the amount of methanol used will be further reduced in order to optimize the amount of nitrogen used.

本願発明の硝化槽にNH4センサーを設置し、硝化槽のアンモニア性窒素濃度により空気量を制御する方法を、図7に示す高負荷脱窒素処理方式のようなNH4センサー100を設置した硝化槽270の後段に二次硝化槽290および二次脱窒素槽300を備えたフローに適用する場合、硝化槽270のNH4-N設定値を高めても、硝化槽出口で残留しているNH4-Nが後段の二次硝化槽290および二次脱窒素槽300で除去されるため放流水水質に与える影響が小さい。 The method of installing the NH 4 sensor in the nitrification tank of the present invention and controlling the amount of air by the ammonia nitrogen concentration in the nitrification tank is the nitrification method in which the NH 4 sensor 100 is installed as in the high-load denitrification treatment method shown in FIG. When applied to a flow equipped with a secondary nitrification tank 290 and a secondary denitrification tank 300 after the tank 270, the NH remaining at the nitrification tank outlet even if the NH 4-N setting value of the nitrification tank 270 is increased. Since 4- N is removed in the secondary nitrification tank 290 and the secondary denitrification tank 300 in the subsequent stage, the effect on the discharged water quality is small.

一方、標準脱窒素処理方式や前脱水+標準脱窒素処理方式では、硝化槽出口に残留するNH4-Nが放流水の窒素濃度を高める原因になり得る。つまり、処理フローが脱窒素槽と、硝化槽と、二次脱窒素槽と、再曝気槽で構成されているため、硝化槽でのアンモニア濃度設定値により、硝化槽出口に残留するNH4-Nは二次脱窒素槽で除去されず、再曝気槽でNH4-Nの一部あるいは全部がNOX-Nに硝化された状態で放流水に残留するため、このNH4-N+NOX-N濃度の分だけ、放流水窒素濃度を高める可能性がある。 On the other hand, in the standard denitrification treatment method and the pre-dehydration + standard denitrification treatment method, NH 4- N remaining at the outlet of the nitrification tank can cause an increase in the nitrogen concentration of the discharged water. In other words, since the treatment flow consists of a denitrification tank, a nitrification tank, a secondary denitrification tank, and a re-absorption tank, NH 4-remaining at the nitrification tank outlet depending on the ammonia concentration set value in the nitrification tank. This NH 4- N + NO because N is not removed in the secondary denitrification tank and remains in the discharged water in a state where part or all of NH 4- N is nitrified to NO X-N in the re-absorption tank. There is a possibility that the nitrogen concentration of the discharged water will be increased by the amount of X-N concentration.

標準脱窒素処理方式や前脱水+標準脱窒素処理方式に本願発明の硝化槽にNH4センサーを設置し、硝化槽のアンモニア性窒素濃度により空気量を制御し、硝化槽のDO値を1mg/L以下とし、硝化槽で硝化反応と脱窒反応が進行し、硝化槽から流出するNH4-N+NOX-N濃度が低減する方法を適用する場合は、硝化槽の機能を分割するとよい。すなわち、図20(a),図21(a)に示すように、硝化槽を硝化槽(1)と硝化槽(2)に機能上の分割を行い、硝化槽(1)を硝化槽のアンモニア性窒素濃度により空気量を制御し、硝化槽のDO値を1mg/L以下とし、硝化槽で硝化反応と脱窒反応が進行することにより硝化槽から流出するNH4-N+NOX-N濃度を低減させる「硝化脱窒同時進行ゾーン」とし、硝化槽(2)をDO値1〜3mg/Lに維持し、ほぼ全てのアンモニア性窒素を硝酸性窒素に酸化させる「硝化ゾーン」とする。硝化槽(2)出口に残留する硝酸性窒素は二次脱窒素槽で脱窒素により除去されるため、放流水の窒素濃度に与える影響は小さくなる。 An NH 4 sensor is installed in the nitrification tank of the present invention in the standard denitrification treatment method or pre-dehydration + standard denitrification treatment method, the amount of air is controlled by the ammonia nitrogen concentration in the nitrification tank, and the DO value of the nitrification tank is 1 mg /. When the method is applied in which the concentration is set to L or less, the nitrification reaction and the denitrification reaction proceed in the nitrification tank, and the concentration of NH 4- N + NO X- N flowing out from the nitrification tank is reduced, the function of the nitrification tank may be divided. That is, as shown in FIGS. 20A and 21A, the nitrification tank is functionally divided into a nitrification tank (1) and a nitrification tank (2), and the nitrification tank (1) is divided into ammonia in the nitrification tank. The amount of air is controlled by the concentration of sex nitrogen, the DO value of the nitrification tank is set to 1 mg / L or less, and the concentration of NH 4- N + NO X- N flowing out of the nitrification tank as the nitrification reaction and denitrification reaction proceed in the nitrification tank is controlled. It will be a "nitrification denitrification simultaneous progress zone" to reduce, and a "nitrification zone" in which the nitrification tank (2) is maintained at a DO value of 1 to 3 mg / L and almost all nitrification nitrogen is oxidized to nitrate nitrogen. Since the nitrate nitrogen remaining at the outlet of the nitrification tank (2) is removed by denitrification in the secondary denitrification tank, the effect on the nitrogen concentration of the discharged water is small.

硝化槽(1)と硝化槽(2)の分割は、槽が槽壁により区画されている場合および槽の構造上の強度を持たせるための仕切りにより構造上分割されている場合の他、図20(b),図21(b)に示すように、槽壁や仕切りにより構造上分割されていなくても、空気量の調整や散気装置の型式を替えることで、DO濃度の異なるゾーンを形成させることによる機能上の分割でもよい。要は、少なくとも硝化槽を機能上分割する構成であればよい。 The division of the nitrification tank (1) and the nitrification tank (2) is performed in addition to the case where the tank is partitioned by the tank wall and the case where the tank is structurally divided by a partition for giving structural strength to the tank. As shown in 20 (b) and 21 (b), zones with different DO concentrations can be created by adjusting the amount of air and changing the model of the air diffuser, even if they are not structurally divided by the tank wall or partition. It may be functionally divided by forming. In short, at least the nitrification tank may be functionally divided.

硝化槽(1)と硝化槽(2)の槽容量は、硝化槽(1)<硝化槽(2)でも本願発明の効果を発揮できるが、硝化槽(1)>硝化槽(2)とすることで、本願発明の硝化槽(1)で硝化反応と脱窒反応が同時に進行することによる硝化槽(1)流出のNH4-N+NOX-N濃度を低減させる効果が大きくなるために好ましく、硝化槽(2)は硝化槽(1)の3分の1以下であることがより好ましい。 The tank capacities of the nitrification tank (1) and the nitrification tank (2) are such that the nitrification tank (1) <nitrification tank (2) can also exert the effect of the present invention, but the nitrification tank (1)> nitrification tank (2). This is preferable because the effect of reducing the NH 4- N + NO X- N concentration in the outflow of the nitrification tank (1) due to the simultaneous progress of the nitrification reaction and the denitrification reaction in the nitrification tank (1) of the present invention is increased. It is more preferable that the nitrification tank (2) is one-third or less of the nitrification tank (1).

NH4センサーは硝化槽(1)の末端に設置することが好ましく、DO計は硝化槽(2)に設置することが好ましい。さらに硝化槽(1)にもDO計を設置することがより好ましい。 The NH 4 sensor is preferably installed at the end of the nitrification tank (1), and the DO meter is preferably installed at the nitrification tank (2). Further, it is more preferable to install a DO meter in the nitrification tank (1).

硝化液循環を行う場合には、硝化液を硝化槽(2)から取水することが好ましい。 When the nitrifying liquid is circulated, it is preferable to take the nitrifying liquid from the nitrifying tank (2).

浄化槽汚泥の混入比率の高い脱窒素処理方式や前脱水+標準脱窒素処理方式では、生物学的硝化脱窒素処理の前に前処理後のし尿等の濃縮や脱水の固液分離処理を行い、固形物の除去を行う。この固液分離、特に脱水処理では固形物の除去と同時に有機物も除去されるため、固液分離後の分離液では、窒素濃度に対し、脱窒素処理時の水素供与体として使用される有機物が不足し、通常はメタノールなどの水素供与体を脱窒素槽あるいは二次脱窒素槽に過剰に添加することが必要となる。 In the denitrification treatment method and the pre-dehydration + standard denitrification treatment method, which have a high mixing ratio of septic tank sludge, before the biological nitrification denitrification treatment, concentration of human waste after pretreatment and solid-liquid separation treatment of dehydration are performed. Remove solids. In this solid-liquid separation, especially in the dehydration treatment, the organic matter is removed at the same time as the solid matter is removed. Therefore, in the separation liquid after the solid-liquid separation, the organic matter used as a hydrogen donor in the denitrification treatment is used with respect to the nitrogen concentration. Insufficient, usually requires excessive addition of a hydrogen donor such as methanol to the denitrification tank or secondary denitrification tank.

窒素濃度に対する脱窒素処理時の水素供与体必要量はBOD/N比で示されることが多く、一般的に、BOD/N比が3以上で外部からの水素供与体を供給することなく、生物学的硝化脱窒素処理が行われる。 The required amount of hydrogen donor during denitrification treatment with respect to nitrogen concentration is often indicated by the BOD / N ratio, and generally, the organism has a BOD / N ratio of 3 or more and does not supply an external hydrogen donor. Biochemical oxygen demand treatment is performed.

し尿等の脱水後の分離液あるいは、余剰汚泥をし尿等とともに脱水する場合の分離液(以下、両者を合わせて、し尿等の脱水分離液とも記す)では、窒素濃度に対し、脱窒素処理時の水素供与体BOD/N比が3以下、多くの場合は2以下となるため、メタノールなどの水素供与体を過剰に添加することが必要となる。 In the separation solution after dehydration of human waste, etc., or in the case of dehydrating excess sludge together with urine, etc. (hereinafter, both are collectively referred to as the dehydration separation solution of human waste, etc.), the nitrogen concentration is subject to denitrification treatment. Since the hydrogen donor BOD / N ratio of human waste is 3 or less, and in many cases 2 or less, it is necessary to add an excessive amount of hydrogen donor such as methanol.

前脱水+標準脱窒素処理方式に本発明を適用する場合においては、硝化槽で硝化反応と内生脱窒素による脱窒素反応が同時に進行するため、し尿等の脱水分離液のBOD/N比が低い場合でも、硝化槽出口でのNH4-N+NOX-N濃度の低減効果が発揮できるため、従来の前脱水+標準脱窒素処理方式での硝化槽出口のNH4-N+NOX-N窒素濃度低減が可能となり、脱窒素槽あるいは二次脱窒素槽へのメタノールなどの水素供与体添加量を削減することが可能となる。 When the present invention is applied to the pre-dehydration + standard denitrification treatment method, the nitrification reaction and the denitrification reaction by endogenous denitrification proceed simultaneously in the nitrification tank, so that the BOD / N ratio of the dehydration separation solution such as urine is increased. Even if it is low, the effect of reducing the NH 4- N + NO X- N concentration at the nitrification tank outlet can be exhibited, so the NH 4- N + NO X- N nitrogen concentration at the nitrification tank outlet using the conventional pre-dehydration + standard denitrification treatment method. The amount can be reduced, and the amount of hydrogen donor such as methanol added to the denitrification tank or the secondary denitrification tank can be reduced.

空気量制御の基準となる硝化槽NH4-N設定値で運転を行っている場合でも、硝化槽のDOが1mg/L以上となることもある。この場合でも、安定した生物学的硝化脱窒処理は行えていて問題はないが、この条件で生物反応槽に流入するし尿等流量を下げることで、生物反応槽の窒素負荷が低減するため、所定の硝化槽NH4-N値で運転するための硝化槽の空気量は低減でき、硝化槽のDOを1mg/L以下に保つことが可能となる。すなわち、生物反応槽に流入するし尿等流量を下げることで、硝化槽NH4-Nを硝化槽NH4-N設定値に保ちながら、硝化槽のDOを1mg/L以下にすることができ、硝化槽で硝化反応と脱窒反応を進行させることができ、硝化槽から流出するNH4-N+NOX-N濃度を低減することが可能となる。 Even when operating with the nitrification tank NH 4- N set value, which is the standard for air volume control, the DO of the nitrification tank may be 1 mg / L or more. Even in this case, stable biological nitrification and denitrification treatment can be performed without any problem, but the nitrogen load in the biological reaction tank is reduced by reducing the flow rate of urine, etc. that flows into the biological reaction tank under these conditions. The amount of air in the nitrification tank for operating at a predetermined nitrification tank NH 4- N value can be reduced, and the DO of the nitrification tank can be kept at 1 mg / L or less. That is, by lowering the human waste etc. flow entering the biological reactor, while maintaining a nitrification tank NH 4 -N nitrification tank NH 4 -N setting value, the DO of the nitrification tank can be below 1 mg / L, The nitrification reaction and denitrification reaction can proceed in the nitrification tank, and the concentration of NH 4- N + NO X-N flowing out of the nitrification tank can be reduced.

また、空気量制御の基準となる硝化槽NH4-N設定値(1)よりも高い硝化槽NH4-N設定値(2)を設定し、硝化槽NH4-N設定値(1)で運転している状況で硝化槽DOが1mg/L以上の場合、硝化槽NH4-N設定値を硝化槽NH4-N設定値(2)に変更することで、所定の硝化槽NH4-N値で運転するための硝化槽の空気量は低減でき、硝化槽のDOを1mg/L以下に保つことが可能となる。そのため、硝化槽NH4-Nを硝化槽NH4-N設定値に保ちながら、硝化槽のDOを1mg/L以下にすることができ、硝化槽で硝化反応と脱窒反応が進行するため、硝化槽から流出するNH4-N+NOX-N濃度を低減することが可能となる。ここでは、硝化槽NH4-N設定を二段階として説明したが、硝化槽NH4-N設定値を三段階以上の複数段階設定することも可能である。 In addition, a nitrification tank NH 4- N set value (2) higher than the nitrification tank NH 4- N set value (1), which is the standard for controlling the amount of air, is set, and the nitrification tank NH 4- N set value (1) is used. If a situation you are driving nitrification DO is equal to or greater than 1 mg / L, by changing the nitrification tank NH 4 -N settings to nitrification tank NH 4 -N setpoint (2), a predetermined nitrification tank NH 4 - The amount of air in the nitrification tank for operating at the N value can be reduced, and the DO of the nitrification tank can be kept below 1 mg / L. Therefore, while keeping the nitrification tank NH 4 -N nitrification tank NH 4 -N setting value, the DO of the nitrification tank can be below 1 mg / L, since the nitrification and denitrification reaction proceeds in the nitrification tank, It is possible to reduce the concentration of NH 4- N + NO X- N flowing out of the nitrification tank. Here, the nitrification tank NH 4- N setting has been described as two stages, but the nitrification tank NH 4- N setting value can be set in multiple stages of three or more stages.

本願発明全般において、硝化槽のNH4-N設定値は、放流水水質、空気量削減効果、硝化槽内の撹拌状況、硝化槽DO値、メタノール使用量削減効果等を考慮した上で適宜設定することが好ましい。 In the whole invention of the present application, the NH 4- N set value of the nitrification tank is appropriately set in consideration of the discharged water quality, the effect of reducing the amount of air, the stirring condition in the nitrification tank, the value of the nitrification tank DO, the effect of reducing the amount of methanol used, and the like. It is preferable to do so.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

<事前検討1:NH4センサーの性能測定>
前処理後のし尿等を前記図7に示す膜分離高負荷脱窒素処理方式で処理した際のNH4センサー測定値について検討した。
<Preliminary study 1: NH 4 sensor performance measurement>
The measured values of the NH 4 sensor when human waste after pretreatment was treated by the membrane separation high-load denitrification treatment method shown in FIG. 7 were examined.

被処理水の主な水質(平均値)は、NH4-N:1,000mg/L、BOD:4,000mg/Lであった。また流入水量は30m3/d、硝化液循環量は600m3/dとした。また硝化槽270のMLSSは12,000mg/L、硝化槽水温は35℃とした。硝化槽270のNH4センサー100により、NH4-Nを測定し、別途実施した水質分析結果と比較した。この時の硝化槽270内の溶解性蒸発残留物濃度は2,000〜4,000mg/L、カリウムイオン濃度は150〜350mg/Lであった。図12は前記NH4センサー測定値と水質分析結果の比較を示す図である。同図に示すように、NH4センサー測定値と水質分析結果はほぼ一致していることから、前記図1〜図5に示すNH4センサー100が、溶解性蒸発残留物濃度およびK+濃度の高い廃水に適用可能であることを確認した。 The main water quality (mean value) of the water to be treated was NH 4- N: 1,000 mg / L and BOD: 4,000 mg / L. The inflow water volume was 30 m 3 / d, and the nitrifying solution circulation volume was 600 m 3 / d. The MLSS of the nitrification tank 270 was 12,000 mg / L, and the water temperature of the nitrification tank was 35 ° C. NH 4- N was measured by the NH 4 sensor 100 of the nitrification tank 270 and compared with the result of the water quality analysis conducted separately. At this time, the concentration of the soluble evaporation residue in the nitrification tank 270 was 2,000 to 4,000 mg / L, and the concentration of potassium ion was 150 to 350 mg / L. FIG. 12 is a diagram showing a comparison between the NH 4 sensor measurement value and the water quality analysis result. As shown in the figure, since the measured values of the NH 4 sensor and the water quality analysis results are almost the same, the NH 4 sensor 100 shown in FIGS. 1 to 5 has a high concentration of soluble evaporation residue and a high concentration of K +. It was confirmed that it is applicable to wastewater.

<事前検討2:NH4センサーの性能測定>
事前検討1と同様に、前処理後のし尿等を前記図7に示す膜分離高負荷脱窒素処理方式で処理した際の、溶解性残留物濃度およびK+濃度の高い廃水でのNH4センサー100の適用について検討した。即ち、下記するA処理場、B処理場、C処理場において、硝化槽270のNH4センサー100により、NH4-Nを測定し、別途実施した水質分析結果と比較した。
A処理場:事前検討1と同じし尿処理施設、硝化槽270の溶解性蒸発残留物濃度は2,000〜4,000mg/L、カリウムイオン濃度は150〜350mg/L
B処理場:し尿処理施設、硝化槽の溶解性蒸発残留物濃度は3,000〜6,000mg/L、カリウムイオン濃度は300〜450mg/L
C処理場:最終処分場浸出水処理施設、硝化槽の溶解性蒸発残留物濃度は10,000〜20,000mg/L、カリウムイオン濃度は10〜40mg/L
<Preliminary study 2: NH 4 sensor performance measurement>
NH 4 sensor 100 in wastewater with high solubility residue concentration and K + concentration when human waste after pretreatment is treated by the membrane separation high load denitrification treatment method shown in FIG. 7 as in Preliminary Study 1. We examined the application of. That is, NH 4- N was measured by the NH 4 sensor 100 of the nitrification tank 270 at the A treatment plant, the B treatment plant, and the C treatment plant described below, and compared with the results of the water quality analysis conducted separately.
Treatment plant A: Same as in Preliminary Study 1, urine treatment facility, nitrification tank 270 has a soluble evaporation residue concentration of 2,000 to 4,000 mg / L and a potassium ion concentration of 150 to 350 mg / L.
Treatment plant B: Soluble evaporation residue concentration in urine treatment facility, nitrification tank is 3,000 to 6,000 mg / L, potassium ion concentration is 300 to 450 mg / L
Treatment plant C: Final disposal site Leachate treatment facility, concentration of soluble evaporation residue in nitrification tank is 10,000 to 20,000 mg / L, concentration of potassium ion is 10 to 40 mg / L

その結果を図13に示す。同図に示すように、A処理場、B処理場、C処理場共にNH4センサー測定値と水質分析結果はほぼ一致していた。カリウムイオン濃度の高いB処理場ではNH4-Nが5mg/L以下で、NH4-Nセンサー測定値が高い値を示す傾向にあったが、運転管理上は支障のない範囲であった。これによって、前記図1〜図5に示すNH4センサー100が、溶解性蒸発残留物濃度およびK+濃度の高い廃水に適用可能であることを確認した。 The result is shown in FIG. As shown in the figure, the NH 4 sensor measurement values and the water quality analysis results were almost the same at all of the A treatment plant, B treatment plant, and C treatment plant. In the B treatment plant where the potassium ion concentration was high, NH 4- N was 5 mg / L or less, and the NH 4- N sensor measurement value tended to be high, but it was within the range that did not hinder the operation management. As a result, it was confirmed that the NH 4 sensor 100 shown in FIGS. 1 to 5 can be applied to wastewater having a high concentration of soluble evaporation residue and a high concentration of K +.

<実施例1:硝化槽NH4-N濃度による空気量制御の一例>
前処理後のし尿および浄化槽汚泥を、前記図6に示す標準脱窒素処理方式で処理した。NH4-N濃度の測定は、前記図1〜図5に示すNH4センサー100を用いた。被処理水(対象水)の主な水質(平均値)はNH4-N:500mg/L、BOD:2,000mg/Lであった。また流入水量は60m3/d、希釈水量は140m3/d、硝化液循環量は300m3/d、返送汚泥量は200m3/dとした。硝化槽220のMLSSを6,000mg/L、硝化槽水温を29〜31℃に設定した。そして、硝化槽220のNH4センサー100で硝化槽220のNH4-Nを1mg/Lとなるように硝化槽220への空気量を制御した。
<Example 1: Example of air volume control by nitrification tank NH 4-N concentration>
The pretreated human waste and septic tank sludge were treated by the standard denitrification treatment method shown in FIG. Measurement of NH 4 -N concentration was with NH 4 sensors 100 shown in FIG. 1 to FIG. The main water quality (mean value) of the water to be treated (target water) was NH 4- N: 500 mg / L and BOD: 2,000 mg / L. The amount of inflow water was 60 m 3 / d, the amount of diluted water was 140 m 3 / d, the amount of nitrified liquid circulation was 300 m 3 / d, and the amount of returned sludge was 200 m 3 / d. The MLSS of the nitrification tank 220 was set to 6,000 mg / L, and the water temperature of the nitrification tank was set to 29 to 31 ° C. Then, the amount of air to the nitrification tank 220 was controlled by the NH 4 sensor 100 of the nitrification tank 220 so that the NH 4-N of the nitrification tank 220 was 1 mg / L.

図14は、NH4センサー100を使用したNH4-N濃度による空気量制御運転の結果を示す図である。同図に示すように、NH4センサー100を使用したNH4-N濃度による空気量制御運転の結果は、硝化槽NH4-N:0.6〜1.3mg/L(平均1.0mg/L)、硝化槽DO:0.7〜1.8(平均0.9mg/L)であった。このことから、NH4センサー100を使用したNH4-N濃度による空気量制御運転を行うことで、従来法よりも低いDO値、すなわち少ない空気量で硝化槽220での良好な硝化反応の進行が達成できることを確認した。 FIG. 14 is a diagram showing the result of an air amount control operation based on the NH 4- N concentration using the NH 4 sensor 100. As shown in the figure, the result of the air volume control operation by the NH 4- N concentration using the NH 4 sensor 100 is the nitrification tank NH 4- N: 0.6 to 1.3 mg / L (average 1.0 mg / L), nitrification. Tank DO: 0.7 to 1.8 (average 0.9 mg / L). From this, by performing the air amount control operation based on the NH 4- N concentration using the NH 4 sensor 100, the DO value lower than that of the conventional method, that is, the progress of the good nitrification reaction in the nitrification tank 220 with a small amount of air. Was confirmed to be achievable.

<実施例2:硝化槽NH4-N濃度と硝化槽DO濃度による空気量制御の比較>
硝化槽NH4-N濃度による空気量制御(本願発明)と硝化槽DO濃度による空気量制御(従来法)での比較を行った。
<Example 2: Comparison of air volume control by nitrification tank NH 4- N concentration and nitrification tank DO concentration>
A comparison was made between air volume control based on the nitrification tank NH 4- N concentration (invention of the present application) and air volume control based on the nitrification tank DO concentration (conventional method).

前処理後のし尿および浄化槽汚泥を、前記図6に示す標準脱窒素処理方式で処理した。被処理液(対象水)の主な水質(平均値)は、NH4-N:500mg/L、BOD:2,000mg/Lであった。また流入水量は60m3/d、希釈水量は140m3/d、硝化液循環量は300m3/d、返送汚泥量は200m3/dとした。硝化槽220のMLSSを6,000mg/L、硝化槽水温を29〜31℃とした。 The pretreated human waste and septic tank sludge were treated by the standard denitrification treatment method shown in FIG. The main water quality (mean value) of the liquid to be treated (target water) was NH 4- N: 500 mg / L and BOD: 2,000 mg / L. The amount of inflow water was 60 m 3 / d, the amount of diluted water was 140 m 3 / d, the amount of nitrified liquid circulation was 300 m 3 / d, and the amount of returned sludge was 200 m 3 / d. The MLSS of the nitrification tank 220 was 6,000 mg / L, and the water temperature of the nitrification tank was 29 to 31 ° C.

図15は、硝化槽NH4-N濃度による空気量制御と、硝化槽DO濃度による空気量制御の結果を比較して示す図である。同図に示す条件(1)は前記実施例1の結果であり、硝化槽220のNH4センサー100で硝化槽220のNH4-N濃度が1mg/Lとなるように硝化槽220への空気量を制御した際の各種数値の測定結果を示している。同様に本願発明による条件(2)では、硝化槽220のNH4-N濃度が2mg/Lとなるように硝化槽220への空気量を制御した際の各種数値の測定結果を示している。一方、従来法による条件(3)では、硝化槽220のDO値を2mg/Lに設定し、空気量を制御した際の各種数値の測定結果を示している。また、比較条件となる条件(4)は、硝化槽220のDO値を0.9mg/Lに設定し、空気量を制御した際の各種数値の測定結果を示している。なお、NH4センサー100、DO計223は各条件において同一箇所に設置した。 FIG. 15 is a diagram showing a comparison between the results of air amount control based on the nitrification tank NH 4-N concentration and air amount control based on the nitrification tank DO concentration. The condition (1) shown in the figure is the result of the first embodiment, and the air to the nitrification tank 220 is adjusted so that the NH 4- N concentration of the nitrification tank 220 becomes 1 mg / L by the NH 4 sensor 100 of the nitrification tank 220. The measurement results of various numerical values when the amount is controlled are shown. Similarly, the condition (2) according to the present invention shows the measurement results of various numerical values when the amount of air to the nitrification tank 220 is controlled so that the NH 4-N concentration of the nitrification tank 220 is 2 mg / L. On the other hand, under the condition (3) by the conventional method, the measurement results of various numerical values when the DO value of the nitrification tank 220 is set to 2 mg / L and the amount of air is controlled are shown. The comparison condition (4) shows the measurement results of various numerical values when the DO value of the nitrification tank 220 is set to 0.9 mg / L and the amount of air is controlled. The NH 4 sensor 100 and the DO total 223 were installed at the same location under each condition.

図15に示すように、条件(1)、条件(3)の硝化槽NH4-N濃度は概ね1mg/L以下であり、良好な硝化の進行が確認できた。条件(3)では空気量不足のため、NH4-Nが残留する場合があった。条件(4)では平均値で6mg/Lであるが、最大30mg/Lにも達し、処理水質の悪化を招いた。条件(2)では硝化槽NH4-N濃度は設定値通りの2mg/Lであった。硝化槽NH4-Nが2mg/Lで安定していたため、放流水水質基準値は十分に満足できる。硝化槽220の空気量は条件(1)では条件(3)に比べ、約1割少なくなっていた。硝化槽NOX-Nは条件(1)および条件(2)では条件(3)よりも低い値であった。これはDO値が平均で0.8〜0.9mg/Lと低めであったことから、硝化槽220での硝化脱窒素同時進行の効果であると考えられる。また、条件(1)に比べ硝化槽220のNH4-N設定値を高めた条件(2)では、硝化槽空気量が少なく、硝化槽DOが低くなっていた。条件(1)に比べ硝化槽DOが低くなった条件(2)では、より脱窒素反応が進みやすくなったため、硝化槽NOX-Nの値が低くなった。また、条件(1)では硝化槽DO値が0.7〜1.8mg/Lであり、硝化槽220のDO値が常時1mg/L以下でなくても、期間中の平均値として硝化槽220での硝化脱窒素同時進行を確認できた。硝化槽220のNOX-Nが低い条件(1)および条件(2)では二次脱窒素槽230でのメタノール使用量が少なくなるため、薬品コスト低減が可能となる。 As shown in FIG. 15, the concentration of NH 4- N in the nitrification tank under the conditions (1) and (3) was about 1 mg / L or less, and good progress of nitrification was confirmed. Under condition (3), NH 4- N may remain due to insufficient air volume. Under condition (4), the average value was 6 mg / L, but it reached a maximum of 30 mg / L, causing deterioration of the treated water quality. Under condition (2), the concentration of NH 4- N in the nitrification tank was 2 mg / L as set. Since the nitrification tank NH 4- N was stable at 2 mg / L, the effluent water quality standard value was fully satisfied. The amount of air in the nitrification tank 220 was about 10% less in the condition (1) than in the condition (3). The value of the nitrification tank NO X- N was lower than that of the condition (3) under the condition (1) and the condition (2). This is considered to be the effect of simultaneous nitrification and denitrification in the nitrification tank 220 because the DO value was as low as 0.8 to 0.9 mg / L on average. Further, under the condition (2) in which the NH 4- N set value of the nitrification tank 220 was higher than that of the condition (1), the amount of air in the nitrification tank was small and the nitrification tank DO was low. Under the condition (2) in which the nitrification tank DO was lower than that in the condition (1), the denitrification reaction was more likely to proceed, so that the value of the nitrification tank NO X-N was lower. Further, under the condition (1), the nitrification tank DO value is 0.7 to 1.8 mg / L, and even if the DO value of the nitrification tank 220 is not always 1 mg / L or less, nitrification in the nitrification tank 220 is an average value during the period. Simultaneous denitrification was confirmed. Under the conditions (1) and (2) where the NO X- N of the nitrification tank 220 is low, the amount of methanol used in the secondary denitrification tank 230 is reduced, so that the chemical cost can be reduced.

<実施例3:硝化槽NH4-N濃度と硝化槽DO濃度による空気量制御の比較>
図7に示す方式(膜分離高負荷脱窒素処理方式・高負荷脱窒素処理方式)のように、NH4センサー100を設置した硝化槽270の後段に二次硝化槽290および二次脱窒素槽300を備えたフローでは、硝化槽270のNH4-N設定値を高めても、硝化槽出口で残留しているNH4-Nが後段の二次硝化槽290および二次脱窒素槽300で除去されるため放流水水質に与える影響が小さい。
<Example 3: Comparison of air volume control by nitrification tank NH 4- N concentration and nitrification tank DO concentration>
As shown in FIG. 7 (membrane separation high load denitrification treatment method / high load denitrification treatment method), the secondary nitrification tank 290 and the secondary denitrification tank are located after the nitrification tank 270 in which the NH 4 sensor 100 is installed. in the flow equipped with 300, with NH 4 be enhanced -N setpoint, NH 4 -N is in the subsequent stage the secondary nitrification tank 290 and secondary denitrification tank 300 remaining in the nitrification tank outlet of the nitrification tank 270 Since it is removed, it has little effect on the quality of discharged water.

そしてこの実施例3では、図7に示す処理フローにおいて、硝化槽270のNH4-N設定値による硝化槽水質および硝化槽空気量について比較した。前記事前検討1と同じ運転条件で、図16に示す条件(5)〜(7)はNH4-N濃度による空気量制御(本願発明)での測定結果を、条件(8)はDO濃度による空気量制御(従来法)での測定結果を示している。同図に示すように、条件(5)〜(7)では、条件(8)に比べ硝化槽NH4-N+NOX-N濃度が低くなっていた。DO値が低めであったことから、硝化槽270での硝化脱窒素同時進行の効果であると考えられる。硝化槽NH4-N+NOX-N濃度を低減する最適硝化槽NH4-Nが存在することが示唆された。硝化槽のNH4-N+NOX-Nを低減することで二次脱窒素槽300でのメタノール使用量を少なくすることができる。 Then, in Example 3, in the treatment flow shown in FIG. 7, the water quality of the nitrification tank and the amount of air in the nitrification tank according to the NH 4-N set value of the nitrification tank 270 were compared. Under the same operating conditions as in the preliminary study 1, the conditions (5) to (7) shown in FIG. 16 are the measurement results under the air amount control by the NH 4- N concentration (invention of the present application), and the condition (8) is the DO concentration. The measurement result by the air amount control (conventional method) by the above is shown. As shown in the figure, under the conditions (5) to (7), the concentration of the nitrification tank NH 4- N + NO X-N was lower than that under the condition (8). Since the DO value was low, it is considered that this is the effect of simultaneous nitrification and denitrification in the nitrification tank 270. It was suggested that there is an optimum nitrification tank NH 4- N that reduces the concentration of nitrification tank NH 4- N + NO X-N. By reducing NH 4- N + NO X- N in the nitrification tank, the amount of methanol used in the secondary denitrification tank 300 can be reduced.

<実施例4>
前処理後のし尿等を、図7に示す膜分離高負荷脱窒素処理方式で処理するA処理場で、下記するケース1,2の条件で運転した。対象水の主な水質(平均値)はNH4-N:1,000mg/L、BOD:4,000mg/Lであった。流入水量は36m3/d、硝化液循環量は720m3/dとした。硝化槽270のMLSSは12,000mg/L、硝化槽水温は35℃とした。硝化槽270のNH4センサー100で硝化槽270のNH4-Nが1mg/Lとなるように硝化槽270への空気量を制御したところ、硝化槽270のDO値は約1.5mg/Lであった。
<Example 4>
The pre-treated human waste and the like were operated under the conditions of Cases 1 and 2 below at the A treatment plant where the human waste and the like after the pretreatment were treated by the membrane separation high-load denitrification treatment method shown in FIG. The main water quality (mean value) of the target water was NH 4- N: 1,000 mg / L and BOD: 4,000 mg / L. The inflow water volume was 36 m 3 / d, and the nitrifying solution circulation volume was 720 m 3 / d. The MLSS of the nitrification tank 270 was 12,000 mg / L, and the water temperature of the nitrification tank was 35 ° C. When the amount of air to the nitrification tank 270 was controlled so that the NH 4- N of the nitrification tank 270 was 1 mg / L with the NH 4 sensor 100 of the nitrification tank 270, the DO value of the nitrification tank 270 was about 1.5 mg / L. there were.

ケース1:生物反応槽に流入するし尿等の流量を下げて、硝化槽270のDO値を1mg/L以下に設定した場合
図17に示すように、硝化槽270のNH4-N設定値は1mg/Lで変更せず、生物反応槽に流入するし尿等の流量を期間(1):36m3/d、期間(2)33m3/d、期間(3)32m3/dで段階的に下げることで、硝化槽270のDO値を1mg/L以下に維持する運転を行った。硝化液循環量は生物反応槽に流入するし尿等の流量の20倍とした。硝化槽270のDO値は期間(1)で約1.5mg/L、期間(2)で1.1〜1.3mg/L、期間(3)で0.7〜1.0mg/Lであり、期間(3)で硝化槽のDO値を1mg/L以下に維持することができた。期間(3)では硝化槽270での硝化と脱窒素の同時進行によるNH4-N+NOX-Nの低減効果が期待できる。
Case 1: When the DO value of the nitrification tank 270 is set to 1 mg / L or less by reducing the flow rate of human waste that flows into the biological reaction tank. As shown in FIG. 17, the NH 4- N setting value of the nitrification tank 270 is Without changing at 1 mg / L, the flow rate of human waste, etc. flowing into the biological reaction tank is gradually increased in the period (1): 36 m 3 / d, the period (2) 33 m 3 / d, and the period (3) 32 m 3 / d. By lowering it, the operation of maintaining the DO value of the nitrification tank 270 at 1 mg / L or less was performed. The amount of nitrified liquid circulating was set to 20 times the flow rate of human waste flowing into the biological reaction tank. The DO value of the nitrification tank 270 is about 1.5 mg / L in the period (1), 1.1 to 1.3 mg / L in the period (2), 0.7 to 1.0 mg / L in the period (3), and nitrification in the period (3). The DO value of the tank could be maintained below 1 mg / L. In period (3), the effect of reducing NH 4- N + NO X- N can be expected by the simultaneous progress of nitrification and denitrification in the nitrification tank 270.

ケース2:硝化槽270のNH4-N設定値を上げて、硝化槽270のDO値を1mg/L以下に設定した場合
図18に示すように、生物反応槽に流入するし尿等の流量は変更せず、硝化槽270のNH4-N設定値を、期間(4):1mg/L、期間(5)1.5mg/L、期間(6)2mg/Lで段階的に上げることで、硝化槽270のDO値を1mg/L以下に維持する運転を行った。硝化槽270のDO値は期間(4)で約1.5mg/L、期間(5)で1.1〜1.4mg/L、期間(6)で0.7〜1.0mg/Lであり、期間(6)で硝化槽のDO値を1mg/L以下に維持することができた。期間(6)では硝化槽270での硝化と脱窒素の同時進行によるNH4-N+NOX-Nの低減効果が期待できる。
Case 2: When the NH 4- N setting value of the nitrification tank 270 is increased and the DO value of the nitrification tank 270 is set to 1 mg / L or less. Nitrification by gradually increasing the NH 4- N setting value of the nitrification tank 270 in the period (4): 1 mg / L, period (5) 1.5 mg / L, and period (6) 2 mg / L without change. The operation was performed to maintain the DO value of the tank 270 at 1 mg / L or less. The DO value of the nitrification tank 270 is about 1.5 mg / L in the period (4), 1.1 to 1.4 mg / L in the period (5), 0.7 to 1.0 mg / L in the period (6), and nitrification in the period (6). The DO value of the tank could be maintained below 1 mg / L. In period (6), the effect of reducing NH 4- N + NO X- N can be expected by the simultaneous progress of nitrification and denitrification in the nitrification tank 270.

<実施例5>
標準脱窒素処理方式での、硝化槽DO濃度による空気量制御(従来法)、硝化槽NH4-N濃度による空気量制御(本願発明、図6参照)、および硝化槽をDO濃度により機能上、「硝化脱窒同時進行ゾーン」と「硝化ゾーン」とに分割する空気量制御手法(本願発明、図20参照)とでの比較を行った。
<Example 5>
Air volume control by nitrification tank DO concentration (conventional method), air volume control by nitrification tank NH 4- N concentration (see the present invention, FIG. 6), and nitrification tank functionally by DO concentration in the standard denitrification treatment method. , A comparison was made with an air amount control method (invention of the present application, see FIG. 20) that divides into a "nitrification denitrification simultaneous progress zone" and a "nitrification zone".

前処理後のし尿および浄化槽汚泥を、前記図6に示す標準脱窒素処理方式で処理した。被処理水(対象水)の主な水質(平均値)はNH4-N:500mg/L、BOD:2,000mg/Lであった。また流入水量は50m3/d、希釈水量は140m3/d、硝化液循環量は300m3/d、返送汚泥量は200m3/dとした。硝化槽220のMLSSを6,000mg/L、硝化槽水温を29〜31℃に設定した。NH4-N濃度の測定は、前記図1〜図5に示すNH4センサー100を用いた。 The pretreated human waste and septic tank sludge were treated by the standard denitrification treatment method shown in FIG. The main water quality (mean value) of the water to be treated (target water) was NH 4- N: 500 mg / L and BOD: 2,000 mg / L. The amount of inflow water was 50 m 3 / d, the amount of diluted water was 140 m 3 / d, the amount of nitrified liquid circulation was 300 m 3 / d, and the amount of returned sludge was 200 m 3 / d. The MLSS of the nitrification tank 220 was set to 6,000 mg / L, and the water temperature of the nitrification tank was set to 29 to 31 ° C. Measurement of NH 4 -N concentration was with NH 4 sensors 100 shown in FIG. 1 to FIG.

従来法の条件(9)では硝化槽のDOが3mg/Lになるように硝化槽の空気量を設定した。 Under the condition (9) of the conventional method, the amount of air in the nitrification tank was set so that the DO of the nitrification tank was 3 mg / L.

条件(10)では硝化槽のNH4-N濃度が5mg/Lになるように空気量を調整した。 Under condition (10), the amount of air was adjusted so that the NH 4-N concentration in the nitrification tank was 5 mg / L.

条件(11)では、硝化槽の前半約3分の2を「硝化脱窒同時進行ゾーン」(以下、硝化槽(1)とも記す)として、硝化槽(1)末端部のNH4-N濃度が5mg/Lになるように空気量を調整し、硝化槽の後半約3分の1を「硝化ゾーン」(以下、硝化槽(2)とも記す)として、硝化槽(2)のDOが2mg/Lになるように調整した。硝化槽(1)と硝化槽(2)は、図20(b)に示すように、構造上の区切りや仕切りは無く、空気量の違いによる機能上の分割とした。 Under condition (11), about two-thirds of the first half of the nitrification tank is designated as a "nitrification denitrification simultaneous progress zone" (hereinafter, also referred to as nitrification tank (1)), and the NH 4- N concentration at the end of the nitrification tank (1). The amount of air is adjusted to 5 mg / L, and the latter half of the nitrification tank is designated as the "nitrification zone" (hereinafter, also referred to as nitrification tank (2)), and the DO of the nitrification tank (2) is 2 mg. Adjusted to be / L. As shown in FIG. 20 (b), the nitrification tank (1) and the nitrification tank (2) have no structural divisions or partitions, and are functionally divided due to the difference in the amount of air.

条件(9)では硝化槽にDO計を設置した。条件(10)では、図6に示すように、硝化槽にNH4センサーを設置した。条件(11)では、図20(b)に示すように、硝化槽(1)にNH4センサーを、硝化槽(2)にDO計を設置した。条件(10)と条件(11)ではNH4センサーの設置個所にDO計も設置してDOを監視した。 In condition (9), a DO meter was installed in the nitrification tank. Under condition (10), an NH 4 sensor was installed in the nitrification tank as shown in FIG. Under the condition (11), as shown in FIG. 20 (b), the NH 4 sensor was installed in the nitrification tank (1) and the DO meter was installed in the nitrification tank (2). In condition (10) and condition (11), a DO meter was also installed at the location where the NH 4 sensor was installed to monitor DO.

硝化槽出口NOX-Nはその大部分がNO3-Nであったため、二次脱窒素槽へのメタノール注入量は硝化槽出口NO3-N濃度に応じて設定した。 Since most of the nitrification tank outlet NO X- N was NO 3- N, the amount of methanol injected into the secondary denitrification tank was set according to the nitrification tank outlet NO 3-N concentration.

硝化槽出口に設置した硝酸センサーの測定値から、NO3-Nの3倍量となるようにメタノールを二次脱窒素槽に注入した。 From the measured value of the nitric acid sensor installed at the outlet of the nitrification tank, methanol was injected into the secondary denitrification tank so that the amount was 3 times that of NO 3-N.

運転結果を図22に示す。硝化槽の空気量をNH4センサーの設定値により実施した本願発明の条件(10)および条件(11)では、硝化槽での硝化脱窒素同時進行の効果により、硝化槽出口のNH4-N+NOX-N濃度が従来法の条件(9)の約6割に低減した。条件(10)の硝化槽のDOは平均で0.7mg/Lであり、概ね1mg/L以下であった。条件(11)の硝化槽(1)のDOは平均で0.8mg/Lであり、概ね1mg/L以下であった。硝化槽出口のNOX-N濃度低減が可能となった条件(10)および条件(11)では、従来法の条件(9)に比べ、二次脱窒素槽のメタノール注入量を50〜60%に削減可能であった。 The operation result is shown in FIG. Under the conditions (10) and (11) of the present invention in which the amount of air in the nitrification tank was adjusted by the set value of the NH 4 sensor, the effect of simultaneous nitrification and denitrification in the nitrification tank caused NH 4- N at the outlet of the nitrification tank. The + NO X- N concentration was reduced to about 60% of the conventional condition (9). The DO of the nitrification tank under the condition (10) was 0.7 mg / L on average, which was approximately 1 mg / L or less. The DO of the nitrification tank (1) under the condition (11) was 0.8 mg / L on average, which was approximately 1 mg / L or less. Under the conditions (10) and (11) that made it possible to reduce the NO X- N concentration at the outlet of the nitrification tank, the amount of methanol injected into the secondary denitrification tank was 50 to 60% compared to the condition (9) of the conventional method. It was possible to reduce it.

なお、硝化槽のNH4-N濃度を5mg/Lに設定した条件(10)では硝化槽出口に残留するNH4-Nが二次脱窒素槽で除去されず、再曝気槽でNH4-Nの一部あるいは全部がNOX-Nに硝化された状態で沈殿池出口に残留するため、このNH4-N+NOX-N濃度の分だけ、放流水窒素濃度を高める可能性がある。 Incidentally, NH 4 -N remaining NH 4 nitrification tank outlet in conditions of -N concentration was set to 5mg / L (10) of the nitrification tank is not removed by the secondary denitrification tank, NH 4 re aeration tank - Since part or all of N remains nitrified to NO X -N at the outlet of the settling pond, the nitrogen concentration in the discharged water may be increased by the amount of this NH 4- N + NO X -N concentration. ..

一方、硝化槽の後半約3分の1を硝化ゾーンに設定した条件(11)では、硝化槽出口でのNH4-Nの残留が極めて少なく、沈殿池出口でのNH4-N+NOX-Nは1mg/L以下であり、良好な窒素除去が達成できた。 On the other hand, under the condition (11) in which about one-third of the latter half of the nitrification tank was set in the nitrification zone, the amount of NH 4- N remaining at the nitrification tank outlet was extremely small, and NH 4- N + NO X at the sedimentation basin outlet. -N was 1 mg / L or less, and good nitrogen removal was achieved.

<実施例6>
前脱水+標準脱窒素処理方式での、硝化槽DO濃度による空気量制御(従来法)、硝化槽NH4-N濃度による空気量制御(本願発明、図8参照)、および硝化槽をDO濃度により機能上、「硝化脱窒同時進行ゾーン」と「硝化ゾーン」とに分割する空気量制御手法(本願発明、図21参照)とでの比較を行った。
<Example 6>
Air volume control by nitrification tank DO concentration (conventional method), air volume control by nitrification tank NH 4- N concentration (see the present invention, FIG. 8), and DO concentration in the nitrification tank in the pre-dehydration + standard denitrification treatment method. Therefore, a comparison was made with an air amount control method (invention of the present application, see FIG. 21) that is functionally divided into a "nitrification denitrification simultaneous progress zone" and a "nitrification zone".

前処理後のし尿および浄化槽汚泥を、前記図8に示す前脱水+標準脱窒素処理方式で処理した。し尿等に生物処理で発生した余剰汚泥を加えた混合汚泥を高分子凝集剤で凝集した後、スクリュープレス脱水機で脱水した脱水分離液を対象に従来法と本願発明の比較を行った。被処理水であるし尿等の脱水分離液の主な水質(平均値)はNH4-N:400mg/L、BOD:700mg/Lであった。今回の処理対象であるし尿等の脱水分離液のBOD/NH4-N比は1.75であり、窒素濃度に対し、脱窒素処理時の水素供与体として使用される有機物が不足しているため、メタノールを二次脱窒素槽に過剰に添加することが必要となる。また流入水量は50m3/d、雑排水は10m3/d、硝化液循環量は600m3/d、返送汚泥量は200m3/dとした。硝化槽350のMLSSを6,000mg/L、硝化槽水温を31〜33℃に設定した。NH4-N濃度の測定は、前記図1〜図5に示すNH4センサー100を用いた。 The pre-treated human waste and septic tank sludge were treated by the pre-dehydration + standard denitrification treatment method shown in FIG. The conventional method and the present invention were compared with each other for a dehydrated separation solution obtained by aggregating mixed sludge obtained by adding excess sludge generated by biological treatment to human waste or the like with a polymer flocculant and then dehydrating it with a screw press dehydrator. The main water quality (mean value) of the dehydrated separation solution such as human waste, which is the water to be treated, was NH 4- N: 400 mg / L and BOD: 700 mg / L. The BOD / NH 4- N ratio of the dehydrated isolate of urine, etc., which is the target of this treatment, is 1.75, and the organic matter used as a hydrogen donor during the denitrification treatment is insufficient for the nitrogen concentration. It is necessary to add excess methanol to the secondary denitrification tank. The amount of inflow water was 50 m 3 / d, the amount of miscellaneous wastewater was 10 m 3 / d, the amount of nitrified liquid circulation was 600 m 3 / d, and the amount of returned sludge was 200 m 3 / d. The MLSS of the nitrification tank 350 was set to 6,000 mg / L, and the water temperature of the nitrification tank was set to 31 to 33 ° C. Measurement of NH 4 -N concentration was with NH 4 sensors 100 shown in FIG. 1 to FIG.

従来法の条件(12)では硝化槽のDOが3mg/Lになるように硝化槽の空気量を設定した。 Under the condition (12) of the conventional method, the amount of air in the nitrification tank was set so that the DO of the nitrification tank was 3 mg / L.

条件(13)では硝化槽のNH4-N濃度が5mg/Lになるように空気量を調整した。 Under condition (13), the amount of air was adjusted so that the NH 4-N concentration in the nitrification tank was 5 mg / L.

条件(14)では、硝化槽の前半約3分の2を「硝化脱窒同時進行ゾーン」の硝化槽(1)とし、硝化槽(1)のNH4-N濃度が5mg/Lになるように空気量を調整し、硝化槽の後半約3分の1を「硝化ゾーン」の硝化槽(2)とし、硝化槽(2)のDOが2mg/Lになるように調整した。硝化槽(1)と硝化槽(2)は、図21(b)に示すように、構造上の区切りや仕切りは無く、空気量の違いによる機能上の分割とした。 Under condition (14), about two-thirds of the first half of the nitrification tank is used as the nitrification tank (1) in the "nitrification denitrification simultaneous progress zone" so that the NH 4- N concentration of the nitrification tank (1) is 5 mg / L. The amount of air was adjusted so that the latter half of the nitrification tank was used as the nitrification tank (2) in the "nitrification zone", and the DO of the nitrification tank (2) was adjusted to 2 mg / L. As shown in FIG. 21 (b), the nitrification tank (1) and the nitrification tank (2) have no structural divisions or partitions, and are functionally divided due to the difference in the amount of air.

条件(12)では硝化槽にDO計を設置した。条件(13)では、図8に示すように、硝化槽にNH4センサーを設置した。条件(14)では、図21(b)に示すように、硝化槽(1)にNH4センサーを、硝化槽(2)にDO計を設置した。条件(13)と条件(14)ではNH4センサーの設置個所にDO計も設置してDOを監視した。 In condition (12), a DO meter was installed in the nitrification tank. Under condition (13), an NH 4 sensor was installed in the nitrification tank as shown in FIG. Under the condition (14), as shown in FIG. 21 (b), the NH 4 sensor was installed in the nitrification tank (1) and the DO meter was installed in the nitrification tank (2). In condition (13) and condition (14), a DO meter was also installed at the location where the NH 4 sensor was installed to monitor DO.

硝化槽出口NOX-Nはその大部分がNO3-Nであったため、二次脱窒素槽へのメタノール注入量は硝化槽出口NO3-N濃度に応じて設定した。 Since most of the nitrification tank outlet NO X- N was NO 3- N, the amount of methanol injected into the secondary denitrification tank was set according to the nitrification tank outlet NO 3-N concentration.

硝化槽出口に設置した硝酸センサーの測定値から、NO3-Nの3倍量となるようにメタノールを二次脱窒素槽に注入した。 From the measured value of the nitric acid sensor installed at the outlet of the nitrification tank, methanol was injected into the secondary denitrification tank so that the amount was 3 times that of NO 3-N.

運転結果を図23に示す。硝化槽の空気量をNH4センサーの設定値により実施した本願発明の条件(13)および条件(14)では、硝化槽での硝化脱窒素同時進行の効果により、硝化槽出口のNH4-N+NOX-N濃度が従来法の条件(12)の約5割に低減した。条件(13)の硝化槽のDOは平均で0.7mg/Lであり、概ね1mg/L以下であった。条件(14)の硝化槽(1)のDOは平均で0.8mg/Lであり、概ね1mg/L以下であった。硝化槽出口のNOX-N濃度低減が可能となった条件(13)および条件(14)では、従来法の条件(12)に比べ、二次脱窒素槽のメタノール注入量を30〜50%に削減可能であった。 The operation result is shown in FIG. Under the conditions (13) and (14) of the present invention in which the amount of air in the nitrification tank was adjusted by the set value of the NH 4 sensor, the effect of simultaneous nitrification and denitrification in the nitrification tank caused NH 4- N at the outlet of the nitrification tank. The + NO X- N concentration was reduced to about 50% of the conventional condition (12). The DO of the nitrification tank under the condition (13) was 0.7 mg / L on average, which was approximately 1 mg / L or less. The average DO of the nitrification tank (1) under the condition (14) was 0.8 mg / L, which was approximately 1 mg / L or less. Under the conditions (13) and (14) that made it possible to reduce the NO X- N concentration at the outlet of the nitrification tank, the amount of methanol injected into the secondary denitrification tank was 30 to 50% compared to the condition (12) of the conventional method. It was possible to reduce it.

なお、硝化槽のNH4-N濃度を5mg/Lに設定した条件(13)では硝化槽出口に残留するNH4-Nが二次脱窒素槽で除去されず、再曝気槽でNH4-Nの一部あるいは全部がNOX-Nに硝化された状態で沈殿池出口に残留するため、このNH4-N+NOX-N濃度の分だけ、放流水窒素濃度を高める可能性がある。 Incidentally, NH 4 -N remaining NH 4 nitrification tank outlet in conditions of -N concentration was set to 5mg / L (13) of the nitrification reactor is not removed by the secondary denitrification tank, NH 4 re aeration tank - Since part or all of N remains nitrified to NO X -N at the outlet of the settling pond, the nitrogen concentration in the discharged water may be increased by the amount of this NH 4- N + NO X -N concentration. ..

一方、硝化槽の後半約3分の1を硝化ゾーンに設定した条件(14)では、硝化槽出口でのNH4-Nの残留が極めて少なく、沈殿池出口でのNH4-N+NOX-Nは1mg/L以下であり、良好な窒素除去が達成できた。 On the other hand, under the condition (14) in which about one-third of the latter half of the nitrification tank was set in the nitrification zone, the amount of NH 4- N remaining at the nitrification tank outlet was extremely small, and NH 4- N + NO X at the sedimentation basin outlet. -N was 1 mg / L or less, and good nitrogen removal was achieved.

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの構成であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。また、上記記載及び各図で示した実施形態は、その目的及び構成等に矛盾がない限り、互いの記載内容を組み合わせることが可能である。また、上記記載及び各図の記載内容は、その一部であっても、それぞれ独立した実施形態になり得るものであり、本発明の実施形態は上記記載及び各図を組み合わせた一つの実施形態に限定されるものではない。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of claims and the technical ideas described in the specification and drawings. It is possible. It should be noted that any configuration not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the action and effect of the present invention are exhibited. In addition, the above description and the embodiments shown in each figure can be combined with each other as long as there is no contradiction in the purpose, configuration, and the like. Further, the above description and the description contents of each figure can be independent embodiments even if they are a part thereof, and the embodiment of the present invention is one embodiment in which the above description and each figure are combined. It is not limited to.

1 ボディ
2 押圧機構
100 NH4センサー(液体分析計)
S1,S2,S3 センサー
S1 アンモニウムイオン電極
S11 応答膜
S2 カリウムイオン電極
S21 応答膜
S3 基準電極(比較電極)
S31 液絡部
L 分析対象液(被処理水)
SP1、SP2、SP3 センサー面
TS 温度センサー
S12、S22、S32 支持管
S13、S23、S33 内部液
S1E、S2E、S3E 内部電極(内部極)
210 脱窒素槽
220 硝化槽
221 硝化液循環配管
230 二次脱窒素槽
240 再曝気槽
250 沈殿池
251 汚泥返送管
260 脱窒素槽
270 硝化槽
271 硝化液循環配管
280 膜分離原水槽
281 膜分離装置
290 二次硝化槽
300 二次脱窒素槽
310 再曝気槽
320 沈殿池
321 汚泥返送管
330 脱水機
340 脱窒素槽
350 硝化槽
360 二次脱窒素槽
370 再曝気槽
380 沈殿池
400 散気式曝気装置
401 槽(硝化槽等)
403 散気装置
405 ブロワ
407 送気管
430 ポンプ循環式曝気装置
431 槽(硝化槽等)
433 循環ポンプ
435 循環ポンプ配管
437 エジェクタ
460 空気注入式曝気装置
461 槽(硝化槽等)
463 ブロワ
465 送気管
467 回転空気分離機
1 Body 2 Pressing mechanism 100 NH 4 Sensor (liquid analyzer)
S1, S2, S3 Sensor S1 Ammonium Ion Electrode S11 Response Membrane S2 Potassium Ion Electrode S21 Response Membrane S3 Reference Electrode (Comparison Electrode)
S31 Liquid connection part L Analysis target liquid (water to be treated)
SP1, SP2, SP3 Sensor surface TS temperature sensor S12, S22, S32 Support tube S13, S23, S33 Internal liquid S1E, S2E, S3E Internal electrode (internal electrode)
210 Denitrification tank 220 Nitrification tank 221 Nitrification liquid circulation pipe 230 Secondary denitrification tank 240 Re-aeration tank 250 Sedimentation pond 251 Sewage return pipe 260 Nitrification tank 270 Nitrification tank 271 Nitrification liquid circulation pipe 280 Film separation Raw water tank 281 Film separation device 290 Secondary nitrification tank 300 Secondary denitrification tank 310 Re-aeration tank 320 Sedimentation pond 321 Sludge return pipe 330 Dehydrator 340 Denitrification tank 350 Nitrification tank 360 Secondary denitrification tank 370 Re-aeration tank 380 Sedimentation pond 400 Dispersive aeration Equipment 401 tank (nitrification tank, etc.)
403 Air diffuser 405 Blower 407 Air supply pipe 430 Pump circulation type aeration device 431 tank (nitrification tank, etc.)
433 Circulation pump 435 Circulation pump piping 437 Ejector 460 Air injection type aeration device 461 Tank (nitrification tank, etc.)
463 Blower 465 Air supply pipe 467 Rotating air separator

Claims (2)

溶解性蒸発残留物500〜30,000mg/Lおよび/またはカリウムイオン濃度40〜600mg/Lの廃水を、少なくとも、脱窒素槽から、硝化槽、二次脱窒素槽、再曝気槽に導入することで生物学的硝化脱窒素処理を行う廃水処理方法において、
硝化槽のアンモニア濃度を測定する液体分析計として、液絡部を介して外部と連通する空間内に内部液である塩化カリウム飽和液と当該内部液に接触する内部極であるAg/AgCl電極とを備えた比較電極と、応答膜によって外部から仕切られた空間内に内部液として塩化アンモニウム水溶液と当該内部液に接触する内部極としてAg/AgCl電極とを備えたアンモニウムイオン電極と、アンモニウムイオンに対するカリウムイオンの干渉を補正するために用いられるカリウムイオンによる電位を測定するカリウムイオン電極と、を具備する構成の液体分析計を用い、
前記液体分析計により測定した硝化槽のアンモニア性窒素濃度が120mg/Lとなるように硝化槽への酸素含有気体供給量を制御し、かつ、硝化槽のDO値が1mg/L以下になるように制御することによって、硝化槽において硝化反応と脱窒素反応を同時に進行させることを特徴とする廃水処理方法。
By introducing at least 500 to 30,000 mg / L of soluble evaporation residue and / or wastewater with a potassium ion concentration of 40 to 600 mg / L from the denitrification tank into the nitrification tank, secondary denitrification tank, and reaeration tank. In a wastewater treatment method that performs biological nitrification and denitrification treatment,
As a liquid analyzer that measures the ammonia concentration in the nitrification tank, a saturated potassium chloride solution, which is an internal solution, and an Ag / AgCl electrode, which is an internal electrode that comes into contact with the internal solution, are provided in a space that communicates with the outside via a liquid junction. An ammonium ion electrode equipped with an ammonium chloride aqueous solution as an internal liquid and an Ag / AgCl electrode as an internal electrode in contact with the internal liquid in a space partitioned from the outside by a response film, and an ammonium ion electrode. Using a liquid analyzer configured to include a potassium ion electrode for measuring the potential of potassium ions used to correct potassium ion interference,
The amount of oxygen-containing gas supplied to the nitrification tank is controlled so that the ammonia nitrogen concentration in the nitrification tank measured by the liquid analyzer is 1 to 20 mg / L, and the DO value of the nitrification tank is 1 mg / L or less. A wastewater treatment method characterized in that a nitrification reaction and a denitrification reaction proceed at the same time in a nitrification tank by controlling so as to be.
請求項1に記載の廃水処理方法において、
前記硝化槽を機能的に複数に分割し、
分割した硝化槽前半部分でのアンモニア性窒素濃度が1〜20mg/Lとなるように硝化槽への酸素含有気体供給量を制御し、かつ、硝化槽前半部分のDO値を1mg/L以下とすることによって、硝化槽前半部分おいて硝化反応と脱窒素反応を同時に進行させ、
一方、分割した硝化槽後半部分で、DO値が1〜3mg/Lになるように酸素含有気体供給量を制御して硝化槽前半部分に残留したNH4-NをNOX-Nに硝化することを特徴とする廃水処理方法。
In the wastewater treatment method according to claim 1,
The nitrification tank is functionally divided into a plurality of pieces.
The amount of oxygen-containing gas supplied to the nitrification tank is controlled so that the ammonia nitrogen concentration in the first half of the divided nitrification tank is 1 to 20 mg / L, and the DO value of the first half of the nitrification tank is 1 mg / L or less. By doing so, the nitrification reaction and the denitrification reaction proceed simultaneously in the first half of the nitrification tank.
On the other hand, in the latter half of the divided nitrification tank, the amount of oxygen-containing gas supplied is controlled so that the DO value becomes 1 to 3 mg / L, and NH 4- N remaining in the first half of the nitrification tank is nitrified to NO X -N. A wastewater treatment method characterized by the fact that.
JP2020072323A 2016-04-19 2020-04-14 Wastewater treatment method Active JP6862594B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016083735 2016-04-19
JP2016083735 2016-04-19

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017075739A Division JP6894278B2 (en) 2016-04-19 2017-04-06 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2020116578A JP2020116578A (en) 2020-08-06
JP6862594B2 true JP6862594B2 (en) 2021-04-21

Family

ID=60154543

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017075739A Active JP6894278B2 (en) 2016-04-19 2017-04-06 Wastewater treatment method
JP2020072323A Active JP6862594B2 (en) 2016-04-19 2020-04-14 Wastewater treatment method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017075739A Active JP6894278B2 (en) 2016-04-19 2017-04-06 Wastewater treatment method

Country Status (1)

Country Link
JP (2) JP6894278B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7119568B2 (en) * 2018-05-23 2022-08-17 王子ホールディングス株式会社 Water treatment device and water treatment method
JP7008007B2 (en) * 2018-10-01 2022-01-25 水ing株式会社 Step-inflow multi-stage nitrification denitrification method and system
KR20200052821A (en) 2018-11-07 2020-05-15 가부시키가이샤 쿄교쿠엔지니어링 Sewage treatment system
CN111551609A (en) * 2019-02-11 2020-08-18 山东东润仪表科技股份有限公司 Anti-interference ammonia nitrogen sensor based on multi-parameter compensation
CN110231376A (en) * 2019-05-24 2019-09-13 嘉兴道一传感科技有限公司 A kind of ammonia nitrogen water quality monitoring sensor and its detection method
CN110510815B (en) * 2019-08-27 2022-07-22 危杏 Integrated sewage treatment device based on simultaneous nitrification and denitrification and sewage treatment method
JP7421453B2 (en) * 2020-09-15 2024-01-24 日立造船株式会社 Nitrification and denitrification equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5992096A (en) * 1982-11-19 1984-05-28 Fuji Electric Co Ltd Biological nitrification of waste water
JP3649632B2 (en) * 1999-11-15 2005-05-18 三菱重工業株式会社 Biological nitrogen removal method
JP2001259689A (en) * 2000-03-23 2001-09-25 Sumitomo Heavy Ind Ltd Device and method for treating waste water
JP4789113B2 (en) * 2006-03-01 2011-10-12 三菱重工環境・化学エンジニアリング株式会社 Livestock manure processing system and method
JP2008221161A (en) * 2007-03-14 2008-09-25 Kobelco Eco-Solutions Co Ltd Denitrifying treatment device and denitrifying treatment method
JP5144829B1 (en) * 2012-07-23 2013-02-13 株式会社堀場製作所 Ion electrode
JP6334244B2 (en) * 2014-04-28 2018-05-30 株式会社日立製作所 Water treatment process control system

Also Published As

Publication number Publication date
JP2017192934A (en) 2017-10-26
JP6894278B2 (en) 2021-06-30
JP2020116578A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP6862594B2 (en) Wastewater treatment method
JP4780552B2 (en) Biological wastewater treatment method
CN104176824B (en) A kind of ammonium nitrate wastewater biochemical treatment apparatus and operation method
TWI449675B (en) System and method for treating waste water containing ammonia
Rodríguez et al. Kinetic study and oxygen transfer efficiency evaluation using respirometric methods in a submerged membrane bioreactor using pure oxygen to supply the aerobic conditions
JP2018138292A (en) Water treatment method and apparatus
JP2017144402A (en) Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated
KR20190116542A (en) Multiunit Improved Continuous Batch Reactor and Its Applications
CN107352745A (en) Kitchen garbage fermentation waste water processing method
JP2003047990A (en) Biological denitrifier
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP4327770B2 (en) Biological nitrification treatment method and nitrification treatment apparatus for wastewater containing ammonia nitrogen
JP4867099B2 (en) Biological denitrification method
JP4536740B2 (en) Treatment method and treatment equipment for treated water
Ribeiro et al. Real-time control system based on the values of derivative of the redox potential aiming nitrogen removal in a sequencing batch reactor applied in treating dairy wastewater
JPH1015590A (en) Removal of nitrogen of waste water and apparatus therefor
SG190528A1 (en) Nitrogen and phosphorus removal method and nitrogen and phosphorus removal apparatus
Galí et al. Comparison of reject water treatment with nitrification/denitrification via nitrite in SBR and SHARON chemostat process
KR101066892B1 (en) System for controlling the dosage of external carbon source using continuous measurement device of nitrogen ion
CN111204869A (en) Wastewater treatment system and method based on anaerobic ammonia oxidation biological denitrification reaction device
JP2001314892A (en) Method for controlling denitrification apparatus of wastewater
KR101743346B1 (en) Apparatus and method for treating wastewater
JPH10249386A (en) Treatment of nitrogen-containing waste water
KR20160140553A (en) Method for treating wastewater
KR101709448B1 (en) Method for treating wastewater

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210331

R150 Certificate of patent or registration of utility model

Ref document number: 6862594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250