JP7008007B2 - Step-inflow multi-stage nitrification denitrification method and system - Google Patents

Step-inflow multi-stage nitrification denitrification method and system Download PDF

Info

Publication number
JP7008007B2
JP7008007B2 JP2018186755A JP2018186755A JP7008007B2 JP 7008007 B2 JP7008007 B2 JP 7008007B2 JP 2018186755 A JP2018186755 A JP 2018186755A JP 2018186755 A JP2018186755 A JP 2018186755A JP 7008007 B2 JP7008007 B2 JP 7008007B2
Authority
JP
Japan
Prior art keywords
inflow
tank
water
stage
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018186755A
Other languages
Japanese (ja)
Other versions
JP2020054947A (en
Inventor
康弘 本間
宏樹 村田
一将 蒲池
悟 鈴村
輝彦 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2018186755A priority Critical patent/JP7008007B2/en
Publication of JP2020054947A publication Critical patent/JP2020054947A/en
Application granted granted Critical
Publication of JP7008007B2 publication Critical patent/JP7008007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、下水、し尿、その他の産業廃水等の窒素を含有する有機性廃水を生物学的に硝化脱窒処理するステップ流入式多段硝化脱窒法及びシステムに関し、特に流入量の変動が大きい下水処理などに用いて好適なステップ流入式多段硝化脱窒法及びシステムに関するものである。 The present invention relates to a step-inflow multi-stage nitrification denitrification method and system for biologically nitrifying and denitrifying organic wastewater containing nitrogen such as sewage, urine, and other industrial wastewater, and sewage having a particularly large fluctuation in inflow. It relates to a step-inflow type multi-stage nitrification denitrification method and a system suitable for use in treatment and the like.

従来、窒素成分を含む廃水の処理には生物学的硝化脱窒法が広く用いられている。生物学的硝化脱窒法は、上流側に嫌気槽を設け、下流側に好気槽を設けるもので、好気槽の硝化処理で生じた硝酸性窒素を嫌気槽に戻し、流入水中の有機物を炭素源として嫌気槽で脱窒素処理するものである。 Conventionally, the biological nitrification denitrification method has been widely used for the treatment of wastewater containing a nitrogen component. In the biological nitrification denitrification method, an anaerobic tank is provided on the upstream side and an aerobic tank is provided on the downstream side. It is denitrified in an anaerobic tank as a carbon source.

また、この生物学的硝化脱窒法での窒素除去の効率化を目的に開発されたのが、ステップ流入式多段硝化脱窒法である。このステップ流入式多段硝化脱窒法は、嫌気槽と好気槽を1ユニットとしてこのユニットを複数段直列に配置し、各ユニットの嫌気槽に流入水を分割注入することで窒素除去の効率化を図るものである。ステップ流入式硝化脱窒法では直列に配置する嫌気槽と好気槽のユニットの数が多いほど窒素除去率が向上するが、実際には2~3段での運用例が多い。そして、従来のステップ流入式多段硝化脱窒法の設計思想では各嫌気槽に流入する流入水の分注率をある比率に固定、通常は等分して運用する事例が多い。 In addition, the step inflow type multi-stage nitrification denitrification method was developed for the purpose of improving the efficiency of nitrogen removal in this biological nitrification denitrification method. In this step inflow type multi-stage nitrification denitrification method, the anaerobic tank and the aerobic tank are regarded as one unit, and these units are arranged in series in multiple stages, and the inflow water is separately injected into the anaerobic tank of each unit to improve the efficiency of nitrogen removal. It is intended. In the step inflow type nitrification denitrification method, the nitrogen removal rate improves as the number of units of the anaerobic tank and the aerobic tank arranged in series increases, but in reality, there are many examples of operation in two or three stages. In the design concept of the conventional step inflow type multi-stage nitrification denitrification method, the dispensing rate of the inflow water flowing into each anaerobic tank is fixed to a certain ratio, and usually it is divided into equal parts for operation.

特開平01-242198号公報Japanese Unexamined Patent Publication No. 01-242198 特開平11-244891号公報Japanese Unexamined Patent Publication No. 11-244891

蒲池一将、他2名、「アンモニアセンサーを使用した空気量制御運転の活性汚泥モデルによる最適化」、環境システム計測制御学会誌、2015年、第20巻、第2・3合併号、p.3-10Kazumasa Kamoike and 2 others, "Optimization of Air Volume Control Operation Using Ammonia Sensor by Activated Sludge Model", Journal of Environmental System Measurement and Control Society, 2015, Vol. 20, Volume 2, 3 Merger, p. 3-10 藁科亮、他2名、「多段ステップ流入式硝化脱窒法における均等流入に配慮した流路構造について」、平成27年度、第52回下水道研究発表会講演集、p.593-595Ryo Yabushina, 2 others, "Flower structure considering uniform inflow in multi-step inflow nitrification denitrification method", 2015, Proceedings of the 52nd Sewerage Research Presentation, p.593-595 「よく見かける下水道用語」、[online]、2014/7/11、JS技術開発情報メールNo.152、地方共同法人日本下水道事業団、[平成30年9月25日検索]、インターネット〈URL:https://www.jswa.go.jp/g/g5/g5m/mb/pdf/152-1.pdf〉"Frequently seen sewerage terms", [online], 2014/7/11, JS Technology Development Information Email No. 152, Japan Sewage Works Agency, [Search on September 25, 2018], Internet <URL: https://www.jswa.go.jp/g/g5/g5m/mb/pdf/152-1 .pdf>

上記ステップ流入式多段硝化脱窒法では、流入水を各ユニットの嫌気槽へ等量に分配し、各段の負荷を均等にする設計思想となっているが、実際に均等分配することは非常に困難であり、例えば、ある時間に均等流入になるように流入堰をセットしておいても、流量が変われば流入割合も変わってしまうという問題などがあった(例えば非特許文献3参照)。 In the above step inflow type multi-stage vitrification denitrification method, the design concept is to distribute the inflow water to the anaerobic tank of each unit in equal amounts and equalize the load in each stage, but it is very difficult to actually distribute evenly. It is difficult, for example, even if the inflow weir is set so that the inflow becomes even at a certain time, there is a problem that the inflow ratio changes if the flow rate changes (see, for example, Non-Patent Document 3).

そして、実際の施設では想定したとおりに汚水が流れていない事例も見受けられ、また現場では、流入水の流れに偏りができていることはわかっているが、具体的な量が把握できず、平時に比べ大きく流量が異なるような場合に流量分配が大きく偏り、処理に影響を及ぼすこともあった。これらのことから、実際に流入水を適切な量に分配調整して安定した処理を行うことは困難であった(例えば非特許文献2参照)。 In addition, there are cases where sewage does not flow as expected in actual facilities, and it is known that the flow of inflow water is biased at the site, but the specific amount cannot be grasped. When the flow rate is significantly different from that in normal times, the flow rate distribution is greatly biased, which may affect the processing. For these reasons, it was difficult to actually distribute and adjust the inflow water to an appropriate amount to perform stable treatment (see, for example, Non-Patent Document 2).

本発明は上述の点に鑑みてなされたものでありその目的は、安定したステップ流入式多段硝化脱窒処理を行うことができ、さらには処理水窒素濃度の低減を図ることができるステップ流入式多段硝化脱窒法及びシステムを提供することにある。 The present invention has been made in view of the above points, and an object thereof is a step inflow type capable of performing a stable step inflow type multi-stage nitrification denitrification treatment and further reducing the nitrogen concentration of the treated water. To provide a multi-stage nitrification denitrification method and system.

本発明は、嫌気槽と好気槽とを1ユニットとして、当該ユニットを複数直列に連結し、各ユニットの嫌気槽に、水量が変動する流入水を分配注入するステップ流入式多段硝化脱窒法において、最終のユニットの嫌気槽へ分配注入される流入水の流入量を予め定めた一定流量に固定し、一方残りの変動する流入水は、前記最終のユニットより前段側の残りのユニットの嫌気槽へ前記変動に応じて分配注入されることを特徴としている。
本願発明者は、最終のユニットの嫌気槽へ分配注入(分割給水)される流入水の流入量を一定流量(固定流量)とすることで、従来法であるステップ比率一定運転(流入水を各ユニットの嫌気槽へ一定の比率で配分供給する運転)と同等の処理水水質が得られることを見出した。
即ち、本発明によれば、各ユニットの嫌気槽への流入水の正確な分配調整を行わなくても、容易に安定したステップ流入式多段硝化脱窒処理を行うことができる。
また本願の手法により、流入水量の変動が大きい時間帯に流量分配が大きく偏ることでの水質悪化を改善することができる。
The present invention is a step inflow type multi-stage nitrification denitrification method in which an anaerobic tank and an aerobic tank are regarded as one unit, a plurality of the units are connected in series, and inflow water having a fluctuating amount of water is distributed and injected into the anaerobic tank of each unit. , The inflow amount of the inflow water distributed and injected into the anaerobic tank of the final unit is fixed at a predetermined constant flow rate , while the remaining fluctuating inflow water is the anaerobic tank of the remaining units on the front stage side of the final unit. It is characterized in that it is distributed and injected according to the fluctuation .
The inventor of the present application sets the inflow amount of the inflow water to be distributed and injected (divided water supply) into the anaerobic tank of the final unit to a constant flow rate (fixed flow rate), so that the step ratio constant operation (inflow water is each) which is the conventional method. It was found that the treated water quality equivalent to that of the operation of distributing and supplying to the anaerobic tank of the unit at a constant ratio can be obtained.
That is, according to the present invention, stable step inflow type multi-stage nitrification denitrification treatment can be easily performed without accurately adjusting the distribution of the inflow water to the anaerobic tank of each unit.
Further, according to the method of the present application, it is possible to improve the deterioration of water quality due to the large bias in the flow rate distribution during the time period when the inflow water amount fluctuates greatly.

また本発明は、上記特徴に加え、前記最終のユニットの嫌気槽への流入水の流入量は、日間流入量の20~60%であることを特徴としている。
これによって、安定したステップ流入式多段硝化脱窒処理を行うことができる。
Further, in addition to the above-mentioned characteristics, the present invention is characterized in that the inflow amount of the inflow water into the anaerobic tank of the final unit is 20 to 60% of the daily inflow amount.
This makes it possible to perform a stable step inflow type multi-stage nitrification denitrification treatment.

また本発明は、嫌気槽と好気槽とを1ユニットとして、当該ユニットを複数直列に連結し、各ユニットの嫌気槽に流入水を分配注入するステップ流入式多段硝化脱窒法において、最終のユニットの嫌気槽へ分配注入される流入水の流入量を一定流量とし、最終のユニットの好気槽を2槽に分割し、分割した2槽の内の上流側の好気槽のDO値が所定値以下になるように制御することによって、当該上流側の好気槽において硝化反応と脱窒素反応を同時に進行させることを特徴としている。
好気槽のDO値を所定値以下に設定すれば、化脱窒同時進行によって、処理水の窒素濃度が低減されるが、最終ユニットの嫌気槽への流入水の流入量を一定流量とする本願発明では、最終のユニットの好気槽を2槽に分割してその上流側の好気槽のDO値を所定値以下に制御することが、窒素濃度低減のために重要であることを見出した。これによって、より一層の処理水の窒素濃度低減を達成することができる。
最終のユニットの好気槽の分割は、槽が槽壁により区画されている場合および槽の構造上の強度を持たせるための仕切りにより構造上分割されている場合の他、槽壁や仕切りにより構造上分割されていなくても、空気量の調整や散気装置の型式を替えることで、DO濃度の異なるゾーンを形成させることによる機能上の分割でもよい。要は、少なくとも好気槽を機能上分割する構成であればよい。
Further, the present invention is the final unit in the step inflow type multi-stage nitrification denitrification method in which the anaerobic tank and the aerobic tank are regarded as one unit, the units are connected in series, and the inflow water is distributed and injected into the anaerobic tank of each unit. The inflow rate of the inflow water distributed and injected into the anaerobic tank is set to a constant flow rate, the aerobic tank of the final unit is divided into two tanks, and the DO value of the upstream side of the divided two tanks is predetermined. By controlling the value to be less than or equal to the value, the nitrification reaction and the denitrification reaction are simultaneously promoted in the aerobic tank on the upstream side.
If the DO value of the aerobic tank is set to a predetermined value or less, the nitrogen concentration of the treated water will be reduced due to the simultaneous progress of nitrification and denitrification, but the inflow amount of the inflow water to the anaerobic tank of the final unit will be a constant flow rate. In the present invention, it is important to divide the aerobic tank of the final unit into two tanks and control the DO value of the aerobic tank on the upstream side to a predetermined value or less in order to reduce the nitrogen concentration. I found it. Thereby, the nitrogen concentration of the treated water can be further reduced.
The aerobic tank of the final unit is divided by the tank wall or partition, as well as when the tank is partitioned by the tank wall or structurally by a partition to give the tank structural strength. Even if it is not structurally divided, it may be functionally divided by forming zones having different DO concentrations by adjusting the amount of air or changing the model of the air diffuser. In short, at least the aerobic tank may be functionally divided.

また本発明は、上記特徴に加え、前記上流側の好気槽のDO値が所定値以下になるように、当該上流側の好気槽のNH4-N設定値を設定し、その設定値となるように、当該上流側の好気槽に供給する空気量を制御することを特徴としている。
これによって、前記上流側の好気槽のDO値を所定値以下に制御することができる。
Further, in addition to the above features, the present invention sets the NH 4 -N set value of the upstream aerobic tank so that the DO value of the upstream aerobic tank is equal to or less than a predetermined value, and the set value thereof. It is characterized in that the amount of air supplied to the aerobic tank on the upstream side is controlled so as to be.
Thereby, the DO value of the aerobic tank on the upstream side can be controlled to a predetermined value or less.

また本発明は、上記特徴に加え、前記上流側の好気槽に供給する空気量の制御を、アンモニアセンサーを用いて行うことを特徴としている。
これによって、前記上流側の好気槽に供給する空気量の制御を適切に行うことができる。
Further, in addition to the above-mentioned features, the present invention is characterized in that the amount of air supplied to the aerobic tank on the upstream side is controlled by using an ammonia sensor.
Thereby, the amount of air supplied to the aerobic tank on the upstream side can be appropriately controlled.

また本発明は、嫌気槽と好気槽とを1ユニットとして、当該ユニットを複数直列に連結し、各ユニットの嫌気槽に、水量が変動する流入水を分配注入するステップ流入式多段硝化脱窒システムにおいて、最終のユニットの嫌気槽へ分配注入される流入水の流入量を予め定めた一定流量に固定する一定流量供給手段を設け、一方残りの変動する流入水を、前記最終のユニットより前段側の残りのユニットの嫌気槽へ前記変動に応じて分配注入することを特徴としている。
本発明によれば、各ユニットの嫌気槽への流入水の正確な分配調整を行わなくても、容易に安定したステップ流入式多段硝化脱窒処理を行うことができる。
また、流入水量の変動が大きい時間帯に流量分配が大きく偏ることでの水質悪化を改善することができる。
Further, in the present invention, an anaerobic tank and an aerobic tank are regarded as one unit, and a plurality of the units are connected in series, and inflow water having a fluctuating amount of water is distributed and injected into the anaerobic tank of each unit. In the system, a constant flow rate supply means is provided to fix the inflow amount of the inflow water distributed and injected into the anaerobic tank of the final unit to a predetermined constant flow rate , while the remaining fluctuating inflow water is previously set to the stage before the final unit. It is characterized by dispensing and injecting into the anaerobic tank of the remaining units on the side according to the fluctuation .
According to the present invention, a stable step inflow type multi-stage nitrification denitrification treatment can be easily performed without accurately adjusting the distribution of the inflow water to the anaerobic tank of each unit.
In addition, it is possible to improve the deterioration of water quality due to the large bias in the flow rate distribution during the time when the inflow water volume fluctuates greatly.

本発明によれば、安定したステップ流入式多段硝化脱窒処理を行うことができ、さらには処理水窒素濃度の低減を図ることができる。 According to the present invention, a stable step inflow type multi-stage nitrification denitrification treatment can be performed, and further, the nitrogen concentration of the treated water can be reduced.

ステップ流入式多段硝化脱窒システム1-1を示す図である。It is a figure which shows the step inflow type multi-stage nitrification denitrification system 1-1. ステップ流入式多段硝化脱窒システム1-2を示す図である。It is a figure which shows the step inflow type multi-stage nitrification denitrification system 1-2. ステップ流入式多段硝化脱窒システム1-3を示す図である。It is a figure which shows the step inflow type multi-stage nitrification denitrification system 1-3. ステップ流入式多段硝化脱窒システム1-4を示す図である。It is a figure which shows the step inflow type multi-stage nitrification denitrification system 1-4. 各種運転方法によって運転した処理水N濃度の測定結果を示す図である。It is a figure which shows the measurement result of the treated water N concentration operated by various operation methods. 各種運転方法によって運転した処理水N濃度の測定結果を示す図である。It is a figure which shows the measurement result of the treated water N concentration operated by various operation methods. 各種運転方法によって運転した5槽目DO値と処理水N濃度の測定結果を示す図である。It is a figure which shows the measurement result of the 5th tank DO value and the treated water N concentration operated by various operation methods. 各種運転方法によって運転した5槽目NH4-N値と処理水N濃度の測定結果を示す図である。It is a figure which shows the measurement result of the 5th tank NH 4 -N value and the treated water N concentration operated by various operation methods.

以下、本発明の実施形態を、図面を参照して詳細に説明するが、本発明はこれに限定されない。図1は本発明の第1実施形態に係るステップ流入式多段硝化脱窒システム(処理フロー)1-1を示す図である。ステップ流入式多段硝化脱窒システム1-1は、嫌気槽A-1と好気槽O-1のユニットN-1と、嫌気槽A―2と好気槽O-2のユニットN-2とを直列に連結し、各ユニットN-1,N-2の嫌気槽A-1,A-2にそれぞれ流入水(下水)を分配注入する2段ステップ方式の処理システムとなっている。さらに、好気槽O-2の後段には沈殿池Sが設置され、この沈殿池Sに沈殿した汚泥は嫌気槽A-1に返送される構成となっている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto. FIG. 1 is a diagram showing a step inflow type multi-stage nitrification denitrification system (treatment flow) 1-1 according to the first embodiment of the present invention. The step inflow type multi-stage nitrification denitrification system 1-1 includes an anaerobic tank A-1 and an aerobic tank O-1 unit N-1, and an anaerobic tank A-2 and an aerobic tank O-2 unit N-2. Is connected in series, and the inflow water (sewage) is distributed and injected into the anaerobic tanks A-1 and A-2 of each unit N-1 and N-2, respectively, in a two-stage step treatment system. Further, a settling basin S is installed after the aerobic tank O-2, and the sludge settled in the settling basin S is returned to the anaerobic tank A-1.

以上のように構成されたステップ流入式多段硝化脱窒システム1-1において、流入水は、1段目の嫌気槽A-1と2段目の嫌気槽A-2に分割して注入される。そしてこの実施形態においては、このステップ流入式多段硝化脱窒システム1-1に流入する流入水の内、予め定めた一定流量だけを、2段目の嫌気槽A-2に分割注入し、それ以外の流入水は1段目の嫌気槽A-1に分割注入するように構成している。2段目の嫌気槽A-2に一定流量の流入水を注入するため、その流路には、一定流量供給手段Rが設置されている。一定流量供給手段Rとしては、ポンプが好ましいが、一定流量での流入が可能であれば各種せき式流量計など、他の各種手段の使用も可能である。 In the step inflow type multi-stage nitrification denitrification system 1-1 configured as described above, the inflow water is separately injected into the first-stage anaerobic tank A-1 and the second-stage anaerobic tank A-2. .. Then, in this embodiment, only a predetermined constant flow rate of the inflow water flowing into the step inflow type multi-stage nitrification denitrification system 1-1 is dividedly injected into the second stage anaerobic tank A-2. The inflow water other than the above is configured to be separately injected into the anaerobic tank A-1 of the first stage. In order to inject a constant flow rate of inflow water into the anaerobic tank A-2 of the second stage, a constant flow rate supply means R is installed in the flow path. A pump is preferable as the constant flow rate supply means R, but other various means such as various weir type flow meters can also be used as long as the inflow at a constant flow rate is possible.

以上のように構成されたステップ流入式多段硝化脱窒システム1-1において、1段目の嫌気槽A-1に流入したアンモニア性窒素(NH4-N)が主体の窒素成分は、1段目の好気槽O-1へ流入し、この好気槽O-1で硝化反応により硝酸性窒素および亜硝酸性窒素(NOX-N)に転換する。この硝酸性窒素および亜硝酸性窒素(NOX-N)を含む好気槽O-1からの流出水はそのまま2段目の嫌気槽A-2に流入し、嫌気槽A-2に分割注入される流入水中の有機物を炭素源として利用する脱窒反応により、窒素ガスへ転換し、水中から窒素が除去される。嫌気槽A-2に流入したアンモニア性窒素(NH4-N)が主体の窒素成分は、2段目の好気槽O-2へ流入し、この好気槽O-2で硝化反応により硝酸性窒素および亜硝酸性窒素(NOX-N)に転換する。好気槽O-2からの流出水は沈殿池Sで固液分離され、好気槽O-2で生じた硝酸性窒素および亜硝酸性窒素(NOX-N)の一部は返送汚泥として1段目の嫌気槽A-1に流入し、この嫌気槽A-1に分割注入される流入水中の有機物を炭素源として利用する脱窒反応により、窒素ガスへ転換し、窒素除去が行われる。 In the step-inflow type multi-stage nitrification denitrification system 1-1 configured as described above, the nitrogen component mainly composed of ammoniacal nitrogen (NH 4 -N) flowing into the first-stage anaerobic tank A-1 is one-stage. It flows into the aerobic tank O-1 of the eye and is converted to nitrate nitrogen and nitrite nitrogen (NO X- N) by the nitrification reaction in this aerobic tank O-1. The outflow water from the aerobic tank O-1 containing nitrate nitrogen and nitrite nitrogen (NO X -N) flows directly into the anaerobic tank A-2 of the second stage and is separately injected into the anaerobic tank A-2. By the denitrification reaction that utilizes the organic matter in the inflow water as a carbon source, it is converted to nitrogen gas and nitrogen is removed from the water. The nitrogen component mainly composed of ammoniacal nitrogen (NH 4 -N) that has flowed into the anaerobic tank A-2 flows into the second-stage aerobic tank O-2, and nitrification occurs in this aerobic tank O-2 due to the nitrification reaction. Convert to sex nitrogen and nitrite nitrogen (NO X -N). The effluent from the aerobic tank O-2 is solid-liquid separated in the settling pond S, and part of the nitrate nitrogen and nitrite nitrogen (NO X- N) generated in the aerobic tank O-2 is used as return sludge. Nitrogen is removed by denitrification reaction that uses the organic matter in the inflow water that flows into the anaerobic tank A-1 of the first stage and is separately injected into the anaerobic tank A-1 as a carbon source. ..

従来、流入水(下水)の流量調整は、ゲートの開度調整や流入堰の調整により、流入水の分注率をある比率に固定する、あるいは等分することが行われていた。流入水量が変動した場合でも、適宜、人手により、流入水の分注率を保つためにゲート開度や堰高さなどを調節していた。しかしこれらの従来法では、流入水分注率が設定条件と異なることで、窒素除去の不安定さを生じる可能性があった。例えば、上記2段目の嫌気槽A-2への流入水の流入量が少なくなった場合には、嫌気槽A-2での脱窒処理に必要な炭素源が不足し、硝酸性窒素および亜硝酸性窒素(NOX-N)の残留を引き起こす。また、嫌気槽A-2への流入水の流入量が多くなった場合には、嫌気槽A-2での脱窒処理に必要な炭素源の不足は避けられるが、好気槽O-2の有機物負荷および窒素負荷の増加により、アンモニア性窒素(NH4-N)の残留を引き起こす。 Conventionally, the flow rate of inflow water (sewage) has been adjusted by adjusting the opening of the gate or adjusting the inflow weir to fix the inflow water distribution rate to a certain ratio or divide it into equal parts. Even if the amount of inflow water fluctuated, the gate opening and the height of the weir were adjusted by hand in order to maintain the inflow water distribution rate. However, in these conventional methods, the inflow water injection rate differs from the set conditions, which may cause instability in nitrogen removal. For example, when the amount of inflow water into the anaerobic tank A-2 in the second stage is small, the carbon source required for the denitrification treatment in the anaerobic tank A-2 is insufficient, and nitrate nitrogen and nitrate nitrogen and Causes residual nitrite nitrogen (NO X -N). Further, when the inflow amount of the inflow water into the anaerobic tank A-2 becomes large, the shortage of the carbon source required for the denitrification treatment in the anaerobic tank A-2 can be avoided, but the aerobic tank O-2 Increased organic and nitrogen loadings cause residual ammoniacal nitrogen (NH 4 -N).

これに対して本願発明では、最終のユニットである2段目のユニットN-2の嫌気槽A-2への流入水の流入量、即ち、最終ステップ流入工程の流入水の流入量Q2を一定水量に保ち、残りの流入水はQ1として1段目の嫌気槽A-1に流入させる構成としている。本願発明によると、2段目の嫌気槽A-2での脱窒処理に必要な炭素源不足を避けることが可能になり、また、2段目の好気槽O-2の有機物負荷および窒素負荷を適正範囲に保つことが可能になるため、安定したステップ流入式多段硝化脱窒処理が達成できる。2段目の嫌気槽A-2への流入水の流入量Q2は、一日の処理水量平均値(Q)の20~60%(0.2~0.6Q)が好ましい。2段目の嫌気槽A-2への最適送水量(送水割合)は好気槽-2のDO設定値により異なる。 On the other hand, in the present invention, the inflow amount of the inflow water into the anaerobic tank A-2 of the second stage unit N-2, which is the final unit, that is, the inflow amount Q2 of the inflow water in the final step inflow step is constant. The amount of water is maintained, and the remaining inflow water is configured to flow into the anaerobic tank A-1 of the first stage as Q1. According to the present invention, it is possible to avoid a shortage of carbon sources required for denitrification treatment in the second-stage anaerobic tank A-2, and the organic matter load and nitrogen in the second-stage aerobic tank O-2. Since the load can be kept in an appropriate range, stable step inflow type multi-stage nitrification denitrification treatment can be achieved. The inflow amount Q2 of the inflow water into the anaerobic tank A-2 of the second stage is preferably 20 to 60% (0.2 to 0.6Q) of the average daily treated water amount (Q). The optimum amount of water to be sent to the anaerobic tank A-2 in the second stage (water supply ratio) differs depending on the DO set value of the aerobic tank-2.

図2は本発明の第2実施形態に係るステップ流入式多段硝化脱窒システム(処理フロー)1-2を示す図である。ステップ流入式多段硝化脱窒システム1-2は、上記ステップ流入式多段硝化脱窒システム1-1と同様のユニットN-1,ユニットN-2の他に、嫌気槽A3と好気槽O3のユニットN-3をさらに直列に連結し、各ユニットN-1,N-2,N-3の嫌気槽A-1,A-2,A-3にそれぞれ流入水(下水)を分配注入する3段ステップ方式の処理システムとなっている。好気槽O-3の後段には沈殿池Sが設置され、この沈殿池Sに沈殿した汚泥を嫌気槽A-1に返送する構成となっている。このステップ流入式多段硝化脱窒システム1-2の処理方式の場合も、窒素除去の原理は上記と同様である。 FIG. 2 is a diagram showing a step inflow type multi-stage nitrification denitrification system (treatment flow) 1-2 according to the second embodiment of the present invention. The step inflow type multi-stage nitrification denitrification system 1-2 includes the anaerobic tank A3 and the aerobic tank O3 in addition to the unit N-1 and the unit N-2 similar to the step inflow type multi-stage nitrification denitrification system 1-1. Units N-3 are further connected in series, and inflow water (sewage) is distributed and injected into the anaerobic tanks A-1, A-2, and A-3 of each unit N-1, N-2, and N-3, respectively. It is a step-step processing system. A settling basin S is installed after the aerobic tank O-3, and the sludge settled in the settling basin S is returned to the anaerobic tank A-1. In the case of the treatment method of this step inflow type multi-stage nitrification denitrification system 1-2, the principle of nitrogen removal is the same as described above.

以上のように構成されたステップ流入式多段硝化脱窒システム1-2においては、最終段の嫌気槽A-3への流入水の流入水量Q3を一定水量とし、残りの嫌気槽A-1,A-2への流入水の流入水量をそれぞれQ1,Q2とする。2段目(最終段の直前の段、中間の段)の嫌気槽A-2への流入水量Q2は一定流量としてもよいが、最終段の嫌気槽A-3の流入水量Q3を一定に保った状態であれば、嫌気槽A-2への流入水量Q2が変動しても処理水窒素濃度に与える影響は小さい。最終ステップ工程の流入水の流入量を一定とすることで、脱窒処理に必要な炭素源不足を避けることができ、また、好気槽O-3の有機物負荷および窒素負荷を適正範囲に保つことができ、これらのことから安定したステップ流入式多段硝化脱窒処理を達成することができる。このように、最終ステップ流入工程の流入量を一定流量とすることは極めて有効である。 In the step inflow type multi-stage nitrification denitrification system 1-2 configured as described above, the inflow water amount Q3 of the inflow water to the final stage anaerobic tank A-3 is set to a constant amount, and the remaining anaerobic tanks A-1 and Let the inflow amount of the inflow water to A-2 be Q1 and Q2, respectively. The inflow water amount Q2 to the anaerobic tank A-2 in the second stage (the stage immediately before the final stage, the middle stage) may be a constant flow rate, but the inflow water amount Q3 in the anaerobic tank A-3 in the final stage is kept constant. In this state, even if the amount of water Q2 flowing into the anaerobic tank A-2 fluctuates, the effect on the nitrogen concentration of the treated water is small. By keeping the inflow amount of the inflow water in the final step step constant, it is possible to avoid a shortage of carbon sources required for denitrification treatment, and to keep the organic matter load and nitrogen load of the aerobic tank O-3 within an appropriate range. From these facts, stable step inflow type multi-stage nitrification denitrification treatment can be achieved. As described above, it is extremely effective to set the inflow rate of the final step inflow step to a constant flow rate.

ところで、上記特許文献1にも開示されているように、好気槽のDO値を1mg/L以下に保ち、硝化反応を進めると、好気槽内で同時に脱窒反応も進行し、処理水の窒素濃度低減につなげることが可能となる。本願発明でも、好気槽OのDO値を1mg/L以下に保ち、好気槽Oでの硝化脱窒同時進行を促すことで、処理水窒素濃度を低減する手法を適用できる。 By the way, as disclosed in Patent Document 1, when the DO value of the aerobic tank is kept at 1 mg / L or less and the nitrification reaction is promoted, the denitrification reaction also proceeds at the same time in the aerobic tank, and the treated water is treated. It is possible to reduce the nitrogen concentration in the water. Also in the present invention, a method for reducing the nitrogen concentration of treated water can be applied by keeping the DO value of the aerobic tank O at 1 mg / L or less and promoting the simultaneous progress of nitrification and denitrification in the aerobic tank O.

そして上記手法を上記ステップ流入式多段硝化脱窒システム1-1,1-2に適用する際に、本願発明者は、最終ステップ流入工程の好気槽OのDO設定が処理水窒素濃度低減に効果が大きいことを見出した。 Then, when applying the above method to the step inflow type multi-stage nitrification denitrification system 1-1, 1-2, the inventor of the present application found that the DO setting of the aerobic tank O in the final step inflow step was to reduce the nitrogen concentration of the treated water. We found that the effect was great.

図3は、DO値設定による処理水窒素濃度低減を考慮した第3実施形態に係るステップ流入式多段硝化脱窒システム1-3を示す図である。この実施形態の場合、最終ステップ流入工程、即ち最終のユニットN-2の好気槽O-2を2槽O(1),O(2)に分割し、分割した2槽の内の上流側の好気槽O(1)のDO値が所定値以下(この例では1mg/L以下)になるように制御することによって、当該上流側の好気槽O(1)において硝化反応と脱窒反応を同時に進行させるように構成している。以下、具体的に説明する。 FIG. 3 is a diagram showing a step-inflow type multi-stage nitrification denitrification system 1-3 according to a third embodiment in consideration of reducing the nitrogen concentration of treated water by setting a DO value. In the case of this embodiment, the final step inflow step, that is, the aerobic tank O-2 of the final unit N-2 is divided into two tanks O (1) and O (2), and the upstream side of the divided two tanks. By controlling the DO value of the aerobic tank O (1) to be equal to or less than a predetermined value (1 mg / L or less in this example), the nitrification reaction and denitrification are performed in the aerobic tank O (1) on the upstream side. It is configured to allow the reaction to proceed simultaneously. Hereinafter, a specific description will be given.

1段目の嫌気槽A-1に流入したアンモニア性窒素(NH4-N)が主体の窒素成分は、1段目の好気槽O-1で硝化反応により硝酸性窒素および亜硝酸性窒素(NOX-N)に転換する。この場合も、DO値を1mg/L以下に保つことで、硝化脱窒同時進行による窒素除去の反応は生じる。硝酸性窒素および亜硝酸性窒素(NOX-N)成分は、2段目の嫌気槽A-2に分割注入される流入水中の有機物を炭素源として利用する脱窒反応により除去されるため、1段目の好気槽O-1での硝化脱窒同時進行による窒素濃度低減作用が無くても、2段目の嫌気槽A-2に供給される有機物が不足していない状況では、1段目の嫌気槽A-1に流入するアンモニア性窒素(NH4-N)が主体の窒素成分は2段目の嫌気槽A-2で除去されるため、1段目の好気槽O-1でDO値を1mg/L以下に低減した状態で硝化を進行させる際の硝化脱窒同時進行による窒素濃度低減効果は比較的小さい。また、1段目の好気槽O-1でDO値を低減させたことにより、硝化反応が不十分となりアンモニア性窒素(NH4-N)が残留する場合は、この残留するアンモニア性窒素(NH4-N)は2段目の嫌気槽A-2で変化することなく、そのまま2段目の好気槽O-2へ流入するため、処理水窒素濃度増加の原因になる。そのため、1段目の好気槽O-1では十分に硝化反応が進行するDO設定値とする必要がある。1段目の好気槽O-1のアンモニア性窒素(NH4-N)をモニタリングできない状況では、1段目の好気槽O-1のDO値を過度に下げることを避け、2段目の好気槽O-2で硝化が十分に進行するDO値に設定することが好ましい。 The nitrogen component mainly composed of ammoniacal nitrogen (NH 4 -N) that has flowed into the first-stage anaerobic tank A-1 is nitrate nitrogen and nitrite nitrogen due to the nitrification reaction in the first-stage aerobic tank O-1. Convert to (NO X -N). In this case as well, by keeping the DO value at 1 mg / L or less, the reaction of nitrogen removal by the simultaneous progress of nitrification and denitrification occurs. Since the nitrate nitrogen and nitrite nitrogen (NO X -N) components are removed by the denitrification reaction using the organic matter in the inflow water separately injected into the anaerobic tank A-2 of the second stage as a carbon source, In the situation where the organic matter supplied to the second-stage anaerobic tank A-2 is not insufficient even if there is no nitrogen concentration reduction effect due to the simultaneous progress of nitrification and denitrification in the first-stage aerobic tank O-1, 1 Since the nitrogen component mainly composed of ammoniacal nitrogen (NH 4 -N) flowing into the anaerobic tank A-1 of the second stage is removed by the anaerobic tank A-2 of the second stage, the aerobic tank O- of the first stage The effect of reducing nitrogen concentration by simultaneous progress of nitrification and denitrification when proceeding with nitrification in a state where the DO value is reduced to 1 mg / L or less in 1 is relatively small. In addition, if the nitrification reaction becomes insufficient and ammoniacal nitrogen (NH 4 -N) remains due to the reduction of the DO value in the first-stage aerobic tank O-1, the residual ammoniacal nitrogen (NH 4-N) remains. NH 4 -N) flows into the aerobic tank O-2 of the second stage as it is without changing in the anaerobic tank A-2 of the second stage, which causes an increase in the nitrogen concentration of the treated water. Therefore, in the first-stage aerobic tank O-1, it is necessary to set the DO setting value at which the nitrification reaction proceeds sufficiently. In a situation where the ammoniacal nitrogen (NH 4 -N) in the first-stage aerobic tank O-1 cannot be monitored, avoid excessively lowering the DO value of the first-stage aerobic tank O-1 and use the second stage. It is preferable to set the DO value at which nitrification sufficiently proceeds in the aerobic tank O-2.

2段目の嫌気槽A-2に流入したアンモニア性窒素(NH4-N)が主体の窒素成分は2段目の好気槽O-2(O(1)+O(2))へ流入し、この好気槽O-2で硝化反応により硝酸性窒素および亜硝酸性窒素(NOX-N)に転換する。この好気槽O-2流出水は沈殿池Sで固液分離され、硝酸性窒素および亜硝酸性窒素(NOX-N)を主体とした窒素成分が沈殿池Sの上澄水として流出し、これが処理水窒素濃度となる。そのため、2段目の好気槽O-2でのDO値を1mg/L以下に低減した状態で硝化を進行させる際の硝化脱窒同時進行による窒素濃度低減効果は処理水窒素濃度低減効果が大きくなる。これは、最終ステップ工程の流入水の流入量を一定とすることで、脱窒処理に必要な炭素源不足を避けることができ、また、2段目の好気槽O-2の有機物負荷および窒素負荷を適正範囲に保つことができるため、安定したステップ流入式多段硝化脱窒処理が達成できる本願発明の効果によるものである。 The nitrogen component mainly composed of ammoniacal nitrogen (NH 4 -N) that has flowed into the second-stage anaerobic tank A-2 flows into the second-stage aerobic tank O-2 (O (1) + O (2)). , It is converted to nitrate nitrogen and nitrite nitrogen (NO X- N) by nitrification reaction in this aerobic tank O-2. This aerobic tank O-2 runoff water is solid-liquid separated in the settling basin S, and nitrogen components mainly composed of nitrate nitrogen and nitrite nitrogen (NO X- N) flow out as the supernatant water of the settling basin S. This is the nitrogen concentration of the treated water. Therefore, the nitrogen concentration reduction effect due to the simultaneous progress of nitrification and denitrification when the DO value in the second stage aerobic tank O-2 is reduced to 1 mg / L or less is the effect of reducing the nitrogen concentration of the treated water. growing. By keeping the inflow amount of the inflow water in the final step step constant, it is possible to avoid a shortage of carbon source required for denitrification treatment, and the organic matter load of the second stage aerobic tank O-2 and This is due to the effect of the present invention that stable step inflow type multi-stage nitrification denitrification treatment can be achieved because the nitrogen load can be kept in an appropriate range.

2段目の好気槽O-2でのDO値設定は、好気槽O-2全体でDO値を1mg/L以下に設定するのではなく、上流側の分割好気槽O(1)でDO値を1mg/L以下に設定し、下流側の分割好気槽O(2)ではアンモニア性窒素(NH4-N)が残留しないようにDO値を1~2mg/Lに設定することが好ましい。 The DO value setting in the second-stage aerobic tank O-2 is not to set the DO value to 1 mg / L or less in the entire aerobic tank O-2, but to set the DO value in the upstream split aerobic tank O (1). Set the DO value to 1 mg / L or less, and set the DO value to 1 to 2 mg / L so that ammoniacal nitrogen (NH 4 -N) does not remain in the split aerobic tank O (2) on the downstream side. Is preferable.

分割好気槽O(1)と分割好気槽O(2)の分割は、槽が槽壁により区画されている場合および槽の構造上の強度を持たせるための仕切りにより構造上分割されている場合の他、槽壁や仕切りにより構造上分割されていなくても、空気量の調整や散気装置の型式を替えることで、DO濃度の異なるゾーンを形成させることによる機能上の分割でもよい。要は、少なくとも好気槽を機能上分割する構成であればよい。 The division of the divided aerobic tank O (1) and the divided aerobic tank O (2) is structurally divided when the tank is partitioned by the tank wall and by a partition for giving the structural strength of the tank. Even if it is not structurally divided by the tank wall or partition, it may be functionally divided by forming zones with different DO concentrations by adjusting the air volume or changing the model of the air diffuser. .. In short, at least the aerobic tank may be functionally divided.

分割好気槽O(1)と分割好気槽O(2)の槽容量は、O(1)<O(2)でも窒素濃度低減効果を発揮できるが、O(1)≧O(2)とすることで、分割好気槽O(1)で硝化反応と脱窒反応が同時に進行することによる分割好気槽O(1)流出の(NH4-N+NOX-N)濃度を低減させる効果が大きくなるために好ましく、分割好気槽O(2)は分割好気槽O(1)の3分の1以下であることがより好ましい。 The tank capacities of the split aerobic tank O (1) and the split aerobic tank O (2) can exert the effect of reducing the nitrogen concentration even when O (1) <O (2), but O (1) ≧ O (2). This has the effect of reducing the (NH 4 -N + NO X- N) concentration of the outflow of the split aerobic tank O (1) due to the simultaneous progress of the nitrification reaction and the denitrification reaction in the split aerobic tank O (1). Is preferable, and the split aerobic tank O (2) is more preferably one-third or less of the split aerobic tank O (1).

分割好気槽O(1)のDO設定値は1mg/L以下であることが好ましく、処理水窒素濃度を最小とする分割好気槽O(1)のDO設定値は0.5mg/L、さらに好ましくは、0.3mg/L以下である。DOセンサーを用いた場合、この様な低DOではセンサー測定誤差の影響が大きくなるため正確な空気量制御が困難になる。また、DOセンサーによる低DO値での空気量制御では好気槽O-2でのアンモニア性窒素(NH4-N)の残留の危険性があり、処理水の水質悪化を招く可能性がある。 The DO setting value of the split aerobic tank O (1) is preferably 1 mg / L or less, and the DO set value of the split aerobic tank O (1) that minimizes the nitrogen concentration of the treated water is 0.5 mg / L. More preferably, it is 0.3 mg / L or less. When a DO sensor is used, accurate control of the amount of air becomes difficult because the influence of the sensor measurement error becomes large at such a low DO. In addition, if the air volume is controlled at a low DO value by the DO sensor, there is a risk of residual ammoniacal nitrogen (NH 4 -N) in the aerobic tank O-2, which may lead to deterioration of the water quality of the treated water. ..

このような低DOでの空気量制御ではDOセンサーの代わりにアンモニアセンサーの適用が有効である。上流側の分割好気槽O(1)の空気量制御にアンモニアセンサーを使う場合、安定した空気量制御が可能となる他にアンモニア濃度を連続的に監視できるため、処理水へのアンモニア性窒素(NH4-N)残留を避ける上でも有効な手段となる。なお、アンモニアセンサーは分割好気槽O(1)の末端に設置することが好ましい。 In such low DO air volume control, it is effective to apply an ammonia sensor instead of the DO sensor. When an ammonia sensor is used to control the air volume of the split aerobic tank O (1) on the upstream side, stable air volume control is possible and the ammonia concentration can be continuously monitored, so ammonia nitrogen in the treated water. (NH 4 -N) It is also an effective means to avoid residue. The ammonia sensor is preferably installed at the end of the split aerobic tank O (1).

最初沈殿池越流水を原水として図4に示すステップ流入式多段硝化脱窒システム(処理フロー)1-4を用いて処理を行った。図4のシステム1-4は、水槽が6槽に分割されており、各水槽の容量は同じである。原水のアンモニア性窒素(NH4-N)が日最大30mg/L、日間平均18~24mg/Lの水質条件、で曝気槽の水温が20~23℃の条件において、返送比0.5、最終槽のMLSSを2,000mg/Lに設定して結果について検討した。窒素除去性能の評価は6槽目からの流出水の(NH4-N+NOX-N)濃度(以下、「処理水N濃度」とも記す)および窒素除去率(原水NH4-N:日間平均値と、6槽目流出水のNH4-N+NOX-N:日間平均値より算出)とした。 First, the sedimentation pond overflow water was used as raw water for treatment using the step inflow type multi-stage nitrification denitrification system (treatment flow) 1-4 shown in FIG. In the system 1-4 of FIG. 4, the water tanks are divided into 6 tanks, and the capacities of the water tanks are the same. Ammonia nitrogen (NH 4 -N) in the raw water is 30 mg / L per day on average, 18 to 24 mg / L per day on average, and the water temperature in the aeration tank is 20 to 23 ° C. The MLSS of the tank was set to 2,000 mg / L and the results were examined. Evaluation of nitrogen removal performance is based on the concentration of runoff water (NH 4 -N + NO X -N) from the 6th tank (hereinafter also referred to as "treated water N concentration") and the nitrogen removal rate (raw water NH 4 -N: daily average value). And NH 4 -N + NO X -N of the 6th tank runoff water: calculated from the daily average value).

<実施例1>
原水(流入水)の流入を1槽目と4槽目に分割注入する2段ステップ処理の運転条件において、ステップ流入ゲートの開度を固定した従来法1と、ステップ流入開度を流入水量の変動に応じて経験的に人手で調整する従来法2と、4槽目の原水流入量をポンプによる送水によって一定量とした本願発明による方法と、下記する比較例との比較検討を行った。1槽目の原水流入量をQ1、4槽目の原水流入量をQ4とも記す。1槽目と4槽目を嫌気槽とし、2槽目と3槽目と5槽目と6槽目を好気槽とした。各好気槽のDO値を1mg/Lに設定し、空気量の制御を行った。
<Example 1>
Under the operating conditions of the two-stage step processing in which the inflow of raw water (inflow water) is divided and injected into the first tank and the fourth tank, the conventional method 1 in which the opening of the step inflow gate is fixed and the step inflow opening are set to the amount of inflow water. A comparative study was carried out between the conventional method 2 in which the amount of raw water inflow in the fourth tank was adjusted to a constant amount by pumping water, and the method according to the present invention, which was empirically adjusted manually according to the fluctuation, and the following comparative example. The amount of raw water inflow in the first tank is also referred to as Q1, and the amount of raw water inflow in the fourth tank is also referred to as Q4. The 1st and 4th tanks were designated as anaerobic tanks, and the 2nd, 3rd, 5th and 6th tanks were designated as aerobic tanks. The DO value of each aerobic tank was set to 1 mg / L, and the amount of air was controlled.

比較例は、4槽目への原水流入を無くし、原水が全量1槽目に流入する処理方式とした。
従来法1は、Q1:Q4=60:40となるようにゲートの開度を経験的に調整し、原水量の変動によらず、ゲート開度を固定した。従来法1では目視により、明らかにQ4が少なくなっている時間帯があることが確認でき、原水流量変動により、ステップ流入比率は時間的に変動していた。
従来法2では原水流量の変動に応じて、Q1:Q4=60:40となるようにゲートの開度を経験的に適宜調整した。
本願発明による実施例1では、ポンプ送水によりQ4を一定流量に保ち、残りの原水をQ1として1槽目に流入させた。Q4は日間流入水量平均値の40%に設定した。
In the comparative example, the inflow of raw water into the 4th tank was eliminated, and the total amount of the raw water flowed into the 1st tank.
In the conventional method 1, the gate opening is empirically adjusted so that Q1: Q4 = 60: 40, and the gate opening is fixed regardless of the fluctuation of the raw water amount. In the conventional method 1, it was visually confirmed that there was a time zone in which Q4 was clearly reduced, and the step inflow ratio fluctuated with time due to the fluctuation of the raw water flow rate.
In the conventional method 2, the opening degree of the gate is empirically appropriately adjusted so that Q1: Q4 = 60: 40 according to the fluctuation of the raw water flow rate.
In Example 1 according to the present invention, Q4 was kept at a constant flow rate by pumping water, and the remaining raw water was used as Q1 and flowed into the first tank. Q4 was set to 40% of the average daily inflow of water.

図5は、上記各運転方法の運転結果を示す図である。また下記する表1は、処理水N濃度の日間平均値および窒素除去率を示している。図5,表1に示すように、比較法に比べ、従来法1および従来法2では処理水N濃度が低く、ステップ流入式多段硝化脱窒法の効果が確認できた結果であった。さらに、本願発明である実施例1では従来法1および従来法2よりも処理水N濃度が低く、窒素除去率が高い結果であった。この結果から、最終ステップ工程の嫌気槽への原水の流入量を一定とすることで、脱窒処理に必要な炭素源不足は避けることが可能であり、また、5槽目および6槽目の有機物負荷および窒素負荷を適正範囲に保つことが可能であるため、安定したステップ流入式多段硝化脱窒処理が達成できる本願発明の有効性が確認できた。 FIG. 5 is a diagram showing the operation results of each of the above operation methods. Table 1 below shows the daily average value of the treated water N concentration and the nitrogen removal rate. As shown in FIGS. 5 and 1, the N concentration of the treated water was lower in the conventional method 1 and the conventional method 2 than in the comparative method, and the effect of the step inflow type multi-stage nitrification denitrification method was confirmed. Further, in Example 1 of the present invention, the concentration of treated water N was lower and the nitrogen removal rate was higher than that of the conventional method 1 and the conventional method 2. From this result, it is possible to avoid the shortage of carbon source required for denitrification treatment by keeping the amount of raw water flowing into the anaerobic tank in the final step step constant, and it is possible to avoid the shortage of carbon sources in the 5th and 6th tanks. Since it is possible to keep the organic matter load and the nitrogen load within an appropriate range, the effectiveness of the present invention that can achieve a stable step inflow type multi-stage nitrification denitrification treatment has been confirmed.

Figure 0007008007000001
Figure 0007008007000001

<実施例2>
原水(流入水)の流入を1槽目、3槽目、5槽目に分割注入する3段ステップ処理の運転条件において、ステップ流入ゲートの開度を固定した従来法3と、5槽目の原水流入量をポンプによる送水により一定量とした本願発明による方法(実施例2-1,2-2)との比較検討を行った。1槽目の原水流入量をQ1、3槽目の原水流入量をQ3、5槽目の原水流入量をQ5とも記す。1槽目、3槽目、5槽目を嫌気槽、2槽目、4槽目、6槽目を好気槽とした。各好気槽のDO値を1mg/Lに設定し、空気量の制御を行った。
<Example 2>
Under the operating conditions of the three-stage step processing in which the inflow of raw water (inflow water) is dividedly injected into the first, third, and fifth tanks, the conventional method 3 and the fifth tank in which the opening of the step inflow gate is fixed are fixed. A comparative study was carried out with the method according to the present invention (Examples 2-1 and 2-2) in which the inflow of raw water was set to a constant amount by pumping water. The inflow amount of raw water in the first tank is also referred to as Q1, the inflow amount of raw water in the third tank is referred to as Q3, and the inflow amount of raw water in the fifth tank is also referred to as Q5. The first, third, and fifth tanks were anaerobic tanks, and the second, fourth, and sixth tanks were aerobic tanks. The DO value of each aerobic tank was set to 1 mg / L, and the amount of air was controlled.

従来法3では、Q1:Q3:Q5=1:1:1(均等流入)となるようにゲートの開度を経験的に調整し、原水量の変動によらず、ゲート開度を固定した。従来法3では目視により、明らかにQ3およびQ5が少なくなっている時間帯があることが確認でき、原水流量変動により、ステップ流入比率は時間的に変動していた。
本願発明による実施例2-1では、ポンプ送水によりQ5を一定流量として日間流入水量平均値の33%に保ち、残りの原水がQ1:Q3=1:1として1槽目および3槽目に流入する運転方法を用いた。Q1とQ3の流入量の調整はゲート開度の調整により行い、原水量の変動によらず、ゲート開度を固定した。実施例2-1では目視により、明らかにQ3が少なくなっている時間帯があることが確認でき、原水流量変動によりQ1とQ3の流入比率は時間的に変動していた。
本願発明による実施例2-2では、ポンプ送水によりQ3およびQ5を一定流量としてそれぞれ日間流入水量平均値の33%に保ち、残りの原水をQ1として1槽目に流入する運転方法を用いた。
In the conventional method 3, the gate opening is empirically adjusted so that Q1: Q3: Q5 = 1: 1: 1 (equal inflow), and the gate opening is fixed regardless of the fluctuation of the raw water amount. In the conventional method 3, it was visually confirmed that there was a time zone in which Q3 and Q5 were clearly reduced, and the step inflow ratio fluctuated with time due to the fluctuation of the raw water flow rate.
In Example 2-1 according to the present invention, Q5 is kept at a constant flow rate of 33% of the average daily inflow rate by pumping water, and the remaining raw water flows into the first and third tanks with Q1: Q3 = 1: 1. The driving method used was used. The inflow amount of Q1 and Q3 was adjusted by adjusting the gate opening degree, and the gate opening degree was fixed regardless of the fluctuation of the raw water amount. In Example 2-1 it was visually confirmed that there was a time zone in which Q3 was clearly low, and the inflow ratio of Q1 and Q3 fluctuated with time due to the fluctuation of the raw water flow rate.
In Example 2-2 according to the present invention, an operation method was used in which Q3 and Q5 were kept at a constant flow rate of 33% of the average daily inflow rate by pumping water, and the remaining raw water was used as Q1 and flowed into the first tank.

図6は、上記各運転方法の運転結果を示す図である。また下記する表2は、処理水N濃度の日間平均値および窒素除去率を示している。図6,表2に示すように、本願発明である実施例2-1および実施例2-2では、従来法3よりも処理水N濃度が低く、窒素除去率が高かった。この結果から、3段ステップ処理方式においても、最終ステップ工程の流入量を一定とすることで、脱窒処理に必要な炭素源不足は避けることが可能であり、また、6槽目の有機物負荷および窒素負荷を適正範囲に保つことが可能であるため、安定したステップ流入式多段硝化脱窒処理が達成できる本願発明の有効性が確認できた。 FIG. 6 is a diagram showing the operation results of each of the above operation methods. Table 2 below shows the daily average value of the treated water N concentration and the nitrogen removal rate. As shown in FIGS. 6 and 2, in Examples 2-1 and 2-2 of the present invention, the treated water N concentration was lower and the nitrogen removal rate was higher than that of the conventional method 3. From this result, it is possible to avoid the shortage of carbon source required for denitrification treatment by keeping the inflow amount in the final step step constant even in the three-step step treatment method, and the organic matter load in the sixth tank. And since it is possible to keep the nitrogen load within an appropriate range, the effectiveness of the present invention that can achieve stable step inflow type multi-stage nitrification denitrification treatment was confirmed.

Figure 0007008007000002
Figure 0007008007000002

また、本願発明である実施例2-1と実施例2-2では、処理水N濃度および窒素除去率はほぼ同じ値であった。本願発明を3段ステップ処理方式に適用する場合では、Q5の流量を一定に保った状態であれば、Q3を一定流量としてもよいが、Q3の流量やQ1とQ3のステップ比率が変動しても処理水N濃度に与える影響は小さい。この結果は、安定した窒素除去を達成するために最終ステップ流入工程の流入量を一定流量とすることが極めて有効であることを示している。 Further, in Example 2-1 and Example 2-2 of the present invention, the treated water N concentration and the nitrogen removal rate were almost the same values. When the present invention is applied to the three-stage step processing method, Q3 may be set to a constant flow rate as long as the flow rate of Q5 is kept constant, but the flow rate of Q3 and the step ratio of Q1 and Q3 fluctuate. However, the effect on the N concentration of treated water is small. This result shows that it is extremely effective to set the inflow rate of the final step inflow step to a constant flow rate in order to achieve stable nitrogen removal.

<実施例3>
原水流入を1槽目と4槽目に分割注入する2段ステップ処理の運転条件において、5槽目の空気量制御をDO計によるDO制御とした場合のDO設定値による処理水N濃度低減効果について検討した。
<Example 3>
Under the operating conditions of the two-stage step processing in which the inflow of raw water is divided into the first and fourth tanks, the effect of reducing the N concentration of treated water by the DO set value when the air volume control in the fifth tank is DO control by the DO meter. Was examined.

4槽目の原水流入量をポンプによる送水による一定量Q2とし、残りの原水をQ1として1槽目に流入する。1槽目と4槽目を嫌気槽、2槽目、3槽目、5槽目、6槽目を好気槽とした。2槽目、3槽目、6槽目のDO値を1mg/L、5槽目のDO値を0.3~1.5mg/Lに設定し、空気量の制御を行った。Q2は日間流入水量平均値の50%に設定した。 The inflow amount of raw water in the 4th tank is set to a constant amount Q2 by pumping water, and the remaining raw water is set to Q1 and flows into the 1st tank. The first and fourth tanks were anaerobic tanks, the second tank, the third tank, the fifth tank, and the sixth tank were aerobic tanks. The DO value of the 2nd, 3rd, and 6th tanks was set to 1 mg / L, and the DO value of the 5th tank was set to 0.3 to 1.5 mg / L, and the amount of air was controlled. Q2 was set to 50% of the average daily inflow of water.

図7は、上記各運転方法の運転結果を示す図である。図7の処理水N濃度は日間平均値である。図7から、5槽目のDO値を1mg/L以下にすることで、処理水N濃度が低減することが確認できた。これは5槽目のDO値を1mg/L以下に低減した状態で硝化を進行させる際の硝化脱窒同時進行による窒素濃度低減効果によるものである。本願発明の最終ステップ工程の流入量を一定とすることで、脱窒処理に必要な炭素源不足は避けることが可能であり、また、5槽目および6槽目の有機物負荷および窒素負荷を適正範囲に保つことが可能であるため、5槽目でDO値を1mg/L以下に低減した状態で硝化を進行させる際の硝化脱窒同時進行を実現することが可能となり、更なる処理水窒素濃度低減が達成可能になった。 FIG. 7 is a diagram showing the operation results of each of the above operation methods. The N concentration of the treated water in FIG. 7 is a daily average value. From FIG. 7, it was confirmed that the N concentration of the treated water was reduced by setting the DO value in the fifth tank to 1 mg / L or less. This is due to the nitrogen concentration reduction effect due to the simultaneous progress of nitrification and denitrification when nitrification is promoted in a state where the DO value in the fifth tank is reduced to 1 mg / L or less. By keeping the inflow amount in the final step of the present invention constant, it is possible to avoid a shortage of carbon sources required for denitrification treatment, and the organic matter load and nitrogen load in the 5th and 6th tanks are appropriate. Since it is possible to keep the range, it is possible to realize simultaneous progress of nitrification and denitrification when proceeding with nitrification with the DO value reduced to 1 mg / L or less in the 5th tank, and further treated water nitrogen. Concentration reduction has become achievable.

<実施例4>
原水流入を1槽目と4槽目に分割注入する2段ステップ処理の運転条件において、5槽目の空気量制御をアンモニアセンサーによるNH4-N濃度制御とした場合のNH4-N設定値による処理水N濃度低減効果について検討した。なお、アンモニアセンサーは5槽目の末端に設置した。
<Example 4>
NH 4 -N set value when the air volume control in the 5th tank is NH 4 -N concentration control by the ammonia sensor under the operating conditions of the 2-step step processing in which the inflow of raw water is divided into the 1st tank and the 4th tank. The effect of reducing the N concentration of treated water was examined. The ammonia sensor was installed at the end of the 5th tank.

4槽目の原水流入量をポンプによる送水による一定量Q2とし、残りの原水をQ1として1槽目に流入する。1槽目と4槽目を嫌気槽、2槽目、3槽目、5槽目、6槽目を好気槽とした。2槽目、3槽目、6槽目のDO値を1mg/L、5槽目のNH4-Nを1~4mg/Lに設定し、空気量の制御を行った。Q2は日間流入水量平均値の50%に設定した。 The inflow amount of raw water in the 4th tank is set to a constant amount Q2 by pumping water, and the remaining raw water is set to Q1 and flows into the 1st tank. The first and fourth tanks were anaerobic tanks, the second tank, the third tank, the fifth tank, and the sixth tank were aerobic tanks. The DO value of the 2nd, 3rd, and 6th tanks was set to 1 mg / L, and the NH 4 -N of the 5th tank was set to 1 to 4 mg / L, and the amount of air was controlled. Q2 was set to 50% of the average daily inflow of water.

図8は、上記各運転方法の運転結果を示す図である。図8の処理水N濃度は日間平均値である。図8から、5槽目の空気量制御をアンモニアセンサーによるNH4-N濃度制御とすることで、5槽目のNH4-N設定値が2~4mg/Lのときに処理水窒素濃度は6mg/L以下となり、実施例3のDO計による空気量制御の場合に比べ処理水窒素濃度の低減が可能であった。また、処理水窒素濃度が最少となる5槽目のNH4-N設定値3mg/Lが存在した。 FIG. 8 is a diagram showing the operation results of each of the above operation methods. The treated water N concentration in FIG. 8 is a daily average value. From FIG. 8, by controlling the air volume in the 5th tank with the NH 4 -N concentration control by the ammonia sensor, the treated water nitrogen concentration is 2 to 4 mg / L when the NH 4 -N concentration setting in the 5th tank is 2 to 4 mg / L. The concentration was 6 mg / L or less, and it was possible to reduce the nitrogen concentration of the treated water as compared with the case of controlling the air volume by the DO meter of Example 3. In addition, there was an NH 4 -N set value of 3 mg / L in the fifth tank, which minimized the nitrogen concentration in the treated water.

実施例4では実施例3と同様に、5槽目のDO値を1mg/L以下に低減した状態で硝化を進行させる際の硝化脱窒同時進行による窒素濃度低減効果により、処理水窒素濃度の低減が可能であった。5槽目のNH4-N設定値が2~4mg/Lのときの5槽目DO測定値は0.05~0.2mg/Lであり、この様な低DOではDOセンサー測定誤差の影響が大きくなるためDOセンサーによる正確な空気量制御が困難になることから、5槽目の低DO範囲での空気量制御ではDOセンサーの代わりにアンモニアセンサーの適用が有効であった。本願発明の低DO範囲での空気量制御にアンモニアセンサーを使う場合、安定した空気量制御が可能となる他に、アンモニア濃度を連続的に監視できるため、処理水へのNH4-N残留を避ける上でも有効な手段となる。 In Example 4, as in Example 3, the nitrogen concentration of the treated water is increased due to the effect of reducing the nitrogen concentration by the simultaneous progress of nitrification and denitrification when the nitrification is promoted in the state where the DO value in the fifth tank is reduced to 1 mg / L or less. It was possible to reduce it. When the NH 4 -N setting value of the 5th tank is 2 to 4 mg / L, the DO measurement value of the 5th tank is 0.05 to 0.2 mg / L, and at such a low DO, the influence of the DO sensor measurement error Therefore, it is difficult to accurately control the air volume by the DO sensor. Therefore, it was effective to apply the ammonia sensor instead of the DO sensor in the air volume control in the low DO range of the fifth tank. When the ammonia sensor is used to control the air volume in the low DO range of the present invention, stable air volume control is possible and the ammonia concentration can be continuously monitored, so that NH 4 -N residue in the treated water remains. It is also an effective means of avoiding it.

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの構成であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。例えば、直列に連結するユニットの数は3以上の複数ユニットでもよい。また、上記記載及び各図で示した実施形態は、その目的及び構成等に矛盾がない限り、互いの記載内容を組み合わせることが可能である。また、上記記載及び各図の記載内容は、その一部であっても、それぞれ独立した実施形態になり得るものであり、本発明の実施形態は上記記載及び各図を組み合わせた一つの実施形態に限定されるものではない。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications may be made within the scope of claims and the technical ideas described in the specification and drawings. It is possible. It should be noted that any configuration not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the action and effect of the present invention are exhibited. For example, the number of units connected in series may be a plurality of units of 3 or more. In addition, the above description and the embodiments shown in each figure can be combined with each other as long as there is no contradiction in the purpose, configuration, and the like. Further, the above description and the description contents of each figure can be independent embodiments even if they are a part thereof, and the embodiment of the present invention is one embodiment in which the above description and each figure are combined. Not limited to.

1-1,1-2,1-3,1-4 ステップ流入式多段硝化脱窒システム
N-1,N-2,N-3 ユニット
A-1,A-2,A-3 嫌気槽
O-1,O-2,O-3 好気槽
O(1) 上流側の分割好気槽
O(2) 下流側の分割好気槽
R 一定流量供給手段
S 沈殿池
1-1, 1-2, 1-3, 1-4 Step inflow type multi-stage nitrification denitrification system N-1, N-2, N-3 Unit A-1, A-2, A-3 Anaerobic tank O- 1, O-2, O-3 Aerobic tank O (1) Upstream split aerobic tank O (2) Downstream split aerobic tank R Constant flow supply means S Settling basin

Claims (6)

嫌気槽と好気槽とを1ユニットとして、当該ユニットを複数直列に連結し、各ユニットの嫌気槽に、水量が変動する流入水を分配注入するステップ流入式多段硝化脱窒法において、
最終のユニットの嫌気槽へ分配注入される流入水の流入量を予め定めた一定流量に固定し、一方残りの変動する流入水は、前記最終のユニットより前段側の残りのユニットの嫌気槽へ前記変動に応じて分配注入されることを特徴とするステップ流入式多段硝化脱窒法。
In the step inflow type multi-stage nitrification denitrification method, in which an anaerobic tank and an aerobic tank are regarded as one unit, a plurality of the units are connected in series, and inflow water having a variable amount of water is distributed and injected into the anaerobic tank of each unit.
The inflow amount of the inflow water distributed and injected into the anaerobic tank of the final unit is fixed at a predetermined constant flow rate , while the remaining fluctuating inflow water is sent to the anaerobic tank of the remaining units on the front stage side of the final unit. A step inflow type multi-stage nitrification denitrification method characterized by being dispensed and injected according to the fluctuation .
前記最終のユニットの嫌気槽への流入水の流入量は、日間流入量の20~60%であることを特徴とする請求項1に記載のステップ流入式多段硝化脱窒法。 The step inflow type multi-stage nitrification denitrification method according to claim 1, wherein the inflow amount of the inflow water into the anaerobic tank of the final unit is 20 to 60% of the daily inflow amount. 嫌気槽と好気槽とを1ユニットとして、当該ユニットを複数直列に連結し、各ユニットの嫌気槽に流入水を分配注入するステップ流入式多段硝化脱窒法において、
最終のユニットの嫌気槽へ分配注入される流入水の流入量を一定流量とし、
最終のユニットの好気槽を2槽に分割し、分割した2槽の内の上流側の好気槽のDO値が所定値以下になるように制御することによって、当該上流側の好気槽において硝化反応と脱窒素反応を同時に進行させることを特徴とするステップ流入式多段硝化脱窒法。
In the step inflow type multi-stage nitrification denitrification method in which an anaerobic tank and an aerobic tank are regarded as one unit, a plurality of the units are connected in series, and the inflow water is distributed and injected into the anaerobic tank of each unit.
The inflow rate of the inflow water distributed and injected into the anaerobic tank of the final unit is set to a constant flow rate.
By dividing the aerobic tank of the final unit into two tanks and controlling the DO value of the aerobic tank on the upstream side of the divided two tanks to be equal to or less than a predetermined value, the aerobic tank on the upstream side is controlled. A step -inflow multi-stage nitrification denitrification method characterized in that the nitrification reaction and the denitrification reaction proceed simultaneously.
前記上流側の好気槽のDO値が所定値以下になるように、当該上流側の好気槽のNH4-N設定値を設定し、その設定値となるように、当該上流側の好気槽に供給する空気量を制御することを特徴とする請求項3に記載のステップ流入式多段硝化脱窒法。 The NH 4 -N setting value of the aerobic tank on the upstream side is set so that the DO value of the aerobic tank on the upstream side is equal to or less than a predetermined value, and the favorable value of the upstream side is set so as to be the set value. The step inflow type multi-stage nitrification denitrification method according to claim 3, wherein the amount of air supplied to the air tank is controlled. 前記上流側の好気槽に供給する空気量の制御を、アンモニアセンサーを用いて行うことを特徴とする請求項4に記載のステップ流入式多段硝化脱窒法。 The step inflow type multi-stage nitrification denitrification method according to claim 4, wherein the amount of air supplied to the aerobic tank on the upstream side is controlled by using an ammonia sensor. 嫌気槽と好気槽とを1ユニットとして、当該ユニットを複数直列に連結し、各ユニットの嫌気槽に、水量が変動する流入水を分配注入するステップ流入式多段硝化脱窒システムにおいて、
最終のユニットの嫌気槽へ分配注入される流入水の流入量を予め定めた一定流量に固定する一定流量供給手段を設け、一方残りの変動する流入水を、前記最終のユニットより前段側の残りのユニットの嫌気槽へ前記変動に応じて分配注入することを特徴とするステップ流入式多段硝化脱窒システム。
In a step inflow type multi-stage nitrification denitrification system in which an anaerobic tank and an aerobic tank are regarded as one unit, a plurality of the units are connected in series, and inflow water having a variable amount of water is distributed and injected into the anaerobic tank of each unit.
A constant flow rate supply means is provided to fix the inflow amount of the inflow water distributed and injected into the anaerobic tank of the final unit to a predetermined constant flow rate , while the remaining fluctuating inflow water is the rest on the front stage side of the final unit. A step-inflow multi-stage nitrification denitrification system characterized by dispensing and injecting into the anaerobic tank of the unit according to the fluctuation .
JP2018186755A 2018-10-01 2018-10-01 Step-inflow multi-stage nitrification denitrification method and system Active JP7008007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018186755A JP7008007B2 (en) 2018-10-01 2018-10-01 Step-inflow multi-stage nitrification denitrification method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018186755A JP7008007B2 (en) 2018-10-01 2018-10-01 Step-inflow multi-stage nitrification denitrification method and system

Publications (2)

Publication Number Publication Date
JP2020054947A JP2020054947A (en) 2020-04-09
JP7008007B2 true JP7008007B2 (en) 2022-01-25

Family

ID=70105994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018186755A Active JP7008007B2 (en) 2018-10-01 2018-10-01 Step-inflow multi-stage nitrification denitrification method and system

Country Status (1)

Country Link
JP (1) JP7008007B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300093A (en) 2002-04-04 2003-10-21 Hitachi Ltd Operation support system and control system for water treatment process
WO2009017306A2 (en) 2007-06-26 2009-02-05 Gil-Won Youn Advanced water reclamation method and system thereof
JP2017192934A (en) 2016-04-19 2017-10-26 水ing株式会社 Waste water treatment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242198A (en) * 1988-03-25 1989-09-27 Toshiba Corp Controlling device for stepped nitration denitrification process
JPH11244891A (en) * 1998-02-27 1999-09-14 Takuma Co Ltd Method for denitrification treating waste water and treating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300093A (en) 2002-04-04 2003-10-21 Hitachi Ltd Operation support system and control system for water treatment process
WO2009017306A2 (en) 2007-06-26 2009-02-05 Gil-Won Youn Advanced water reclamation method and system thereof
JP2017192934A (en) 2016-04-19 2017-10-26 水ing株式会社 Waste water treatment method

Also Published As

Publication number Publication date
JP2020054947A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
RU2671729C2 (en) Method and apparatus for nitrogen removal from wastewater
CA2821661C (en) Process for treating water by nitritation-denitration comprising at least one aerated step and one step for controlling the oxygen input during the aerated step
JP5685504B2 (en) Water treatment system and aeration air volume control method thereof
Chachuat et al. Dynamic optimisation of small size wastewater treatment plants including nitrification and denitrification processes
US20190092665A1 (en) Flow equalization reactor having multiple wastewater treatment zones
JP2020006341A (en) Sewage treatment method and apparatus
JP2016182551A (en) Treatment method for organic waste water and treatment system therefor
JP7008007B2 (en) Step-inflow multi-stage nitrification denitrification method and system
JPH1043788A (en) Control method for biological water treating device
JP2003053384A (en) Method for removing nitrogen and phosphorus from waste water and facility therefor
JP2015104712A (en) Sewage treatment system and method
KR20090011513A (en) Method for controling wastewater treatment process
JP6391325B2 (en) N2O suppression type water treatment method and treatment apparatus
US10351457B2 (en) Dual return activated sludge process in a flow-equalized wastewater treatment system
EP3406573A1 (en) Dual return activated sludge process in a flow-equalized wastewater treatment system
EP3266751A2 (en) A flow equalization reactor having multiple wastewater treatment zones
Song et al. Step-feeding SBR for nitrogen removal from expressway service area sewage
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JP2015016410A (en) Wastewater treatment method and apparatus, and control method, control device, and program
US20140217018A1 (en) Biological Nitrogen Removal Aeration Control
JPH1015590A (en) Removal of nitrogen of waste water and apparatus therefor
JP7158912B2 (en) Regulation compartment control device, regulation compartment control method, computer program and organic wastewater treatment system
Pelaz et al. Sequencing batch reactor process for the removal of nitrogen from anaerobically treated domestic wastewater
JP2021065867A (en) Sewage treatment system and sewage treatment method
CN106277316A (en) A kind of sewage treatment process utilizing sedimentation tank to maintain high-concentration activated sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220107

R150 Certificate of patent or registration of utility model

Ref document number: 7008007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150