JP2000024646A - Waste water discharging section - Google Patents

Waste water discharging section

Info

Publication number
JP2000024646A
JP2000024646A JP10197059A JP19705998A JP2000024646A JP 2000024646 A JP2000024646 A JP 2000024646A JP 10197059 A JP10197059 A JP 10197059A JP 19705998 A JP19705998 A JP 19705998A JP 2000024646 A JP2000024646 A JP 2000024646A
Authority
JP
Japan
Prior art keywords
tank
membrane
sludge
water
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10197059A
Other languages
Japanese (ja)
Inventor
Noriyoshi Nagase
徳美 永瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10197059A priority Critical patent/JP2000024646A/en
Publication of JP2000024646A publication Critical patent/JP2000024646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waste water discharging section capable of separating and extracting purified water at high ratio from waste water containing sludge by membrane filtration and efficiently utilizing energy by ice heat storage. SOLUTION: The waste water discharging section is provided with a purifying treatment tank for purifying the waste water, a membrane filtration tank 1, 2 receiving the waste water sent from the purifying tank and provided with a filtration membrane 13 for separating the waste water into sludge and the purified water by the suction force of a pump and a heat combination supply device 20 for concentrating and separating the contained sludge by the difference of the freezing speed by giving cold to the waste water in the membrane filtration tank 12 and for defrosting the frozen waste water and the sludge is separated and discharged by the defrosting operation of the heat combination supply device 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マンション等から
排出される厨芥排水や雑排水及び汚水を処理する排水浄
化装置の膜分離槽内の水を蓄熱媒体とし、電源廃熱や工
業廃熱及び夜間電力を利用して氷蓄熱して、そのエネル
ギーを利用するシステムであって、特に厨芥物等の固形
物の膜濾過分離と蓄熱貯蔵に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater purification system for treating kitchen wastewater, gray water and sewage discharged from condominiums and the like, and uses the water in the membrane separation tank as a heat storage medium to reduce power supply waste heat and industrial waste heat. The present invention relates to a system for storing ice heat using nighttime electric power and utilizing the energy, and particularly relates to membrane filtration separation of solid matter such as kitchen waste and heat storage.

【0002】[0002]

【従来の技術】家電・コンピュータ・空調機器等の普及
により電力需要は年々急増し、特に夏期のピーク負荷は
増大傾向にある一方で、環境保全や発電所立地の困難等
の問題も多く電力設備を増強することも困難な状況にあ
る。このような中で、近年、余剰の安価な夜間電力等を
利用して夜の間に冷熱を貯蔵し昼間のピーク電力を平準
化する方法として、氷蓄熱を利用する方法が新築商業ビ
ルを中心に普及拡大してきている。
2. Description of the Related Art With the spread of home appliances, computers, air conditioners, etc., the demand for electric power has been increasing rapidly year by year, and the peak load especially in summer has been increasing. However, there are many problems such as environmental conservation and difficulty in locating a power plant. It is also difficult to increase the power. Under these circumstances, in recent years, as a method of storing excess heat during the night by using surplus inexpensive nighttime power and leveling the peak power in the daytime, the method using ice heat storage has been mainly used for newly built commercial buildings. It has been spreading.

【0003】従来の氷蓄熱方法は、断熱密閉構造の氷蓄
熱槽内に充填された水道水等の冷媒又は蓄熱材に外部熱
源を介して冷熱が供給され、氷温下まで冷却されて凍結
処理されることとで冷熱エネルギーを氷の状態で貯蔵
し、必要時には断熱貯蔵された氷を融解して冷熱を回収
利用するというのがその基本である。
[0003] In the conventional ice heat storage method, cold heat is supplied via an external heat source to a coolant or heat storage material such as tap water filled in an ice heat storage tank having an adiabatic closed structure, and cooled to a temperature below ice temperature to perform a freezing process. The basic principle is that the cold energy is stored in the form of ice, and the adiabatic stored ice is melted to recover and use the cold when necessary.

【0004】他方、水の使用量も年々増大しており限ら
れた水資源を汚れたまま垂れ流しにしないで、再利用す
るかもしくは環境に悪影響を与えないように浄化して放
水し、トータル的に水資源を保全していくことも重要な
取組みであるとの認識も高まっている。このような水資
源の保全に関しても、近年では、工場や企業単位、或い
は、地域単位で排水処理を行い浄化処理水を中水として
水洗トイレ用水や散水用水に再利用するようになり、新
築マンションや新興団地等の住居用地域でも同様の水再
利用の取組みが始まっている。
On the other hand, the amount of water used is increasing year by year, and limited water resources are not polluted and drained, but are reused or purified and discharged so as not to have an adverse effect on the environment. There is increasing recognition that conserving water resources is also an important initiative. In recent years, regarding the conservation of water resources, wastewater has been treated in factories, companies, or regions, and purified water has been reused as flush water for flush toilets and sprinkling water. Similar water reuse initiatives have also begun in residential areas such as and residential complexes.

【0005】また、レストランの厨房や家庭の台所で発
生する生ゴミ等の厨芥物の処理も、可燃ゴミの3割を占
め水分が多いために高温燃焼しにくく、家庭で廃棄処理
する上で最も嫌がられるものの1つである。
[0005] In addition, kitchen waste such as garbage generated in restaurant kitchens and home kitchens is difficult to burn at high temperature because it accounts for 30% of combustible garbage and has a large amount of water. It is one of the hated things.

【0006】厨芥物の処理においても前述の水処理に取
り込み、厨芥物を水処理浄化するシステムや汚水と共に
一括浄化するシステムが提案されてきており、厨房や台
所から直接的に処分されることもあって、ゴミ処分の手
間も省けるシステムとして注目されてきている。
[0006] In the treatment of kitchen garbage, a system for purifying kitchen garbage with water and a system for purifying the kitchen garbage together with sewage have been proposed. Therefore, it has been attracting attention as a system that can save the trouble of garbage disposal.

【0007】以上のように、氷蓄熱によるエネルギーの
平準化と厨芥物を含む排水処理は、環境保全及び住環境
改善に効果が大きく、また、両システムは共に液体を利
用または処理するという点で共通している。この共通点
に着目して、蓄熱機能と水処理機能をドッキングさせた
システムも既に提案され、たとえばビルディング等から
出る排水を直接利用して製氷し氷蓄熱する蓄熱方法が、
特開平6−18069号や特開平10−73290公報
に提案されている。
[0007] As described above, the leveling of energy by ice storage and the treatment of wastewater containing kitchen waste are highly effective for environmental preservation and improvement of the living environment, and both systems use or treat liquid. Have in common. Focusing on this common point, a system in which the heat storage function and the water treatment function are docked has already been proposed.For example, a heat storage method for making ice and storing ice by directly using wastewater from a building or the like has been proposed.
It has been proposed in JP-A-6-18069 and JP-A-10-73290.

【0008】特開平6−18069号公報に記載されて
いる氷蓄熱方法は、氷蓄熱槽内に導入された処理下水の
中に浸漬した伝熱管に冷媒供給装置から冷媒を供給循環
させて伝熱管周りに部分的に製氷し、後に残る不凍結残
水を槽外に排出する構成としたものであり、図4にその
概略を示す。
An ice heat storage method described in Japanese Patent Application Laid-Open No. 6-18069 discloses a method of supplying and circulating a refrigerant from a refrigerant supply device to a heat transfer tube immersed in treated sewage introduced into an ice heat storage tank. It is configured to partially make ice around and discharge remaining unfrozen residual water to the outside of the tank. FIG.

【0009】図4において、被処理下水は下水受槽10
1に貯留され、下水送りポンプ102により取り出して
スクリーン装置103に送られ、粗ごみなどが除去され
る。スクリーン装置103で除去された粗ごみ類は排水
槽104に排出される。そして、粗ごみ類が除去された
被処理下水は油水分離装置105に送られて油分が分離
され、油分は排水槽104に排出され、粗ごみ類および
油分を除いた被処理下水は処理下水受槽106に貯留さ
れる。
In FIG. 4, the sewage to be treated is a sewage receiving tank 10.
1 and is taken out by the sewage feed pump 102 and sent to the screen device 103 to remove coarse dust and the like. The refuse removed by the screen device 103 is discharged to a drain tank 104. Then, the sewage to be treated from which the refuse is removed is sent to an oil-water separator 105 to separate the oil component, the oil component is discharged to a drainage tank 104, and the sewage to be treated excluding the refuse and the oil component is supplied to a treatment sewage receiving tank. Stored in 106.

【0010】氷蓄熱槽108内では、伝熱管に冷媒供給
装置から冷媒を供給循環させて伝熱管周りに製氷し、そ
の後に残る不凍結残水は残水排出ポンプ109により槽
外に排出される。氷蓄熱槽108内から不凍結残水を排
出する段階で、処理下水受槽106から一部の処理下水
を残水冷熱回収用熱交換器110に通して氷蓄熱槽10
8から排出される不凍結残水と冷熱交換を行い、不凍結
残水の保有する冷熱を処理下水に回収して冷処理下水と
して冷処理下水受槽111に貯留する。
In the ice heat storage tank 108, a refrigerant is supplied from the refrigerant supply device to the heat transfer tube and circulated to make ice around the heat transfer tube, and the remaining non-freezing residual water remaining thereafter is discharged out of the tank by the residual water discharge pump 109. . At the stage of discharging the unfrozen residual water from inside the ice heat storage tank 108, a part of the treated sewage is passed from the treated sewage receiving tank 106 through the heat exchanger 110 for recovering residual water cooling heat, and the ice heat storage tank 10
The non-freezing residual water discharged from 8 is subjected to cold heat exchange, and the cold stored in the non-freezing residual water is collected in the treated sewage and stored in the cold treated sewage receiving tank 111 as the cold treated sewage.

【0011】処理下水受槽106からの残りの処理下水
は中水冷熱回収用熱交換器118に通して冷処理下水受
槽111に貯留し、冷処理下水送りポンプ112によっ
て氷蓄熱槽108に送り込まれる。冷処理下水受槽11
1からの冷処理下水が氷蓄熱槽108から不凍結残水を
排水したあと、冷中水受槽116から冷中水循環ポンプ
121によって冷中水を氷蓄熱槽108に注入し、この
中水を負荷循環水として冷熱供給用熱交換器114およ
びポンプ113を含む負荷循環水ラインに循環させて、
伝熱管周りの氷の保有する冷熱を冷熱供給用熱交換器1
14を通して負荷115に供給する。
[0011] The remaining treated sewage from the treated sewage receiving tank 106 is stored in the chilled sewage receiving tank 111 through the middle water chilled heat recovery heat exchanger 118 and sent to the ice heat storage tank 108 by the chilled sewage feed pump 112. Cold treatment sewage receiving tank 11
After the cold treated sewage from 1 drains the unfrozen residual water from the ice heat storage tank 108, the cold water is injected into the ice heat storage tank 108 from the cold water receiving tank 116 by the cold water circulation pump 121, and the cold water is loaded. Circulating water as a circulating water through a load circulating water line including a cold heat supply heat exchanger 114 and a pump 113,
A heat exchanger 1 for supplying cold energy to the cold stored by the ice around the heat transfer tubes.
14 to a load 115.

【0012】冷熱供給用熱交換器114において冷熱の
回収が完了した氷蓄熱槽108中の氷解水を含む中水
は、冷中水として冷中水受槽116に排出し貯留され
る。冷中水受槽116から冷中水を冷中水送りポンプ1
17により取り出し、中水冷熱回収用熱交換器118に
通して処理下水と冷熱交換を行い、冷中水の保有する冷
熱を処理下水に回収する。この冷熱が回収された冷中水
は中水として中水槽119に貯留され、中水供給ポンプ
120により適宜に取り出されて便所用水などに使用さ
れる。
The cold water containing the thawed water in the ice heat storage tank 108 from which the cold heat has been completely recovered in the cold heat supply heat exchanger 114 is discharged as cold cold water into the cold cold water receiving tank 116 and stored. Cold and middle water feed pump 1 from the cold and middle water receiving tank 116
The cold water is taken out by 17 and passed through a heat exchanger 118 for recovering cold water from middle water to exchange heat with the treated sewage, and the cold stored in the cold water is recovered in the treated sewage. The cold water from which the cold energy has been recovered is stored in the middle water tank 119 as middle water, and is appropriately taken out by the middle water supply pump 120 and used as toilet water.

【0013】一方、特開平10−73290号公報に記
載のものは、氷製造部と蓄熱水槽を分離したもので、氷
蓄熱槽では製氷しないで、汚水はまず製氷機にかけられ
て製造した氷のみを分離し蓄熱水槽で氷の蓄積を行い、
氷以外の排水は製氷機から排出する構成としたものであ
る。図5にその概略を示す。
On the other hand, the apparatus disclosed in Japanese Patent Application Laid-Open No. Hei 10-73290 is one in which an ice producing unit and a heat storage water tank are separated from each other, and ice is not made in the ice heat storage tank. And accumulate ice in the heat storage water tank,
Wastewater other than ice is discharged from the ice machine. FIG. 5 shows the outline.

【0014】ビルディング等から出る各種排水は排水槽
201に貯蔵され、製氷機202に送られる。製氷機2
02は監視制御装置203によつて制御された夜間電力
により純粋な氷を製造するもので、この製氷機202で
製造された純氷は、氷蓄熱水槽204に蓄積される。製
氷機202は汚水を分離する機能が備えられたもので、
製氷機202で分離された汚水は、汚水処理装置205
に導入される。また、負荷側空調機206に使用した復
水も復水貯水槽207に導入され、復水も定期的に製氷
機202で純氷にされる。
Various wastewaters from buildings and the like are stored in a drainage tank 201 and sent to an ice maker 202. Ice machine 2
Numeral 02 is for producing pure ice by nighttime electric power controlled by the monitoring control device 203. Pure ice produced by the ice making machine 202 is accumulated in an ice heat storage water tank 204. The ice maker 202 is provided with a function of separating sewage,
The sewage separated by the ice making machine 202 is supplied to a sewage treatment apparatus 205.
Will be introduced. The condensate used for the load side air conditioner 206 is also introduced into the condensate water storage tank 207, and the condensate is also periodically made into pure ice by the ice maker 202.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、上記従
来の蓄熱方法および排水処理装置では、どちらも氷蓄熱
において凍結させるのは排水中の一部の水分だけであ
る。従って、単に一部の水を再利用するのみで、排水浄
化処理の観点からは凍結処理によるメリットを十分に活
かしていない。むしろ従来の排水処理装置では一部の排
水を凍結させるのみなので、排水中の厨芥等を処理する
には熱容量の点から凍結操作は不要で、蓄熱槽の保全を
考慮すると単にフィルターで濾過した方がよいと考えら
れていた。
However, in the above-mentioned conventional heat storage method and waste water treatment apparatus, only a part of the water in the waste water is frozen in the ice heat storage. Therefore, only a part of the water is reused, and the merit of the freezing treatment is not sufficiently utilized from the viewpoint of the wastewater purification treatment. Rather, since conventional wastewater treatment equipment only freezes part of the wastewater, freezing operation is not necessary from the viewpoint of heat capacity to treat kitchen waste etc. in wastewater. Was considered good.

【0016】また、従来の蓄熱方法及び排水処理装置で
は、蓄熱槽とは別に排水処理槽が必要なので、構造が複
雑になるほか、占有面積も広く確保しなければならな
い。
Further, in the conventional heat storage method and waste water treatment apparatus, a waste water treatment tank is required separately from the heat storage tank, so that the structure becomes complicated and a large occupied area must be ensured.

【0017】さらに、特に厨芥物や汚水の排水処理を行
う場合、一定量の沈降固形成分の発生は避けられず、最
終処理としての固形成分を含む処理水の定期的引き抜き
による作業が必要となる。このため、排水処理の運用コ
スト低減及び水の有効利用を進めるには処理水の濃縮が
不可欠である。
Furthermore, in particular, when performing wastewater treatment of kitchen garbage and sewage, generation of a certain amount of settled solid components is inevitable, and as a final treatment, it is necessary to periodically draw out treated water containing solid components. . For this reason, concentration of treated water is indispensable in order to reduce the operating cost of wastewater treatment and promote effective use of water.

【0018】そこで、本発明は、固形成分を含む排水を
膜濾過によって浄化水を高い割合で分離抽出でき、しか
も氷蓄熱によってエネルギーの有効利用が可能な排水処
理装置を提供することを目的とする。
Accordingly, an object of the present invention is to provide a wastewater treatment apparatus capable of separating and extracting purified water at a high ratio from wastewater containing solid components by membrane filtration, and effectively utilizing energy by ice heat storage. .

【0019】[0019]

【課題を解決するための手段】本発明の排水処理装置
は、排水を浄化処理する浄化処理槽と、前記浄化処理槽
から送られた排水を受容し、ポンプの吸引力によって前
記排水を固形成分と浄化水とに分離するための濾過膜が
設けられた膜濾過槽と、前記膜濾過槽内の排水に冷熱を
与えて含有固形成分を凍結速度の違いにより濃縮分離す
るとともにこの凍結した排水を解凍する熱併給装置とを
備え、前記熱併給装置の解凍操作によって固形成分を分
離して排出することを特徴とする。
According to the present invention, there is provided a wastewater treatment apparatus, comprising: a purification tank for purifying wastewater; receiving wastewater sent from the purification tank; And a filtration membrane provided with a filtration membrane for separation into purified water, and the solid waste contained in the membrane filtration tank is concentrated and separated by a difference in freezing rate by giving cold heat to the wastewater in the membrane filtration tank, and the frozen wastewater is separated. A co-heating device for thawing, wherein the solid component is separated and discharged by the thawing operation of the co-heating device.

【0020】本発明においては、濾過膜の内部に膜濾過
用熱交換器を配置しこの濾過膜の内部から凍結解凍処理
を行なう構成としてもよい。
In the present invention, a configuration may be adopted in which a heat exchanger for membrane filtration is disposed inside the filtration membrane, and the freeze-thaw process is performed from inside the filtration membrane.

【0021】また、膜濾過槽内を攪拌する曝気装置が設
ける構成としてもよく、この場合では曝気装置による攪
拌によって再び攪拌されるのを抑制する攪拌防止部材を
備えることができる。
Further, an aeration device for stirring the inside of the membrane filtration tank may be provided. In this case, a stirring prevention member for suppressing re-stirring by the agitation by the aeration device can be provided.

【0022】[0022]

【発明の実施の形態】請求項1に記載の発明は、排水を
浄化処理する浄化処理槽と、前記浄化処理槽から送られ
た排水を受容し、ポンプの吸引力によって前記排水を汚
泥と浄化水とに分離するための濾過膜が設けられた膜濾
過槽と、前記膜濾過槽内の排水に冷熱を与えて含有汚泥
固形成分を凍結速度の違いにより濃縮分離するとともに
この凍結した排水を解凍する熱併給装置とを備え、前記
熱併給装置の解凍操作によって汚泥を分離して排出する
ことを特徴とする排水処理装置であるから、膜濾過槽内
に懸濁している汚泥が膜濾過し易い状態になり濾過膜の
目詰まりが発生しにくくなって、許容できる膜濾過槽内
の汚泥濃度を高くできるので、固形成分の引き抜き作業
等のメンテナンスの頻度を削減できるという作用を有す
る。
DETAILED DESCRIPTION OF THE INVENTION The invention according to claim 1 is a purification treatment tank for purifying waste water, receiving waste water sent from the purification treatment tank, and purifying the waste water with sludge by suction of a pump. A membrane filtration tank provided with a filtration membrane for separating water and water, and the wastewater in the membrane filtration tank is cooled and concentrated to separate sludge solid components contained by a difference in freezing rate, and the frozen wastewater is thawed. The wastewater treatment device is provided with a co-heating device that separates and discharges the sludge by the thawing operation of the co-heating device, so that the sludge suspended in the membrane filtration tank is easily subjected to membrane filtration. As a result, clogging of the filtration membrane is less likely to occur, and an acceptable concentration of sludge in the membrane filtration tank can be increased. Therefore, there is an effect that the frequency of maintenance such as a solid component extraction operation can be reduced.

【0023】請求項2に記載の発明は、前記濾過膜内に
膜濾過用熱交換器が設けられていることを特徴とする請
求項1記載の排水処理装置であるから、凍結解凍処理に
よって濾過膜内部からきれいな氷が成長しつつ外部へ凍
結していくので濾過膜の表面に付着して堆積した汚泥等
を濾過膜表面から除去でき、濾過膜の目詰まりを解消さ
せて濾過性能を回復させることができるという作用を有
する。
According to a second aspect of the present invention, there is provided the wastewater treatment apparatus according to the first aspect, wherein a heat exchanger for membrane filtration is provided in the filtration membrane. Since clean ice grows from the inside of the membrane and freezes outward, sludge and the like adhering to the surface of the filtration membrane can be removed from the filtration membrane surface, eliminating clogging of the filtration membrane and recovering filtration performance. It has the effect of being able to.

【0024】請求項3に記載の発明は、膜濾過槽内を攪
拌する曝気装置が設けられるとともに、前記膜濾過槽内
に沈降した汚泥が前記曝気装置の攪拌によって再び攪拌
されるのを抑制する攪拌防止部材が設けられたことを特
徴とする請求項1または2記載の排水処理装置であるか
ら、曝気装置の攪拌によって濾過膜表面への汚泥の付着
堆積を予防できるので濾過膜の濾過性能を維持できると
共に、凍結解凍処理で濃縮沈降した汚泥が曝気装置の攪
拌によって上方へ再拡散することがないようにしてお
り、許容できる膜濾過槽内の汚泥濃度をさらに高くでき
るので、汚泥引き抜き作業等のメンテナンスの頻度を削
減できるという作用を有する。
According to a third aspect of the present invention, an aeration device for stirring the inside of the membrane filtration tank is provided, and the sludge settled in the membrane filtration tank is prevented from being stirred again by the agitation of the aeration device. The wastewater treatment device according to claim 1 or 2, wherein a stirring prevention member is provided, so that the sludge can be prevented from adhering to the surface of the filtration membrane by agitation of the aeration device, so that the filtration performance of the filtration membrane is reduced. The sludge that has been concentrated and settled by the freeze-thaw process is prevented from re-diffusing upward due to the stirring of the aeration device, and the allowable sludge concentration in the membrane filtration tank can be further increased. Has the effect of reducing the frequency of maintenance.

【0025】なお、本発明において、濃縮分離とは、汚
泥等を含む排水を凍結するときに水と含有汚泥等固形成
分の凍結速度の違いから、清浄な水の方から凍結し、こ
のために含有汚泥等固形成分は徐々に濃縮されて変性凝
集し、その後解凍すると水分は容易に脱水されて最後に
固形成分をペースト状にすることができることをいう。
In the present invention, the concentration separation means that when the wastewater containing sludge or the like is frozen, the water is frozen from the clean water side due to the difference in the freezing speed between the water and the solid component such as the contained sludge. It means that solid components such as contained sludge are gradually concentrated and denatured and agglomerated, and when thawed thereafter, water is easily dehydrated and finally the solid components can be made into a paste.

【0026】以下、図面に示す実施の形態により本発明
を具体的に説明する。図1は本発明の一実施の形態よる
排水処理装置の全体構成図を示す。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. FIG. 1 shows an overall configuration diagram of a wastewater treatment apparatus according to an embodiment of the present invention.

【0027】図1において、排水浄化装置1は、厨芥物
を含む排水と、汚水や雑排水を一次的に貯留し後段の処
理量を調整するための一次貯留槽2に接続されたもので
ある。そして、この一次貯留槽2には、洗面所や洗濯機
やお風呂から出される汚水・雑排水を流す下水配管4を
接続し、この下水配管4にはビルの厨房や家庭の台所に
設置されて生ゴミを粉砕処理するためのディスポーザ3
からの流路を連結している。
In FIG. 1, a wastewater purifying apparatus 1 is connected to a primary storage tank 2 for temporarily storing wastewater containing kitchen waste and sewage and miscellaneous wastewater and adjusting the amount of treatment at a later stage. . The primary storage tank 2 is connected to a sewage pipe 4 through which sewage and miscellaneous wastewater discharged from a washroom, a washing machine, and a bath are connected. The sewage pipe 4 is installed in a kitchen of a building or a home kitchen. 3 for crushing raw garbage
Are connected.

【0028】一次貯留槽2と排水浄化装置1内に配置し
た嫌気槽6との間には排水供給ポンプ5を配置して一次
貯留槽2からの排水を嫌気槽6に送り込み可能とし、こ
の嫌気槽6の後段には排水を移送する第1連通管7によ
って曝気処理槽8が接続されている。この曝気処理槽8
には、外部から空気を吹き込むための空気ブロアー9と
微少な気泡を注入するための曝気ノズル10とを備えて
いる。また、曝気処理槽8の後段には、排水浄化装置1
を構成する処理槽としての膜濾過槽12を第2連通管1
1を介して接続する。この膜濾過槽12には処理水を濾
過するための濾過膜13を備え、この濾過膜13で濾過
した浄化水を放水するための放水ポンプ14と浄化水を
再利用先等へ放水する放水管15とを接続している。な
お、16は膜濾過槽12の底の方へ沈降した汚泥であ
る。
A wastewater supply pump 5 is disposed between the primary storage tank 2 and the anaerobic tank 6 disposed in the wastewater purifying apparatus 1 so that the wastewater from the primary storage tank 2 can be sent to the anaerobic tank 6. An aeration tank 8 is connected to the downstream of the tank 6 by a first communication pipe 7 for transferring wastewater. This aeration tank 8
Is provided with an air blower 9 for blowing air from outside and an aeration nozzle 10 for injecting minute air bubbles. In addition, a wastewater purification device 1 is provided downstream of the aeration tank 8.
Of the membrane filtration tank 12 as a processing tank constituting the second communication pipe 1
Connect via 1 The membrane filtration tank 12 is provided with a filtration membrane 13 for filtering the treated water, a water discharge pump 14 for discharging the purified water filtered by the filtration membrane 13, and a water discharge pipe for discharging the purified water to a reuse destination or the like. 15 is connected. Reference numeral 16 denotes sludge settled toward the bottom of the membrane filtration tank 12.

【0029】また、主に膜濾過槽12を冷却凍結及び加
熱解凍する熱エネルギーを発生・利用する熱併給装置2
0を設ける。この熱併給装置20は電源部40によって
運転動作するもので、膜濾過槽12内に設置した膜濾過
槽熱交換器21,曝気処理槽8内に設置した曝気槽熱交
換器22及び空調ユニット23をそれぞれ接続してい
る。すなわち、膜濾過槽熱交換器21は熱併給装置20
から熱エネルギーの供給を受けて膜濾過槽12内の排水
を凍結解凍の操作をし、曝気槽熱交換器22は熱併給装
置20から熱エネルギーの供給を受けて曝気処理槽8内
の処理水の加熱保温の操作をし、空調ユニット23は熱
併給装置20からの冷温熱の供給を受けてビル内や室内
の空調を行なう。
Further, a cogeneration system 2 for generating and utilizing heat energy for cooling and freezing and heating and thawing the membrane filtration tank 12 mainly.
0 is provided. The cogeneration system 20 is operated and operated by a power supply unit 40, and includes a membrane filtration tank heat exchanger 21 installed in the membrane filtration tank 12, an aeration tank heat exchanger 22 installed in the aeration treatment tank 8, and an air conditioning unit 23. Are connected respectively. That is, the heat exchanger 21 of the membrane filtration tank is
, The wastewater in the membrane filtration tank 12 is frozen and thawed, and the aeration tank heat exchanger 22 receives the supply of heat energy from the cogeneration device 20 to treat the treated water in the aeration tank 8. The air conditioning unit 23 receives the supply of cold and hot heat from the cogeneration system 20 to perform air conditioning in the building and the room.

【0030】なお、熱併給装置20としては、冷熱と温
熱を発生・利用できるいかなる熱サイクル装置であって
も良いが、発電所や工業地帯における廃熱を利用すれば
電源部40の使用量を削減でき省エネルギーとなり得る
ので、そのような場合は廃熱を利用できるヒートポンプ
又は吸収式冷凍サイクルのような手段が望ましい。
The heat cogeneration device 20 may be any heat cycle device that can generate and use cold and hot heat. However, if waste heat in a power plant or an industrial area is used, the amount of the power supply unit 40 can be reduced. In such a case, a means such as a heat pump or an absorption refrigeration cycle that can utilize waste heat is desirable because it can reduce the amount of energy and can save energy.

【0031】以上の構成において、排出される厨芥はビ
ルの厨房や家庭の台所に設置されたディスポーザ3で水
の供給を受けながら粉砕処理され、厨芥粉砕物として一
次貯留槽2へ排出される。同時に汚水及び洗面所や洗濯
機からの雑排水も下水配管4を介して一次貯留槽2へ排
出される。一次貯留槽2でこれら固形物を含む排水等は
一次貯留された後、排水供給ポンプ5の運転制御により
排水浄化装置1の初段の処理槽としての嫌気槽6へ供給
される。
In the above configuration, the discharged garbage is pulverized while being supplied with water by a disposer 3 installed in the kitchen of the building or the kitchen of the home, and is discharged to the primary storage tank 2 as crushed garbage. At the same time, sewage and miscellaneous wastewater from the washroom and the washing machine are also discharged to the primary storage tank 2 via the sewage pipe 4. After the wastewater or the like containing these solids is primarily stored in the primary storage tank 2, the wastewater is supplied to an anaerobic tank 6 as a first-stage treatment tank of the wastewater purification device 1 by operation control of a wastewater supply pump 5.

【0032】ここで、排水浄化装置1の浄化処理手段と
しては、生物処理や電解処理や化学処理等の排水浄化処
理できる如何なる方法でも構わないが、本実施の形態に
おいては生物処理の方法による例を用いて説明する。
Here, the purifying means of the waste water purifying apparatus 1 may be any method capable of purifying waste water, such as biological treatment, electrolytic treatment, or chemical treatment. In the present embodiment, an example using the biological treatment method is used. This will be described with reference to FIG.

【0033】まず、嫌気槽6では、一次貯溜槽2からの
排水を嫌気処理によって主に窒素成分の除去を中心に浄
化処理する。嫌気槽6で嫌気処理された処理水は第1連
通管7を介して曝気処理槽8に流入し、曝気処理槽8で
は、空気ブロアー9で発生させた空気源を曝気ノズル1
0に導入する。これにより、曝気処理槽8内では処理水
中に微少気泡として空気が吹き込まれ、主に酸化分解や
生物固化による有機成分が除去処理される。
First, in the anaerobic tank 6, the waste water from the primary storage tank 2 is subjected to anaerobic treatment to purify mainly the removal of nitrogen components. The treated water subjected to the anaerobic treatment in the anaerobic tank 6 flows into the aeration treatment tank 8 through the first communication pipe 7, and the air source generated by the air blower 9 is supplied to the aeration nozzle 1 in the aeration treatment tank 8.
0 is introduced. As a result, air is blown into the treated water as microbubbles in the aeration treatment tank 8, and organic components mainly due to oxidative decomposition and biological solidification are removed.

【0034】なお、曝気処理槽8内に微生物等の繁殖を
促すための充填材や流動ろ床を導入してもよよく、ま
た、曝気する空気にオゾン等を混入して酸化処理や生物
処理を活性化するようにしもよい。
A filler or a fluidized filter bed for promoting the growth of microorganisms and the like may be introduced into the aeration tank 8, and oxidation or biological treatment may be performed by mixing ozone or the like into the air to be aerated. May be activated.

【0035】曝気処理槽8で曝気すなわち好気性処理さ
れた処理水は、生物固化された結果として生じる汚泥分
を含んでおり、曝気処理によって十分に撹拌されている
ので、汚泥分は処理水中に拡散した状態にある。そこ
で、拡散した汚泥分を含む曝気処理槽8の処理水を第2
連通管11を介して膜濾過槽12に流入に供給して汚泥
分を沈降させる。
The treated water subjected to aeration or aerobic treatment in the aeration treatment tank 8 contains sludge generated as a result of biosolidification, and is sufficiently stirred by the aeration treatment. In a diffuse state. Therefore, the treated water in the aeration treatment tank 8 containing the diffused sludge is discharged to the second
The sludge is settled by being supplied to the inflow into the membrane filtration tank 12 through the communication pipe 11.

【0036】膜濾過槽12に処理水を撹拌するような機
構が無く処理水が静止状態に近い場合には、水よりもわ
ずかながら比重の大きな汚泥は重力の作用を受けて下方
へ沈殿沈降していき、汚泥16となって溜まっていく。
なお、この重力の作用を積極的に利用する場合には沈降
槽又は沈殿槽と呼ぶ場合もある。本実施の形態に示すも
のは、この重力の作用の他に、濾過膜13を用いて積極
的に汚泥16を分離する。
When there is no mechanism for stirring the treated water in the membrane filtration tank 12 and the treated water is close to a stationary state, the sludge having a specific gravity slightly larger than the water is settled downward by the action of gravity. It becomes sludge 16 and accumulates.
In addition, when utilizing the effect of gravity positively, it may be called a sedimentation tank or a sedimentation tank. In the present embodiment, in addition to the action of gravity, the sludge 16 is positively separated using the filtration membrane 13.

【0037】すなわち、放水ポンプ14が作動させて放
水管15から処理水を放水させると濾過膜13の内部は
負圧となり、濾過膜13の周囲の処理水を吸込もうとす
る。このとき、処理水中に残留して漂っている汚泥16
の大きさよりも小さい径の微粒子分等だけの通過を許す
濾過膜13を選定することにより、濾過膜13を介して
内部へ吸込まれる浄化水は後段で再利用する目的に合っ
た汚泥濃度以下に濾過される。
That is, when the water discharge pump 14 is operated to discharge the treated water from the water discharge pipe 15, the inside of the filtration membrane 13 becomes a negative pressure, and tries to suck the treated water around the filtration membrane 13. At this time, sludge 16 remaining and remaining in the treated water
By selecting a filtration membrane 13 that allows the passage of only fine particles having a diameter smaller than the size of purified water, the purified water sucked into the inside through the filtration membrane 13 is below the sludge concentration suitable for the purpose of reuse in the subsequent stage. Is filtered.

【0038】また、本発明における膜濾過槽12には、
膜濾過槽熱交換器21が配置され膜濾過槽熱交換器21
には熱併給装置20が接続されており、処理水を氷温以
下にして凍結処理或いは氷温以上にして解凍処理を行な
う。
Further, the membrane filtration tank 12 in the present invention includes:
The membrane filter tank heat exchanger 21 is disposed and the membrane filter tank heat exchanger 21
Is connected to a cogeneration unit 20 for performing a freezing process at a temperature lower than the ice temperature or a thawing process at a temperature higher than the ice temperature.

【0039】処理水の凍結解凍処理はバッチ式で処理が
行われる。すなわち、夜間に熱併給装置20を運転して
膜濾過槽熱交換器21に冷熱を送り込み、凍結処理を開
始して、膜濾過槽12の内容物としての処理水を凍結さ
せる。このとき、排水供給ポンプ5及び放水ポンプ14
は停止しておくほうが望ましい。そして、翌日、膜濾過
槽12に設けた膜濾過槽熱交換器21によって冷熱を回
収しつつ、凍結された処理水は解凍処理される。この回
収冷熱をビル内や室内に設置された空調ユニット23に
回して冷房等の熱源として利用する。
The process of freezing and thawing the treated water is performed in a batch system. That is, the cogeneration apparatus 20 is operated at night to send cold heat to the membrane filter tank heat exchanger 21 to start the freezing process and freeze the treated water as the content of the membrane filter tank 12. At this time, the drainage supply pump 5 and the water discharge pump 14
Should be stopped. Then, on the next day, the frozen treated water is thawed while recovering cold heat by the membrane filter tank heat exchanger 21 provided in the membrane filter tank 12. The recovered cold heat is sent to an air conditioning unit 23 installed in a building or a room to be used as a heat source for cooling or the like.

【0040】ここで、膜濾過槽12では凍結過程は上方
あるいは膜近傍から始まり、徐々に下方あるいは膜から
遠方へ広がるように運転制御するとよい。すなわち、上
側から下側へもしくは膜近傍から遠方へ段々と凍結して
いくようにするのがよい。なお、膜濾過槽熱交換器21
は、膜濾過槽12の上方や濾過膜13の近傍に配置した
り、2個以上の複数配置の熱交換器で構成してもよく、
上側から下側へもしくは膜近傍から遠方へ段々と凍結し
ていくようにできればよい。また、冷熱エネルギーの量
や翌日の予想冷房負荷の量が少なくて膜濾過槽12内の
処理水全体を凍結させることができなくても濾過膜13
が配置されている付近の処理水を凍結できれば一定の効
果が得られる。
Here, in the membrane filtration tank 12, the freezing process may be controlled so as to start from above or in the vicinity of the membrane and gradually spread downward or farther from the membrane. That is, it is preferable to freeze gradually from the upper side to the lower side or from the vicinity of the membrane to a distant place. In addition, the membrane filter tank heat exchanger 21
May be disposed above the membrane filtration tank 12 or in the vicinity of the filtration membrane 13 or may be configured with two or more heat exchangers in a plurality of arrangements,
It suffices if it is possible to freeze gradually from the upper side to the lower side or from the vicinity of the membrane to a distant place. Further, even if the amount of cooling energy or the amount of expected cooling load on the next day is small and the entire treated water in the membrane filtration tank 12 cannot be frozen, the filtration membrane 13
A certain effect can be obtained if the treated water in the vicinity of where is disposed can be frozen.

【0041】このように、本発明では排水中の汚泥の変
性凝集が可能であり、固液分離を容易化することができ
る。ここで、排水中の汚泥の変性凝集について説明す
る。
As described above, according to the present invention, the sludge in the waste water can be denatured and coagulated, and the solid-liquid separation can be facilitated. Here, the modified aggregation of the sludge in the wastewater will be described.

【0042】汚泥等が懸濁状態になっている状態では、
汚泥の粒子の周囲に結合力の弱い間隙水が存在する。こ
のような間隙水を有する汚泥を含んだ排水を凍結させる
と、まず、純度が高く凝固点が高い水の所から凍結を開
始し、氷が成長していくようにして凍結する。これによ
って、汚泥間に存在する間隙水は成長していく氷に容易
に吸い出されて無くなり、結果として汚泥どうしは近づ
いて凝集する。さらに凍結温度を下げて凍結が進むと、
汚泥の内部水が凍結することで内部水も吸い出される。
これによってさらに凝集性が向上するとともに脱水性も
向上する。
In a state where sludge and the like are in a suspended state,
There is pore water with weak binding force around the sludge particles. When the wastewater containing sludge having such pore water is frozen, first, freezing is started from water having a high purity and a high freezing point, and frozen as the ice grows. Thereby, the pore water existing between the sludges is easily sucked out by the growing ice and disappears, and as a result, the sludges approach and aggregate. If the freezing temperature is further lowered and the freezing proceeds,
When the internal water of the sludge freezes, the internal water is also sucked out.
This further improves cohesion and dehydration.

【0043】以上により、凍結解凍処理した結果、懸濁
状態にあった汚泥は凝集して脱水しやすくなり、したが
って固液分離が容易に行なえるようになる。従来ではこ
のような変性凝集による固液分離についての技術思想は
なく、凍結操作と変成凝集によって濃縮分離が容易にか
つ効果的に得られる。
As described above, as a result of the freeze-thaw treatment, the sludge in the suspended state is easily aggregated and dehydrated, and therefore, the solid-liquid separation can be easily performed. Conventionally, there is no technical idea about such solid-liquid separation by denatured aggregation, and concentration and separation can be easily and effectively obtained by freezing operation and denatured aggregation.

【0044】次に、凍結の状況について説明する。水溶
液の凍結においては、純粋な水の凍結開始温度は0℃で
ある。しかし、汚泥を含む水溶液の場合は、水の凝固点
降下が生じて汚泥の濃度に相関して凍結する温度は低下
していく。
Next, the state of freezing will be described. In the freezing of the aqueous solution, the freezing start temperature of pure water is 0 ° C. However, in the case of an aqueous solution containing sludge, the freezing point of water is lowered, and the freezing temperature is reduced in correlation with the concentration of sludge.

【0045】いま、膜濾過槽12の膜濾過槽熱交換器2
1を氷点温度以下にすると、膜濾過槽熱交換器21の近
傍の水溶液は凍結しようとする。このとき、撹拌等を加
えずに静かに凍結させると、汚泥の濃度の低いすなわち
凍結する温度が高い水溶液の部分から凍結を開始してい
く。その結果として、凍結していく過程において、より
汚泥分の少ない真水に近い氷の層が膜濾過槽熱交換器2
1の近傍に形成され、膜濾過槽熱交換器21から遠ざか
るほど汚泥分の多い氷の層が形成される。
Now, the membrane filtration tank heat exchanger 2 of the membrane filtration tank 12
When the temperature of 1 is lower than the freezing point, the aqueous solution in the vicinity of the membrane filter heat exchanger 21 tends to freeze. At this time, if the mixture is gently frozen without adding stirring or the like, the freezing starts from the portion of the aqueous solution having a low sludge concentration, that is, a high freezing temperature. As a result, during the freezing process, an ice layer close to fresh water with less sludge is formed in the membrane filter heat exchanger 2.
1 and a layer of ice containing more sludge is formed as the distance from the membrane filter tank heat exchanger 21 increases.

【0046】膜濾過槽熱交換器21を膜濾過槽3の上方
に位置させておけば、重力による汚泥の沈降効果も加わ
りながら凍結過程は上方から始まり、徐々に下方へ広が
るので、上方にきれいな氷が形成され、上側から下側へ
段々と汚泥分の多い氷が形成される。
If the membrane filter tank heat exchanger 21 is positioned above the membrane filter tank 3, the freezing process starts from the top and gradually spreads downward while adding the sedimentation effect of the sludge due to gravity. Ice is formed, and ice with a large amount of sludge is gradually formed from the upper side to the lower side.

【0047】さらに、凍結処理することによって汚泥が
変性凝集して、いっそう大きな固まりや集団になり沈降
沈殿しやすくなって、その分だけ処理水中の固形成分の
拡散度合いは低下する。
Further, the sludge is denatured and agglomerated by the freezing treatment, so that the sludge is formed into a larger mass or a group, so that the sludge is apt to settle and settle, and the degree of diffusion of the solid component in the treated water is reduced by that much.

【0048】以上のようにして膜濾過槽12内の処理水
を凍結解凍処理すると、処理水中に拡散していた汚泥分
は変性凝集していっそう大きな固まりとなり、一部は沈
降沈殿して濾過膜13で濾過しやすいものになる。
When the treated water in the membrane filtration tank 12 is freeze-thawed as described above, the sludge diffused in the treated water is denatured and agglomerated into a larger mass, and part of the sludge precipitates and precipitates to form a filtration membrane. 13 makes it easy to filter.

【0049】また、凍結解凍処理後には、濾過膜13近
傍には相対的に汚泥の少ない水が得られると共に、濾過
処理中に堆積付着した濾過膜13の膜表面の付着物も凍
結によって膜表面から剥がれやすくなっているので、解
凍後に膜表面の付着物が周囲の処理水中に落ちて膜表面
がきれいになる効果も得られる。このとき、放水ポンプ
14や又は別途設置した洗浄用ポンプで濾過膜13の内
部から膜濾過槽12の方へ逆流洗浄していっそう効果を
高めることも有効である。
After the freezing and thawing treatment, water with relatively little sludge is obtained in the vicinity of the filtration membrane 13, and the deposits on the membrane surface of the filtration membrane 13 deposited and adhered during the filtration treatment are also frozen. As a result, it is possible to obtain an effect that, after thawing, deposits on the membrane surface fall into the surrounding treated water to clean the membrane surface. At this time, it is also effective to carry out backwashing from the inside of the filtration membrane 13 to the membrane filtration tank 12 with the water discharge pump 14 or a separately installed washing pump to further enhance the effect.

【0050】なお、凍結解凍処理によって濾過膜13の
表面の付着物の除去が充分行われる場合は上記逆流洗浄
等は不要になることもある。また、膜濾過槽12内の汚
泥の濃度が許容レベルを超えるようになったら、回収バ
キュームカー等で汚泥16を引き抜く。
In the case where the deposits on the surface of the filtration membrane 13 are sufficiently removed by the freeze-thawing treatment, the backwashing or the like may not be necessary. Further, when the concentration of the sludge in the membrane filtration tank 12 exceeds the allowable level, the sludge 16 is pulled out with a recovery vacuum car or the like.

【0051】一般的に、膜濾過処理では汚泥の濃縮が可
能であり、膜濾過槽12内部の汚泥濃度を積極的に高め
ていくが、前述のように処理水を凍結解凍処理すること
により、従来の膜濾過処理時の汚泥分濃縮に比較して一
層高い濃縮が可能になる。
In general, sludge can be concentrated in the membrane filtration treatment, and the concentration of sludge in the membrane filtration tank 12 is positively increased. Higher concentration can be achieved as compared with the conventional sludge concentration at the time of membrane filtration.

【0052】さらに、熱併給装置20に接続された曝気
処理槽熱交換器22は、曝気処理槽8内の処理水の温度
が低く生物処理に不適の場合等に加熱保温することに使
用されることもある。
Further, the aeration tank heat exchanger 22 connected to the cogeneration unit 20 is used for heating and keeping the temperature of the treated water in the aeration tank 8 low and unsuitable for biological treatment. Sometimes.

【0053】このように、排水浄化処理で発生する汚泥
を膜濾過する膜濾過槽12の処理水を蓄熱材として用い
て冷熱の貯蔵槽として利用でき、同時に凍結解凍処理で
汚泥を変性凝集して濃縮分離したり、膜表面の付着物の
除去ができる。したがって、膜濾過性能の向上といっそ
う効率良い排水浄化処理が可能となり、汚泥の濃縮度合
いも向上する。これにより、排水処理設備を非常に単純
でコンパクトにできるとともに、排水処理における廃棄
物となる汚泥水の引き抜き作業を少なくでき、水の有効
利用の割合が増加し、また廃熱を冷凍熱として回収し利
用できるなど廃熱の有効利用が可能となる。
As described above, the treated water in the membrane filtration tank 12 for membrane filtration of the sludge generated in the wastewater purification treatment can be used as a cold storage tank by using the treated water as a heat storage material. It can be concentrated and separated, and it can remove deposits on the membrane surface. Therefore, it is possible to improve the membrane filtration performance and to perform the wastewater purification treatment more efficiently, and the concentration of sludge is also improved. As a result, the wastewater treatment facility can be made very simple and compact, and the amount of sludge water that becomes waste in wastewater treatment can be reduced, the ratio of effective use of water increases, and waste heat is recovered as refrigeration heat. Effective use of waste heat is possible.

【0054】なお、上記の実施の形態では、膜濾過槽1
2に濃縮沈降させた汚泥16は引き抜いて処分するよう
にしているが、この汚泥16を膜濾過槽12から初段の
嫌気槽6に返送して、窒素成分除去等の再処理を施して
もよい。この場合、解凍後で温度が低い場合は、返送す
る途中で加熱して嫌気処理に望ましい温度に調整後に嫌
気槽6に搬送するのが好ましい。
In the above embodiment, the membrane filtration tank 1
Although the sludge 16 concentrated and settled in Step 2 is drawn out and disposed of, the sludge 16 may be returned from the membrane filtration tank 12 to the first-stage anaerobic tank 6 and subjected to reprocessing such as removal of nitrogen components. . In this case, when the temperature is low after the thawing, it is preferable to heat the mixture during the return and adjust the temperature to a temperature desirable for anaerobic treatment, and then transport the mixture to the anaerobic tank 6.

【0055】図2は本発明の別の実施の形態による膜濾
過槽の構成図を示す。この例は濾過膜13の内部に濾過
膜用熱交換器30を配置したもので、その他の構成は図
1に示したものと同じであり、同一の構成部材について
は共通の符号で指示しその詳細な説明は省略する。
FIG. 2 shows a configuration diagram of a membrane filtration tank according to another embodiment of the present invention. In this example, a heat exchanger 30 for a filtration membrane is arranged inside a filtration membrane 13, and the other configuration is the same as that shown in FIG. 1. Detailed description is omitted.

【0056】膜濾過槽12において、内部の処理水を凍
結処理する場合に、濾過膜用熱交換器30に熱併給装置
20から冷熱を送り込んで、濾過膜13の内部から凍結
するように運転する。すると、濾過された後に残留して
いる濾過膜13内部の浄化水が凍結し、凍結により堆積
膨張することで濾過膜13の外表面及び濾過膜13の膜
内に詰まった付着物が内側から外側へ押されることによ
って、膜の再生が行われる。
When freezing the inside of the treated water in the membrane filtration tank 12, the cold heat is fed from the cogeneration device 20 to the heat exchanger 30 for the filtration membrane, and the operation is performed so that the inside of the filtration membrane 13 is frozen. . Then, the purified water remaining in the filtration membrane 13 remaining after the filtration is frozen, and accumulated and expanded by the freezing, so that the deposits clogging the outer surface of the filtration membrane 13 and the inside of the filtration membrane 13 are removed from the inside to the outside. By pressing the film, the film is regenerated.

【0057】さらに、濾過膜13内部の浄化された汚泥
分の少ない水は凍結初期の核となって凍結範囲が拡大し
ていくので、濾過膜13近傍における凝固点降下の作用
による汚泥の排除効果も高くなる。
Further, the purified water having a small amount of sludge inside the filtration membrane 13 becomes a nucleus in the initial stage of freezing and the freezing range expands. Get higher.

【0058】また、解凍処理においても、膜内部から解
凍開始することも可能であり、濾過膜13近傍のみを最
初に解凍して、得られた汚泥が少ない水を濾過処理して
分離抽出することもできる。
In the thawing process, it is also possible to start thawing from the inside of the membrane. First, only the vicinity of the filtration membrane 13 is thawed, and the obtained water with little sludge is filtered and separated and extracted. Can also.

【0059】以上のように、濾過膜13内部に濾過膜用
熱交換器30を配置して、濾過膜13の内部から凍結処
理及び解凍処理をすると、濾過膜13の濾過性能回復の
ための表面及び膜内付着物の排除効果が高まると共に、
解凍後に濾過膜13近傍に得られる汚泥が少ない融解水
を濾過抽出できる。したがって、より一層汚泥を濃縮す
ることができ、排水処理設備が非常に単純でコンパクト
にすることができるとともに、排水処理における廃棄物
となる汚泥水の引き抜き作業を少なくでき水の有効利用
の割合が増加し、また廃熱を冷凍熱として回収し利用で
きるなど廃熱の有効利用が行なえる。
As described above, when the filtration membrane heat exchanger 30 is disposed inside the filtration membrane 13 and the freezing and thawing processes are performed from the inside of the filtration membrane 13, the surface for recovering the filtration performance of the filtration membrane 13 is recovered. And the effect of removing adhering matter in the film increases,
After the thawing, the molten water with little sludge obtained in the vicinity of the filtration membrane 13 can be extracted by filtration. Therefore, the sludge can be further concentrated, the wastewater treatment equipment can be made very simple and compact, and the work of extracting sludge water as waste in wastewater treatment can be reduced, and the ratio of effective use of water can be reduced. The waste heat can be recovered and used as refrigeration heat for effective use of waste heat.

【0060】図3は本発明の更に別の実施の形態におけ
る膜濾過槽の構成図を示す。図3において、膜濾過槽1
2には、は濾過膜13近傍に曝気して気泡による撹拌を
行なう膜曝気ノズル10aを備えるとともに、沈降沈殿
した汚泥16を分離貯溜するエリアとしての汚泥室12
aと、膜曝気ノズル10aの撹拌効果が膜濾過槽12の
下方の汚泥16に及ばないようにするための撹拌防止部
材としての再拡散防止パネル12bとを備えている。そ
の他の構成は、図2に示したものと同様である。
FIG. 3 shows a configuration diagram of a membrane filtration tank according to still another embodiment of the present invention. In FIG. 3, the membrane filtration tank 1
2 is provided with a membrane aeration nozzle 10a for aeration in the vicinity of the filtration membrane 13 and agitation by air bubbles, and a sludge chamber 12 as an area for separating and storing the sludge 16 settled and settled.
a, and a re-diffusion prevention panel 12b as a stirring prevention member for preventing the stirring effect of the membrane aeration nozzle 10a from reaching the sludge 16 below the membrane filtration tank 12. Other configurations are the same as those shown in FIG.

【0061】濾過膜13を用いて処理水を濾過処理する
場合は、先の例に示したように、重力の作用による沈降
沈殿させつつ膜濾過するものと、積極的に濾過膜13近
傍に流れを生じさせて濾過時に付着物が濾過膜13表面
に堆積していかないようにするものがある。本実施の形
態は、後者の方式であって凍結解凍処理を行なうもので
ある。
When the treated water is filtered using the filtration membrane 13, as shown in the previous example, the treated water is subjected to membrane filtration while sedimentation and sedimentation is caused by the action of gravity. To prevent deposits from accumulating on the surface of the filtration membrane 13 during filtration. In the present embodiment, a freeze-thaw process is performed by the latter method.

【0062】凍結処理前の状態では、空気ブロア9から
の空気源を膜曝気ノズル10aに供給して濾過処理中に
濾過膜13近傍に気泡の上昇に伴う処理水の流れと濾過
膜13への気泡の衝突を作って、濾過膜13表面への付
着物の堆積を防止する。この状態で放水ポンプ14を運
転して膜濾過槽12内の処理水を濾過し、浄化水を抽出
し放水管15から放水する。なお、このとき、処理水中
に残留した汚泥は濾過膜13の近傍を中心に撹拌されて
いる。
In the state before the freezing treatment, the air source from the air blower 9 is supplied to the membrane aeration nozzle 10a so that the flow of the treated water due to the rise of bubbles near the filtration membrane 13 during the filtration treatment and the flow to the filtration membrane 13 The collision of air bubbles is created to prevent the accumulation of deposits on the surface of the filtration membrane 13. In this state, the water discharge pump 14 is operated to filter the treated water in the membrane filtration tank 12, extract purified water, and discharge water from the water discharge pipe 15. At this time, the sludge remaining in the treated water is stirred around the vicinity of the filtration membrane 13.

【0063】そして、夜間に膜曝気ノズル10aからの
気泡の発生を中止して膜濾過槽12を静止状態にして熱
併給装置20を運転し、膜濾過槽熱交換器21及び濾過
膜用熱交換器30に冷熱を送り込み、凍結処理を開始し
て膜濾過槽12の内容物としての処理水を凍結させる。
凍結処理の方法等は先の例と同様であり、翌日、膜濾過
槽12に設けた濾過膜用熱交換器30及び膜濾過槽熱交
換器21によって冷熱を回収しつつ、凍結された処理水
は解凍処理される。この回収冷熱をビル内や室内に設置
された空調ユニット23に回して冷房等の熱源として利
用する。
Then, at night, the generation of air bubbles from the membrane aeration nozzle 10a is stopped, the membrane filtration tank 12 is kept stationary, and the cogeneration system 20 is operated to operate the membrane filtration tank heat exchanger 21 and the heat exchange for the filtration membrane. Cold heat is sent to the vessel 30 to start the freezing process to freeze the treated water as the content of the membrane filtration tank 12.
The method of the freezing treatment and the like are the same as in the previous example, and the next day, the cold water is recovered by the heat exchanger 30 for the filtration membrane and the membrane heat exchanger 21 provided in the membrane filtration tank 12 while the frozen treated water is recovered. Is decompressed. The recovered cold heat is sent to an air conditioning unit 23 installed in a building or a room to be used as a heat source for cooling or the like.

【0064】以上のようにして膜濾過槽12内の処理水
を凍結解凍処理すると、処理水中に拡散していた汚泥1
6は変性凝集していっそう大きな固まりとなる。また、
水の凍結時の凝固点降下の作用により、汚泥16は濃縮
され、再拡散防止パネル12bよりも下方へ沈降沈殿し
ていく。
When the treated water in the membrane filtration tank 12 is freeze-thawed as described above, the sludge 1
6 is denatured and agglomerated to form a larger mass. Also,
The sludge 16 is concentrated by the action of the freezing point lowering when the water is frozen, and settles down below the rediffusion prevention panel 12b.

【0065】膜濾過槽12の一部は曝気による撹拌作用
を受けない用に隔離された汚泥室12aになっており、
再拡散防止パネル12bよりも下方へ沈降沈殿していっ
た濃縮汚泥は汚泥室12a内に貯溜されていく。
A part of the membrane filtration tank 12 is a sludge chamber 12a which is isolated so as not to receive the stirring action by aeration.
The concentrated sludge that has settled and settled below the re-diffusion prevention panel 12b is stored in the sludge chamber 12a.

【0066】このように、再拡散防止パネル12bと汚
泥室12aによって解凍処理後の汚泥16を隔離貯溜す
れば、濾過膜13による濾過処理中の膜曝気ノズル10
aからの曝気処理を行なっても、濃縮された汚泥16が
再び処理水中へ拡散していくのを防止でき、凍結解凍処
理による汚泥の濃縮沈降沈殿効果と膜曝気による濾過性
能維持の両方の効果をうまく利用できる。
As described above, if the sludge 16 after the thawing treatment is isolated and stored by the re-diffusion prevention panel 12b and the sludge chamber 12a, the membrane aeration nozzle 10 during the filtration treatment by the filtration membrane 13 is provided.
Even if aeration treatment is performed from a, the concentrated sludge 16 can be prevented from diffusing again into the treated water, and both the effect of condensing and settling the sludge by freeze-thawing treatment and the effect of maintaining the filtration performance by membrane aeration can be obtained. Can be used successfully.

【0067】また、汚泥室12aは汚泥水引き抜き作業
において、濃縮された汚泥16を優先的に引き抜くこと
で引き抜き汚泥濃度を高め引き抜き量を最小にする目的
も兼ねているが、別途引き抜き時に濃縮された汚泥16
を優先的に引き抜きできる手段を有する場合には、再拡
散防止パネル12bを設けるだけでもよい。
The sludge chamber 12a also serves to increase the concentration of the extracted sludge and minimize the amount of the extracted sludge by preferentially extracting the concentrated sludge 16 in the operation of extracting the sludge water. Sludge 16
If there is a means that can preferentially pull out the redistribution, only the re-diffusion prevention panel 12b may be provided.

【0068】[0068]

【発明の効果】請求項1に記載の発明では、膜濾過槽内
に懸濁している固形成分が膜濾過し易い状態になり濾過
膜の目詰まりが発生しにくくなって、許容できる膜濾過
槽内の汚泥濃度を高くできるので、汚泥水引き抜き作業
等のメンテナンスの頻度を削減できる。
According to the first aspect of the present invention, the solid components suspended in the membrane filtration tank are easily filtered by the membrane, and clogging of the filtration membrane hardly occurs. Since the sludge concentration in the inside can be increased, the frequency of maintenance such as sludge water extraction work can be reduced.

【0069】請求項2に記載の発明では、凍結解凍処理
によって濾過膜内部からきれいな氷が成長しつつ外部へ
凍結していくので濾過膜の表面に付着して堆積した汚泥
を濾過膜表面から除去でき、濾過膜の目詰まりを解消さ
せて濾過性能を回復させることができる。
According to the second aspect of the present invention, the sludge deposited on the surface of the filtration membrane is removed from the surface of the filtration membrane because clean ice grows from the inside of the filtration membrane and freezes to the outside by the freezing and thawing treatment. It is possible to eliminate clogging of the filtration membrane and recover filtration performance.

【0070】請求項3に記載の発明では、曝気装置の攪
拌によって濾過膜表面への汚泥の付着堆積を予防できる
ので濾過膜の濾過性能を維持できると共に、凍結解凍処
理で濃縮沈降した汚泥が曝気装置の攪拌によって上方へ
再拡散することがない。したがって、許容できる膜濾過
槽内の汚泥濃度をさらに高くできるので、汚泥水引き抜
き作業等のメンテナンスの頻度を削減できる。
According to the third aspect of the present invention, it is possible to prevent the sludge from adhering and depositing on the surface of the filtration membrane by stirring the aeration device, so that the filtration performance of the filtration membrane can be maintained, and the sludge concentrated and settled by the freeze-thaw treatment is aerated. There is no re-diffusion upward due to stirring of the device. Therefore, the allowable sludge concentration in the membrane filtration tank can be further increased, and the frequency of maintenance such as sludge water extraction work can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態よるに排水処理装置の全
体構成図
FIG. 1 is an overall configuration diagram of a wastewater treatment apparatus according to an embodiment of the present invention.

【図2】本発明の別の実施の形態よる膜濾過槽の構成図FIG. 2 is a configuration diagram of a membrane filtration tank according to another embodiment of the present invention.

【図3】本発明の更に別の実施の形態による膜濾過槽の
構成図
FIG. 3 is a configuration diagram of a membrane filtration tank according to still another embodiment of the present invention.

【図4】特開平6−18069号公報に記載の従来の技
術を示す図
FIG. 4 is a diagram showing a conventional technique described in Japanese Patent Application Laid-Open No. 6-18069.

【図5】特開平10−73290号公報に記載の従来の
技術を示す図
FIG. 5 is a diagram showing a conventional technique described in JP-A-10-73290.

【符号の説明】[Explanation of symbols]

1 排水浄化装置 2 一次貯留槽 3 ディスポーザ 4 下水配管 5 排水供給ポンプ 6 嫌気槽 7 第1連通管 8 曝気処理槽 9 空気ブロアー 10 曝気ノズル 10a 膜曝気ノズル 11 第2連通管 12 膜濾過槽 12a 汚泥室 12b 再拡散防止パネル 13 濾過膜 14 放水ポンプ 15 放水管 16 汚泥 20 熱併給装置 21 膜濾過槽熱交換器 22 曝気槽熱交換器 23 空調ユニット 30 濾過膜用熱交換器 40 電源部 DESCRIPTION OF SYMBOLS 1 Drainage purification apparatus 2 Primary storage tank 3 Disposer 4 Sewage pipe 5 Drainage supply pump 6 Anaerobic tank 7 First communication pipe 8 Aeration treatment tank 9 Air blower 10 Aeration nozzle 10a Membrane aeration nozzle 11 Second communication pipe 12 Membrane filtration tank 12a Sludge Room 12b Re-diffusion prevention panel 13 Filtration membrane 14 Water discharge pump 15 Water discharge pipe 16 Sludge 20 Cogeneration system 21 Membrane filtration tank heat exchanger 22 Aeration tank heat exchanger 23 Air conditioning unit 30 Filtration membrane heat exchanger 40 Power supply unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F24F 5/00 102 B09B 5/00 ZABP Fターム(参考) 4D006 GA07 KA01 KA02 KA12 KA15 KA44 KA47 KA72 KB13 KB23 KE16Q PB08 PC63 PC64 4D037 AA11 AB02 BA21 CA03 CA07 4D059 AA06 AA07 BA31 BA52 BE14 BE31 BF03 BF06 BF10 BJ20 CA09 EA06 EB06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F24F 5/00 102 B09B 5/00 ZABP F term (Reference) 4D006 GA07 KA01 KA02 KA12 KA15 KA44 KA47 KA72 KB13 KB23 KE16Q PB08 PC63 PC64 4D037 AA11 AB02 BA21 CA03 CA07 4D059 AA06 AA07 BA31 BA52 BE14 BE31 BF03 BF06 BF10 BJ20 CA09 EA06 EB06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】排水を浄化処理する浄化処理槽と、 前記浄化処理槽から送られた排水を受容し、ポンプの吸
引力によって前記排水を汚泥と浄化水とに分離するため
の濾過膜が設けられた膜濾過槽と、 前記膜濾過槽内の排水に冷熱を与えて含有汚泥固形成分
を凍結速度の違いにより濃縮分離するとともにこの凍結
した排水を解凍する熱併給装置とを備え、 前記熱併給装置の解凍操作によって汚泥を分離して排出
することを特徴とする排水処理装置。
1. A purification tank for purifying waste water, and a filtration membrane for receiving the waste water sent from the purification tank and separating the waste water into sludge and purified water by suction of a pump. A membrane filtration tank, and a cogeneration unit that applies cold heat to the wastewater in the membrane filtration tank to concentrate and separate sludge solid components contained by a difference in freezing speed and defrosts the frozen wastewater. A wastewater treatment apparatus characterized in that sludge is separated and discharged by thawing operation of the apparatus.
【請求項2】前記濾過膜内に膜濾過用熱交換器が設けら
れていることを特徴とする請求項1記載の排水処理装
置。
2. A wastewater treatment apparatus according to claim 1, wherein a heat exchanger for membrane filtration is provided in said filtration membrane.
【請求項3】前記膜濾過槽内を攪拌する曝気装置が設け
られるとともに、前記膜濾過槽内に沈降した汚泥が前記
曝気装置の攪拌によって再び攪拌されるのを抑制する攪
拌防止部材が設けられたことを特徴とする請求項1また
は2記載の排水処理装置。
3. An aeration device for agitating the inside of the membrane filtration tank, and an agitation preventing member for preventing sludge settled in the membrane filtration tank from being agitated again by the agitation of the aeration device is provided. The wastewater treatment device according to claim 1 or 2, wherein:
JP10197059A 1998-07-13 1998-07-13 Waste water discharging section Pending JP2000024646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10197059A JP2000024646A (en) 1998-07-13 1998-07-13 Waste water discharging section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10197059A JP2000024646A (en) 1998-07-13 1998-07-13 Waste water discharging section

Publications (1)

Publication Number Publication Date
JP2000024646A true JP2000024646A (en) 2000-01-25

Family

ID=16368041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10197059A Pending JP2000024646A (en) 1998-07-13 1998-07-13 Waste water discharging section

Country Status (1)

Country Link
JP (1) JP2000024646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188498A (en) * 2007-02-01 2008-08-21 Kobelco Eco-Solutions Co Ltd Treatment method and treatment equipment for water to be treated

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188498A (en) * 2007-02-01 2008-08-21 Kobelco Eco-Solutions Co Ltd Treatment method and treatment equipment for water to be treated
JP4536740B2 (en) * 2007-02-01 2010-09-01 株式会社神鋼環境ソリューション Treatment method and treatment equipment for treated water

Similar Documents

Publication Publication Date Title
CA2284740A1 (en) A system for purification of domestic household effluent
JP4671434B2 (en) Ammonia inhibition suppression type methane fermentation equipment
JP4031800B2 (en) Freeze-concentrated wastewater treatment equipment for reused water recovery
KR100783353B1 (en) Method for the treatment of wastewater using freeze concentration
CN101935110A (en) Method for treating and recycling hot-rolling high-oil-containing waste water in iron and steel plant
JP2000024646A (en) Waste water discharging section
CN116081895A (en) Turbid circulating water treatment system matched with steel slag production line
JP2000061450A (en) Waste water treatment device and waste water treatment
KR100783356B1 (en) Method for the treatment of wastewater using freeze concentration
JP3358322B2 (en) Anaerobic treatment equipment
JP3366258B2 (en) Method and apparatus for evaporating and concentrating sulfuric acid-containing wastewater
JP2000024641A (en) Waste water discharging section and treatment of waste water
CN114477585A (en) Garbage filter pressing and filtering device adopting progressive freezing and combined thawing treatment and working method
JP2000024645A (en) Waste water discharging section and treatment of waste water
JP2000024642A (en) Waste water discharging section and treatment of waste water
KR20010016875A (en) Method and Apparatus of Freeze Concentration for Wastewater Treatment
JP3692349B2 (en) Sludge dewatering method
JP2000024644A (en) Waste water discharging section and treatment of waste water
JP2000024643A (en) Waste water discharging section
JPH09327689A (en) Waste water recycling system
JPH0824891A (en) Biological treatment of garbage and its device
JPH0691141A (en) Recovering method of waste water from rice washing, and device therefor
CN109704507A (en) A kind of Treatment of Wastewater from Wool Washing system
KR0183432B1 (en) Treatment apparatus of anaerobic waste water
CN112811721B (en) Comprehensive water-saving production system and method for whole process of polycrystalline silicon production by GCL method