JP2000024644A - Waste water discharging section and treatment of waste water - Google Patents
Waste water discharging section and treatment of waste waterInfo
- Publication number
- JP2000024644A JP2000024644A JP10197057A JP19705798A JP2000024644A JP 2000024644 A JP2000024644 A JP 2000024644A JP 10197057 A JP10197057 A JP 10197057A JP 19705798 A JP19705798 A JP 19705798A JP 2000024644 A JP2000024644 A JP 2000024644A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- storage tank
- wastewater
- heat storage
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 78
- 238000007599 discharging Methods 0.000 title description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 226
- 238000005338 heat storage Methods 0.000 claims abstract description 97
- 239000007787 solid Substances 0.000 claims abstract description 84
- 238000007710 freezing Methods 0.000 claims abstract description 34
- 230000008014 freezing Effects 0.000 claims abstract description 34
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 22
- 238000000926 separation method Methods 0.000 claims abstract description 22
- 238000010257 thawing Methods 0.000 claims abstract description 21
- 238000001914 filtration Methods 0.000 claims abstract description 15
- 238000001035 drying Methods 0.000 claims description 49
- 238000004065 wastewater treatment Methods 0.000 claims description 39
- 230000008929 regeneration Effects 0.000 claims description 31
- 238000011069 regeneration method Methods 0.000 claims description 31
- 238000003860 storage Methods 0.000 claims description 24
- 238000004140 cleaning Methods 0.000 claims description 14
- 239000010806 kitchen waste Substances 0.000 claims description 13
- 238000011084 recovery Methods 0.000 claims description 11
- 239000002918 waste heat Substances 0.000 claims description 11
- 239000012141 concentrate Substances 0.000 claims 2
- 230000001112 coagulating effect Effects 0.000 claims 1
- 239000010813 municipal solid waste Substances 0.000 abstract description 22
- 238000012423 maintenance Methods 0.000 abstract description 8
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 230000003311 flocculating effect Effects 0.000 abstract 1
- 239000010865 sewage Substances 0.000 description 32
- 238000000746 purification Methods 0.000 description 23
- 230000000694 effects Effects 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 238000005345 coagulation Methods 0.000 description 9
- 230000015271 coagulation Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 230000002776 aggregation Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000010802 sludge Substances 0.000 description 5
- 238000004220 aggregation Methods 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000012424 Freeze-thaw process Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000011001 backwashing Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000011086 high cleaning Methods 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000011403 purification operation Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 239000011232 storage material Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- -1 aluminum ions Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Processing Of Solid Wastes (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Sludge (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、マンション等から
排出される厨芥排水の浄化に係り、特に厨芥固形分を蓄
熱媒体として電源廃熱や工業廃熱及び夜間電力を利用し
て氷蓄熱しそのエネルギーを利用する排水処理装置及び
排水処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the purification of kitchen wastewater discharged from condominiums and the like, and in particular, ice storage using solid waste of kitchen waste as a heat storage medium by utilizing power waste heat, industrial waste heat and nighttime electric power. The present invention relates to a wastewater treatment device and a wastewater treatment method that utilize energy.
【0002】[0002]
【従来の技術】家電・コンピュータ・空調機器等の普及
により電力需要は年々急増し、特に夏期のピーク負荷は
増大傾向にある一方で、環境保全や発電所立地の困難等
の問題も多く電力設備を増強することも困難な状況にあ
る。このような中で、近年、余剰の安価な夜間電力等を
利用して夜の間に冷熱を貯蔵し昼間のピーク電力を平準
化する方法として、氷蓄熱を利用する方法が新築商業ビ
ルを中心に普及拡大してきている。2. Description of the Related Art With the spread of home appliances, computers, air conditioners, etc., the demand for electric power has been increasing rapidly year by year, and the peak load especially in summer has been increasing. However, there are many problems such as environmental conservation and difficulty in locating a power plant. It is also difficult to increase the power. Under these circumstances, in recent years, as a method of storing excess heat during the night by using surplus inexpensive nighttime power and leveling the peak power in the daytime, the method using ice heat storage has been mainly used for newly built commercial buildings. It has been spreading.
【0003】従来の氷蓄熱方法は、断熱密閉構造の氷蓄
熱槽内に充填された水道水等の冷媒又は蓄熱材に外部熱
源を介して冷熱が供給され、氷温下まで冷却されて凍結
処理されることとで冷熱エネルギーを氷の状態で貯蔵
し、必要時には断熱貯蔵された氷を融解して冷熱を回収
利用するというのがその基本である。[0003] In the conventional ice heat storage method, cold heat is supplied via an external heat source to a coolant or heat storage material such as tap water filled in an ice heat storage tank having an adiabatic closed structure, and cooled to a temperature below ice temperature to perform a freezing process. The basic principle is that the cold energy is stored in the form of ice, and the adiabatic stored ice is melted to recover and use the cold when necessary.
【0004】他方、水の使用量も年々増大しており限ら
れた水資源を汚れたまま垂れ流しにしないで、再利用す
るかもしくは環境に悪影響を与えないように浄化して放
水し、トータル的に水資源を保全していくことも重要な
取組みであるとの認識も高まっている。このような水資
源の保全に関しても、近年では、工場や企業単位、或い
は、地域単位で排水処理を行い浄化処理水を中水として
水洗トイレ用水や散水用水に再利用するようになり、新
築マンションや新興団地等の住居用地域でも同様の水再
利用の取組みが始まっている。On the other hand, the amount of water used is increasing year by year, and limited water resources are not polluted and drained, but are reused or purified and discharged so as not to have an adverse effect on the environment. There is increasing recognition that conserving water resources is also an important initiative. In recent years, regarding the conservation of water resources, wastewater has been treated in factories, companies, or regions, and purified water has been reused as flush water for flush toilets and sprinkling water. Similar water reuse initiatives have also begun in residential areas such as and residential complexes.
【0005】また、レストランの厨房や家庭の台所で発
生する生ゴミ等の厨芥物の処理も、可燃ゴミの3割を占
め水分が多いために高温燃焼しにくく、家庭で廃棄処理
する上で最も嫌がられるものの1つである。[0005] In addition, kitchen waste such as garbage generated in restaurant kitchens and home kitchens is difficult to burn at high temperature because it accounts for 30% of combustible garbage and has a large amount of water. It is one of the hated things.
【0006】厨芥物の処理においても前述の水処理に取
り込み、厨芥物を水処理浄化するシステムや汚水と共に
一括浄化するシステムが提案されてきており、厨房や台
所から直接的に処分されることもあって、ゴミ処分の手
間も省けるシステムとして注目されてきている。[0006] In the treatment of kitchen garbage, a system for purifying kitchen garbage with water and a system for purifying the kitchen garbage together with sewage have been proposed. Therefore, it has been attracting attention as a system that can save the trouble of garbage disposal.
【0007】以上のように、氷蓄熱によるエネルギーの
平準化と厨芥物を含む排水処理は、環境保全及び住環境
改善に効果が大きく、また、両システムは共に液体を利
用または処理するという点で共通している。この共通点
に着目して、蓄熱機能と水処理機能をドッキングさせた
システムも既に提案され、たとえばビルディング等から
出る排水を直接利用して製氷し氷蓄熱する蓄熱方法が、
特開平6−18069号や特開平10−73290公報
に提案されている。[0007] As described above, the leveling of energy by ice storage and the treatment of wastewater containing kitchen waste are highly effective for environmental preservation and improvement of the living environment, and both systems use or treat liquid. Have in common. Focusing on this common point, a system in which the heat storage function and the water treatment function are docked has already been proposed.For example, a heat storage method for making ice and storing ice by directly using wastewater from a building or the like has been proposed.
It has been proposed in JP-A-6-18069 and JP-A-10-73290.
【0008】特開平6−18069号公報に記載されて
いる氷蓄熱方法は、氷蓄熱槽内に導入された処理下水の
中に浸漬した伝熱管に冷媒供給装置から冷媒を供給循環
させて伝熱管周りに部分的に製氷し、後に残る不凍結残
水を槽外に排出する構成としたものであり、図4にその
概略を示す。An ice heat storage method described in Japanese Patent Application Laid-Open No. 6-18069 discloses a method of supplying and circulating a refrigerant from a refrigerant supply device to a heat transfer tube immersed in treated sewage introduced into an ice heat storage tank. It is configured to partially make ice around and discharge remaining unfrozen residual water to the outside of the tank. FIG.
【0009】図4において、被処理下水は下水受槽10
1に貯留され、下水送りポンプ102により取り出して
スクリーン装置103に送られ、粗ごみなどが除去され
る。スクリーン装置103で除去された粗ごみ類は排水
槽104に排出される。そして、粗ごみ類が除去された
被処理下水は油水分離装置105に送られて油分が分離
され、油分は排水槽104に排出され、粗ごみ類および
油分を除いた被処理下水は処理下水受槽106に貯留さ
れる。In FIG. 4, the sewage to be treated is a sewage receiving tank 10.
1 and is taken out by the sewage feed pump 102 and sent to the screen device 103 to remove coarse dust and the like. The refuse removed by the screen device 103 is discharged to a drain tank 104. Then, the sewage to be treated from which the refuse is removed is sent to an oil-water separator 105 to separate the oil component, the oil component is discharged to a drainage tank 104, and the sewage to be treated excluding the refuse and the oil component is supplied to a treatment sewage receiving tank. Stored in 106.
【0010】氷蓄熱槽108内では、伝熱管に冷媒供給
装置から冷媒を供給循環させて伝熱管周りに製氷し、そ
の後に残る不凍結残水は残水排出ポンプ109により槽
外に排出される。氷蓄熱槽108内から不凍結残水を排
出する段階で、処理下水受槽106から一部の処理下水
を残水冷熱回収用熱交換器110に通して氷蓄熱槽10
8から排出される不凍結残水と冷熱交換を行い、不凍結
残水の保有する冷熱を処理下水に回収して冷処理下水と
して冷処理下水受槽111に貯留する。In the ice heat storage tank 108, a refrigerant is supplied from the refrigerant supply device to the heat transfer tube and circulated to make ice around the heat transfer tube, and the remaining non-freezing residual water remaining thereafter is discharged out of the tank by the residual water discharge pump 109. . At the stage of discharging the unfrozen residual water from inside the ice heat storage tank 108, a part of the treated sewage is passed from the treated sewage receiving tank 106 through the heat exchanger 110 for recovering residual water cooling heat, and the ice heat storage tank 10
The non-freezing residual water discharged from 8 is subjected to cold heat exchange, and the cold stored in the non-freezing residual water is collected in the treated sewage and stored in the cold treated sewage receiving tank 111 as the cold treated sewage.
【0011】処理下水受槽106からの残りの処理下水
は中水冷熱回収用熱交換器118に通して冷処理下水受
槽111に貯留し、冷処理下水送りポンプ112によっ
て氷蓄熱槽108に送り込まれる。冷処理下水受槽11
1からの冷処理下水が氷蓄熱槽108から不凍結残水を
排水したあと、冷中水受槽116から冷中水循環ポンプ
121によって冷中水を氷蓄熱槽108に注入し、この
中水を負荷循環水として冷熱供給用熱交換器114およ
びポンプ113を含む負荷循環水ラインに循環させて、
伝熱管周りの氷の保有する冷熱を冷熱供給用熱交換器1
14を通して負荷115に供給する。[0011] The remaining treated sewage from the treated sewage receiving tank 106 is stored in the chilled sewage receiving tank 111 through the middle water chilled heat recovery heat exchanger 118 and sent to the ice heat storage tank 108 by the chilled sewage feed pump 112. Cold treatment sewage receiving tank 11
After the cold treated sewage from 1 drains the unfrozen residual water from the ice heat storage tank 108, the cold water is injected into the ice heat storage tank 108 from the cold water receiving tank 116 by the cold water circulation pump 121, and the cold water is loaded. Circulating water as a circulating water through a load circulating water line including a cold heat supply heat exchanger 114 and a pump 113,
A heat exchanger 1 for supplying cold energy to the cold stored by the ice around the heat transfer tubes.
14 to a load 115.
【0012】冷熱供給用熱交換器114において冷熱の
回収が完了した氷蓄熱槽108中の氷解水を含む中水
は、冷中水として冷中水受槽116に排出し貯留され
る。冷中水受槽116から冷中水を冷中水送りポンプ1
17により取り出し、中水冷熱回収用熱交換器118に
通して処理下水と冷熱交換を行い、冷中水の保有する冷
熱を処理下水に回収する。この冷熱が回収された冷中水
は中水として中水槽119に貯留され、中水供給ポンプ
120により適宜に取り出されて便所用水などに使用さ
れる。The cold water containing the thawed water in the ice heat storage tank 108 from which the cold heat has been completely recovered in the cold heat supply heat exchanger 114 is discharged as cold cold water into the cold cold water receiving tank 116 and stored. Cold and middle water feed pump 1 from the cold and middle water receiving tank 116
The cold water is taken out by 17 and passed through a heat exchanger 118 for recovering cold water from middle water to exchange heat with the treated sewage, and the cold stored in the cold water is recovered in the treated sewage. The cold water from which the cold energy has been recovered is stored in the middle water tank 119 as middle water, and is appropriately taken out by the middle water supply pump 120 and used as toilet water.
【0013】一方、特開平10−73290号公報に記
載のものは、氷製造部と蓄熱水槽を分離したもので、氷
蓄熱槽では製氷しないで、汚水はまず製氷機にかけられ
て製造した氷のみを分離し蓄熱水槽で氷の蓄積を行い、
氷以外の排水は製氷機から排出する構成としたものであ
る。図5にその概略を示す。On the other hand, the apparatus disclosed in Japanese Patent Application Laid-Open No. Hei 10-73290 is one in which an ice producing unit and a heat storage water tank are separated from each other, and ice is not made in the ice heat storage tank. And accumulate ice in the heat storage water tank,
Wastewater other than ice is discharged from the ice machine. FIG. 5 shows the outline.
【0014】ビルディング等から出る各種排水は排水槽
201に貯蔵され、製氷機202に送られる。製氷機2
02は監視制御装置203によつて制御された夜間電力
により純粋な氷を製造するもので、この製氷機202で
製造された純氷は、氷蓄熱水槽204に蓄積される。製
氷機202は汚水を分離する機能が備えられたもので、
製氷機202で分離された汚水は、汚水処理装置205
に導入される。また、負荷側空調機206に使用した復
水も復水貯水槽207に導入され、復水も定期的に製氷
機202で純氷にされる。Various wastewaters from buildings and the like are stored in a drainage tank 201 and sent to an ice maker 202. Ice machine 2
Numeral 02 is for producing pure ice by nighttime electric power controlled by the monitoring control device 203. Pure ice produced by the ice making machine 202 is accumulated in an ice heat storage water tank 204. The ice maker 202 is provided with a function of separating sewage,
The sewage separated by the ice making machine 202 is supplied to a sewage treatment apparatus 205.
Will be introduced. The condensate used for the load side air conditioner 206 is also introduced into the condensate water storage tank 207, and the condensate is also periodically made into pure ice by the ice maker 202.
【0015】[0015]
【発明が解決しようとする課題】しかしながら従来の蓄
熱操作できるようにした排水処理装置では、氷蓄熱にお
いて凍結させるのは排水中の一部の水分だけである。し
たがって、単に一部の水を再利用するのみで蓄熱槽にお
ける凍結処理によるメリットが十分に活かされていな
い。また、蓄熱槽とは別に排水処理槽を設備する必要が
あり、構造が複雑になるとともに設置面積も広く確保し
なければならない。However, in a conventional wastewater treatment apparatus capable of performing heat storage operation, only a part of the water in the wastewater is frozen in the ice heat storage. Therefore, the advantage of the freezing treatment in the heat storage tank is not fully utilized simply by reusing a part of the water. In addition, it is necessary to provide a wastewater treatment tank separately from the heat storage tank, which requires a complicated structure and a large installation area.
【0016】また、特に厨芥物や汚水の排水処理を行う
場合、沈降固形分の発生は避けられないので、最終処理
としての厨芥排水の定期的な引き抜きが必要となる。こ
のため、排水処理の運用コストが高くなると共に水の再
利用の観点からは無駄に水を廃棄することになる。In particular, in the case of wastewater treatment of kitchen refuse and sewage, generation of settled solids is inevitable, so that it is necessary to periodically extract kitchen wastewater as final treatment. For this reason, the operating cost of the wastewater treatment increases, and water is wasted from the viewpoint of water reuse.
【0017】さらに、先の公報に記載の従来の排水処理
装置では、氷蓄熱を利用して排水中の一部の水を回収す
るが、固形成分は不凍結残水の形で排出するため、この
ような固形物を分離する場合、濃度管理の必要な凝集添
加物を必要とするので常時メンテナンス要員を配置した
り、スクリーン又は浮上分離装置等の付帯設備等が必要
となる。特に、汚泥の脱水は汚泥を構成する成分の大き
さが小さくて目詰まりし易いので、システムが複雑にな
る傾向がある。Further, in the conventional wastewater treatment apparatus described in the above publication, a part of water in the wastewater is recovered by using ice heat storage. However, since solid components are discharged in the form of unfrozen residual water, In the case of separating such solid matter, a coagulation additive requiring concentration control is required, so that maintenance personnel are always required, and additional equipment such as a screen or a flotation device is required. In particular, the system for dewatering sludge tends to be complicated because the components constituting the sludge are small in size and easily clogged.
【0018】また、最新の排水浄化技術の1つとして電
解浄化方法があるが、この電解浄化方法においても電解
処理後処理水の固液分離が十分でないほか、電解電極の
再生処理にも大きな負担を伴うという問題がある。As one of the latest wastewater purification techniques, there is an electrolytic purification method. In this electrolytic purification method, solid-liquid separation of the treated water after the electrolytic treatment is not sufficient, and a heavy burden is imposed on the regeneration treatment of the electrolytic electrode. There is a problem that accompanies.
【0019】そこで、本発明において解決すべき課題
は、蓄熱によるエネルギーの有効利用と汚泥の抜取り作
業等のメンテナンスを軽減するとともに排出物の環境負
荷を軽減できしかも固形物の分離を促して効率的な排水
浄化できるようにすることにある。Therefore, the problem to be solved in the present invention is to reduce the burden on the environment by effectively utilizing energy by heat storage, reducing maintenance such as sludge extraction work, and reducing the environmental load of discharged materials. To purify wastewater.
【0020】[0020]
【課題を解決するための手段】本発明の排水処理装置
は、厨芥等を含む排水が流入する氷蓄熱槽と、前記氷蓄
熱槽内に配設され前記排水を電解して含有固形成分を凝
集処理する電解電極と、前記電解電極に電圧を印加して
制御する電解制御部と、前記氷蓄熱槽内の凝集処理され
た排水に冷熱を与えて含有固形成分を凍結速度の違いに
より濃縮分離するとともに、この凍結した排水を解凍す
る熱併給装置と、前記熱併給装置の解凍操作により前記
氷蓄熱槽内に生成される融解水を濾過する融解水分離部
を備えたことを特徴とする。According to the present invention, there is provided a wastewater treatment apparatus comprising: an ice heat storage tank into which wastewater including kitchen wastes flows; and an electrolysis system for the wastewater disposed in the ice heat storage tank to coagulate solid components contained therein. An electrolytic electrode to be treated, an electrolytic control unit for controlling by applying a voltage to the electrolytic electrode, and condensed and separated solid components contained in the ice heat storage tank by a difference in freezing rate by giving cold heat to the coagulated wastewater. In addition, it is characterized by comprising a cogeneration unit for thawing the frozen wastewater, and a molten water separation unit for filtering the molten water generated in the ice heat storage tank by the thawing operation of the cogeneration unit.
【0021】この構成によれば、電解凝集と濃縮分離に
より厨芥排水から固形物の徹底した分離と、浄化処理に
よる水の再利用と、蓄熱によるエネルギー有効利用が可
能となる。According to this structure, thorough separation of solid matter from kitchen wastewater by electrolytic coagulation and concentration separation, reuse of water by purification treatment, and effective use of energy by heat storage become possible.
【0022】[0022]
【発明の実施の形態】請求項1に記載の発明は、厨芥等
を含む排水が流入する氷蓄熱槽と、前記氷蓄熱槽内に配
設され前記排水を電解して含有固形成分を凝集処理する
電解電極と、前記電解電極に電圧を印加して制御する電
解制御部と、前記氷蓄熱槽内の凝集処理された排水に冷
熱を与えて含有固形成分を凍結速度の違いにより濃縮分
離するとともに、この凍結した排水を解凍する熱併給装
置と、前記熱併給装置の解凍操作により前記氷蓄熱槽内
に生成される融解水を濾過する融解水分離部を備えたこ
とを特徴とする排水処理装置であるから、電解凝集と濃
縮分離により排水からの固形物の徹底した分離と、浄化
処理による水の再利用と、蓄熱によるエネルギー有効利
用を同時に行なえるという作用を有する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 is an ice heat storage tank into which waste water including kitchen wastes flows in, and an electrolytic treatment of the waste water disposed in the ice heat storage tank to coagulate solid components contained therein. Electrolyte electrode, and an electrolysis control unit that controls by applying a voltage to the electrolysis electrode, while concentrating and separating contained solid components by the difference in freezing rate by giving cold heat to the coagulated wastewater in the ice heat storage tank. A wastewater treatment apparatus, comprising: a cogeneration unit that thaws the frozen wastewater; and a meltwater separation unit that filters the meltwater generated in the ice heat storage tank by the thawing operation of the cogeneration unit. Therefore, there is an effect that thorough separation of solids from wastewater by electrolytic coagulation and concentration separation, reuse of water by purification treatment, and effective use of energy by heat storage can be simultaneously performed.
【0023】請求項2に記載の発明は、氷蓄熱槽内に残
留したペースト状固形物を受容して乾燥処理を行う乾燥
装置を備えた請求項1記載の排水処理装置であるから、
厨芥等を含む排水の浄化処理から固形成分の乾燥処理ま
での一連の処理と蓄熱によるエネルギー有効利用を1つ
のシステムで実施できるとともに、凝集処理された固形
成分の引き抜きが不要となり、かつ、固形成分を乾燥物
に加工するので保管及び取扱いが容易となり、メンテナ
ンスに要する費用や作業工数を削減できるという作用を
有する。According to a second aspect of the present invention, there is provided the wastewater treatment apparatus according to the first aspect, further comprising a drying device for receiving a paste-like solid remaining in the ice heat storage tank and performing a drying process.
A series of processes from purification of waste water including kitchen waste to drying of solid components and effective use of energy by heat storage can be carried out in one system, and it is not necessary to pull out solid components that have been subjected to coagulation treatment. Is processed into a dried product, which facilitates storage and handling, and has the effect of reducing maintenance costs and man-hours.
【0024】請求項3に記載の発明は、乾燥装置には、
乾燥処理で蒸発した水分を回収するドレン回収部が設け
られていることを特徴とする請求項2記載の排水処理装
置であるから、乾燥処理で蒸発する水分をドレンとして
回収できるから、乾燥処理時の蒸気の拡散に伴う臭気の
拡散を防止でき、かつ、乾燥装置内の湿度を低下させる
ので乾燥温度を低くしても効率よく乾燥できるという作
用を有する。According to a third aspect of the present invention, in the drying device,
3. The wastewater treatment device according to claim 2, further comprising a drain recovery unit that recovers water evaporated in the drying process, wherein the water evaporated in the drying process can be recovered as a drain. This has the effect of preventing the diffusion of the odor due to the diffusion of the steam and reducing the humidity in the drying device, so that the drying can be performed efficiently even when the drying temperature is lowered.
【0025】請求項4に記載の発明は、電解電極には電
極用熱交換器が設けられ、前記電極用熱交換器による熱
交換で前記電解電極の表面の付着物を除去することを特
徴とする請求項1から3のいずれかに記載の排水処理装
置であるから、電極表面を常にきれいな状態に維持でき
るので電解処理の性能が安定するという作用を有する。The invention according to claim 4 is characterized in that a heat exchanger for an electrode is provided on the electrolytic electrode, and the deposits on the surface of the electrolytic electrode are removed by heat exchange by the heat exchanger for the electrode. Since the wastewater treatment apparatus according to any one of claims 1 to 3, the electrode surface can always be kept in a clean state, and thus has the effect of stabilizing the performance of the electrolytic treatment.
【0026】請求項5に記載の発明は、電解電極とペア
を組んだ再生用電極を備え、電解制御部によって制御さ
れることを特徴とする請求項1から4のいずれかに記載
の排水処理装置であるから、電解電極と再生電極との間
で逆電洗浄動作させることで電解電極の性能回復が図れ
るという作用を有する。According to a fifth aspect of the present invention, there is provided the wastewater treatment according to any one of the first to fourth aspects, further comprising a regeneration electrode paired with the electrolysis electrode, and controlled by an electrolysis controller. Since the device is a device, the performance of the electrolytic electrode can be recovered by performing a reverse cleaning operation between the electrolytic electrode and the regeneration electrode.
【0027】請求項6に記載の発明は、電極用熱交換器
により電解電極と再生用電極の付近だけが解凍されてい
るときに、電解制御部が前記電解電極と前記再生用電極
に通電して洗浄動作させることを特徴とする請求項5記
載の排水処理装置であるから、氷蓄熱槽内の処理水全体
に対して逆電洗浄の影響を与えることなく、狭い範囲で
効率よく電解電極の洗浄再生ができるという作用を有す
る。According to a sixth aspect of the present invention, when only the vicinity of the electrolysis electrode and the regeneration electrode is defrosted by the electrode heat exchanger, the electrolysis control unit supplies electricity to the electrolysis electrode and the regeneration electrode. 6. The wastewater treatment apparatus according to claim 5, wherein the wastewater treatment apparatus performs the cleaning operation by efficiently performing the cleaning of the electrolytic electrode in a narrow range without affecting the whole of the treated water in the ice heat storage tank by the backwashing. It has the effect that washing and regeneration can be performed.
【0028】請求項7に記載の発明は、氷蓄熱槽に厨芥
等を含む排水を流入し、この排水を電解して含有固形成
分を凝集させ、さらに冷熱を与えて凍結速度の違いによ
って濃縮分離し、その後凍結した排水を解凍して濃縮分
離された含有固形成分中から脱水するとともに濾過し、
ペースト状固形物を残留させるとともに濾過水を浄化処
理することを特徴とする排水処理方法であるから、電解
凝集と濃縮分離によって排水から固形物の徹底した分離
と、浄化処理による水の再利用と、蓄熱によるエネルギ
ー有効利用を同時に行なえるという作用を有する。According to a seventh aspect of the present invention, wastewater containing garbage or the like flows into an ice heat storage tank, and the wastewater is electrolyzed to coagulate the solid components contained therein. After that, the frozen wastewater is thawed and dewatered from the solid components that have been concentrated and separated, and filtered,
This wastewater treatment method is characterized by leaving paste-form solids and purifying filtered water.Thus, thorough separation of solids from wastewater by electrolytic coagulation and concentration separation, and reuse of water by purification treatment In addition, there is an effect that energy can be effectively used by heat storage at the same time.
【0029】請求項8に記載の発明は、残留したペース
ト状固形物を乾燥処理することを特徴とする請求項7記
載の排水処理方法であるから、厨芥等を含む排水の浄化
処理から固形成分の乾燥処理までの一連の処理と蓄熱に
よるエネルギー有効利用を1つのシステムで実施できる
とともに、凝集処理された固形成分の引き抜きが不要と
なり、かつ、固形成分を乾燥物に加工するので保管及び
取扱いが容易となり、メンテナンスに要する費用や作業
工数を削減できるという作用を有する。[0029] The invention according to claim 8 is the wastewater treatment method according to claim 7, characterized in that the remaining paste-like solid matter is subjected to a drying treatment. A series of processes up to the drying process and the effective use of energy by heat storage can be performed by one system, and the solid component that has been subjected to agglomeration treatment is not required to be drawn out. This has the effect of facilitating maintenance and reducing costs and man-hours required for maintenance.
【0030】請求項9に記載の発明は、乾燥処理を氷蓄
熱槽内の排水の凍結処理と同時に行い、前記凍結処理で
発生した廃熱を前記乾燥処理に用いることを特徴とする
請求項6記載の排水処理方法であるから、ペースト状固
形物の乾燥に必要なエネルギーに廃熱を有効利用できる
ので、省エネルギー化を図ることができるという作用を
有する。According to a ninth aspect of the present invention, the drying process is performed simultaneously with the freezing process of the wastewater in the ice heat storage tank, and the waste heat generated by the freezing process is used for the drying process. According to the wastewater treatment method described above, waste heat can be effectively used for energy required for drying the paste-like solid matter, and thus it has an effect of achieving energy saving.
【0031】なお、本発明において、濃縮分離とは、厨
芥排水を凍結するときに水と含有固形成分の凍結速度の
違いから、清浄な水の方から凍結し、このために含有固
形成分は徐々に濃縮されて変性凝集し、その後に解凍す
ると水分は容易に脱水されて最後に固形分がペースト状
になって残留することをいう。In the present invention, the concentration separation means that when the garbage wastewater is frozen, the solid content is gradually frozen because of the difference in the freezing speed between water and the solid component. Is concentrated and denatured and agglomerated, and when thawed thereafter, the water is easily dehydrated, and finally, the solid content remains in the form of a paste.
【0032】以下、図面に示す実施の形態により本発明
を具体的に説明する。図1は本発明の一実施の形態によ
る排水処理装置の全体構成図を示す。Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. FIG. 1 shows an overall configuration diagram of a wastewater treatment apparatus according to an embodiment of the present invention.
【0033】図1において、排水処理装置1は、厨芥物
を含む厨芥排水や雑排水を一次的に貯留し後段の処理量
を調整するための一次貯留槽2、一次貯留槽2からの排
水を電解処理と凍結融解処理の傍ら蓄熱槽としての効果
を発揮する氷蓄熱槽3、氷蓄熱槽3で分離された固形物
を乾燥処理する乾燥装置5、主に氷蓄熱槽3を冷却・加
熱する熱エネルギーを発生及び利用する熱併給装置6、
乾燥処理された固形物を保管する乾燥物容器7を備えた
ものである。熱併給装置6には、この熱併給装置6から
の冷温熱の供給を受けてビル内や室内の空調を行う空調
ユニット8が接続されている。また、一次貯留槽2は、
トイレ及び洗面所や洗濯機やお風呂から出される汚水・
雑排水を供給する下水配管10を接続したもので、この
下水配管10にはビルの厨房や家庭の台所に設置されて
生ゴミを粉砕処理するためのディスポーザ9からの流路
が連結されている。In FIG. 1, a wastewater treatment apparatus 1 is a primary storage tank 2 for temporarily storing kitchen wastewater and miscellaneous wastewater including kitchen waste and adjusting the amount of wastewater discharged from the primary storage tank 2. An ice heat storage tank 3 that exhibits an effect as a heat storage tank besides the electrolytic processing and the freeze-thaw processing, a drying device 5 that performs a drying process on solids separated in the ice heat storage tank 3, and mainly cools and heats the ice heat storage tank 3. Cogeneration device 6, which generates and uses heat energy,
It is provided with a dried product container 7 for storing the dried solid product. An air conditioning unit 8 that receives the supply of cold and hot heat from the heat cogeneration device 6 and performs air conditioning in a building or a room is connected to the heat cogeneration device 6. In addition, the primary storage tank 2
Sewage from toilets, washrooms, washing machines, and baths
A sewage pipe 10 for supplying miscellaneous wastewater is connected to the sewage pipe 10, and a flow path from a disposer 9 installed in a kitchen of a building or a home kitchen for crushing garbage is connected to the sewage pipe 10. .
【0034】また、以上のような各機器の配列におい
て、排水処理装置1には、一次貯留槽2に貯留された排
水を氷蓄熱槽3に移送制御するための排水供給ポンプ1
1、氷蓄熱槽3で分離された固形物を乾燥装置5に移送
制御する固形物排出ポンプ12、氷蓄熱槽3で分離され
た液体分を一次貯留槽2に移送制御する液体排出ポンプ
3、氷蓄熱槽3における解凍時に得られる初期融解水を
放水する初期融解水放水ポンプ14、乾燥装置5内で発
生する水蒸気をドレンとして回収した後にそのドレン水
を移送制御するドレン排出ポンプ15、乾燥装置5で乾
燥処理された固形物を乾燥物容器7に移送制御する乾燥
固形物排出ポンプ16をそれぞれ配置する。In the arrangement of the above-described devices, the wastewater treatment apparatus 1 includes a wastewater supply pump 1 for controlling the transfer of wastewater stored in the primary storage tank 2 to the ice heat storage tank 3.
1, a solids discharge pump 12 for controlling the transfer of the solids separated in the ice heat storage tank 3 to the drying device 5, a liquid discharge pump 3 for controlling the transfer of the liquid separated in the ice heat storage tank 3 to the primary storage tank 2, An initial melt water discharge pump 14 for discharging the initial melt water obtained at the time of thawing in the ice heat storage tank 3, a drain discharge pump 15 for transferring and controlling the drain water after collecting water vapor generated in the drying device 5 as a drain, and a drying device Dry solid discharge pumps 16 for controlling the transfer of the solids dried in 5 to the dry matter container 7 are arranged.
【0035】氷蓄熱槽3の内部には、解凍時に得られる
初期融解水を濾過する初期融解水濾過部21aと、解凍
処理時に解凍水を取り出して固形物を濾過残留させるた
めの解凍水濾過部21bとを設け、浄化された処理水を
中水利用施設等に配水するための放水配管26を初期融
解水濾過部21a部分に接続している。また、氷蓄熱槽
3内の排水を電解処理するための第1電解電極41と第
2電解電極42とを組込み、これらの第1電解電極,第
2電解電極41,41には電解に必要な電圧を印加制御
する電解電源43を接続している。Inside the ice heat storage tank 3, there is provided an initial melt water filtering section 21a for filtering the initial melt water obtained at the time of thawing, and a thaw water filter section for taking out the thawing water at the time of thawing processing and filtering and remaining solids. 21b, and a water discharge pipe 26 for distributing the purified treated water to an intermediate water utilization facility or the like is connected to the initial molten water filtration section 21a. In addition, a first electrolytic electrode 41 and a second electrolytic electrode 42 for electrolytically treating wastewater in the ice heat storage tank 3 are incorporated, and the first electrolytic electrode and the second electrolytic electrode 41 are required for electrolysis. An electrolytic power supply 43 for applying and controlling a voltage is connected.
【0036】熱併給装置6には、氷蓄熱槽3内の電解処
理排水を凍結融解し熱エネルギーの蓄熱を行う氷蓄熱槽
熱交換器30を接続する。熱併給装置6としては、冷熱
と温熱を発生、利用できるいかなる熱サイクル装置であ
っても良いが、発電所や工業地帯における廃熱を利用す
れば電源の使用量を削減でき省エネルギーとなりうるの
で、そのような場合は廃熱を利用できるヒートポンプ又
は吸熱冷凍サイクルのような手段が望ましい。The heat co-supply device 6 is connected to an ice heat storage tank heat exchanger 30 for freezing and thawing the electrolytically treated wastewater in the ice heat storage tank 3 and storing heat energy. As the heat cogeneration device 6, any heat cycle device that can generate and use cold and warm heat may be used. However, if waste heat in a power plant or an industrial area is used, the amount of power used can be reduced and energy can be saved. In such a case, means such as a heat pump or an endothermic refrigeration cycle that can utilize waste heat is desirable.
【0037】乾燥装置5には、熱併給装置6に接続され
ており内部露点温度より低い温度にすることで乾燥処理
で発生した水蒸気をドレンとして回収分離するドレン回
収用冷却器31を備える。そして、乾燥装置5には、熱
併給装置6に接続されていて固形物を加熱するための加
熱用熱交換器32、この加熱用熱交換器32で固形物を
加熱処理する加熱乾燥部33、ドレン回収用冷却器31
によって水蒸気をドレン水35として分離回収するドレ
ン回収部34を設ける。なお、40は熱併給装置6を運
転動作するための電源部である。The drying device 5 is provided with a drain recovery cooler 31 connected to the cogeneration device 6 for recovering and separating steam generated in the drying process as drain by setting the temperature to a temperature lower than the internal dew point. The drying device 5 includes a heating heat exchanger 32 connected to the heat co-supplying device 6 for heating the solid matter, a heating and drying unit 33 for heating the solid matter with the heating heat exchanger 32, Drain recovery cooler 31
A drain collecting section 34 for separating and collecting steam as drain water 35 is provided. Reference numeral 40 denotes a power supply unit for operating the cogeneration system 6.
【0038】以上の構成において、排出される厨芥は、
ビルの厨房や家庭の台所に設置されたディスポーザ9で
水の供給を受けながら粉砕処理され、厨芥粉砕物として
一次貯留槽2へ排出される。同時にトイレからの汚水及
び洗面所や洗濯機からの雑排水も下水配管10を介して
一次貯留槽2へ排出される。一次貯留槽2内の固形物を
含む排水等は一次貯留された後、排水供給ポンプ11に
より氷蓄熱槽3へ供給される。In the above configuration, the kitchen waste discharged is:
While being supplied with water by a disposer 9 installed in a building kitchen or a home kitchen, the water is crushed and discharged to the primary storage tank 2 as crushed garbage. At the same time, sewage from toilets and miscellaneous wastewater from washrooms and washing machines are also discharged to the primary storage tank 2 via the sewage pipe 10. After the wastewater containing solid matter in the primary storage tank 2 is primarily stored, the wastewater is supplied to the ice heat storage tank 3 by the drainage supply pump 11.
【0039】氷蓄熱槽3では、熱併給装置6と接続され
た氷蓄熱槽熱交換器30により、氷蓄熱槽3に流入する
厨芥物を含む排水を氷温下或いは氷温以上の温度にして
凍結処理と融解処理が行われる。すなわち、電解電源4
3によって第1電解電極41と第2電解電極42に電解
処理できる程度の電圧を印加することによって、氷蓄熱
槽3に溜まっている排水を電気分解する。In the ice heat storage tank 3, the waste water containing the kitchen waste flowing into the ice heat storage tank 3 is cooled to a temperature below or above the ice temperature by an ice heat storage tank heat exchanger 30 connected to the cogeneration system 6. Freezing and thawing are performed. That is, the electrolytic power source 4
By applying a voltage to the first electrolysis electrode 41 and the second electrolysis electrode 42 such that the electrolysis can be performed, the wastewater stored in the ice heat storage tank 3 is electrolyzed.
【0040】ここで、排水を電解処理することによって
排水に含まれる固形物等の微粒子を凝集沈殿させること
は従来周知の技術である。例えば、第1電解電極41を
アルミニウム製として第2電解電極42に対してプラス
になるように電解電源43を動作させると、第1電解電
極41のアルミニウムがアルミニウムイオンとして溶け
出し水酸化アルミを形成し、排水中に含まれる固形物等
の微少粒子をゼータ電位等の作用によって凝集させるこ
とができる。Here, it is a well-known technique to coagulate and precipitate fine particles such as solids contained in the wastewater by subjecting the wastewater to electrolytic treatment. For example, when the first electrolytic electrode 41 is made of aluminum and the electrolytic power supply 43 is operated so as to be positive with respect to the second electrolytic electrode 42, the aluminum of the first electrolytic electrode 41 melts as aluminum ions to form aluminum hydroxide. Further, fine particles such as solids contained in the wastewater can be aggregated by the action of zeta potential or the like.
【0041】また、特に第1電解電極41としてアルミ
ニウム等を使用せずに電解して、例えば第1電解電極4
1がプラスになるように電解電源43を動作させると、
第1電解電極41の近傍はpHが下がって酸性となり、
排水中に含まれる固形物等の微少粒子をゼータ電位等の
作用によって凝集させることができる。Further, in particular, electrolysis is performed without using aluminum or the like as the first electrolytic electrode 41, for example, the first electrolytic electrode 4
When the electrolytic power supply 43 is operated so that 1 becomes plus,
In the vicinity of the first electrolytic electrode 41, the pH decreases and becomes acidic,
Fine particles such as solids contained in the wastewater can be aggregated by the action of zeta potential or the like.
【0042】なお、溶解性の有機物等も、電解処理時に
発生する水素で還元分解処理や酸素で酸化分解処理する
ことができる。第1電解電極41の対極となる第2電解
電極42の代わりに氷蓄熱槽3のケーシングを導体とし
てもよい。また、第1電解電極41と第2電解電極42
とに印加する電圧の極性は、電解電極43の付着物の防
止のため、一定時間毎にその極性を切り換えたり交流電
圧を印加するように操作してもよい。It is to be noted that soluble organic substances and the like can also be subjected to a reductive decomposition treatment with hydrogen generated during the electrolytic treatment or an oxidative decomposition treatment with oxygen. The casing of the ice heat storage tank 3 may be used as a conductor instead of the second electrolytic electrode 42 which is a counter electrode of the first electrolytic electrode 41. Also, the first electrolytic electrode 41 and the second electrolytic electrode 42
The polarity of the voltage to be applied may be changed so as to switch the polarity or apply an AC voltage at regular intervals in order to prevent deposits on the electrolytic electrode 43.
【0043】以上のように、氷蓄熱槽3内で電解電源4
3に接続された第1電解電極41と第2電解電極42と
によって排水を電解処理することで、排水中の微粒子の
凝集を起こす。したがって、比較的大きな凝集物は氷蓄
熱槽3の下の方へ沈降していき、これによって排水処理
が行われる。As described above, in the ice heat storage tank 3, the electrolytic power source 4
The wastewater is subjected to electrolytic treatment by the first electrolytic electrode 41 and the second electrolytic electrode 42 connected to 3, thereby causing aggregation of the fine particles in the wastewater. Accordingly, relatively large aggregates settle down below the ice heat storage tank 3, thereby performing wastewater treatment.
【0044】次に、氷蓄熱槽3に一定量の排水が溜まっ
た状態になったら、熱併給装置6を運転して氷蓄熱槽熱
交換器30に冷熱を送り込み、凍結処理を開始して、凍
結させる。そして、翌日、凍結された排水は融解処理さ
れる時に氷蓄熱槽3に設けた氷蓄熱槽熱交換器30によ
って冷熱を回収供給でき、この冷熱をビル内や室内に設
置された空調ユニット8に回して冷房等の熱源として利
用する。Next, when a certain amount of wastewater is accumulated in the ice heat storage tank 3, the co-heating device 6 is operated to send cold heat to the ice heat storage tank heat exchanger 30, and the freezing process is started. Freeze. Then, on the next day, when the frozen wastewater is thawed, cold heat can be recovered and supplied by the ice heat storage tank heat exchanger 30 provided in the ice heat storage tank 3, and this cold heat is supplied to the air conditioning unit 8 installed in the building or the room. Turn to use as a heat source for cooling.
【0045】このような凍結解凍処理を行うと、電解処
理された排水中に含まれる凝集粒子は冷凍蓄熱されると
きに同時に変性処理されるため、固形物どうしがさらに
凝集されやすくなっている。また、氷蓄熱槽熱交換器3
0の位置を氷蓄熱槽3内の上方に配置すると、水の凝固
点降下の効果によって上方には清浄な水の氷が形成さ
れ、下方に行くほどに固形成分の多い水の氷が形成され
る。このため、翌日の解凍時には、初期融解水は固形成
分の少ない水として溶け出してくるので、これを初期融
解水濾過部21aから初期融解水排出ポンプ14によっ
て放水管26から排出できる。したがって、氷蓄熱槽3
内の排水は放出したきれいな水の分だけ濃縮され減量さ
れることになる。When such freeze-thaw treatment is performed, the aggregated particles contained in the electrolytically treated wastewater are denatured at the same time as the heat is stored by freezing, so that the solids are more easily aggregated. In addition, the ice storage tank heat exchanger 3
When the position of 0 is arranged in the upper part of the ice thermal storage tank 3, pure water ice is formed on the upper side by the effect of the freezing point of water, and water ice with more solid components is formed on the lower side. . For this reason, at the time of thawing the next day, the initial molten water dissolves out as water having a small solid component, and can be discharged from the discharge pipe 26 by the initial molten water discharge pump 14 from the initial molten water filtration unit 21a. Therefore, the ice thermal storage tank 3
The wastewater inside is concentrated and reduced by the amount of clean water released.
【0046】さらに解凍処理を進めると、氷蓄熱槽3内
の水分は解凍水濾過部21bの隙間を通り液体排出ポン
プ13を介して一次貯留槽2へ移送される。このとき、
氷蓄熱槽3の内部では固形物どうしが十分に凝集してい
るので、解凍水濾過部21bの間隙は排水を直接濾過す
る場合に比較して粗くでき、目詰まりの発生も少なくな
る。万一、一部の固形物が解凍水濾過部21bを通過し
たとしても一次貯留槽2へ返送されるので問題とはなら
ず、また解凍水濾過21bの性能を高めることで、解凍
水濾過部21bを通過した解凍水を放水管26から放水
してもよい。When the thawing process is further performed, the water in the ice heat storage tank 3 is transferred to the primary storage tank 2 via the liquid discharge pump 13 through the gap of the thawing water filtration unit 21b. At this time,
Since the solids are sufficiently agglomerated in the ice heat storage tank 3, the gap between the thawed water filtration units 21b can be made coarser than in the case where the wastewater is directly filtered, and the occurrence of clogging is reduced. Even if some of the solids pass through the thawed water filtration unit 21b, they are returned to the primary storage tank 2 and do not pose a problem. In addition, by improving the performance of the thawed water filtration 21b, the thawed water filtration unit is improved. The thawed water that has passed through 21b may be discharged from the water discharge pipe 26.
【0047】このような操作により、融解時に液体分が
分離され、固形物は凝集した状態で氷蓄熱槽3の底部に
残留するので容易に後段へ排出可能となる。By such an operation, the liquid component is separated at the time of melting, and the solid matter remains in the bottom of the ice heat storage tank 3 in an agglomerated state, so that it can be easily discharged to the subsequent stage.
【0048】以上の例では、氷蓄熱槽3における操作と
して先ず電解浄化処理をしてその後に凍結解凍処理する
ようにしているが、排水の固形成分濃度によっては、電
解処理のときの固形成分濃度が高い方が望ましいことが
ある。この場合は、先ず凍結解凍処理をし、初期融解水
を排出後に電解浄化処理をしてもよい。逆に、電解処理
時の固形成分濃度が低い方が望ましいときは、先ず凍結
解凍処理をして、初期融解水を排出せずに電解処理する
付近の排水の固形成分濃度を下げて電解浄化処理をする
ようにしてもよい。また、これに代えて、複数回の凍結
解凍処理の後に電解浄化処理をしたり、電解浄化処理と
凍結処理または解凍処理をすることで処理の相乗効果を
得るようにしてもよい。In the above example, as the operation in the ice heat storage tank 3, the electrolytic purification treatment is first performed, and then the freeze-thaw treatment is performed. However, depending on the solid component concentration of the wastewater, the solid component concentration during the electrolytic treatment is determined. May be higher. In this case, a freeze-thaw process may be performed first, and an electrolytic purification process may be performed after discharging the initial melt water. Conversely, when it is desirable to lower the solid component concentration during the electrolytic treatment, first perform freeze-thaw treatment to lower the solid component concentration of the wastewater near the electrolytic treatment without discharging the initial molten water, and then perform the electrolytic purification treatment. May be performed. Alternatively, the electrolytic purification process may be performed after a plurality of freeze-thaw processes, or a synergistic effect of the processes may be obtained by performing the electrolytic purification process and the freezing or thawing process.
【0049】氷蓄熱槽3で融解処理が終了した後には、
固形物排出ポンプ12によって固形物を乾燥装置5に送
り出す。乾燥装置5の動作及び作用は次のとおりであ
る。After the melting process is completed in the ice heat storage tank 3,
The solid is discharged to the drying device 5 by the solid discharge pump 12. The operation and operation of the drying device 5 are as follows.
【0050】乾燥装置5内の加熱乾燥部33には熱併給
装置6に接続された加熱用熱交換器32があり、水分を
含んでいる固形物を加熱乾燥する。また、乾燥装置5内
のドレン回収部34には内部の露点温度以下に温度調整
可能なドレン回収用冷却器31があり、加熱乾燥部33
で加熱された固形物からの水蒸気をドレン化しドレン水
35として回収しており、これによって乾燥装置5の外
部に排出される乾燥処理に伴う水蒸気排気を無くすかま
たは非常に少なくできるので、固形物の乾燥処理時に外
部へ悪臭が漏れることが抑えられ、内部湿度を低く調整
できるので固形物の加熱温度が低くても乾燥させること
ができる。The heating / drying section 33 in the drying apparatus 5 has a heating heat exchanger 32 connected to the cogeneration unit 6 for heating and drying solids containing water. The drain recovery unit 34 in the drying device 5 includes a drain recovery cooler 31 capable of adjusting the temperature to the internal dew point temperature or lower.
The water vapor from the solid material heated in the step is drained and collected as drain water 35. This makes it possible to eliminate or extremely reduce the amount of water vapor exhaustion accompanying the drying process discharged to the outside of the drying device 5. During the drying process, the odor is prevented from leaking to the outside, and the internal humidity can be adjusted to be low, so that the solid can be dried even when the heating temperature is low.
【0051】また、この乾燥処理運転を氷蓄熱槽3の凍
結処理運転時に併せて実施すると、氷蓄熱運転時に発生
する廃熱を利用できるほか、氷蓄熱槽3に送り込む冷熱
の一部をドレン回収用冷却器34に利用できるので、固
形物の乾燥処理の為だけにエネルギーを使用することな
く省エネルギー性の高いシステムが得られる。When the drying operation is performed simultaneously with the freezing operation of the ice heat storage tank 3, the waste heat generated during the ice heat storage operation can be used, and a part of the cold heat sent to the ice heat storage tank 3 can be collected by drain recovery. Since it can be used for the cooler 34, a system with high energy saving can be obtained without using energy only for drying the solid matter.
【0052】取扱いが容易な状態に乾燥処理された固形
物は、乾燥固形物排出ポンプ16により乾燥物容器7に
送られ、一定量に達するまで保管される。一方、ドレン
回収部34で回収されたドレン水35はドレン排出ポン
プ15を運転制御して放水配管26へ送られ、放水され
る。The solid matter which has been dried so that it can be easily handled is sent to the dry matter container 7 by the dry solid matter discharge pump 16 and stored until reaching a predetermined amount. On the other hand, the drain water 35 recovered by the drain recovery unit 34 is sent to the water discharge pipe 26 by controlling the operation of the drain discharge pump 15 and discharged.
【0053】なお、発電廃熱や工業廃熱があるとき、固
形物の乾燥熱源として直接加熱可能な場合は、上記のよ
うな凍結運転との併用とは別に運転しても構わない。ま
た、外部環境上許容される場合や別途脱臭装置やドレン
回収装置がある場合では、ドレン回収部34はなくても
構わない。In addition, when there is power generation waste heat or industrial waste heat, if the solid matter can be directly heated as a drying heat source, it may be operated separately from the above-mentioned freezing operation. In addition, the drain collecting section 34 may be omitted when the external environment permits or when there is a separate deodorizing device or drain collecting device.
【0054】このように、本発明では、厨芥等の固形物
及び排水浄化処理で発生する汚泥を含む混合液を蓄熱材
として用いて冷熱の貯蔵槽として利用でき、同時に凍結
解凍処理を行うことで固形物を変性処理することで固液
の分離性能を向上させ、かつ、電解浄化処理を行うこと
でいっそう効率良い排水浄化処理を行なえる。したがっ
て、排水処理設備が非常に単純でコンパクトになり、排
水処理における廃棄物となる汚泥水の引き抜き作業も不
要となり、水の有効利用の割合が増加し、さらに廃熱を
冷凍熱として回収し利用できるなど廃熱の有効利用が可
能となる。As described above, according to the present invention, a mixed solution containing solid matter such as kitchen garbage and sludge generated in wastewater purification processing can be used as a heat storage material to be used as a cold storage tank, and by simultaneously performing freeze-thaw processing. By modifying the solid, the solid-liquid separation performance is improved, and by performing the electrolytic purification, more efficient wastewater purification can be performed. Therefore, the wastewater treatment equipment is very simple and compact, eliminating the need to remove sludge water as waste in wastewater treatment, increasing the effective use of water, and recovering and using waste heat as refrigeration heat. Waste heat can be used effectively.
【0055】また、本発明では厨芥を含む排水について
の凍結解凍処理における厨芥の変成凝集が可能であり、
固液分離を容易化することができる。ここで、排水中の
厨芥の変成凝集について説明する。Further, according to the present invention, the garbage can be denatured and coagulated in the freezing and thawing treatment of wastewater containing garbage,
Solid-liquid separation can be facilitated. Here, the metamorphic aggregation of kitchen waste in drainage will be described.
【0056】粉砕された厨芥等固形物が懸濁状態になっ
ている状態では、粉砕された厨芥等固形物の粒子の周囲
に結合力の弱い間隙水が存在する。このような間隙水を
含む粉砕された厨芥等固形物を含む厨芥排水を凍結させ
ると、まず、純度が高く凝固点が高い水の所から凍結を
開始し、氷が成長していくようにして凍結する。これに
よって、固形物間に存在する間隙水は成長していく氷に
容易に吸い出されて無くなり、結果として粉砕された厨
芥物等固形物どうしは近づいて凝集する。さらに凍結温
度を下げて凍結が進むと、粉砕された厨芥物等固形物の
細胞内部の内部水が凍結して細胞壁が破壊されて内部水
も吸い出される。これによってさらに凝集性が向上する
とともに脱水性も向上する。In a state in which the crushed solid such as garbage is in a suspended state, pore water having a weak binding force is present around the particles of the crushed solid such as garbage. When freezing garbage wastewater containing solid matter such as crushed garbage containing pore water, it starts freezing from water with high purity and a high freezing point, and freezes as the ice grows. I do. As a result, the pore water existing between the solids is easily sucked out by the growing ice and disappears, and as a result, the solids such as the crushed garbage approach and aggregate. When the freezing temperature is further lowered and the freezing proceeds, the internal water inside the cells of the solid matter such as crushed garbage is frozen, the cell wall is broken, and the internal water is also sucked out. This further improves cohesion and dehydration.
【0057】以上により、凍結解凍処理した結果、懸濁
状態にあった厨芥等固形物は凝集して脱水しやすくな
り、したがって固液分離が容易に行なえるようになる。
従来ではこのような変成凝集による固液分離についての
技術思想はなく、凍結操作と変成凝集によって濃縮分離
が容易にかつ効果的に得られる。As described above, as a result of the freeze-thaw treatment, solids such as kitchen garbage that have been in a suspended state are easily aggregated and dehydrated, so that solid-liquid separation can be easily performed.
Conventionally, there is no technical idea about such solid-liquid separation by denaturing aggregation, and concentration and separation can be easily and effectively obtained by freezing operation and denaturing aggregation.
【0058】図2は本発明の別の実施の形態による排水
処理装置の全体構成図を示す。図2の例は、第1電解電
極41の内部に第1電極用熱交換器44を配置し、第2
電解電極42の内部に第2電極用熱交換器45を配置し
たもので、その他の構成は図1の例と同じである。な
お、図1の構成部材と同一のものについては共通の符号
で指示する。FIG. 2 shows an overall configuration diagram of a wastewater treatment apparatus according to another embodiment of the present invention. In the example of FIG. 2, the first electrode heat exchanger 44 is disposed inside the first
The second electrode heat exchanger 45 is disposed inside the electrolytic electrode 42, and the other configuration is the same as the example of FIG. The same components as those in FIG. 1 are designated by the same reference numerals.
【0059】氷蓄熱槽3において排水を凍結処理すると
きには、第1電極用熱交換器44と第2電極用熱交換器
45に熱併給装置6から冷熱を送り込み、第1電解電極
41及び第2電解電極42の表面から凍結するように運
転する。すると、第1,第2電解電極41,42の表面
近傍の排水が凍結を開始して氷となるときの体積変化や
電解電極41、42の表面に付着している付着物の変性
により、付着物は電解電極表面から剥がれやすくなる。
また、凝固点降下の作用によって、第1,第2電解電極
41,42の近傍には相対的に固形成分の少ない氷の層
が形成される。When freezing waste water in the ice heat storage tank 3, cold heat is fed from the cogeneration unit 6 to the first electrode heat exchanger 44 and the second electrode heat exchanger 45, and the first electrolytic electrode 41 and the second The operation is performed so that the surface of the electrolytic electrode 42 freezes. Then, due to the volume change when the drainage near the surfaces of the first and second electrolytic electrodes 41 and 42 starts freezing and turns into ice, and due to the denaturation of the deposits adhering to the surfaces of the electrolytic electrodes 41 and 42, there is a problem. The kimono is easily peeled off from the electrolytic electrode surface.
Also, due to the effect of freezing point depression, an ice layer having a relatively small solid component is formed in the vicinity of the first and second electrolytic electrodes 41 and 42.
【0060】そして、解凍処理するときには、第1電解
電極41及び第2電解電極42の表面に付着して電解浄
化処理の妨げになっている付着物は、解凍水とともに解
けて第1,第2電解電極41,42の表面から除去され
る。At the time of the thawing process, the deposits adhering to the surfaces of the first electrolytic electrode 41 and the second electrolytic electrode 42 and hindering the electrolytic purification process are melted together with the thawing water to remove the first and second electrolytic electrodes. It is removed from the surface of the electrolytic electrodes 41 and 42.
【0061】以上のように、第1,第2電解電極41,
42のそれぞれに第1電極用,第2電極用熱交換器4
4,45を備えることで、第1,第2電解電極41,4
2の表面から排水の凍結解凍処理することができ、結果
として第1,第2電解電極41,42の表面の付着物を
除去する効果が得られる。As described above, the first and second electrolytic electrodes 41,
42, a first electrode heat exchanger 4 and a second electrode heat exchanger 4
4, 45, the first and second electrolytic electrodes 41, 4
The wastewater can be freeze-thawed from the surface of the second electrode 2, and as a result, the effect of removing the deposits on the surfaces of the first and second electrolytic electrodes 41 and 42 can be obtained.
【0062】図3は本発明の更に別の実施の形態による
排水処理装置の全体構成図を示す。この例は、第1電解
電極41の逆電再生に使用される対極としての第1再生
用電極46を備え、第2電解電極42の逆電再生に使用
される対極としての第2再生用電極47を備えたもの
で、その他の構成は図2の例と同じである。FIG. 3 shows an overall configuration diagram of a wastewater treatment apparatus according to still another embodiment of the present invention. This example includes a first regeneration electrode 46 as a counter electrode used for reverse current regeneration of the first electrolytic electrode 41, and a second regeneration electrode as a counter electrode used for reverse current regeneration of the second electrolytic electrode 42. 47, and the other configuration is the same as the example of FIG.
【0063】この構成においては、通常の電解浄化運転
では、第1再生用電極46及び第2再生用電極47には
電圧は印加されない。そして、第1電解電極41及び第
2電解電極42に付着物が付着して電解性能が劣化した
とき、第1電解電極41と第1再生用電極46を、及び
第2電解電極42と第2再生用電極47を、それぞれペ
アとして組み合わせて、第1電解電極41及び第2電解
電極42の電圧を通常の電解浄化運転時と逆になるよう
に第1再生用電極46と第2再生用電極47に印加す
る。In this configuration, no voltage is applied to the first regeneration electrode 46 and the second regeneration electrode 47 in a normal electrolytic purification operation. When deposits adhere to the first electrolytic electrode 41 and the second electrolytic electrode 42 and the electrolytic performance deteriorates, the first electrolytic electrode 41 and the first regeneration electrode 46 and the second electrolytic electrode 42 and the second The regeneration electrodes 47 and the second regeneration electrodes 47 are combined with each other in pairs so that the voltages of the first electrolytic electrode 41 and the second electrolytic electrode 42 are opposite to those in a normal electrolytic purification operation. 47.
【0064】または、アルカリ性洗浄動作させる場合
は、第1電解電極41及び第2電解電極42を共にマイ
ナスに、第1再生用電極46と第2再生用電極47を共
にプラスに、または酸性洗浄動作させる場合は、第1電
解電極41及び第2電解電極42を共にプラスに、第1
再生用電極46と第2再生用電極47を共にマイナスに
なるように電圧を印加する。Alternatively, when the alkaline cleaning operation is performed, the first electrolytic electrode 41 and the second electrolytic electrode 42 are both negative, the first regeneration electrode 46 and the second regeneration electrode 47 are both positive, or the acidic cleaning operation is performed. When the first and second electrolytic electrodes 41 and 42 are both positive,
A voltage is applied so that both the reproducing electrode 46 and the second reproducing electrode 47 become negative.
【0065】このように、第1,第2電解電極41,4
2と第1,第2再生電極46,47を使用して電極再生
洗浄動作を行うと、第1,第2電解電極41,42の表
面付着物及び析出物は剥離や再溶解するので、第1,第
2電解電極41,42の表面が清浄化され、電解性能が
回復する。As described above, the first and second electrolytic electrodes 41, 4
When the electrode regeneration cleaning operation is performed using the second and first and second regeneration electrodes 46 and 47, the deposits and deposits on the surface of the first and second electrolytic electrodes 41 and 42 are peeled or redissolved. The surfaces of the first and second electrolytic electrodes 41 and 42 are cleaned, and the electrolytic performance is restored.
【0066】また、この電極再生洗浄動作は、氷蓄熱槽
3の凍結処理後に第1電解電極41の第1電極用熱交換
器44と第2電極用熱交換器45に熱併給装置6から温
熱を送り込んで第1電解電極41及び第2電解電極42
の付近のみ解凍した時に実施するものとする。これによ
り、第1,第2電解電極41,42の表面近傍のみが電
極再生洗浄動作のエリアとして周りの氷層から隔離され
ることになり、氷蓄熱槽3全体の排水が解けている場合
に比べると、電極再生洗浄動作における溶液のpHの変
化度合いや電解時の活性度が大きく、高い洗浄効果が得
られる。The electrode regeneration cleaning operation is performed by the following: the freezing treatment of the ice heat storage tank 3, the first electrode heat exchanger 44 of the first electrolytic electrode 41 and the second electrode heat exchanger 45 from the heat co-supply device 6. And the first electrolytic electrode 41 and the second electrolytic electrode 42
It is to be implemented when only the area around is thawed. As a result, only the vicinity of the surfaces of the first and second electrolytic electrodes 41 and 42 is isolated from the surrounding ice layer as an area for the electrode regeneration cleaning operation, and the drainage of the entire ice heat storage tank 3 is melted. In comparison, the degree of pH change of the solution in the electrode regeneration cleaning operation and the activity during electrolysis are large, and a high cleaning effect can be obtained.
【0067】一方、電極再生洗浄動作の影響は氷蓄熱槽
3の排水全体には小さな影響に押さえることができるの
で、電極再生洗浄動作が本来の電解浄化処理の性能に悪
い影響を及ぼすことも防止または軽減できる。On the other hand, the effect of the electrode regeneration cleaning operation can be suppressed to a small effect on the entire drainage of the ice heat storage tank 3, so that the electrode regeneration cleaning operation does not adversely affect the performance of the original electrolytic purification treatment. Or can be reduced.
【0068】以上のように、第1電解電極41及び第2
電解電極42の付近のみ解凍する時に電極再生洗浄動作
を実施すると、高い洗浄効果が得られると同時に電解浄
化処理の性能に悪い影響を及ぼすことも防止または軽減
できる。As described above, the first electrolytic electrode 41 and the second
If the electrode regeneration cleaning operation is performed when only the vicinity of the electrolytic electrode 42 is thawed, a high cleaning effect can be obtained, and at the same time, the adverse effect on the performance of the electrolytic purification process can be prevented or reduced.
【0069】[0069]
【発明の効果】請求項1に記載の発明では、電解凝集と
濃縮分離により排水からの固形物の徹底した分離と浄化
処理による水の再利用と蓄熱によるエネルギー有効利用
が同時に行なえる。According to the present invention, thorough separation of solids from wastewater by electrolytic coagulation and concentration separation, reuse of water by purification treatment, and effective use of energy by heat storage can be performed simultaneously.
【0070】請求項2に記載の発明では、厨芥等を含む
排水の浄化処理から固形成分の乾燥処理までの一連の処
理と蓄熱によるエネルギー有効利用を1つのシステムで
実施できるとともに、凝集処理された固形成分の引き抜
きが不要となり、かつ、固形成分を乾燥物に加工するの
で保管及び取扱いが容易となり、メンテナンスに要する
費用や作業工数を削減できる。According to the second aspect of the present invention, a series of processes from purification treatment of waste water including kitchen waste to drying treatment of solid components and effective use of energy by heat storage can be performed by one system, and coagulation treatment is performed. The solid component is not required to be pulled out, and the solid component is processed into a dried product, so that storage and handling are easy, and the cost and the number of man-hours required for maintenance can be reduced.
【0071】請求項3に記載の発明では、乾燥処理時の
蒸気の拡散に伴う臭気の拡散を防止でき、かつ、乾燥装
置内の湿度を低下させるので乾燥温度を低くしても効率
よく乾燥できる。According to the third aspect of the present invention, it is possible to prevent the odor from being diffused due to the diffusion of the steam during the drying process, and to reduce the humidity in the drying device, so that the drying can be performed efficiently even when the drying temperature is lowered. .
【0072】請求項4に記載の発明では、電極表面を常
にきれいな状態に維持できるので電解処理の性能を安定
化できる。According to the fourth aspect of the present invention, the electrode surface can always be kept clean, so that the performance of the electrolytic treatment can be stabilized.
【0073】請求項5に記載の発明では、電解電極と再
生電極との間で逆電洗浄動作させることで電解電極の性
能回復が図れる。According to the fifth aspect of the present invention, the performance of the electrolytic electrode can be recovered by performing a reverse cleaning operation between the electrolytic electrode and the regenerating electrode.
【0074】請求項6に記載の発明では、氷蓄熱槽内の
処理水全体に対して逆電洗浄の影響を与えることなく、
狭い範囲で効率よく電解電極の洗浄再生ができる。According to the sixth aspect of the present invention, the whole of the treated water in the ice thermal storage tank is not affected by the backwashing, and
Washing and regeneration of the electrolytic electrode can be efficiently performed in a narrow range.
【0075】請求項7に記載の発明では、電解凝集と濃
縮分離によって排水からの固形物の徹底した分離と浄化
処理による水の再利用と蓄熱によるエネルギー有効利用
が同時に行なえる。According to the present invention, thorough separation of solid matter from wastewater by electrolytic coagulation and concentration separation, reuse of water by purification treatment, and effective use of energy by heat storage can be performed simultaneously.
【0076】請求項8に記載の発明では、厨芥等を含む
排水の浄化処理から固形成分の乾燥処理までの一連の処
理と蓄熱によるエネルギー有効利用を1つのシステムで
実施できるとともに、凝集処理された固形成分の引き抜
きが不要となり、かつ、固形成分を乾燥物に加工するの
で保管及び取扱いが容易となり、メンテナンスに要する
費用や作業工数を削減できる。According to the eighth aspect of the present invention, a series of processes from purification treatment of wastewater including kitchen garbage to drying treatment of solid components and effective use of energy by heat storage can be performed by one system, and coagulation treatment is performed. The solid component is not required to be pulled out, and the solid component is processed into a dried product, so that storage and handling are easy, and the cost and the number of man-hours required for maintenance can be reduced.
【0077】請求項9に記載の発明では、ペースト状固
形物の乾燥に必要なエネルギーに廃熱を有効利用できる
ので、省エネルギー化を図ることができる。According to the ninth aspect of the present invention, since waste heat can be effectively used for energy required for drying the paste-like solid, energy can be saved.
【図1】本発明の一実施の形態による排水処理装置の全
体構成図FIG. 1 is an overall configuration diagram of a wastewater treatment apparatus according to an embodiment of the present invention.
【図2】本発明の別の実施の形態による排水処理装置の
全体構成図FIG. 2 is an overall configuration diagram of a wastewater treatment apparatus according to another embodiment of the present invention.
【図3】本発明の更に別の実施の形態よる排水処理装置
の全体構成図FIG. 3 is an overall configuration diagram of a wastewater treatment apparatus according to still another embodiment of the present invention.
【図4】特開平6−18069号公報に記載の従来例を
示す図FIG. 4 is a diagram showing a conventional example described in JP-A-6-18069.
【図5】特開平10−73290号公報に記載の従来例
を示す図FIG. 5 is a diagram showing a conventional example described in JP-A-10-73290.
1 排水処理装置 2 一次貯留槽 3 氷蓄熱槽 5 乾燥装置 6 熱併給装置 7 乾燥物容器 8 空調ユニット 9 ディスポーザ 10 下水配管 11 排水供給ポンプ 12 固形物排出ポンプ 13 液体排出ポンプ 14 初期融解水排出ポンプ 15 ドレン排出ポンプ 16 乾燥固形物排出ポンプ 17 解凍水貯溜槽 18 排水調整ポンプ 21a 初期融解水濾過部 21b 解凍水濾過部 26 放水配管 30 氷蓄熱槽熱交換器 31 ドレン回収用冷却器 32 加熱用熱交換機 33 加熱乾燥部 34 ドレン回収部 35 ドレン水 40 電源 41 第1電解電極 42 第2電解電極 43 電解電源 44 第1電極用熱交換器 45 第2電極用熱交換器 46 第1再生用電極 47 第2再生用電極 REFERENCE SIGNS LIST 1 wastewater treatment device 2 primary storage tank 3 ice heat storage tank 5 drying device 6 cogeneration device 7 dry matter container 8 air conditioning unit 9 disposer 10 sewage pipe 11 drainage supply pump 12 solids discharge pump 13 liquid discharge pump 14 initial melt water discharge pump 15 Drain discharge pump 16 Dry solids discharge pump 17 Thawing water storage tank 18 Drainage adjusting pump 21a Initial melting water filtration unit 21b Thawing water filtration unit 26 Drainage pipe 30 Ice heat storage tank heat exchanger 31 Drain recovery cooler 32 Heat for heating Exchanger 33 Heat drying unit 34 Drain recovery unit 35 Drain water 40 Power supply 41 First electrolytic electrode 42 Second electrolytic electrode 43 Electrolytic power supply 44 First electrode heat exchanger 45 Second electrode heat exchanger 46 First regeneration electrode 47 Second regeneration electrode
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F24F 5/00 102 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F24F 5/00 102
Claims (9)
成分を凝集処理する電解電極と、 前記電解電極に電圧を印加して制御する電解制御部と、 前記氷蓄熱槽内の凝集処理された排水に冷熱を与えて含
有固形成分を凍結速度の違いにより濃縮分離するととも
に、この凍結した排水を解凍する熱併給装置と、 前記熱併給装置の解凍操作により前記氷蓄熱槽内に生成
される融解水を濾過する融解水分離部を備えたことを特
徴とする排水処理装置。1. An ice heat storage tank into which waste water including kitchen wastes flows, an electrolytic electrode disposed in the ice heat storage tank for electrolyzing the waste water and coagulating a solid component contained therein, and applying a voltage to the electrolytic electrode. An electrolysis controller for applying and controlling, and a co-heat supply device for applying cold to the coagulated wastewater in the ice heat storage tank to concentrate and separate solid components contained therein depending on a difference in freezing speed, and to thaw the frozen wastewater. A wastewater treatment apparatus, comprising: a meltwater separation unit configured to filter meltwater generated in the ice heat storage tank by a thawing operation of the cogeneration unit.
受容して乾燥処理を行う乾燥装置を備えたことを特徴と
する請求項1記載の排水処理装置。2. The wastewater treatment device according to claim 1, further comprising a drying device for receiving a paste-like solid remaining in the ice heat storage tank and performing a drying process.
回収するドレン回収部が設けられていることを特徴とす
る請求項2記載の排水処理装置。3. The wastewater treatment device according to claim 2, wherein the drying device is provided with a drain recovery unit for recovering water evaporated in the drying process.
前記電極用熱交換器による熱交換で前記電解電極の表面
の付着物を除去することを特徴とする請求項1から3の
いずれかに記載の排水処理装置。4. An electrolytic electrode is provided with an electrode heat exchanger,
The wastewater treatment apparatus according to any one of claims 1 to 3, wherein the deposits on the surface of the electrolytic electrode are removed by heat exchange by the electrode heat exchanger.
え、電解制御部によって制御されることを特徴とする請
求項1から4のいずれかに記載の排水処理装置。5. The wastewater treatment apparatus according to claim 1, further comprising a regeneration electrode paired with the electrolysis electrode, and controlled by an electrolysis controller.
極の付近だけが解凍されているときに、電解制御部が前
記電解電極と前記再生用電極に通電して洗浄動作させる
ことを特徴とする請求項5記載の排水処理装置。6. An electrolysis controller controls the electrolysis electrode and the regeneration electrode to conduct a cleaning operation when only the vicinity of the electrolysis electrode and the regeneration electrode is thawed by the electrode heat exchanger. The wastewater treatment apparatus according to claim 5, wherein
の排水を電解して含有固形成分を凝集させ、さらに冷熱
を与えて凍結速度の違いによって濃縮分離し、その後凍
結した排水を解凍して濃縮分離された含有固形成分中か
ら脱水するとともに濾過し、ペースト状固形物を残留さ
せるとともに濾過水を浄化処理することを特徴とする排
水処理方法。7. A wastewater containing kitchen waste and the like flows into an ice thermal storage tank, and the wastewater is electrolyzed to coagulate solid components contained therein. Further, cold heat is applied to concentrate and separate the wastewater according to a difference in freezing speed. A wastewater treatment method characterized by dewatering and filtering out a solid component that has been thawed and concentrated and separated to leave a paste-like solid and purify filtered water.
ことを特徴とする請求項7記載の排水処理方法。8. The wastewater treatment method according to claim 7, wherein the remaining paste-like solid is dried.
同時に行い、前記凍結処理で発生した廃熱を前記乾燥処
理に用いることを特徴とする請求項8記載の排水処理方
法。9. The wastewater treatment method according to claim 8, wherein the drying treatment is performed simultaneously with the freezing treatment of the wastewater in the ice heat storage tank, and waste heat generated in the freezing treatment is used for the drying treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10197057A JP2000024644A (en) | 1998-07-13 | 1998-07-13 | Waste water discharging section and treatment of waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10197057A JP2000024644A (en) | 1998-07-13 | 1998-07-13 | Waste water discharging section and treatment of waste water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000024644A true JP2000024644A (en) | 2000-01-25 |
Family
ID=16368006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10197057A Pending JP2000024644A (en) | 1998-07-13 | 1998-07-13 | Waste water discharging section and treatment of waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000024644A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020025947A (en) * | 2018-08-17 | 2020-02-20 | 株式会社オメガ | Wastewater treatment method |
-
1998
- 1998-07-13 JP JP10197057A patent/JP2000024644A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020025947A (en) * | 2018-08-17 | 2020-02-20 | 株式会社オメガ | Wastewater treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100616449B1 (en) | A soil treatment device of the toilet room | |
CN201882988U (en) | Treatment and recycling system for chemical chlor-alkali waste water | |
JP5283593B2 (en) | Waste heat utilization system | |
CN113072254A (en) | Integrated treatment system and method for rural sewage | |
JP2000024644A (en) | Waste water discharging section and treatment of waste water | |
JP4031800B2 (en) | Freeze-concentrated wastewater treatment equipment for reused water recovery | |
JP2000061450A (en) | Waste water treatment device and waste water treatment | |
JP2000024641A (en) | Waste water discharging section and treatment of waste water | |
JP2000024642A (en) | Waste water discharging section and treatment of waste water | |
JP2000024643A (en) | Waste water discharging section | |
JP2000024645A (en) | Waste water discharging section and treatment of waste water | |
JP2000024646A (en) | Waste water discharging section | |
JP3692349B2 (en) | Sludge dewatering method | |
JPH09327689A (en) | Waste water recycling system | |
CN214496015U (en) | Sewage treatment system | |
JP3692331B2 (en) | Filtration / dehydration method and system for sludge | |
JPH11319892A (en) | Waste water treatment and waste water treating device | |
CN114230075B (en) | System, method and application for preparing snow-melting agent by utilizing desulfurization wastewater | |
CN217051937U (en) | Lithium battery wastewater treatment system | |
CN213834921U (en) | Sand regeneration sewage treatment system | |
JP4165996B2 (en) | Sludge treatment equipment and sludge treatment method | |
CN221854388U (en) | Desulfurization wastewater zero release processing system | |
CN218968901U (en) | Large repair slag freezing method desalination system | |
JP3832120B2 (en) | Water treatment system of ice heat storage device with wastewater treatment function and its usage | |
CN203295288U (en) | Pure and impure printing and dyeing wastewater separation and waste heat utilization system |