JP2020025947A - Wastewater treatment method - Google Patents
Wastewater treatment method Download PDFInfo
- Publication number
- JP2020025947A JP2020025947A JP2018153586A JP2018153586A JP2020025947A JP 2020025947 A JP2020025947 A JP 2020025947A JP 2018153586 A JP2018153586 A JP 2018153586A JP 2018153586 A JP2018153586 A JP 2018153586A JP 2020025947 A JP2020025947 A JP 2020025947A
- Authority
- JP
- Japan
- Prior art keywords
- wastewater
- component
- freezing
- treatment method
- frozen water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004065 wastewater treatment Methods 0.000 title claims abstract description 15
- 239000002351 wastewater Substances 0.000 claims abstract description 92
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 38
- 230000008014 freezing Effects 0.000 claims abstract description 28
- 238000007710 freezing Methods 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000000859 sublimation Methods 0.000 claims abstract description 11
- 230000008022 sublimation Effects 0.000 claims abstract description 11
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 7
- 230000001112 coagulating effect Effects 0.000 claims abstract description 5
- 238000010000 carbonizing Methods 0.000 claims abstract description 4
- 230000000694 effects Effects 0.000 claims description 8
- 230000008016 vaporization Effects 0.000 claims description 8
- 239000003054 catalyst Substances 0.000 claims description 6
- 239000000356 contaminant Substances 0.000 claims description 3
- 238000009835 boiling Methods 0.000 description 13
- 239000010802 sludge Substances 0.000 description 10
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 6
- 239000005416 organic matter Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 4
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- ZFRKQXVRDFCRJG-UHFFFAOYSA-N skatole Chemical compound C1=CC=C2C(C)=CNC2=C1 ZFRKQXVRDFCRJG-UHFFFAOYSA-N 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000013535 sea water Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 2
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 2
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229940074386 skatole Drugs 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000010446 mirabilite Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- RSIJVJUOQBWMIM-UHFFFAOYSA-L sodium sulfate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]S([O-])(=O)=O RSIJVJUOQBWMIM-UHFFFAOYSA-L 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Physical Water Treatments (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
この発明は、排水を電解して減圧下で処理する排水処理方法に関するものである。 The present invention relates to a wastewater treatment method in which wastewater is electrolyzed and treated under reduced pressure.
従来、排水の処理方法に関するものであって、更に詳しくは、有機物を含む排水の処理方法があった(特許文献1)。
すなわち、従来、COD Cr濃度が高い排水は焼却処理されることが多く処理コストが高くなっていたがこのような高濃度の排水を蒸留して二種以上の留出水を得、該得られた留出水の少なくとも一種を活性汚泥処理し、該得られた留出水の残部を活性汚泥処理以外の方法で処理することにより、焼却処理対象排水を削減し、焼却用燃料の使用量やCO2の発生量を減らすことができるコスト面及び環境面で優れた効果を有する排水の処理方法に関するものである。
たとえば石油化学プラントにおいては有機物を含む排水が発生し、環境保護浄化の観点から該排水を処理する必要がある。一般的には、COD Cr濃度が高い排水は焼却処理することが考えられるが処理コストが高く、CO2の発生量も多く環境上好ましくなかった。
しかしながら、従来の方法においては、処理すべき排水を蒸留して得られた活性汚泥処理対象留出水のCOD Cr濃度が高い場合、活性汚泥処理(微生物処理)負荷が高く、設備コスト及び処理コストが高くなるという問題点があった。
かかる状況において、この従来提案が解決しようとする課題は、有機物を含む排水の処理方法であって、従来、COD Cr濃度が高いため焼却処理されていた排水の焼却処理対象排水量を削減し、且つ、蒸留によって得られた活性汚泥処理対象留出水のCOD Cr濃度ひいては活性汚泥処理負荷を下げることにより、設備コスト及び処理コスト負担が軽くCO2の発生量も少ないという優れた効果を有する排水の処理方法を提供する点にある。
すなわち、従来提案は、有機物を含む排水の処理方法であって、処理すべき排水を蒸留して二種以上の留出水を得、該得られた留出水の少なくとも一種を活性汚泥処理し、該得られた留出水の残部を活性汚泥処理以外の方法で処理する排水の処理方法に係るものである。
この従来提案により、有機物を含む排水の処理方法であって、従来、COD Cr濃度が高いため焼却処理されていた排水の焼却処理対象排水量を削減し、且つ、蒸留によって得られた活性汚泥処理対象留出水のCOD Cr濃度ひいては活性汚泥処理負荷を下げることにより、設備コスト及び処理コスト負担が軽くCO2の発生量も少ないという優れた効果を有する排水の処理方法を提供することができる、というものである。
しかし、有機物を含む排水を蒸留することにより悪臭成分が外部に漏洩する危険性があるという問題があった。
Conventionally, it relates to a method for treating wastewater, and more specifically, there is a method for treating wastewater containing organic matter (Patent Document 1).
That is, conventionally, wastewater having a high COD Cr concentration is often incinerated and the treatment cost is high.However, such high-concentration wastewater is distilled to obtain two or more types of distillate, and the obtained wastewater is obtained. Activated sludge treatment of at least one type of distillate that has been obtained, and the remaining distillate obtained is treated by a method other than activated sludge treatment, thereby reducing wastewater to be incinerated and reducing the amount of fuel used for incineration. The present invention relates to a wastewater treatment method that can reduce the amount of generated CO 2 and has excellent cost and environmental effects.
For example, in a petrochemical plant, wastewater containing organic matter is generated, and it is necessary to treat the wastewater from the viewpoint of environmental protection and purification. Typically, COD Cr concentration is high drainage is considered to be incinerated is high processing costs, not preferable generation of many environmental of CO 2.
However, in the conventional method, when the COD Cr concentration of the activated sludge treatment distillate obtained by distilling the wastewater to be treated is high, the activated sludge treatment (microbial treatment) load is high, and the equipment cost and treatment cost are high. There was a problem that the cost was high.
In such a situation, the problem to be solved by this conventional proposal is a method of treating wastewater containing organic matter, which conventionally reduces the amount of wastewater to be incinerated for wastewater that has been incinerated because of high COD Cr concentration, and , by reducing the obtained activated sludge processed distillate COD Cr concentration thus activated sludge processing load of the water by distillation, the waste water has an excellent effect that the generation amount of equipment cost and processing cost burden lighter CO 2 is small The point is to provide a processing method.
That is, the conventional proposal is a method of treating wastewater containing organic matter, in which wastewater to be treated is distilled to obtain two or more types of distillate, and at least one type of the obtained distillate is subjected to activated sludge treatment. The present invention relates to a method for treating wastewater in which the remaining distillate obtained is treated by a method other than the activated sludge treatment.
According to this conventional proposal, a method for treating wastewater containing organic matter, which reduces the amount of wastewater subject to incineration of wastewater that has been conventionally incinerated due to its high COD Cr concentration, and the method of treating activated sludge obtained by distillation by lowering the COD Cr concentration thus activated sludge load of distillate water, treatment method of the waste water with an excellent effect of generation of equipment cost and processing cost burden lighter CO 2 is small can be provided, that Things.
However, there is a problem that there is a risk that malodorous components leak to the outside by distilling wastewater containing organic matter.
そこでこの発明は、悪臭成分が外部に漏洩する危険性を軽減することができる排水処理方法を提供しようとするものである。 Therefore, an object of the present invention is to provide a wastewater treatment method capable of reducing the risk of the malodorous component leaking to the outside.
前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1)この発明の排水処理方法は、排水に電気分解作用を及ぼす工程と、前記排水を減圧下で気化・脱水する工程とを有することを特徴とする。
この発明は、排水に電気分解作用を及ぼす工程を有するようにしたので、排水中の汚れ成分たる悪臭成分を分解することにより該悪臭の影響を抑制することが出来る。前記電気分解の態様として、陽極電極による直接酸化や、電解塩素(Cl2、HOCl、OCl−)による酸化などを例示することが出来る。
そして、前記排水を減圧下で気化・脱水する工程を有するので、汚れ成分と水の沸点の差により汚れ成分たる有機成分(沸点が高めの悪臭成分など)を原排水中に濃縮することが出来る。また、無機成分を原排水中に残留・濃縮することが出来る。
また、無機成分を原排水中に残留・濃縮することが出来るので、気化した水により原排水たる無機塩含有水や海水などの淡水化を図ることが出来る。
なお、減圧下で気化・脱水すると潜熱を奪われて温度が低下するので、その低下分を補うべく適宜加温すればよい。
ここで、前記処理対象の排水として、工場排水、飲食店排水、また処理を行うという意味で河川水、海水などを含めて例示することが出来る。排水中の処理すべき汚れ成分として、有機成分(悪臭成分など)や無機成分(芒硝、食塩、遊離塩素など)を例示できる。
前記悪臭成分として、二硫化ジメチル(mp−85℃、bp 110℃)、硫化水素(mp−85.5℃、bp−60.7℃)、インドール(mp 53℃、bp 253℃)、スカトール(mp 95℃、bp 265℃)などを例示できる。
In order to solve the above problems, the present invention takes the following technical measures.
(1) The wastewater treatment method of the present invention is characterized by comprising a step of applying an electrolytic action to wastewater and a step of vaporizing and dewatering the wastewater under reduced pressure.
Since the present invention has a step of exerting an electrolysis action on the waste water, the effect of the bad smell can be suppressed by decomposing the bad smell component as the dirt component in the waste water. Examples of the electrolysis include direct oxidation using an anode electrode and oxidation using electrolytic chlorine (Cl 2 , HOCl, OCl − ).
Since the wastewater has a step of vaporizing and dewatering the wastewater under reduced pressure, an organic component (such as a malodorous component having a higher boiling point) that is a dirty component can be concentrated in the raw wastewater due to a difference in boiling point between the dirt component and water. . Further, the inorganic components can be retained and concentrated in the raw wastewater.
In addition, since the inorganic components can be retained and concentrated in the raw wastewater, it is possible to desalinate the raw wastewater such as inorganic salt-containing water and seawater by the vaporized water.
Note that when evaporating and dehydrating under reduced pressure, latent heat is deprived and the temperature decreases, so that heating may be appropriately performed to compensate for the decrease.
Here, examples of the wastewater to be treated include factory wastewater, restaurant wastewater, and river water, seawater, and the like in the sense of performing the treatment. Examples of the soil component to be treated in the wastewater include an organic component (such as a malodorous component) and an inorganic component (such as sodium sulfate, salt, and free chlorine).
As the malodorous components, dimethyl disulfide (mp-85 ° C, bp 110 ° C), hydrogen sulfide (mp-85.5 ° C, bp-60.7 ° C), indole (mp 53 ° C, bp 253 ° C), skatole (mp 95 ° C, bp 265 ° C.).
(2)前記排水を凍結する工程と、前記排水を凍結した氷結水を減圧下で昇華させる工程とを有するようにしてもよい。
このように構成し、前記排水を凍結(例えば−30〜−50℃)する工程と、前記排水を凍結した氷結水を減圧下(例えば<0.3 Torr)で昇華(気化・脱水)させる工程とを有するようにすると、排水を凍結した氷結水を昇華させることにより、低温環境下で排水中の悪臭成分の散逸を抑制しつつ氷結水(H2O)を分離して汚れ成分(有機物等)を濃縮することができ、悪臭成分が外部に漏洩する危険性を軽減することが出来る。
また、低温環境下で排水中の低沸点成分の散逸を抑制しつつ氷結水(H2O)を分離して汚れ成分(有機物等)を濃縮することができる。前記低沸点の悪臭成分として、メチルメルカプタン(mp−123℃、bp 6℃)、硫化ジメチル(mp−98℃、bp 37℃)などを例示できる。
(2) The method may include a step of freezing the wastewater and a step of sublimating the frozen water that has frozen the wastewater under reduced pressure.
With such a configuration, a step of freezing (for example, −30 to −50 ° C.) the wastewater and a step of sublimating (vaporizing / dehydrating) the frozen water obtained by freezing the wastewater under reduced pressure (for example, <0.3 Torr). By sublimating the icing water that has frozen the effluent, the icing water (H 2 O) is separated and the dirt components (organic substances, etc.) are separated while suppressing the odorous components in the effluent in a low-temperature environment. It can be concentrated, and the danger of the malodorous component leaking to the outside can be reduced.
Further, freezing water (H 2 O) can be separated while contaminants (such as organic substances) can be concentrated while suppressing the dissipation of low-boiling components in wastewater in a low-temperature environment. Examples of the low-boiling malodorous component include methyl mercaptan (mp-123 ° C, bp 6 ° C) and dimethyl sulfide (mp-98 ° C, bp 37 ° C).
(3)前記排水を凝集沈殿させる工程を有し、該沈降成分を凍結する工程に供するようにしてもよい。
このように構成し、排水を凝集沈殿させる工程を有し、該沈降成分を凍結する工程に供するようにすると、該工程に供する排水の量を低減することが出来る。
(3) A step of coagulating and sedimenting the wastewater may be provided to a step of freezing the settled component.
When configured as described above and has a step of coagulating and sedimenting wastewater, and is provided with a step of freezing the settled component, the amount of wastewater provided in the step can be reduced.
(4)前記排水を凍結した氷結水を昇華させた後の汚れ成分を炭化する工程を有するようにしてもよい。
このように構成し、前記排水を凍結した氷結水を昇華させた後の汚れ成分を炭化(例えば無酸素下での焼成)するようにすると、炭化した成分を二次利用することが出来る。
(4) The method may further include a step of carbonizing the dirt component after sublimation of the frozen water obtained by freezing the wastewater.
With this configuration, if the dirt component after sublimation of the frozen water obtained by freezing the drainage is carbonized (for example, calcination under anoxic condition), the carbonized component can be reused.
(5)前記排水を凍結した氷結水を昇華させた後の汚れ成分を焼却する工程を有するようにしてもよい。
このように構成し、排水中の水分を昇華させた後の汚れ成分を焼却するようにすると、減容化をすることが出来る。
(5) The method may further include a step of incinerating the dirt component after sublimation of the frozen water obtained by freezing the wastewater.
By configuring in this way and incinerating the dirt component after sublimating the water in the wastewater, the volume can be reduced.
(6)前記排水を凍結した氷結水を昇華させた後の汚れ成分を触媒の存在下で処理するようにしてもよい。
このように構成し、排水を凍結した氷結水を昇華させた後の汚れ成分を触媒の存在下で処理するようにすると、より低い温度で炭化処理したり焼却処理したりすることが出来る。
ここで、前記触媒の材質として白金(Pt)やパラジウム(Pd)などを使用することが出来る。
(6) The contaminated component after sublimation of the frozen water obtained by freezing the wastewater may be treated in the presence of a catalyst.
With such a configuration, if the contaminated component after sublimation of the frozen water from which the wastewater is frozen is treated in the presence of the catalyst, carbonization treatment or incineration treatment can be performed at a lower temperature.
Here, platinum (Pt), palladium (Pd), or the like can be used as the material of the catalyst.
この発明は上述のような構成であり、次の効果を有する。
排水中の汚れ成分たる悪臭成分を分解することにより該悪臭の影響を抑制することが出来ると共に、汚れ成分と水の沸点の差により汚れ成分たる有機成分(沸点が高めの悪臭成分など)を原排水中に濃縮することが出来るので、悪臭成分が外部に漏洩する危険性を軽減することができる排水処理方法を提供することが出来る。
The present invention is configured as described above and has the following effects.
The effect of the odor can be suppressed by decomposing the odor component as the dirt component in the wastewater, and the difference between the dirt component and the boiling point of water can be used to remove the organic component as the dirt component (such as a odor component having a higher boiling point). Since the wastewater can be concentrated in the wastewater, a wastewater treatment method capable of reducing the risk of the malodorous component leaking to the outside can be provided.
以下、この発明の実施の形態を説明する。
この実施形態の排水処理方法は、排水に電気分解作用を及ぼす工程と、前記排水を減圧下で気化・脱水する工程とを有する。
ここで、前記排水として、工場排水を処理した。排水中の処理すべき汚れ成分として、有機成分(悪臭成分)、無機成分(芒硝、食塩、遊離塩素)が含有されていた。
前記悪臭成分として、二硫化ジメチル(mp−85℃、bp 110℃)、硫化水素(mp−85.5℃、bp−60.7℃)、インドール(mp 53℃、bp 253℃)、スカトール(mp 95℃、bp 265℃)が含有されていた。
また、低沸点の悪臭成分として、メチルメルカプタン(mp−123℃、bp 6℃)、硫化ジメチル(mp−98℃、bp 37℃)が含有されていた。
前記電気分解の態様として、電解塩素(HOCl)による酸化が生じていた。
減圧下で気化・脱水すると潜熱を奪われて温度が低下するので、その低下分を補うべく適宜加温するようにした。
Hereinafter, embodiments of the present invention will be described.
The wastewater treatment method of this embodiment includes a step of applying an electrolysis effect to wastewater, and a step of vaporizing and dewatering the wastewater under reduced pressure.
Here, factory wastewater was treated as the wastewater. Organic components (odorous components) and inorganic components (Glauber's salt, salt, free chlorine) were contained as waste components to be treated in the wastewater.
As the malodorous components, dimethyl disulfide (mp-85 ° C, bp 110 ° C), hydrogen sulfide (mp-85.5 ° C, bp-60.7 ° C), indole (mp 53 ° C, bp 253 ° C), skatole (mp 95 ° C, bp 265 ° C).
Further, as low-boiling malodorous components, methyl mercaptan (mp-123 ° C, bp 6 ° C) and dimethyl sulfide (mp-98 ° C, bp 37 ° C) were contained.
As an embodiment of the electrolysis, oxidation by electrolytic chlorine (HOCl) has occurred.
When evaporating and dehydrating under reduced pressure, latent heat is deprived and the temperature decreases, so that the temperature was appropriately increased to compensate for the decrease.
次に、この実施形態の排水処理方法の使用状態を説明する。
排水に電気分解作用を及ぼす工程を有するようにしたので、排水中の汚れ成分たる悪臭成分を分解することにより該悪臭の影響を抑制することが出来た。
そして、前記排水を減圧下で気化・脱水する工程を有するので、汚れ成分と水の沸点の差により汚れ成分たる有機成分(沸点が高めの悪臭成分など)を原排水中に濃縮することが出来る。また、無機成分を原排水中に残留・濃縮することが出来た。
すなわち、排水中の汚れ成分たる悪臭成分を分解することにより該悪臭の影響を抑制することが出来ると共に、汚れ成分と水の沸点の差により汚れ成分たる有機成分(沸点が高めの悪臭成分など)を原排水中に濃縮することが出来るので、悪臭成分が外部に漏洩する危険性を軽減することができるという利点がある。
また、無機成分を原排水中に残留・濃縮することが出来るので、気化した水により原排水たる無機塩含有水や海水などの淡水化を図ることが出来るという利点がある。
Next, the use state of the wastewater treatment method of this embodiment will be described.
Since the method includes a step of exerting an electrolysis action on the wastewater, the influence of the bad odor could be suppressed by decomposing the bad odor components, which are the dirt components, in the wastewater.
Since the wastewater has a step of vaporizing and dewatering the wastewater under reduced pressure, an organic component (such as a malodorous component having a higher boiling point) that is a dirty component can be concentrated in the raw wastewater due to a difference in boiling point between the dirt component and water. . In addition, the inorganic components could be retained and concentrated in the raw wastewater.
That is, the effect of the malodor can be suppressed by decomposing the malodor component as the dirt component in the wastewater, and the organic component as the dirt component due to the difference in boiling point between the dirt component and water (such as a malodor component having a higher boiling point). Can be concentrated in the raw wastewater, so that there is an advantage that the risk of the malodorous component leaking to the outside can be reduced.
In addition, since the inorganic component can be retained and concentrated in the raw wastewater, there is an advantage that the vaporized water can be used to desalinate inorganic salt-containing water or seawater as the raw wastewater.
前記排水を凍結する工程と、前記排水を凍結(−30〜−50℃)した氷結水を減圧下(<0.3 Torr)で昇華(気化・脱水)させる工程とを有するようにした。
ここで、排水を凍結した氷結水を減圧下で昇華させる工程の後に、昇華した水分をコールド・トラップする工程(−80〜−90℃)を設けた。
前記排水を凍結(−30〜−50℃)する工程と、前記排水を凍結した氷結水を減圧下(<0.3 Torr)で昇華(気化・脱水)させる工程とを有するようにしたので、排水を凍結した氷結水を昇華させることにより、低温環境下で排水中の悪臭成分の散逸を抑制しつつ氷結水(H2O)を分離して汚れ成分(有機物等)を濃縮することができ、悪臭成分が外部に漏洩する危険性を軽減することが出来た。
また、低温環境下で排水中の低沸点成分の散逸を抑制しつつ氷結水(H2O)を分離して汚れ成分(低沸点の悪臭成分)を濃縮することができた。
The method further includes a step of freezing the wastewater and a step of sublimating (vaporizing / dehydrating) the frozen water obtained by freezing (−30 to −50 ° C.) the wastewater under reduced pressure (<0.3 Torr).
Here, a step (−80 to −90 ° C.) of cold trapping the sublimated water was provided after the step of sublimating the frozen water obtained by freezing the drainage under reduced pressure.
The method includes a step of freezing the wastewater (−30 to −50 ° C.) and a step of sublimating (vaporizing / dehydrating) the frozen water obtained by freezing the wastewater under reduced pressure (<0.3 Torr). By sublimating the frozen icing water, it is possible to separate the icing water (H 2 O) and concentrate the dirt components (organic substances, etc.) while suppressing the dissipation of the odorous components in the wastewater in a low-temperature environment. The risk of the components leaking to the outside could be reduced.
In addition, freezing water (H 2 O) was separated while contaminants (low-boiling point odorous components) could be concentrated while suppressing the dissipation of low-boiling components in the wastewater in a low-temperature environment.
前記排水を凝集沈殿させる工程を有し、該沈降成分を凍結する工程に供するようにした。したがって、該沈降成分を凍結する工程に供するようにしたので、該工程に供する排水の量を低減することが出来た。 The method has a step of coagulating and sedimenting the wastewater, and is provided with a step of freezing the sedimented component. Therefore, since the step of freezing the sedimentation component is performed, the amount of wastewater supplied to the step can be reduced.
前記排水を凍結した氷結水を昇華させた後の汚れ成分を炭化(無酸素下での焼成)する工程を有するようにした。したがって、炭化した成分を二次利用することが出来た。 The method further comprises a step of carbonizing (firing under oxygen-free conditions) the dirt component after sublimation of the frozen water obtained by freezing the drainage. Therefore, the carbonized component could be reused.
前記排水を凍結した氷結水を昇華させた後の汚れ成分を焼却する工程を有するようにした。したがって、減容化をすることが出来た。 The method further includes a step of incinerating the dirt component after sublimating the frozen water obtained by freezing the drainage. Therefore, the volume could be reduced.
前記排水を凍結した氷結水を昇華させた後の汚れ成分を触媒の存在下で処理するようにした。前記触媒の材質として白金(Pt)、(Pd)などを使用した。したがって、より低い温度で炭化処理したり焼却処理したりすることが出来た。 The contaminated components after sublimation of the frozen water obtained by freezing the wastewater are treated in the presence of a catalyst. Platinum (Pt), (Pd) or the like was used as the material of the catalyst. Therefore, carbonization or incineration could be performed at a lower temperature.
悪臭成分が外部に漏洩する危険性を軽減することができることによって、種々の排水処理の用途に適用することができる。 By being able to reduce the risk of the malodorous component leaking to the outside, it can be applied to various wastewater treatment applications.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018153586A JP6902818B2 (en) | 2018-08-17 | 2018-08-17 | Wastewater treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018153586A JP6902818B2 (en) | 2018-08-17 | 2018-08-17 | Wastewater treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020025947A true JP2020025947A (en) | 2020-02-20 |
JP6902818B2 JP6902818B2 (en) | 2021-07-14 |
Family
ID=69620790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018153586A Active JP6902818B2 (en) | 2018-08-17 | 2018-08-17 | Wastewater treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6902818B2 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5095177A (en) * | 1973-12-27 | 1975-07-29 | ||
JPS50136949A (en) * | 1974-04-17 | 1975-10-30 | ||
JPS5429756A (en) * | 1977-08-04 | 1979-03-05 | Akira Kobori | Fertilizer producing method |
JPS6411690A (en) * | 1987-07-03 | 1989-01-17 | Nakao Eisuke | Treating method for sewage |
JP2000024644A (en) * | 1998-07-13 | 2000-01-25 | Matsushita Electric Ind Co Ltd | Waste water discharging section and treatment of waste water |
JP2000254661A (en) * | 1999-03-05 | 2000-09-19 | Kurita Water Ind Ltd | Treating device of dmso-containing water |
JP2004075876A (en) * | 2002-08-20 | 2004-03-11 | Daiki Sangyo:Kk | Apparatus and process for carbonization of organic cake |
JP2006346540A (en) * | 2005-06-14 | 2006-12-28 | Ebara Corp | Method and apparatus for treating waste water |
JP2007229565A (en) * | 2006-02-28 | 2007-09-13 | Ebara Corp | Treatment apparatus and treatment method of hardly biodegradable substance content organic wastewater |
JP2014180628A (en) * | 2013-03-19 | 2014-09-29 | Kubota Corp | Water treatment method and system |
-
2018
- 2018-08-17 JP JP2018153586A patent/JP6902818B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5095177A (en) * | 1973-12-27 | 1975-07-29 | ||
JPS50136949A (en) * | 1974-04-17 | 1975-10-30 | ||
JPS5429756A (en) * | 1977-08-04 | 1979-03-05 | Akira Kobori | Fertilizer producing method |
JPS6411690A (en) * | 1987-07-03 | 1989-01-17 | Nakao Eisuke | Treating method for sewage |
JP2000024644A (en) * | 1998-07-13 | 2000-01-25 | Matsushita Electric Ind Co Ltd | Waste water discharging section and treatment of waste water |
JP2000254661A (en) * | 1999-03-05 | 2000-09-19 | Kurita Water Ind Ltd | Treating device of dmso-containing water |
JP2004075876A (en) * | 2002-08-20 | 2004-03-11 | Daiki Sangyo:Kk | Apparatus and process for carbonization of organic cake |
JP2006346540A (en) * | 2005-06-14 | 2006-12-28 | Ebara Corp | Method and apparatus for treating waste water |
JP2007229565A (en) * | 2006-02-28 | 2007-09-13 | Ebara Corp | Treatment apparatus and treatment method of hardly biodegradable substance content organic wastewater |
JP2014180628A (en) * | 2013-03-19 | 2014-09-29 | Kubota Corp | Water treatment method and system |
Also Published As
Publication number | Publication date |
---|---|
JP6902818B2 (en) | 2021-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4912656B2 (en) | Wastewater activated sludge treatment method | |
JP5284972B2 (en) | Removal of pollutants from waste streams by production and use of oxyhydrogen gas | |
Akyol et al. | Treatment of hydroquinone by photochemical oxidation and electrocoagulation combined process | |
JP6242761B2 (en) | Waste water treatment apparatus and treatment method | |
JP2006239578A (en) | Ammonia nitrogen and soluble salt-containing water treatment apparatus and method | |
de Leon-Condes et al. | A coupled ozonation–electrooxidation treatment for removal of bisphenol A, nonylphenol and triclosan from wastewater sludge | |
Golestanbagh et al. | Integrated systems for oilfield produced water treatment: The state of the art | |
JP2020025947A (en) | Wastewater treatment method | |
Medel et al. | Novel electrochemical treatment of spent caustic from the hydrocarbon industry using Ti/BDD | |
Mizan et al. | Low cost adsorbent for mitigation of water pollution caused by tannery effluents at Hazaribagh | |
JP6223272B2 (en) | Method and system for treating mercury-containing wastewater | |
JP2010253416A (en) | System for cleaning contaminated soil and sand | |
KR101050738B1 (en) | Wastewater treatment method for coke production | |
Jamrah et al. | An Extensive Analysis of Combined Processes for Landfill Leachate Treatment | |
JP5802578B2 (en) | Water treatment apparatus and water treatment method | |
KR102266988B1 (en) | Hybrid waste-water disposal system | |
CN104193098B (en) | Method for treating wastewater generated by gas generator | |
JP2009274004A (en) | Treating method of soil | |
JPS62152600A (en) | Treatment of oozing out waste contaminated water | |
US11807565B2 (en) | Remediation of per- and poly-fluoroalkyl substances in wastewater | |
JPS5962396A (en) | Treatment of organic waste water containing ammonia | |
Dinç et al. | Olive Mill Wastewater as Feedstock | |
Syranidou | Interaction between helophytes and endophytic bacteria: their synergistic effects in bioremediation of contaminants | |
Wali et al. | Modern Effluent Treatment Plant | |
Sarra et al. | EFFICIENCY OF PLANTED FILTERS WITH MACROPHYTES FOR THE HEAVY METALS REMOVAL FROM WASTEWATER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200602 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210621 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6902818 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |