JP3692331B2 - Filtration / dehydration method and system for sludge - Google Patents

Filtration / dehydration method and system for sludge Download PDF

Info

Publication number
JP3692331B2
JP3692331B2 JP2002151065A JP2002151065A JP3692331B2 JP 3692331 B2 JP3692331 B2 JP 3692331B2 JP 2002151065 A JP2002151065 A JP 2002151065A JP 2002151065 A JP2002151065 A JP 2002151065A JP 3692331 B2 JP3692331 B2 JP 3692331B2
Authority
JP
Japan
Prior art keywords
sludge
filter
dehydration
filtration
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002151065A
Other languages
Japanese (ja)
Other versions
JP2003340217A (en
Inventor
知彦 平尾
隆裕 吉井
定和 山田
憲彦 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Tokyo Gas Co Ltd
Original Assignee
Takuma KK
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK, Tokyo Gas Co Ltd filed Critical Takuma KK
Priority to JP2002151065A priority Critical patent/JP3692331B2/en
Publication of JP2003340217A publication Critical patent/JP2003340217A/en
Application granted granted Critical
Publication of JP3692331B2 publication Critical patent/JP3692331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水汚泥、浄化槽汚泥、し尿、あるいは産業排水や埋立地排水の処理などにおいて排出される難脱水性汚泥の効率的なろ過・脱水方法及びそのシステムに関する。
【0002】
【従来の技術】
前記の汚泥類は、通常、多量の水の中に固体成分が含まれているので、沈降、ろ過などの幾つかの固液分離方法を組み合わせ、固体成分から大量の水を順次に分離し除去して濃縮し、最終的に脱水して得られた固体分をコンポスト化し、あるいは埋立、焼却などの最終処分を行っている。ところが、これらの汚泥は、沈降性、ろ過性が極めて悪く水との分離が困難であって、その濃縮および脱水には長時間を要する。これを改善するために、通常は石灰などの無機系脱水助剤を添加して脱水を容易にすることが行われている。ところが、これら脱水助剤の添加によって、処分する汚泥量自体が増大し、また最近では環境汚染の可能性が論議されるようになった。
【0003】
【発明が解決しようとする課題】
そこで、脱水助剤などの薬剤を使用しないで汚泥を濃縮し脱水する汚泥脱水法が検討され、いわゆる無薬注汚泥脱水法が開発されている。この方法を用いたシステムの一例を図2にフローシートで示す。本例では汚泥を含む原水21を沈殿池22に導いて汚泥を沈降分離し、ついで濃縮槽23に送入し水蒸気24を吹き込んで汚泥を加熱し粘性を低下させて汚泥の脱水性を向上させる。この汚泥をろ過脱水器25に送って脱水するものである。環境保護の面では好ましい方法であるが、処理時間がかかり、通常、ろ過・脱水操作に8時間以上を要するという問題がある。
【0004】
また、汚泥のろ過、脱水性を向上させる目的で、汚泥を凍結し融解処理する凍結・融解処理法が提案されている。この方法を利用した汚泥脱水システムの一例を図3にフローシートで示す。本例示では、汚泥を含む原水31を沈殿池32に導いて汚泥を沈降分離し、ついで沈降した汚泥を濃縮槽33に送入し分離・濃縮する。濃縮された汚泥は、凍結・融解槽34で凍結し融解して脱水性などを向上させ、ろ過・脱水器35に送って脱水する。汚泥中の水を凍結することによって汚泥がミクロ的に水から分離されるものと考えられるが、汚泥の凍結に要する設備費用、運転費用が高額である。また、前工程に遠心分離器を導入すれば、汚泥を濃縮して凍結・融解する汚泥量を減らせるが、電気コストが高くなる。コスト削減の手段として、凍結・融解処理後に沈降処理を行って上澄水を抜き出し、脱水機での処理汚泥量を減少させる方策を採ることにより、一応の効果が得られる。しかし、本発明は、操作が容易であって脱水操作が短時間で終了し、かつコストの低い既設備導入型汚泥の脱水法、とくに汚泥の無薬注脱水を課題に鋭意研究した結果、完成されたものである。
【0005】
【課題を解決するための手段】
本発明は、凍結、融解した汚泥、もしくは凍結、融解して汚泥から上澄水を分離、除去した後の凍結・融解汚泥が、脱水性に優れ、ろ布への目詰まりが少なく、脱水後、ろ布からの剥離性がよいなどの有利な特性を有することを見出し、従来の汚泥の脱水、とくに無薬注脱水操作を短時間で終了するための方策に利用することを検討した結果、完成されたものである。
【0006】
前記の課題を解決する手段として本発明は、汚泥のろ過・脱水方法において、 汚泥凍結・融解法によって得られた凍結・融解汚泥をろ過器にプリコートし、プ リコート後に脱水しようとする汚泥を前記ろ過器に供給して、ろ過・脱水するこ とを特徴とする汚泥のろ過・脱水方法を提供する。さらに望ましくは、汚泥凍結 ・融解法によって得られた凍結・融解汚泥を清澄して上澄水を分離し、残った凍 結・融解汚泥をろ過器にプリコートする。前記の汚泥のろ過・脱水方法において 使用するろ過器は、加圧ろ過器が好適である。そして、本発明は、とくに脱水助 剤を使用しない汚泥のろ過・脱水方法、いわゆる無薬注加圧脱水汚泥処理方法と して効果的である。
【0007】
そして本発明は、汚泥の凍結・融解装置1とプリコート式のろ過器2とを含んでなり、脱水しようとする汚泥を前記凍結・融解装置と前記ろ過器とに送入先を切り替えて導くライン3と、凍結・融解装置には凍結・融解された汚泥を前記ろ過器に送出するライン4及び凍結・融解された汚泥から清澄分離された上澄水を系外に送出するライン5とを具備することを特徴とする汚泥のろ過・脱水システムを提供する。
【0008】
【発明の実施の形態】
本発明を図面を参照しながら具体的に説明する。図1は、本発明を利用するの実施形態の一例を示すフローシートである。なお、本発明の説明において、凍結・融解汚泥は凍結・融解法によって処理された汚泥をいう。本発明が脱水しようとする汚泥は、有機質でも無機質でもよく、濃縮処理されていない生の汚泥、あるいは何らかの方法で濃縮されている汚泥であってもよい。なお、本発明の説明中「無薬注汚泥脱水法」は、脱水工程において、従来、汚泥のろ過性向上のために用いられた消石灰などの脱水助剤(注:汚泥濃縮工程において使用する汚泥凝集剤等とは区別される)を使用しない脱水法のことをいう。ここに示した実施形態は、本発明を理解しやすくするために例示するものであって、本発明を限定するものではない。
【0009】
さて、本発明は前記の凍結・融解汚泥の性質を活用して、汚泥の脱水を行うものである。汚泥の凍結・融解法は、汚泥を凍結することによって、汚泥液相部分の水や固形分中に取り込まれている水などを凍結し汚泥中の固形分と分離させ、さらに、必要により、たとえば凍結汚泥を融解し清澄して得られる上澄水を系外に排出させておく。あらかじめ上澄水を分離して処理量を削減し、脱水機の負荷を小さくすることができる。
【0010】
図1に例示のプロセスにおいては、まず、脱水しようとする汚泥6を沈殿池7に導いて汚泥を重力沈殿させ、さらに沈殿汚泥を濃縮槽8に送って二次濃縮する。ライン3の切替操作により濃縮された汚泥を凍結・融解槽1に送入して凍結させ、融解して清澄させ、上澄水をライン5を経て系外に排出する。残った凍結・融解汚泥は、ライン4を経てろ過器2に圧送し、プリコートする。プリコートされた凍結・融解汚泥が、ろ布の目詰まりの原因になることは殆どない。
【0011】
本発明において使用するろ過器2の種類は、プリコート法を採用することのできるろ過器であればよく、たとえば加圧ろ過器、真空ろ過器、遠心分離器を採用できるが、中でも加圧ろ過器、とくにフィルタープレスが好適である。プリコート条件は汚泥の特性やその状態により、経験的、実験的に決められることが多いが、一般的に厚さは1〜2mmが適当で、凍結・融解汚泥の量としては、通常、脱水しようとする汚泥量の10〜50重量%程度である。
【0012】
ろ過器7に所要のプリコート層が形成された時点でライン3を切り替え、本例では前記の濃縮汚泥を、直接、ろ過機に圧送する。圧送された汚泥はプリコートによってろ過、脱水されるが、凍結、融解されていない汚泥を用いて加圧ろ過を行うよりも、はるかに短時間で多量の汚泥を脱水処理することができ、かつ残存水分率は低くなる。また、脱水終了後の汚泥は、ろ布等からの剥離性がよく除去作業は容易である。本発明によって処理しようとする汚泥は、処理前にある程度の濃縮処理を施しておくことが好ましいが、濃縮処理は必須の要件ではない。
【0013】
前記の本発明に係る汚泥のろ過・脱水方法は、とくに脱水しようとする汚泥が、汚泥凝集剤を多く使用した難ろ過性の汚泥である場合に効果的である。ろ過器における汚泥の脱水性が向上して、従来の無薬注汚泥脱水法において問題とされた処理能力が改善され、さらに、脱水後の汚泥除去が容易になって作業能率も向上し、無公害汚泥脱水処理の普及に寄与できる。
【0014】
凍結・融解汚泥をろ過器にプリコートすることに代えて、脱水しようとする汚泥に混合してろ過、脱水することによっても、ろ過器の処理量を増大させ、脱水終了後の脱水汚泥除去などの操作を容易にすることができる。しかし、その効果は、脱水しようとする汚泥100重量部に対し、凍結・融解汚泥を少なくとも10重量部、好ましくは50重量部の汚泥を混合する必要があり、かつ、前記の凍結・融解汚泥をろ過器にプリコートする方法には及ばない。
【0015】
【実施例】
本発明を具体的に理解するため、以下に実施例をあげるが、図1及び実施例は、いずれも本発明の範囲を限定するものではない。
【0016】
実施例1
図1に示したのと同じ構成のろ過・脱水装置を用い、河川原水を沈殿池に導いて汚泥分を重力沈殿・濃縮し、沈降した汚泥をさらに濃縮槽において約4重量%に濃縮した。この汚泥を処理容量が600リットルの回分式凍結濃縮槽においてブライン温度を−20℃にして凍結濃縮し、汚泥濃度15重量%の凍結濃縮汚泥を得た。この凍結濃縮汚泥約50kgを用いろ過面積が1.59mのフィルタープレスにプリコートした。ろ布は普通ろ布N856を用いた。凍結ろ過していない水分率約4重量%の被処理汚泥を200kg供給してろ過、圧搾し、0.8時間後に汚泥濃度を測定したところ水分が62重量%の圧搾汚泥にすることができた。このときのろ過速度は、3kg/mhrであった。ケークの剥離回収は極めて容易であった。
【0017】
比較例1
実施例1において使用したのと同じ装置を用い、ただし、凍結濃縮汚泥をプリコートすることなく、実施例1においてろ過したのと同じ水分率約4重量%汚泥を200kg供給しろ過、圧搾を行った。約3時間後に汚泥濃度を測定したところ水分が70重量%の圧搾汚泥が得られた。このときのろ過速度は0.3kg/mhrであった。
【0018】
【発明の効果】
本発明を利用し、凍結濃縮汚泥をプリコートすることによって脱水機からの汚 泥剥離性が向上し、また、ろ布等の目詰まりが生じにくくなる。脱水性が向上し 、脱水操作時間が短縮される。これらの効果は、濃縮汚泥に凍結濃縮汚泥を添加 した場合にも認められるが本願発明が奏する効果には及ばない。従来から行われ 得てきた全量を凍結濃縮した後、脱水する場合に較べて設備費および操業費とも に経済的である。なお、プリコート法は既設備導入型であり、新設、既設を問わ ず多くの脱水システムに導入することができる。本発明を契機として無公害の汚 泥脱水処理の普及が期待される。
【図面の簡単な説明】
【図1】本発明汚泥ろ過・脱水システムを利用した汚泥処理を例示する概略フローシート
【図2】無薬注汚泥脱水法を利用した従来の汚泥処理を例示する概略フローシート
【図3】凍結・融解処理法を利用した従来の汚泥処理を例示する概略フローシート
【符号の説明】
1:凍結・融解槽 2:ろ過器
3:汚泥を凍結・融解装置とろ過器とに切り替え導くライン
4:凍結・融解汚泥をろ過器に送出するライン
5:上澄水を系外に送出するライン
6:脱水しようとする汚泥 7:沈殿池
8:濃縮槽
21:汚泥を含む原水 22:沈殿池
23:濃縮槽 24:水蒸気
25:ろ過脱水器
31:汚泥を含む原水 32:沈殿池
33:濃縮槽 34:凍結・融解槽
35:ろ過・脱水器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an efficient filtration / dehydration method and system for sewage sludge, septic tank sludge, human waste, or hardly dewaterable sludge discharged in the treatment of industrial wastewater or landfill wastewater.
[0002]
[Prior art]
The sludge usually contains a solid component in a large amount of water, so several solid-liquid separation methods such as sedimentation and filtration are combined to separate and remove a large amount of water sequentially from the solid component. The solid content obtained by concentrating and finally dewatering is composted, or final disposal such as landfill and incineration is performed. However, these sludges have extremely poor sedimentation and filterability and are difficult to separate from water, and it takes a long time to concentrate and dehydrate. In order to improve this, usually, an inorganic dehydration aid such as lime is added to facilitate dehydration. However, the addition of these dehydrating aids has increased the amount of sludge to be disposed of, and recently the possibility of environmental pollution has been discussed.
[0003]
[Problems to be solved by the invention]
Therefore, a sludge dewatering method for concentrating and dewatering sludge without using a chemical such as a dehydrating aid has been studied, and a so-called non-chemical injection sludge dewatering method has been developed. An example of a system using this method is shown in a flow sheet in FIG. In this example, the raw water 21 containing sludge is guided to the settling basin 22 to settle and separate the sludge, and then fed into the concentration tank 23 and blown with water vapor 24 to heat the sludge to reduce the viscosity and improve the dewaterability of the sludge. . This sludge is sent to the filter dehydrator 25 for dehydration. Although it is a preferable method from the viewpoint of environmental protection, there is a problem that it takes a long processing time and usually requires 8 hours or more for the filtration / dehydration operation.
[0004]
In addition, for the purpose of improving sludge filtration and dewaterability, a freeze / thaw treatment method has been proposed in which sludge is frozen and thawed. An example of a sludge dewatering system using this method is shown in a flow sheet in FIG. In this example, the raw water 31 containing sludge is guided to the settling basin 32 to settle and separate the sludge, and then the settled sludge is fed into the concentration tank 33 to be separated and concentrated. The concentrated sludge is frozen and thawed in the freezing / thawing tank 34 to improve the dehydration property and the like, and is sent to the filtration / dehydrator 35 for dehydration. Although it is thought that sludge is microscopically separated from water by freezing the water in the sludge, the equipment cost and operation cost required for freezing sludge are high. In addition, if a centrifuge is introduced in the previous process, the amount of sludge to be concentrated and frozen and thawed can be reduced, but the electrical cost is increased. As a means for reducing costs, a temporary effect can be obtained by taking a measure to reduce the amount of treated sludge in a dehydrator by performing a sedimentation treatment after freezing / thawing treatment to extract the supernatant water. However, the present invention was completed as a result of diligent research on the sludge dewatering method, particularly non-chemical dewatering of sludge, which is easy to operate, completes the dewatering operation in a short time, and is low in cost. It has been done.
[0005]
[Means for Solving the Problems]
The present invention is a frozen, thawed sludge, or a frozen / thawed sludge after freezing and thawing to separate and remove the supernatant water, which is excellent in dehydration, less clogging the filter cloth, after dehydration, As a result of finding advantageous properties such as good releasability from filter cloth, and using it as a measure to finish conventional sludge dehydration, especially non-chemical injection dehydration, in a short time. It has been done.
[0006]
As a means for solving the above-mentioned problems, the present invention provides a sludge filtration / dehydration method in which frozen / thaw sludge obtained by the sludge freezing / thawing method is pre-coated on a filter, and the sludge to be dehydrated after pre-coating is described above. We provide a method for filtering and dewatering sludge by supplying it to a filter and filtering and dewatering. More preferably, the frozen / thawed sludge obtained by the sludge freezing / thawing method is clarified to separate the supernatant water, and the remaining frozen / thawed sludge is pre-coated on a filter. A pressure filter is suitable for the filter used in the sludge filtration / dehydration method. The present invention is particularly filtration and dehydration process sludge without using a dehydrating aid, effective as a so-called no-drug poured dewatering sludge treatment method.
[0007]
The present invention includes a sludge freezing and thawing device 1 and a precoat type filter 2, and a line for guiding the sludge to be dewatered to the freezing and thawing device and the filter by switching the destination. 3 and the freezing / thawing apparatus includes a line 4 for sending frozen / thawed sludge to the filter and a line 5 for sending supernatant water clarified from the frozen / thawed sludge to the outside of the system. A sludge filtration / dehydration system is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described with reference to the drawings. FIG. 1 is a flow sheet showing an example of an embodiment using the present invention. In the description of the present invention, frozen / thawed sludge refers to sludge treated by the freezing / thawing method. The sludge to be dehydrated by the present invention may be organic or inorganic, and may be raw sludge that has not been concentrated or sludge that has been concentrated by some method. In the description of the present invention, the “non-chemically injected sludge dewatering method” refers to a dehydration aid such as slaked lime that has been used in the dehydration process to improve the sludge filterability (note: sludge used in the sludge concentration process). It is a dehydration method that does not use a coagulant and the like. The embodiment shown here is illustrated for easy understanding of the present invention, and does not limit the present invention.
[0009]
In the present invention, sludge is dehydrated by utilizing the properties of the frozen / thawed sludge. In the sludge freezing and thawing method, the sludge is frozen, so that the water in the sludge liquid phase and the water incorporated in the solid content are frozen and separated from the solid content in the sludge. The supernatant water obtained by melting and clarifying frozen sludge is discharged out of the system. The supernatant water can be separated in advance to reduce the processing amount, and the load on the dehydrator can be reduced.
[0010]
In the process illustrated in FIG. 1, first, the sludge 6 to be dewatered is guided to the settling basin 7 to cause the sludge to gravity settle, and the precipitated sludge is sent to the concentration tank 8 for secondary concentration. The sludge concentrated by the switching operation of the line 3 is sent to the freezing / thawing tank 1 to be frozen, thawed and clarified, and the supernatant water is discharged out of the system via the line 5. The remaining frozen / thawed sludge is pumped to the filter 2 via the line 4 and pre-coated. Precoated frozen / thawed sludge rarely causes clogging of the filter cloth.
[0011]
The type of the filter 2 used in the present invention may be a filter that can adopt the precoat method, and for example, a pressure filter, a vacuum filter, and a centrifuge can be used. In particular, a filter press is suitable. Pre-coating conditions are often determined empirically and experimentally depending on the characteristics and state of the sludge, but generally a thickness of 1 to 2 mm is appropriate, and the amount of frozen / thawed sludge is usually dehydrated. The amount of sludge is about 10 to 50% by weight.
[0012]
When the required precoat layer is formed on the filter 7, the line 3 is switched, and in this example, the concentrated sludge is directly pumped to the filter. The sludge sent under pressure is filtered and dewatered by the precoat, but a large amount of sludge can be dehydrated in a much shorter time than the pressure filtration using sludge that has not been frozen or thawed. The moisture content is low. Moreover, the sludge after the dehydration has a good peelability from the filter cloth and the like, and the removal work is easy. The sludge to be treated according to the present invention is preferably subjected to a certain concentration treatment before treatment, but the concentration treatment is not an essential requirement.
[0013]
The method for filtering and dewatering sludge according to the present invention is particularly effective when the sludge to be dewatered is difficult to filter sludge using a large amount of sludge flocculant. The sludge dewatering performance in the filter is improved, the processing capacity that has been a problem in the conventional chemical-free sludge dewatering method is improved, the sludge removal after dehydration is facilitated, and the work efficiency is also improved. It can contribute to the spread of pollution sludge dewatering treatment.
[0014]
Instead of pre-coating frozen and thawed sludge on the filter, mixing with the sludge to be dehydrated and filtering and dehydrating can also increase the throughput of the filter and remove dehydrated sludge after dehydration. Operation can be facilitated. However, the effect is that it is necessary to mix at least 10 parts by weight, preferably 50 parts by weight, of sludge to be dehydrated with respect to 100 parts by weight of sludge to be dehydrated. It does not extend to the method of pre-coating the filter.
[0015]
【Example】
In order to understand the present invention specifically, examples will be given below. However, neither FIG. 1 nor examples limit the scope of the present invention.
[0016]
Example 1
Using the filtration / dehydration apparatus having the same configuration as shown in FIG. 1, the raw river water was guided to the settling basin, and the sludge was gravity precipitated and concentrated, and the settled sludge was further concentrated to about 4% by weight in the concentration tank. This sludge was freeze-concentrated at a brine temperature of −20 ° C. in a batch-type freeze concentration tank with a treatment capacity of 600 liters to obtain a freeze-concentrated sludge having a sludge concentration of 15% by weight. About 50 kg of this freeze-concentrated sludge was precoated on a filter press having a filtration area of 1.59 m 2 . As the filter cloth, ordinary filter cloth N856 was used. 200 kg of sludge to be treated with a moisture content of about 4% by weight which is not frozen and filtered is supplied and filtered and compressed. After 0.8 hours, the sludge concentration is measured, and a compressed sludge with a water content of 62% by weight can be obtained. . The filtration rate at this time was 3 kg / m 2 hr. Cake peeling and recovery was extremely easy.
[0017]
Comparative Example 1
The same apparatus as used in Example 1 was used, except that 200 kg of the same water content of about 4% by weight as sludge filtered in Example 1 was supplied without pre-coating the freeze-concentrated sludge, followed by filtration and compression. . When the sludge concentration was measured after about 3 hours, a compressed sludge having a water content of 70% by weight was obtained. The filtration rate at this time was 0.3 kg / m 2 hr.
[0018]
【The invention's effect】
By utilizing the present invention and pre-coating freeze-concentrated sludge, the sludge release property from the dehydrator is improved, and clogging of filter cloth and the like is less likely to occur. Dehydration is improved and the dehydration operation time is shortened. These effects are also observed when freeze-concentrated sludge is added to the concentrated sludge, but it is not as effective as the present invention . Compared to the case of dehydration after freezing and concentrating all the conventional amounts that have been obtained, both the equipment and operating costs are economical. The pre-coating method is an existing equipment introduction type and can be introduced into many dehydration systems regardless of whether it is newly installed or existing. With the present invention, the spread of pollution-free sludge dewatering is expected.
[Brief description of the drawings]
FIG. 1 is a schematic flow sheet illustrating sludge treatment using the sludge filtration / dehydration system of the present invention. FIG. 2 is a schematic flow sheet illustrating conventional sludge treatment using a non-chemically poured sludge dewatering method.・ Outline flow sheet exemplifying conventional sludge treatment using melting method [Explanation of symbols]
1: Freezing / thawing tank 2: Filter 3: Line for switching sludge between freezing / thawing device and filter 4: Line for sending frozen / thawed sludge to the filter 5: Line for sending supernatant water out of the system 6: Sludge to be dehydrated 7: Sedimentation basin 8: Concentration tank 21: Raw water containing sludge 22: Sedimentation pond 23: Concentration tank 24: Steam 25: Filtration dehydrator 31: Raw water containing sludge 32: Sedimentation basin 33: Concentration Tank 34: Freezing / thawing tank 35: Filtration / dehydrator

Claims (5)

汚泥のろ過・脱水方法において、汚泥凍結・融解法によって得られた凍結・融 解汚泥をろ過器にプリコートし、プリコート後に脱水しようとする汚泥を前記ろ 過器に供給してろ過・脱水することを特徴とする汚泥のろ過・脱水方法。          In the sludge filtration / dehydration method, pre-coating the sludge freezing / thawing sludge obtained by the sludge freezing / thawing method on the filter, supplying the sludge to be dehydrated after pre-coating to the filter, and filtering / dehydrating. A sludge filtration and dehydration method characterized by 汚泥凍結・融解法によって得られた凍結・融解汚泥を清澄して上澄水を分離し 、残った凍結・融解汚泥をろ過器にプリコートすることを特徴とする請求項1記 載の汚泥のろ過・脱水方法。          The frozen sludge obtained by the sludge freezing and thawing method is clarified, the supernatant water is separated, and the remaining frozen and thawed sludge is pre-coated on a filter. Dehydration method. ろ過器として、加圧ろ過器を用いることを特徴とする請求項1、又は2記載の 汚泥のろ過・脱水方法。 3. The sludge filtration / dehydration method according to claim 1, wherein a pressure filter is used as the filter. 脱水しようとする汚泥が、脱水助剤を含まない汚泥であることを特徴とする 求項1、2又は3に記載の汚泥のろ過・脱水方法。Sludge to be dewatered is, filtration and dehydration process sludge according to Motomeko 1, 2 or 3, characterized in that a sludge containing no dehydrating aid. 汚泥の凍結・融解装置(1)とプリコート式のろ過器(2)とを含んでなり、 脱水しようとする汚泥を前記凍結・融解装置と前記ろ過器とに送入先を切り替え て導くライン(3)と、凍結・融解装置には凍結・融解された汚泥を前記ろ過器 に送出するライン(4)及び凍結・融解された汚泥から清澄分離された上澄水を 系外に送出するライン(5)とを具備することを特徴とする汚泥のろ過・脱水シ ステム。          A line that includes a sludge freezing / thawing device (1) and a precoat-type filter (2), and leads the sludge to be dewatered to the freezing / thawing device and the filter by switching the delivery destination ( 3) and a freezing and thawing device, a line for sending frozen and thawed sludge to the filter (4), and a line for sending supernatant water clarified from the frozen and thawed sludge to the outside of the system (5) And a sludge filtration / dehydration system.
JP2002151065A 2002-05-24 2002-05-24 Filtration / dehydration method and system for sludge Expired - Fee Related JP3692331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002151065A JP3692331B2 (en) 2002-05-24 2002-05-24 Filtration / dehydration method and system for sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002151065A JP3692331B2 (en) 2002-05-24 2002-05-24 Filtration / dehydration method and system for sludge

Publications (2)

Publication Number Publication Date
JP2003340217A JP2003340217A (en) 2003-12-02
JP3692331B2 true JP3692331B2 (en) 2005-09-07

Family

ID=29768757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002151065A Expired - Fee Related JP3692331B2 (en) 2002-05-24 2002-05-24 Filtration / dehydration method and system for sludge

Country Status (1)

Country Link
JP (1) JP3692331B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4812336B2 (en) * 2005-06-02 2011-11-09 株式会社タクマ Sludge dewatering method
JP2007014927A (en) * 2005-07-11 2007-01-25 Takuma Co Ltd Mud treatment method
JP4761043B2 (en) * 2005-12-22 2011-08-31 国立大学法人信州大学 Mud removal method and apparatus

Also Published As

Publication number Publication date
JP2003340217A (en) 2003-12-02

Similar Documents

Publication Publication Date Title
KR100919650B1 (en) Method and plant for thickening sludge derived from water treatment by flocculation-decantation with ballasted floc
CN111635060A (en) Method and device for treating silicon dioxide production wastewater
JP3692331B2 (en) Filtration / dehydration method and system for sludge
JP3480904B2 (en) Method and apparatus for recovering phosphorus from sludge
KR100920454B1 (en) Sewage disposal plant sewage disposal method
JP3692349B2 (en) Sludge dewatering method
JP2006297307A (en) Method for treating raw sewage based waste water
JP4007639B2 (en) Sewage return water treatment method and equipment
JP3496773B2 (en) Advanced treatment method and apparatus for organic wastewater
JPH1119696A (en) Treatment of sludge waste water and water purifier
JP4005496B2 (en) Sludge precipitation concentration method
JPH1034199A (en) Treatment of tap water sludge
JPH08206691A (en) Treatment of sludge
JP2634846B2 (en) Coagulation separation method of suspension in water
JPS5919759B2 (en) Advanced treatment method for sewage water
JP2004237247A (en) Treatment apparatus for water-containing slurry
JP4812336B2 (en) Sludge dewatering method
JP6860858B2 (en) Sludge treatment method
JP2003170157A (en) Cleaning equipment for suspended solid-containing seawater
JPS61178100A (en) Concentration treatment of sludge
JPS6018201B2 (en) Sludge treatment method
JP3764397B2 (en) Organic waste treatment method and apparatus
JP2001062500A (en) Dehydrating method using carbonate sludge
JP2002126755A (en) Coagulating separation method and coagulating separation treatment device
CN111574014A (en) Aeration purification method for sludge water discharged from purification plant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees