JP2016112556A - Method for biologically treating water to be treated by using aerobic fluidized bed - Google Patents

Method for biologically treating water to be treated by using aerobic fluidized bed Download PDF

Info

Publication number
JP2016112556A
JP2016112556A JP2015196655A JP2015196655A JP2016112556A JP 2016112556 A JP2016112556 A JP 2016112556A JP 2015196655 A JP2015196655 A JP 2015196655A JP 2015196655 A JP2015196655 A JP 2015196655A JP 2016112556 A JP2016112556 A JP 2016112556A
Authority
JP
Japan
Prior art keywords
treated
water
ions
biological treatment
thiocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015196655A
Other languages
Japanese (ja)
Other versions
JP6540437B2 (en
Inventor
寿和 福島
Toshikazu Fukushima
寿和 福島
加藤 敏朗
Toshiro Kato
敏朗 加藤
文隆 加藤
Fumitaka Kato
文隆 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JP2016112556A publication Critical patent/JP2016112556A/en
Application granted granted Critical
Publication of JP6540437B2 publication Critical patent/JP6540437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a method for biologically treating water to be treated by using an aerobic fluidized bed, in which when the water to be treated, which water contains a thiocyanate ion and an ammonium ion, is treated biologically, the thiocyanate ion can be removed selectively and efficiently without oxidizing the ammonium ion.SOLUTION: When the biological treatment is performed continuously on the water to be treated, which water contains the thiocyanate ion and the ammonium ion, the method for biologically treating the water to be treated by using the aerobic fluidized bed comprises the steps of: charging a fluidized carrier, on which microbes are fixed, in a biological treatment tank; aerating the fluidized carrier-charged biological treatment tank to compose the aerobic fluidized bed; acclimatizing microbes in the biological treatment tank while monitoring the thiocyanate ion and a nitrite ion in the treated water in the biological treatment tank or the treated water to be discharged from the biological treatment tank; controlling the hydrological residence time; and removing the thiocyanate ion selectively while suppressing generation of the nitrite ion.SELECTED DRAWING: Figure 2

Description

この発明は、チオシアン酸イオン及びアンモニウムイオンを含有する被処理水を生物学的処理により連続的に処理するための方法に係り、特に、好気性流動床を構成してアンモニウムイオンを酸化することなくチオシアン酸イオンを選択的に除去する被処理水の生物学的処理方法に関する。   The present invention relates to a method for continuously treating to-be-treated water containing thiocyanate ions and ammonium ions by biological treatment, and in particular, without constituting ammonium aerobic fluidized bed and oxidizing ammonium ions. The present invention relates to a biological treatment method for water to be treated that selectively removes thiocyanate ions.

チオシアン酸イオンとアンモニウムイオン(アンモニア性窒素)を含む被処理水としては、例えばコークス製造工程で発生するコークス炉排水(安水)、石炭ガス化工程で発生する石炭ガス化排水、アセチレン精製工程で発生する洗浄排水等が存在するが、このような被処理水については、例えばアンモニウムイオンの処理に適した塩素酸化によるブレークポイント法を適用するとチオシアン酸イオン由来のシアン化水素のような有害なガスや有害な中間体が生成する等、その処理に困難が伴うことが知られている。   As treated water containing thiocyanate ion and ammonium ion (ammonia nitrogen), for example, coke oven wastewater (another water) generated in coke production process, coal gasification wastewater generated in coal gasification process, acetylene purification process There is a waste water that is generated, but for such treated water, for example, if the breakpoint method by chlorination suitable for the treatment of ammonium ions is applied, harmful gases such as hydrogen cyanide derived from thiocyanate ions and harmful Such intermediates are known to be difficult to process.

そこで、従来においても、このようなチオシアン酸イオン及びアンモニウムイオンを含む被処理水の処理方法について、幾つかの検討が行われており、また、提案がされている。
例えば、特許文献1においては、コークス炉ガス液(安水)を生物学的に処理するに際し、無酸素条件の脱窒槽と好気性雰囲気の硝化槽とを用い、前段の脱窒槽に後段の硝化槽からの硝化液を循環させてコークス炉ガス液中のチオシアン酸を水素供与体として利用する方法が提案されており、この方法は、無酸素条件の脱窒槽でチオシアン酸イオンと硝酸又は亜硝酸を除去し、また、好気性雰囲気の硝化槽でアンモニア性窒素を硝酸又は亜硝酸に酸化する方法である。しかしながら、この方法においては、最低でも2つの処理槽(実施例では2つの脱窒槽と2つの硝化槽が用いられている。)を設置する必要があり、既存の処理槽を有する設備ではその適用が現実的でないほか、無酸素条件の脱窒槽において水素供与体として利用するチオシアン酸成分が不足すると、処理コスト高の原因となるメタノール等の薬品を別途添加する必要が生じる。更に、この方法は、非特許文献1に開示されている通り、好気性条件下でチオシアン酸イオンを除去する場合に比べて除去速度が著しく遅い。
Therefore, some studies have been made and proposed in the past regarding methods for treating water to be treated containing such thiocyanate ions and ammonium ions.
For example, in Patent Document 1, when a coke oven gas liquid (anhydrous water) is biologically treated, a denitrification tank in an oxygen-free condition and a nitrification tank in an aerobic atmosphere are used, and a subsequent nitrification tank is used in the preceding denitrification tank. A method has been proposed in which thiocyanic acid in the coke oven gas liquid is circulated as a hydrogen donor by circulating the nitrification liquid from the tank, and this method uses thiocyanate ions and nitric acid or nitrous acid in an oxygen-free denitrification tank. In addition, ammonia nitrogen is oxidized to nitric acid or nitrous acid in a nitrification tank in an aerobic atmosphere. However, in this method, it is necessary to install at least two treatment tanks (in the embodiment, two denitrification tanks and two nitrification tanks are used), and this is applied to facilities having existing treatment tanks. In addition, if the thiocyanic acid component used as a hydrogen donor in an oxygen-free denitrification tank is insufficient, it is necessary to separately add a chemical such as methanol that causes high processing costs. Furthermore, as disclosed in Non-Patent Document 1, this method has a remarkably slow removal rate compared to the case of removing thiocyanate ions under aerobic conditions.

また、特許文献2においては、アンモニア性窒素及びチオシアン酸イオンを含有する廃水にオゾンを作用させる第1工程と、この第1工程での処理水に塩素系酸化剤を作用させる第2工程とを備え、第1工程でチオシアン酸イオンを除去した後に第2工程でアンモニア性窒素を除去する方法が開示されている。しかしながら、この方法において、第1工程で行われるオゾン処理は、極めて高価な処理方法であり、また、場合によっては有害な副生成物が生成することがある。   Moreover, in patent document 2, the 1st process of making ozone act on the wastewater containing ammoniacal nitrogen and a thiocyanate ion, and the 2nd process of making a chlorine-type oxidizing agent act on the treated water in this 1st process are included. And a method of removing ammoniacal nitrogen in the second step after removing thiocyanate ions in the first step. However, in this method, the ozone treatment performed in the first step is an extremely expensive treatment method, and a harmful by-product may be generated in some cases.

更に、特許文献3においては、石炭ガス化工程で発生した石炭ガス化排水を処理するに際し、凝集沈殿処理により懸濁物質を除去した後にpHを3〜6に調整し、次いで過酸化水素等の酸化剤の存在下に紫外線を照射してチオシアン酸イオン等を除去し、更にpH7以上に調整して水蒸気又は空気で曝気し、アンモニアを除去する方法が開示されている。しかしながら、この方法においても、チオシアン酸イオン等を除去するために、過酸化水素等の酸化剤の存在下に紫外線照射を行う必要がある。   Furthermore, in Patent Document 3, when treating the coal gasification wastewater generated in the coal gasification step, the pH is adjusted to 3-6 after removing suspended substances by coagulation sedimentation treatment, and then hydrogen peroxide or the like is used. There is disclosed a method of removing ammonia by irradiating ultraviolet rays in the presence of an oxidizing agent to remove thiocyanate ions and the like, further adjusting the pH to 7 or more and aeration with water vapor or air. However, even in this method, it is necessary to perform ultraviolet irradiation in the presence of an oxidizing agent such as hydrogen peroxide in order to remove thiocyanate ions and the like.

そして、特許文献4には、安水の生物学的処理におけるCOD濃度シミュレーション方法及び装置が開示されており、水質シミュレーション方法としての活性汚泥モデルを基礎として構築され、コークス製造工程で発生したチオシアン酸イオン含有の安水に適用できる新たな活性汚泥モデルが提案されている。しかしながら、この方法は、新たな安水の生物学的処理の方法を提案するものではない。   Patent Document 4 discloses a COD concentration simulation method and apparatus in biological treatment of aqueous water, which is built on the basis of an activated sludge model as a water quality simulation method and is generated in the coke production process. A new activated sludge model that can be applied to water containing ions has been proposed. However, this method does not propose a new method for biological treatment of safe water.

ところで、活性汚泥によりチオシアン酸イオンとアンモニウムイオンとを同時に処理しようとした場合、チオシアン酸イオンが除去されると同時にアンモニウムイオンが亜硝酸イオンに酸化される反応が起こり、チオシアン酸イオンは除去されても、アンモニウムイオンが亜硝酸イオンに酸化されて処理水中に残ってしまう。そして、この亜硝酸イオンは、排水基準において許容限度の低い化学的酸素要求量(Chemical Oxygen Demand;COD)の成分(160mg/L)であるため、処理水中に亜硝酸が含まれることは排水基準の観点からも望ましくない。   By the way, when trying to treat thiocyanate ions and ammonium ions simultaneously with activated sludge, a reaction occurs in which the thiocyanate ions are removed and at the same time the ammonium ions are oxidized to nitrite ions, and the thiocyanate ions are removed. However, ammonium ions are oxidized to nitrite ions and remain in the treated water. And since this nitrite ion is a component (160mg / L) of chemical oxygen demand (COD) that has a low allowable limit in the effluent standard, the fact that nitrite is contained in the treated water From the point of view, it is not desirable.

特開平09-290,290号公報JP 09-290,290 A 特開平11-033,571号公報JP 11-033,571 特開2007-216,225号公報JP 2007-216,225 特開2011-045,872号公報JP 2011-045,872

D. Y. Sorokin他、Microbiol.,2004年, 150巻, 2435〜2442頁D. Y. Sorokin et al., Microbiol. , 2004, 150, 2435-2442

本発明者らは、被処理水中のチオシアン酸イオンを生物学的に処理することができることから、チオシアン酸イオン及びアンモニウムイオンを含有する被処理水の処理については、高価な薬品や設備を使用することなく、また、有害なガスや副生成物を生成させることのない生物学的処理により処理するのが好ましいと考えた。しかしながら、前述のように、好気性雰囲気では微生物がチオシアン酸イオンを除去すると同時にアンモニウムイオンを亜硝酸イオンに酸化するため、この亜硝酸イオンへの酸化を抑制しながら、チオシアン酸イオンを処理する必要があるが、従来の溶存酸素が存在する好気性条件下の生物学的処理においては、このような処理方法が報告されていない。   Since the present inventors can biologically treat thiocyanate ions in treated water, expensive chemicals and equipment are used for treating treated water containing thiocyanate ions and ammonium ions. And it was considered preferable to perform the treatment by a biological treatment that does not generate harmful gases and by-products. However, as described above, in the aerobic atmosphere, microorganisms remove thiocyanate ions and at the same time oxidize ammonium ions to nitrite ions, so it is necessary to treat thiocyanate ions while suppressing the oxidation to nitrite ions. However, in the conventional biological treatment under the aerobic condition where dissolved oxygen is present, such a treatment method has not been reported.

本発明は、かかる事情に鑑みてなされたものであり、チオシアン酸イオン及びアンモニウムイオンを含有する被処理水の生物学的処理において、アンモニウムイオンを酸化することなく、チオシアン酸イオンを選択的に効率良く除去することができる、好気性流動床による被処理水の生物学的処理方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and in the biological treatment of water to be treated containing thiocyanate ions and ammonium ions, the thiocyanate ions can be selectively and efficiently oxidized without oxidizing the ammonium ions. It is an object of the present invention to provide a biological treatment method for water to be treated by an aerobic fluidized bed that can be removed well.

上記目的を達成するため、本発明者らは、種々の検討を行った結果、以下の知見を得た。
先ず、被処理水中のチオシアン酸イオンを除去する微生物には付着性があることを知見し、また、この付着性微生物については、無酸素条件よりも好気性雰囲気の方がより速くチオシアン酸イオンを除去できることを確認した。そして、これらの知見から、好気性流動床による生物学的処理を検討する過程で、驚くべきことには、微生物の馴致処理の過程ではチオシアン酸イオンの除去とアンモニウムイオンの亜硝酸イオンへの酸化とが同時に生じることが認められたが、生物処理槽内において微生物馴致処理後の水理学的滞留時間を微生物馴致処理時の水理学的滞留時間よりも短くすると、チオシアン酸イオンを分解する微生物は好気性流動床に留まり易くて流出され難く、また、アンモニウムイオンを分解する微生物は好気性流動床に留まり難くて流出され易く、結果として、アンモニウムイオンの亜硝酸イオンへの酸化が抑制され、チオシアン酸イオンが選択的に除去されることを知見した。
In order to achieve the above object, the present inventors have made various studies and obtained the following findings.
First of all, it was found that microorganisms that remove thiocyanate ions in the water to be treated have adhesion, and for these adherent microorganisms, thiocyanate ions were more rapidly absorbed in an aerobic atmosphere than in anoxic conditions. It was confirmed that it could be removed. And from these findings, in the process of studying biological treatment with an aerobic fluidized bed, surprisingly, in the process of habituation of microorganisms, removal of thiocyanate ions and oxidation of ammonium ions to nitrite ions However, if the hydraulic residence time after the acclimation treatment in the biological treatment tank is shorter than the hydraulic residence time during the acclimation treatment, the microorganism that decomposes thiocyanate ions Microorganisms that easily stay in the aerobic fluidized bed and are difficult to flow out and microorganisms that decompose ammonium ions are difficult to stay in the aerobic fluidized bed and easily flow out. As a result, oxidation of ammonium ions to nitrite ions is suppressed, and thiocyanate It was found that acid ions are selectively removed.

更に、水理学的滞留時間を短縮することでアンモニウムイオンの亜硝酸イオンへの酸化抑制が達成できた後には、水理学的滞留時間を延長しても、しばらくは亜硝酸イオンの生成を抑制できることを知見し、また、このことから、排水の水質や排水量の変動に応じて水理学的滞留時間を変動させても、場合によっては水理学的滞留時間を微生物馴致処理時の水理学的滞留時間より延長させても、亜硝酸イオンの生成を抑制しながらチオシアン酸イオンを選択的に除去できることを知見した。   Furthermore, after the hydraulic residence time has been shortened, oxidation of ammonium ions to nitrite ions can be suppressed, and even if the hydraulic residence time is extended, the production of nitrite ions can be suppressed for a while. Therefore, even if the hydraulic residence time is changed in accordance with the quality of the wastewater and the amount of wastewater, the hydraulic residence time may be reduced during the acclimation treatment in some cases. It was found that thiocyanate ions can be selectively removed while suppressing the generation of nitrite ions even when the length is further extended.

また、生物処理槽内において微生物馴致処理後の水理学的滞留時間を微生物馴致処理時の水理学的滞留時間よりも短くし、チオシアン酸イオンを選択的に除去して得られたチオシアン酸イオン除去後の処理水については、チオシアン酸イオンが可及的に除去され、また、亜硝酸イオンの生成が可及的に抑制されているので、例えば塩素酸化によるブレークポイント法、アンモニアストリッピング法、ゼオライト吸着法等のアンモニウムイオンの処理に適した従来の処理方法を容易に適用することもできる。
本発明は、これらの知見に基づいてなされたものである。
In addition, the hydraulic retention time after acclimation treatment in the biological treatment tank is shorter than the hydraulic retention time during acclimation treatment, and thiocyanate ions are removed by selective removal of thiocyanate ions. In the treated water after that, thiocyanate ions are removed as much as possible, and the production of nitrite ions is suppressed as much as possible. For example, breakpoint method by chlorine oxidation, ammonia stripping method, zeolite A conventional treatment method suitable for the treatment of ammonium ions such as an adsorption method can also be easily applied.
The present invention has been made based on these findings.

すなわち、本発明の要旨とするところは、以下の通りである。
(1) 流動担体が装入された生物処理槽内にチオシアン酸イオン及びアンモニウムイオンを含有する被処理水を連続的に導入すると共に曝気して前記流動担体に微生物を定着させて好気性流動床を構成し、この好気性流動床の生物学的処理により前記被処理水を連続的に処理する方法であって、
前記生物処理槽内には、生物処理槽内の処理水若しくはこの槽内から排出される処理水のチオシアン酸イオン及び亜硝酸イオンをモニタリングしながら、前記流動担体に微生物を定着させて好気性流動床を構成する微生物馴致処理の第1段処理から第N段処理へと水理学的滞留時間を段階的に又は連続的に変化させて被処理水を導入し、
第2段処理以降の水理学的滞留時間については、被処理水中のチオシアン酸イオンの除去及び処理水中の亜硝酸イオンの生成抑制が確認されるまで、前段処理の水理学的滞留時間よりも短くなるように制御し、
亜硝酸イオンの生成を抑制しつつチオシアン酸イオンを選択的に除去することを特徴とする好気性流動床による被処理水の生物学的処理方法。
(2) 前記第2段処理以降における水理学的滞留時間の制御は、被処理水中のチオシアン酸イオンの除去及び処理水中の亜硝酸イオンの生成抑制が確認された後も、引き続いて前記第1段処理の水理学的滞留時間よりも短くなるように行われることを特徴とする前記(1)に好気性流動床による被処理水の生物学的処理方法。
(3) 前記第2段処理以降における水理学的滞留時間の制御は、被処理水中のチオシアン酸イオンの除去及び処理水中の亜硝酸イオンの生成抑制が確認された後も、引き続き短縮された水理学的滞留時間を維持するように行われることを特徴とする前記(1)又は(2)に記載の好気性流動床による被処理水の生物学的処理方法。
(4) 前記第2段処理以降における水理学的滞留時間の制御は、被処理水中のチオシアン酸イオンの除去及び処理水中の亜硝酸イオンの生成抑制が確認された後には、前記処理水のチオシアン酸イオン及び亜硝酸イオンの濃度に応じて、前段処理の水理学的滞留時間に対して延長又は短縮するように行われることを特徴とする前記(1)又は(2)に記載の好気性流動床による被処理水の生物学的処理方法。
(5) 前記生物処理槽内への被処理水の導入は、前記水理学的滞留時間を段階的に変化させて行われることを特徴とする前記(1)〜(4)のいずれか1項に記載の好気性流動床による被処理水の生物学的処理方法。
(6) 前記生物処理槽内の処理水若しくはこの槽内から排出される処理水のpH値をモニタリングし、前記生物処理槽内の処理水若しくはこの槽内から排出される処理水のチオシアン酸イオン濃度が所定の値以上になり、更に前記処理水のpH値が7.0未満に低下した際に、前記生物処理槽内のpH値を7.0〜8.5の範囲に調整することを特徴とする前記(1)〜(5)のいずれか一項に記載の好気性流動床による被処理水の生物学的処理方法。
That is, the gist of the present invention is as follows.
(1) An aerobic fluidized bed by continuously introducing water to be treated containing thiocyanate ions and ammonium ions into a biological treatment tank charged with a fluid carrier and aeration to fix microorganisms on the fluid carrier. Comprising a continuous treatment of the water to be treated by biological treatment of the aerobic fluidized bed,
In the biological treatment tank, while monitoring the treated water in the biological treatment tank or the thiocyanate ions and nitrite ions discharged from the tank, microorganisms are fixed on the fluid carrier and aerobic flow is performed. Introducing water to be treated by changing the hydraulic residence time stepwise or continuously from the first stage treatment to the Nth stage treatment of the microbe-acclimation treatment constituting the floor,
The hydraulic residence time after the second stage treatment is shorter than the hydraulic residence time of the previous stage treatment until the removal of thiocyanate ions in the treated water and the suppression of the formation of nitrite ions in the treated water are confirmed. Control to be
A biological treatment method of water to be treated by an aerobic fluidized bed, wherein thiocyanate ions are selectively removed while suppressing generation of nitrite ions.
(2) The hydraulic residence time after the second stage treatment is controlled after the removal of thiocyanate ions in the treated water and the suppression of the formation of nitrite ions in the treated water. (1) The biological treatment method of water to be treated by an aerobic fluidized bed as described in (1) above, which is performed so as to be shorter than the hydraulic residence time of the stage treatment.
(3) The control of the hydraulic residence time after the second stage treatment has been continued even after the removal of thiocyanate ions in the treated water and the suppression of the formation of nitrite ions in the treated water have been confirmed. The biological treatment method of water to be treated by an aerobic fluidized bed according to (1) or (2), wherein the treatment is performed so as to maintain a physical residence time.
(4) The hydraulic residence time after the second stage treatment is controlled after the thiocyanate ion in the treated water is confirmed after the removal of thiocyanate ions in the treated water and the suppression of the formation of nitrite ions in the treated water. The aerobic flow according to (1) or (2), wherein the aerobic flow is performed so as to extend or shorten the hydraulic residence time of the pretreatment depending on the concentration of acid ions and nitrite ions Biological treatment method of water to be treated by floor.
(5) In any one of the above (1) to (4), the introduction of water to be treated into the biological treatment tank is performed by changing the hydraulic residence time stepwise. The biological treatment method of to-be-treated water by an aerobic fluidized bed as described in 1.
(6) The pH value of the treated water in the biological treatment tank or the treated water discharged from the tank is monitored, and the thiocyanate ion of the treated water in the biological treatment tank or the treated water discharged from the tank. When the concentration is equal to or higher than a predetermined value and the pH value of the treated water is further reduced to less than 7.0, the pH value in the biological treatment tank is adjusted to a range of 7.0 to 8.5. The biological treatment method of water to be treated by an aerobic fluidized bed according to any one of (1) to (5), which is characterized by the above.

本発明によれば、チオシアン酸イオン及びアンモニウムイオンを含有する被処理水を生物学的処理により連続的に処理するに際し、高価な薬品や設備を使用することなく、また、有害なガスや副生成物を生成させることもなく、通常の活性汚泥法等による生物学的処理よりも高速で、亜硝酸イオンの生成を抑制しつつチオシアン酸イオンを選択的に除去することができるので、被処理水の処理コストの削減及び有害な副生成物の発生抑制が可能となる。   According to the present invention, when water to be treated containing thiocyanate ions and ammonium ions is continuously treated by biological treatment, no harmful chemicals or by-products are produced without using expensive chemicals or equipment. The thiocyanate ions can be selectively removed while suppressing the production of nitrite ions at a higher speed than the conventional biological treatment by the activated sludge method, etc. It is possible to reduce the processing cost and to suppress the generation of harmful by-products.

図1は、本発明の好気性流動床による被処理水の生物学的処理における、運転日数に対する水理学的滞留時間、チオシアン酸イオン濃度(mgSCN/L)、及び亜硝酸イオン濃度(mgN/L)の関係を概念的に示す説明図である。FIG. 1 shows the hydraulic residence time, thiocyanate ion concentration (mgSCN / L), and nitrite ion concentration (mgN / L) with respect to the operating days in the biological treatment of treated water by the aerobic fluidized bed of the present invention. ) Is an explanatory diagram conceptually showing the relationship. 図2は、本発明の実施の一例に係る好気性流動床による被処理水の生物学的処理設備の構成例を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a configuration example of a biological treatment facility for water to be treated by an aerobic fluidized bed according to an embodiment of the present invention. 図3は、好気性雰囲気及び無酸素条件での活性汚泥によるチオシアン酸イオンの除去速度を調べた結果を示すグラフ図である。FIG. 3 is a graph showing the results of examining the removal rate of thiocyanate ions by activated sludge in an aerobic atmosphere and oxygen-free conditions. 図4は、好気性流動床によるチオシアン酸イオンの処理に際し、処理時のpH値の影響を調べた結果を示すグラフ図である。FIG. 4 is a graph showing the results of examining the influence of the pH value during treatment in the treatment of thiocyanate ions in an aerobic fluidized bed. 図5は、実施例1で用いられた生物処理槽の概念図であり、流動担体無し(a)の場合と流動担体有り(b)の場合とを示している。FIG. 5 is a conceptual diagram of the biological treatment tank used in Example 1, showing a case without a fluid carrier (a) and a case with a fluid carrier (b). 図6は、人工排水(被処理水)を用いた実施例1の結果を示すグラフ図であり、運転日数に対応して、チオシアン酸イオン、亜硝酸イオン、及びpH値をモニタリングした結果と、水理学的滞留時間を制御した結果とを示すものである。FIG. 6 is a graph showing the results of Example 1 using artificial waste water (treated water), the results of monitoring thiocyanate ions, nitrite ions, and pH values corresponding to the number of operating days; It shows the result of controlling the hydraulic residence time. 図7は、人工排水(被処理水)を用いた実施例2の結果を示すグラフ図であり、運転日数に対応して、チオシアン酸イオン、亜硝酸イオン、及びpH値をモニタリングした結果と、水理学的滞留時間を制御した結果とを示すものである。FIG. 7 is a graph showing the results of Example 2 using artificial waste water (treated water), the results of monitoring thiocyanate ions, nitrite ions, and pH values corresponding to the number of operating days; It shows the result of controlling the hydraulic residence time.

先ず、本発明の被処理水の生物学的処理方法において、どの様に被処理水中のチオシアン酸イオンが除去され、また、どの様にアンモニアイオンの酸化による亜硝酸イオンの生成が抑制されるかについて、水理学的滞留時間を段階的に多くする制御の場合を例にし、運転日数に対する水理学的滞留時間、チオシアン酸イオン濃度(mgSCN/L)、及び亜硝酸イオン濃度(mgN/L)の関係を概念的に示す図1に基づいて説明する。   First, in the biological treatment method of water to be treated according to the present invention, how thiocyanate ions are removed from the water to be treated, and how generation of nitrite ions due to oxidation of ammonia ions is suppressed. In the case of control where the hydraulic residence time is increased stepwise, the hydraulic residence time, thiocyanate ion concentration (mgSCN / L), and nitrite ion concentration (mgN / L) relative to the number of operating days The relationship will be described with reference to FIG.

始めに、生物処理槽1内の流動担体10に微生物を定着させて好気性流動床を構成するための微生物馴致処理(第1段処理)においては、流動担体10にチオシアン酸イオンを分解する微生物やアンモニアイオンを酸化する微生物が徐々に定着し、被処理水中のチオシアン酸イオンは次第に除去されて処理水中に検出されなくなり、また、アンモニアイオンは酸化されて処理水中の亜硝酸イオン濃度が増加する。次に、水理学的滞留時間を第1段処理よりも多くして生物学的処理を継続する(第2段処理)と、チオシアン酸イオンを分解する微生物は好気性流動床に留まってチオシアン酸イオンの除去は継続されるが、アンモニアイオンを分解する微生物は好気性流動床に留まり難くて流出され、亜硝酸イオンの生成が抑制されて亜硝酸イオン濃度が次第に低下する。この第2段処理での生物学的処理の際には、水理学的滞留時間を短くした直後には、水理学的滞留時間変化の外乱により一時的にチオシアン酸イオン濃度が増加するが、チオシアン酸イオンを分解する微生物の馴致が起こり、再びチオシアン酸イオンの除去が安定して行われるようになる。その後更に、水理学的滞留時間を第2段処理よりも短くして生物学的処理を継続する(第3段処理)と、第2段処理の場合と同様に、水理学的滞留時間変化の外乱により一時的にチオシアン酸イオン濃度が増加するが再びチオシアン酸イオンの除去が安定し、また、亜硝酸イオンの生成が抑制される。そして、チオシアン酸イオンの除去と亜硝酸イオンの生成抑制とが安定した後(第3段処理以降)は、水理学的滞留時間に変動が生じても、しばらくは亜硝酸イオンの生成を抑制しながらチオシアン酸イオンを選択的に除去することができる。   First, in the microorganism habituation process (first stage process) for establishing microorganisms on the fluid carrier 10 in the biological treatment tank 1 to form an aerobic fluidized bed, microorganisms that decompose thiocyanate ions into the fluid carrier 10. And microorganisms that oxidize ammonia ions gradually settle, thiocyanate ions in the treated water are gradually removed and are no longer detected in the treated water, and ammonia ions are oxidized to increase the concentration of nitrite ions in the treated water . Next, when the biological treatment is continued with the hydraulic residence time being longer than that in the first stage treatment (second stage treatment), the microorganisms that decompose thiocyanate ions remain in the aerobic fluidized bed and remain in the thiocyanate. Although the removal of the ions is continued, the microorganisms that decompose the ammonia ions do not stay in the aerobic fluidized bed and are discharged, and the production of nitrite ions is suppressed and the nitrite ion concentration gradually decreases. In the biological treatment in the second stage treatment, immediately after the hydraulic residence time is shortened, the thiocyanate ion concentration temporarily increases due to disturbance of the hydraulic residence time change. Acclimatization of microorganisms that decompose acid ions occurs, and thiocyanate ions are removed stably again. Thereafter, when the biological treatment is continued by making the hydraulic residence time shorter than the second stage treatment (third stage treatment), the change in the hydraulic residence time is changed as in the second stage treatment. Although the thiocyanate ion concentration temporarily increases due to disturbance, the removal of thiocyanate ions is stabilized again, and the generation of nitrite ions is suppressed. After stabilization of thiocyanate ion removal and suppression of nitrite ion formation (after the third stage treatment), even if the hydraulic residence time fluctuates, the generation of nitrite ion is suppressed for a while. However, thiocyanate ions can be selectively removed.

この図1に示す運転日数に対する水理学的滞留時間、チオシアン酸イオン濃度、及び亜硝酸イオン濃度の関係は、例えば図中2点鎖線で示すように、上記の第1〜3段処理の各段処理において水理学的滞留時間を連続的に変化(増加)させる場合でも同様である。   The relationship between the hydraulic residence time, the thiocyanate ion concentration, and the nitrite ion concentration with respect to the number of operating days shown in FIG. 1 is as follows, for example, as shown by the two-dot chain line in the figure. The same applies to the case where the hydraulic residence time is continuously changed (increased) in the treatment.

以下、図2に示す本発明の好気性流動床による被処理水の生物学的処理設備の構成例に基づいて、本発明の方法を詳細に説明する。
図2において、被処理水の生物学的処理設備は、生物処理槽1と沈降槽2とを基に構成されている。前記生物処理槽1には配管3を介して処理対象となる被処理水が連続的に導入され、また、この生物処理槽1内には、微生物を定着させる流動担体10が装入されると共に、汚濁物質のチオシアン酸イオンを除去し得る微生物が生息する図示外の微生物植種源が投入される。また、この槽内には、エアポンプ9から空気が送り込まれて曝気され、生物処理槽1内において旋回流が形成され、また、この旋回流に乗って前記流動担体10が流動し、この生物処理槽1内での所定の水理学的滞留時間の間に微生物馴致処理(第1段処理)が行われ、流動担体10に微生物植種源又は被処理水由来の微生物が定着して好気性流動床が形成される。そして、生物処理槽1内に導入された被処理水は、この生物処理槽1内に所定の水理学的滞留時間だけ滞留している間に、チオシアン酸イオンが除去されて処理水となり、この処理水が配管4を介して沈降槽2に送り込まれ、更に、この沈降槽2内で固液分離されて上澄み部分が最終処理水となり、この最終処理水が配管5を介してこの生物学的処理設備の系外に排出されるようになっている。
Hereinafter, the method of the present invention will be described in detail based on a configuration example of a biological treatment facility for water to be treated by the aerobic fluidized bed of the present invention shown in FIG.
In FIG. 2, a biological treatment facility for water to be treated is configured based on a biological treatment tank 1 and a sedimentation tank 2. The biological treatment tank 1 is continuously introduced with water to be treated through a pipe 3, and the biological treatment tank 1 is loaded with a fluid carrier 10 for fixing microorganisms. An unillustrated microbial seeding source inhabited by microorganisms capable of removing thiocyanate ions of pollutants is introduced. In addition, air is sent into the tank from the air pump 9 and aerated to form a swirling flow in the biological treatment tank 1, and the fluid carrier 10 flows on the swirling flow. Microbial acclimatization treatment (first stage treatment) is performed during a predetermined hydraulic residence time in the tank 1, and microorganisms derived from the microbial inoculation source or the water to be treated are fixed on the fluid carrier 10 and aerobic flow. A floor is formed. And while the to-be-treated water introduced into the biological treatment tank 1 is retained in the biological treatment tank 1 for a predetermined hydraulic residence time, thiocyanate ions are removed to become treated water, The treated water is fed into the sedimentation tank 2 through the pipe 4, further solid-liquid separated in the sedimentation tank 2, and the supernatant part becomes the final treated water. It is designed to be discharged outside the processing facility.

ここで、前記生物処理槽1には、前記処理水の配管4の流入口近辺に、好気性流動床を形成する流動担体10が処理水に連れられて槽外に流出するのを防止するセパレーター11が設けられており、また、この生物処理槽1内のpH値を測定するpH計8と、このpH計が測定したpH値に応じて槽内にアルカリを供給しpH調整を行うアルカリ供給ポンプ7とが設けられている。更に、前記沈降槽2の底部には、前記セパレーター11を通り抜けて前記沈降槽2内で沈降した活性汚泥(微生物植種源等)を含む懸濁物質を前記処理対象の被処理水中に送り戻すための配管6が設けられている。   Here, in the biological treatment tank 1, a separator that prevents the fluid carrier 10 forming an aerobic fluidized bed from being taken out of the tank by the treated water in the vicinity of the inlet of the treated water pipe 4. 11, a pH meter 8 for measuring the pH value in the biological treatment tank 1, and an alkali supply for adjusting the pH by supplying alkali to the tank according to the pH value measured by the pH meter. A pump 7 is provided. Furthermore, suspended matter containing activated sludge (such as a microbial seed source) that has passed through the separator 11 and settled in the settling tank 2 is sent back to the bottom of the settling tank 2 into the water to be treated. A piping 6 is provided.

本発明において、処理の対象となる被処理水は、チオシアン酸イオンとアンモニウムイオンとが含まれている排水であり、例えばコークス製造工程で発生するコークス炉排水(安水)、石炭ガス化工程で発生する石炭ガス化排水、アセチレン精製工程で発生する洗浄排水等を例示することができる。   In the present invention, the water to be treated is wastewater containing thiocyanate ions and ammonium ions, for example, coke oven wastewater (another water) generated in the coke production process, and coal gasification process. Examples include generated coal gasification wastewater, washing wastewater generated in the acetylene purification step, and the like.

また、本発明において、微生物を定着させるために用いられる流動担体10については、生物処理槽1内に装入され、曝気による槽内の流動に連れて流動し、この生物処理槽1内において好気性流動床を形成し得るものであればよく、その形状、大きさ、材質等については特に制限されるものではなく、産業排水処理施設、食品排水処理施設、工業用水処理施設、ゴミ処分場排水処理施設、コミュニティープラント、浄化槽等でこれまで使用されてきた従来公知の市販のものを用いることができる。例えば、プラスチック製の流動担体については、複数のメーカーから、形状が多孔質立方体状、骨格様球状、小円筒状、チューブ状等であって、大きさが外形(2〜30)mm×(2〜30)mm又は2〜30mmφで長さ2〜30mmであり、カタログ値で比表面積が300〜6000m2/m3 であって比重が1.0±0.5であるものが市販されている。この流動担体10については、比表面積が大きく、微生物が入り込める大きさ(通常、微生物は直径1μm程度)の多孔性を有し、微生物が付着し易いものであることが好ましい。 In the present invention, the fluid carrier 10 used for fixing microorganisms is inserted into the biological treatment tank 1 and flows along with the flow in the tank by aeration. There is no particular limitation on the shape, size, material, etc., as long as it can form an aerodynamic fluidized bed. Industrial wastewater treatment facilities, food wastewater treatment facilities, industrial water treatment facilities, wastewater disposal site wastewater The conventionally well-known commercially available thing used so far at a processing facility, a community plant, a septic tank, etc. can be used. For example, for plastic fluid carriers, a plurality of manufacturers have a porous cubic shape, a skeleton-like spherical shape, a small cylindrical shape, a tubular shape, etc., and a size of an external shape (2 to 30) mm × (2 -30) mm or 2 to 30 mmφ, 2 to 30 mm in length, and a catalog value with a specific surface area of 300 to 6000 m 2 / m 3 and a specific gravity of 1.0 ± 0.5 is commercially available . The fluid carrier 10 preferably has a large specific surface area, has a porosity that allows microorganisms to enter (usually, microorganisms have a diameter of about 1 μm), and is easily attached to microorganisms.

また、上記流動担体10の使用量についても、曝気による槽内の流動に連れて流動し、この生物処理槽1内において好気性流動床を形成し槽内の処理水と十分に接触し得る量であればよく、これまで産業排水処理施設、食品排水処理施設、工業用水処理施設、ゴミ処分場排水処理施設、コミュニティープラント、浄化槽等において使用されてきた従来公知の市販のものの使用量でよく、例えば、プラスチック製の流動担体である場合には、生物処理槽1内に体積比で5%(V/V)以上50%(V/V)以下の程度であるのがよい。より好ましくは10%(V/V)以上30%(V/V)以下とするのがよい。   Further, the amount of the fluid carrier 10 used also flows with the flow in the tank by aeration, and forms an aerobic fluidized bed in the biological treatment tank 1 and can sufficiently come into contact with the treated water in the tank. As long as it is used, it may be the amount of a conventionally known commercial product that has been used in industrial wastewater treatment facilities, food wastewater treatment facilities, industrial water treatment facilities, waste disposal site wastewater treatment facilities, community plants, septic tanks, etc. For example, in the case of a plastic fluid carrier, the volume ratio in the biological treatment tank 1 is preferably 5% (V / V) or more and 50% (V / V) or less. More preferably, it is 10% (V / V) or more and 30% (V / V) or less.

また、前記流動担体10に定着させる微生物については、チオシアン酸イオンを除去し得る微生物が生息する微生物植種源、例えば活性汚泥、土壌、自然海水等が用いられ、これらはその1種のみを用いてもよく、また、2種以上を併用してもよく、微生物が高濃度に存在している点から、好ましくは活性汚泥を用いるのがよい。更には、チオシアン酸イオンを除去している生物処理設備の活性汚泥を用いることができれば、チオシアン酸イオンを除去する微生物の量が多いと考えられるため、なおよい。この微生物植種源の投入量については、被処理水中のチオシアン酸イオン及びアンモニウムイオンの濃度や共存する他の汚濁物質等の被処理水の性質や周辺の環境等を考慮して設定でき、操業中の槽外への流出等を考慮して好ましくは多めに投入するのがよい。更に、前記流動担体10については、生物処理槽1内に装入する前に高濃度の微生物植種源と接触させることができれば、短い期間で微生物を前記流動担体に定着させることができるため、より好ましい。例えば、チオシアン酸イオンを除去している生物処理設備の返送汚泥や沈殿汚泥等の使用は、チオシアン酸イオンを除去する微生物が高濃度に集積されていると考えられ、このような微生物植種源と流動担体とを予め容器に収容して浸け置くことにより、微生物を流動担体に予め付着させておくことができる。   For the microorganisms to be fixed on the fluid carrier 10, microbial seed sources such as activated sludge, soil, natural seawater, etc., inhabited by microorganisms capable of removing thiocyanate ions are used, and only one of them is used. Alternatively, two or more kinds may be used in combination, and activated sludge is preferably used from the viewpoint that microorganisms are present at a high concentration. Furthermore, if activated sludge of a biological treatment facility from which thiocyanate ions are removed can be used, it is more preferable because the amount of microorganisms that remove thiocyanate ions is considered to be large. The input of this microbial seeding source can be set in consideration of the concentration of thiocyanate ions and ammonium ions in the treated water, the nature of the treated water such as other pollutants, and the surrounding environment. Considering the outflow to the outside of the tank inside, it is preferable to add a large amount. Furthermore, if the fluid carrier 10 can be brought into contact with a high-concentration microorganism seed source before being charged into the biological treatment tank 1, microorganisms can be fixed on the fluid carrier in a short period of time. More preferred. For example, the use of return sludge and precipitated sludge in biological treatment equipment that removes thiocyanate ions is considered to have a high concentration of microorganisms that remove thiocyanate ions. And the fluid carrier are previously accommodated in a container and immersed therein, whereby microorganisms can be attached to the fluid carrier in advance.

本発明においては、生物処理槽1内に処理対象の被処理水と、流動担体10と、微生物植種源とを装入した後、槽内を曝気して好気性流動床を構成し、微生物を流動担体10の表面に定着させるための微生物馴致処理(第1段処理)から第N段処理へと水理学的滞留時間を段階的に(連続的に)変化させて被処理水を導入するが、その際に、第2段処理以降の水理学的滞留時間については、被処理水中のチオシアン酸イオンの除去及び処理水中の亜硝酸イオンの生成抑制が確認されるまでは、生物処理槽1における直前の前段処理の水理学的滞留時間よりも短くなるように制御し、亜硝酸イオンの生成を抑制しつつチオシアン酸イオンを選択的に除去する。   In the present invention, after water to be treated, a fluid carrier 10 and a microbial seed source are placed in the biological treatment tank 1, the inside of the tank is aerated to form an aerobic fluidized bed. Water to be treated is introduced by changing the hydraulic residence time stepwise (continuously) from microbial acclimation treatment (first stage treatment) for fixing the fluid to the surface of the fluid carrier 10 to the Nth stage treatment. However, at that time, regarding the hydraulic residence time after the second stage treatment, until the removal of thiocyanate ions in the treated water and the suppression of the production of nitrite ions in the treated water are confirmed, the biological treatment tank 1 The thiocyanate ions are selectively removed while controlling the generation of nitrite ions to be shorter than the hydraulic residence time of the immediately preceding pretreatment in FIG.

ここで、好気性流動床を構成するための曝気は、槽内に十分な酸素を供給すると共にこの槽内に旋回流を形成させることで流動担体10に十分な流動性を付与し、また、流動担体10に付着した微生物が処理対象のチオシアン酸イオンを効率良く除去できるようにするものであり、通常、前記エアポンプ9等を用いて空気を送り込むことにより行われるが、必要により、空気の一部として又は空気に代えて、純酸素を用いることもできる。   Here, the aeration for constituting the aerobic fluidized bed provides sufficient fluidity to the fluid carrier 10 by supplying sufficient oxygen into the tank and forming a swirl flow in the tank, The microorganism attached to the fluid carrier 10 can efficiently remove thiocyanate ions to be processed, and is usually performed by sending air using the air pump 9 or the like. Pure oxygen can also be used as a part or instead of air.

また、微生物を流動担体10の表面に定着させるための微生物馴致処理(第1段処理)については、従来の方法と同様にして行うことができ、また、その処理時間あるいは処理期間についても、処理対象の被処理水の種類(被処理水中に含まれる汚濁物質の成分や濃度等)や、使用する微生物植種源及び流動担体10や、周辺の環境等により異なるが、所定の水理学的滞留時間の下で生物処理槽1から排出される処理水中のチオシアン酸イオン濃度が目標値(例えば、ゼロ(0mg/L)や排水の水質基準値等)に到達し、所定の期間(例えば、1週間程度の期間)において上昇することがなく、チオシアン酸イオンの処理が安定して行われていることが確認されるまでとするのがよく、また、所定の水理学的滞留時間(第1段処理)は、担体が無い通常の活性汚泥法でもチオシアンが処理できるように調整すればよく、例えば24時間程度でよい。   In addition, the microorganism acclimation treatment (first stage treatment) for fixing the microorganisms on the surface of the fluid carrier 10 can be performed in the same manner as the conventional method, and the treatment time or treatment period is also treated. Depending on the type of target water to be treated (components and concentration of pollutants contained in the water to be treated), the microbial seeding source and fluid carrier 10 used, and the surrounding environment, etc. The thiocyanate ion concentration in the treated water discharged from the biological treatment tank 1 over time reaches a target value (for example, zero (0 mg / L), water quality standard value of waste water, etc.) and reaches a predetermined period (for example, 1 It is good that the thiocyanate ion treatment is confirmed to be stable and it does not increase during a period of about a week), and a predetermined hydraulic residence time (first stage) Processing) May be adjusted to handle thiocyanate is in the activated sludge method, for example, about 24 hours.

本発明においては、前記流動担体10の表面に微生物が十分に定着し、所望の好気性流動床が形成され、そして、生物処理槽1内の処理水若しくはこの槽内から排出される処理水のチオシアン酸イオン濃度が安定して上記の微生物馴致処理(第1段処理)が終了した後、生物処理槽1内の処理水若しくはこの槽内から排出される処理水中のチオシアン酸イオン濃度及び亜硝酸イオン濃度をモニタリングしながら、亜硝酸イオンの生成を抑制しつつチオシアン酸イオンが除去されるようになるまでは、生物処理槽1における第2段処理以降の水理学的滞留時間が直前の前段処理の水理学的滞留時間よりも短くなるように制御する。そして、この生物処理槽1における第2段処理以降の水理学的滞留時間を短くする制御は、被処理水の種類や周辺の環境等に応じて、生物処理槽1で処理された後の処理水に対するチオシアン酸イオン濃度及び亜硝酸イオン濃度の目標値〔例えば、ゼロ(0mg/L)や排水基準値等〕を設定し、これらの目標値の下に上記のチオシアン酸イオン及び亜硝酸イオンをモニタリングして行う。なお、この生物処理槽1における第2段処理以降の水理学的滞留時間を短くする制御については、上記のチオシアン酸イオン濃度及び亜硝酸イオン濃度の目標値に加えて、処理水の化学的酸素要求量(COD)の濃度の目標値(例えば、排水基準値)を設定し、これらチオシアン酸イオン濃度、亜硝酸イオン濃度及びCOD濃度の目標値の下に上記のチオシアン酸イオン、亜硝酸イオン及びCODのモニタリングを行ってもよく、これによってチオシアン酸イオン、亜硝酸イオン以外のCOD成分が含まれる排水の処理においても、より確実に排水基準を遵守し得るという利点が生じる。   In the present invention, microorganisms are sufficiently fixed on the surface of the fluid carrier 10 to form a desired aerobic fluidized bed, and the treated water in the biological treatment tank 1 or the treated water discharged from this tank is used. After the thiocyanate ion concentration is stabilized and the above-described microorganism adaptation process (first stage process) is completed, the thiocyanate ion concentration and nitrous acid in the treated water in the biological treatment tank 1 or the treated water discharged from this tank Until the thiocyanate ions are removed while monitoring the ion concentration while suppressing the generation of nitrite ions, the first stage treatment immediately before the hydraulic residence time after the second stage treatment in the biological treatment tank 1 It is controlled so as to be shorter than the hydraulic residence time. And the control which shortens the hydraulic residence time after the 2nd step process in this biological treatment tank 1 is processing after processing in biological treatment tank 1 according to the kind of treated water, the surrounding environment, etc. Set target values of thiocyanate ion concentration and nitrite ion concentration (for example, zero (0 mg / L) and drainage standard value) for water, and set the above thiocyanate ion and nitrite ion below these target values. Monitor it. In addition, about control which shortens the hydraulic residence time after the 2nd step process in this biological treatment tank 1, in addition to the target value of said thiocyanate ion concentration and nitrite ion concentration, chemical oxygen of treated water A target value (e.g., drainage standard value) of the required amount (COD) is set, and the thiocyanate ion, nitrite ion and the above-mentioned target values of thiocyanate ion concentration, nitrite ion concentration and COD concentration are set. Monitoring of COD may be performed, and this also has the advantage that wastewater standards can be more reliably observed in the treatment of wastewater containing COD components other than thiocyanate ions and nitrite ions.

ここで、生物処理槽1内でのチオシアン酸イオン、亜硝酸イオン及びCODのモニタリングのために行うチオシアン酸イオン、亜硝酸イオン及びCODの濃度測定の方法については、これらチオシアン酸イオン、亜硝酸イオン及びCODの濃度を連続的又は定期的に測定できれば特に制限はなく、例えば、チオシアン酸イオン濃度についてはイオンクロマトグラフィー法等を、また、亜硝酸イオン濃度についてはJIS K102043.1.1の方法等を、更に、CODについてはJIS K1020 17の方法等を例示することができる。   Here, the thiocyanate ion, nitrite ion, and COD concentration measurement method performed for monitoring thiocyanate ion, nitrite ion, and COD in the biological treatment tank 1 will be described. In addition, there is no particular limitation as long as the concentration of COD and COD can be measured continuously or periodically. For example, the ion chromatography method is used for the thiocyanate ion concentration, and the method of JIS K102043.1.1 is used for the nitrite ion concentration. Further, regarding COD, the method of JIS K1020 17 can be exemplified.

本発明において、上記の生物処理槽1における第2段処理以降の水理学的滞留時間を短くする制御により、チオシアン酸イオンを除去する微生物を優先的に生物処理槽1内に留まらせることができる。これは、チオシアン酸イオンを除去する微生物の増殖速度がアンモニウムイオンを酸化する微生物の増殖速度よりも速いことに起因するものと考えられ、被処理水の流入量を増やして水理学的滞留時間を短縮すると、流入するチオシアン酸イオンの量が増えてチオシアン酸イオンを除去する微生物がアンモニウムイオンを酸化する微生物よりも優先的に増殖し、流動担体10の表面を優先的に占有し、アンモニウムイオンを酸化する微生物が流動担体10の表面で生息する場が無くなり、生物処理槽1から流出して減少することに起因すると推定される。この生物処理槽1における第2段処理以降の水理学的滞留時間を短くする制御は、チオシアン酸イオン及び亜硝酸イオンの処理後濃度の目標値、更には必要によりCODの処理後濃度の目標値に合わせて調整される。   In the present invention, microorganisms that remove thiocyanate ions can be preferentially retained in the biological treatment tank 1 by controlling to shorten the hydraulic residence time after the second stage treatment in the biological treatment tank 1. . This is thought to be due to the fact that the growth rate of microorganisms that remove thiocyanate ions is faster than the growth rate of microorganisms that oxidize ammonium ions. When shortened, the amount of inflow thiocyanate ions increases and microorganisms that remove thiocyanate ions grow preferentially over microorganisms that oxidize ammonium ions, predominately occupy the surface of the flow carrier 10, It is presumed that the place where the microorganisms that oxidize live on the surface of the fluid carrier 10 disappears and flows out of the biological treatment tank 1 and decreases. The control for shortening the hydraulic residence time after the second stage treatment in the biological treatment tank 1 is performed by adjusting the target values of the thiocyanate ion and nitrite ion after treatment, and if necessary, the target value of the post-treatment concentration of COD. It is adjusted according to.

また、本発明において、生物処理槽1における第2段処理以降の水理学的滞留時間を短くする制御は、チオシアン酸イオン及び亜硝酸イオン(必要により、更にCOD)をモニタリングしながら、好ましくは所定の値まで段階的又は連続的に実施するのがよく、例えば、第2段処理以降の水理学的滞留時間を所定の値まで段階的に短くする段階的制御の場合には、以下のようにして実施する。
すなわち、先ず、第1段処理の微生物馴致処理により処理水中のチオシアン酸イオン濃度が一定期間(例えば、1週間程度)上昇せずに目標値以下で安定したことを確認した後、第2段処理時の水理学的滞留時間を少し(例えば、元の24時間の3/4程度まで)短縮し、その後のチオシアン酸イオン濃度及び亜硝酸イオン濃度(更には、COD濃度)の動向を観察し、そして、処理水のチオシアン酸イオン濃度が目標値を超えて上昇することがない場合にはその短縮された第2段処理時の水理学的滞留時間で処理を一定期間(例えば、1週間程度)継続し、また、処理水のチオシアン酸イオン濃度が目標値を超えて上昇するようであれば、第2段処理時の水理学的滞留時間を元の第1段処理時の水理学的滞留時間に戻して再び微生物馴致処理を行う。次に、短縮された第2段処理時の水理学的滞留時間で処理を一定期間(例えば、1週間程度)継続した後、再び第2段処理時の水理学的滞留時間を少し(例えば、先の18時間の2/3程度まで)短縮させ、第2段処理時と同様に第3段処理を行い、更に同様にして第N段処理まで上記と同様の操作を繰り返して行う。この操作により、処理水の亜硝酸濃度(更にはCOD濃度)が徐々に減少する。処理水のチオシアン酸イオン濃度及び亜硝酸イオン濃度(更には、COD濃度)の全てが一定期間(例えば、1週間程度)安定して目標値を達成した時点でこの操作を終了すればよい。さらに操作を継続することで、より高速に処理することが可能であるが、担体に定着できる微生物の量には限界があるため、短縮できる水理学的滞留時間には限界があることに注意が必要である。このような段階的制御の方法によれば、例えば、第2段処理以降の水理学的滞留時間を第1段処理(微生物馴致処理)時の3倍程度まで短縮すること(24時間⇒8時間)が可能であり、上述の通り、処理水中のチオシアン酸イオン濃度及び亜硝酸イオン濃度(更には、COD濃度)の全てが目標値を達成する第2段処理以降の水理学的滞留時間を見つけ出して操業すればよい。
In the present invention, the control for shortening the hydraulic residence time after the second stage treatment in the biological treatment tank 1 is preferably performed while monitoring thiocyanate ions and nitrite ions (and, if necessary, COD). For example, in the case of stepwise control in which the hydraulic residence time after the second stage treatment is stepwise shortened to a predetermined value, it is recommended that To implement.
That is, first, after confirming that the thiocyanate ion concentration in the treated water did not increase for a certain period of time (for example, about one week) and stabilized below the target value by the microorganism treatment of the first stage, the second stage treatment was performed. Reduce the hydraulic retention time at the moment (for example, to about 3/4 of the original 24 hours), observe the trend of the thiocyanate ion concentration and nitrite ion concentration (and COD concentration) afterwards, When the thiocyanate ion concentration of the treated water does not increase beyond the target value, the treatment is performed for a certain period of time (for example, about one week) with the reduced hydraulic residence time during the second stage treatment. If the thiocyanate ion concentration of the treated water rises above the target value, the hydraulic residence time during the second stage treatment is changed to the hydraulic residence time during the first stage treatment. Return to microbial acclimatization process again It is carried out. Next, after the treatment is continued for a certain period of time (for example, about one week) with the reduced hydraulic residence time during the second stage treatment, the hydraulic residence time during the second stage treatment is again slightly reduced (for example, The third stage process is performed in the same manner as in the second stage process, and the same operation as described above is repeated until the Nth stage process. By this operation, the nitrite concentration (and COD concentration) of the treated water gradually decreases. This operation may be terminated when all of the thiocyanate ion concentration and the nitrite ion concentration (and COD concentration) of the treated water have stably achieved the target value for a certain period (for example, about one week). Furthermore, if the operation is continued, it is possible to process at higher speed, but there is a limit to the amount of microorganisms that can be fixed on the carrier, so there is a limit to the hydraulic residence time that can be shortened. is necessary. According to such a stepwise control method, for example, the hydraulic residence time after the second stage treatment is reduced to about three times that during the first stage treatment (microbe acclimation treatment) (24 hours → 8 hours). As described above, find the hydraulic residence time after the second stage treatment in which all of the thiocyanate ion concentration and nitrite ion concentration (and COD concentration) in the treated water achieve the target values. Can be operated.

ところで、コークス炉排水等には、チオシアン酸イオン及びアンモニウムイオン以外の成分も含まれている。そして、例えばチオシアン酸イオンを除去し得る微生物植種源としてコークス炉排水処理設備の活性汚泥を用いた場合には、チオシアン酸イオン及びアンモニウムイオン以外の成分を分解する微生物も活性汚泥中に存在する可能性がある。また、このような場合には、当該微生物と、チオシアン酸イオンを除去する微生物と、アンモニウムイオンを酸化する微生物との増殖速度の違い(大小関係)により、適正な水理学的滞留時間に変動が生じる場合があるが、このような場合にあっても、本発明によりチオシアン酸イオン濃度及び亜硝酸イオン濃度(更には、COD濃度)が目標値を達成するように処理することが可能である。   By the way, components other than thiocyanate ions and ammonium ions are also contained in coke oven drainage and the like. For example, when activated sludge of coke oven wastewater treatment equipment is used as a microbial seed source capable of removing thiocyanate ions, microorganisms that decompose components other than thiocyanate ions and ammonium ions are also present in the activated sludge. there is a possibility. In such a case, the appropriate hydraulic residence time varies depending on the growth rate difference (magnitude relationship) between the microorganism, the microorganism that removes thiocyanate ions, and the microorganism that oxidizes ammonium ions. In such a case, the thiocyanate ion concentration and the nitrite ion concentration (further, the COD concentration) can be processed so as to achieve the target values.

すなわち、発明者らは、チオシアン酸イオン及びアンモニウムイオン以外のCOD成分としてフェノール及びチオ硫酸イオンを含有する被処理水に対して検討を行った。この検討の中で、本発明の操作によって、水理学的滞留時間を短縮していったところ、チオシアン酸イオンが除去され、亜硝酸イオンが完全に生成しなくなる条件を確認することができた。しかし、当該確認された水理学的滞留時間を維持し続けると、チオシアン酸イオンの除去率が低下し始める現象が観察された。そこで、本発明の方法に基づき、水理学的滞留時間を少し延長して再び微生物馴致処理を行ったところ、チオシアン酸イオンの除去率が回復し、それにも関わらず、亜硝酸イオンの生成が継続して抑制されることを知見した。このことから、一度亜硝酸イオンが完全に生成しなくなる程度に微生物の馴致を行えば、水理学的滞留時間が変更され、あるいは、変動しても、継続してチオシアン酸イオン濃度及び亜硝酸イオン濃度(更には、COD濃度)が目標値を達成するように処理できることが判明した。   That is, the inventors examined water to be treated containing phenol and thiosulfate ions as COD components other than thiocyanate ions and ammonium ions. In this study, the operation of the present invention shortened the hydraulic residence time, and as a result, conditions under which thiocyanate ions were removed and nitrite ions were not completely generated could be confirmed. However, a phenomenon was observed in which the removal rate of thiocyanate ions began to decrease as the confirmed hydraulic residence time was maintained. Therefore, when the microbial acclimatization treatment was performed again with the hydraulic retention time slightly extended based on the method of the present invention, the thiocyanate ion removal rate recovered, and nevertheless the production of nitrite ions continued. And found that it was suppressed. From this fact, once the microorganisms are acclimatized to such an extent that nitrite ions are not completely formed, the thiocyanate ion concentration and nitrite ions continue even if the hydraulic residence time is changed or fluctuated. It has been found that the concentration (and also the COD concentration) can be processed to achieve the target value.

従って、本発明によれば、生物処理槽1における第2段処理以降の水理学的滞留時間を前段処理時の水理学的滞留時間よりも短くすることで、チオシアン酸イオンを除去し、亜硝酸イオンの生成をほぼ完全に抑制することが可能であり、更に、短縮された水理学的滞留時間で処理を一定期間(例えば、1週間程度)継続した後には、水理学的滞留時間を延長しても亜硝酸イオンの生成を抑制する効果を一定期間(例えば、2ヶ月程度)維持することができるので、仮にチオシアン酸イオン濃度が上昇した場合には一時的に水理学的滞留時間を延長してチオシアン酸イオンの除去率を上げることができる。そして、処理水の亜硝酸イオン濃度が目標値を超えて上昇するようであれば、水理学的滞留時間を再び短縮して、一定期(例えば、1週間程度)間処理を継続すれば、再び亜硝酸イオンの生成を抑制することができる。水理学的滞留時間の延長若しくは短縮は、チオシアン酸イオン及び亜硝酸イオン(必要により、更にCOD)をモニタリングしながら、適宜いずれかを選択して実施する。また、本発明によれば、上記のようにチオシアン酸イオン及びアンモニウムイオン以外のCOD成分を含む排水に対しても適用できるばかりでなく、単純に排水量が変化して水理学的滞留時間が変動した場合であっても、安定して亜硝酸イオンの生成を抑制しつつ、チオシアン酸イオンを除去することができる。   Therefore, according to the present invention, the thiocyanate ions are removed by making the hydraulic residence time after the second stage treatment in the biological treatment tank 1 shorter than the hydraulic residence time at the previous stage treatment, It is possible to suppress the production of ions almost completely. Further, after the treatment is continued for a certain period of time (for example, about one week) with the reduced hydraulic residence time, the hydraulic residence time is extended. Even if the thiocyanate ion concentration rises temporarily, the hydraulic residence time is temporarily extended because the effect of suppressing the production of nitrite ions can be maintained for a certain period (for example, about 2 months). This can increase the removal rate of thiocyanate ions. If the nitrite ion concentration in the treated water rises above the target value, the hydraulic residence time is shortened again, and if the treatment is continued for a certain period (for example, about one week), Generation of nitrite ions can be suppressed. The extension or shortening of the hydraulic residence time is carried out by appropriately selecting either one while monitoring thiocyanate ions and nitrite ions (and, if necessary, COD). In addition, according to the present invention, not only can it be applied to waste water containing COD components other than thiocyanate ions and ammonium ions as described above, but also the amount of waste water has changed and the hydraulic residence time has fluctuated. Even in this case, thiocyanate ions can be removed while stably suppressing the production of nitrite ions.

更に、本発明において、被処理水中のアンモニウムイオンが酸化されて亜硝酸イオンが生成し、処理水のpH値が低下してチオシアン酸イオンの除去率が悪化するような場合には、pH値を7.0〜8.5の範囲に調整することにより、チオシアン酸イオンの除去率を回復させることができる。但し、pH値を調整することによりアンモニウムイオンの酸化が促進され、亜硝酸イオンが増加することも予測されるので、チオシアン酸イオンの除去率が低下しなければpH調整を行う必要はない。ここで、pH値の調整方法については、特に制限されるものではなく、例えば、生物処理槽1内のpH値をpH計8でモニタリングし、このpH値が設定値を下回った際にアルカリ供給ポンプ7を駆動させて例えば水酸化ナトリウム溶液を生物処理槽1内に投入し、pH値を所定の設定値以上に維持すればよい。   Furthermore, in the present invention, when ammonium ions in the water to be treated are oxidized to produce nitrite ions, and the pH value of the treated water is lowered and the removal rate of thiocyanate ions is deteriorated, the pH value is adjusted. By adjusting to the range of 7.0 to 8.5, the removal rate of thiocyanate ions can be recovered. However, adjustment of the pH value promotes oxidation of ammonium ions and increases in nitrite ions. Therefore, it is not necessary to adjust pH unless the removal rate of thiocyanate ions decreases. Here, the method for adjusting the pH value is not particularly limited. For example, the pH value in the biological treatment tank 1 is monitored by the pH meter 8, and when the pH value falls below the set value, alkali supply is performed. What is necessary is just to drive the pump 7, for example, introduce | transduce sodium hydroxide solution in the biological treatment tank 1, and maintain pH value more than a predetermined setting value.

生物処理槽1で処理された処理水は、沈降槽2に導入され、この沈降槽2内で重力沈降により活性汚泥等の懸濁物質と処理水とに分離され、前記懸濁物質の一部は生物処理槽1に戻される。但し、処理対象の被処理水の種類等により、生物処理槽1から排出される処理水中に懸濁物質がほとんど認められない場合は、この沈降槽2を設置しなくてもよい。   The treated water treated in the biological treatment tank 1 is introduced into the settling tank 2, and is separated into suspended substances such as activated sludge and treated water by gravity sedimentation in the settling tank 2, and a part of the suspended substances. Is returned to the biological treatment tank 1. However, this sedimentation tank 2 does not need to be installed when there is almost no suspended matter in the treated water discharged from the biological treatment tank 1 depending on the type of water to be treated.

以下、本発明の好気性流動床による被処理水の生物学的処理方法について、試験例、及び実施例に基づいて、具体的に説明する。   Hereinafter, the biological treatment method of the water to be treated by the aerobic fluidized bed of the present invention will be specifically described based on test examples and examples.

〔試験例1:チオシアン酸イオン除去能を有する微生物の培養試験〕
工業用水と自然海水とを体積比2:3で混合して得られた溶媒中に、表1に示す培養試験用の溶質を表1に示す濃度で溶解し、それぞれ表1に示す好気性条件下で用いる培養試験液Aと無酸素条件下で用いる培養試験液Bとを調製した。なお、培養試験液B中の亜硝酸ナトリウムの濃度については、濃度100mg/Lのチオシアン酸イオンを除去するのに必要な量を算出し、決定した。
[Test Example 1: Culture test of microorganisms capable of removing thiocyanate ion]
In a solvent obtained by mixing industrial water and natural sea water at a volume ratio of 2: 3, the solutes for the culture test shown in Table 1 are dissolved at the concentrations shown in Table 1, and the aerobic conditions shown in Table 1 respectively. A culture test solution A used below and a culture test solution B used under anoxic conditions were prepared. In addition, about the density | concentration of sodium nitrite in the culture test liquid B, the quantity required in order to remove a thiocyanate ion with a density | concentration of 100 mg / L was calculated and determined.

Figure 2016112556
Figure 2016112556

次に、2つの100mL-バイアル瓶中に上で調製した培養試験液Aと培養試験液Bとをそれぞれ20mLづつ仕込み、各バイアル瓶についてゴム栓をしてアルミキャップで蓋をした。また、無酸素条件下で用いる培養液Bを仕込んだバイアル瓶については5分間窒素パージを行ってこのバイアル瓶内の気相中の酸素及び培養液B中の溶存酸素を除去し、その後に、各バイアル瓶中にチオシアン酸イオンの除去能が確認された微生物種植源の分散液1mLを注入し、また、無酸素条件下で用いる培養液Bを仕込んだバイアル瓶については再度5分以上の窒素パージを行ってバイアル瓶内の気相中の酸素及び培養液B中の溶存酸素を除去した。   Next, 20 mL each of the culture test solution A and the culture test solution B prepared above were placed in two 100 mL-vial bottles, and each vial was sealed with a rubber stopper and covered with an aluminum cap. Moreover, about the vial bottle which prepared the culture solution B used under anaerobic conditions, a nitrogen purge was performed for 5 minutes to remove oxygen in the gas phase and dissolved oxygen in the culture solution B in the vial, For each vial, inject 1 mL of a microbial species plant source dispersion that has been confirmed to remove thiocyanate ions, and refill nitrogen for 5 minutes or more for vials charged with culture solution B used under anoxic conditions. Purge was performed to remove oxygen in the gas phase in the vial and dissolved oxygen in the culture broth B.

このようにして準備した各バイアル瓶をそれぞれ振とう器にセットし、150rpm往復振盪の下に室温及び培養期間5.5時間の培養試験を行った。
これらの培養試験において、培養開始時及び培養終了時にそれぞれ分析用試料を採取し、チオシアン酸イオンの濃度を測定し、1時間当たりのチオシアン酸イオン除去速度を求めた。得られた好気性培養試験と無酸素培養試験の結果を図3に示す。
Each vial prepared in this manner was set on a shaker, and a culture test was conducted at room temperature and a culture period of 5.5 hours under reciprocal shaking at 150 rpm.
In these culture tests, samples for analysis were collected at the start of culture and at the end of culture, the thiocyanate ion concentration was measured, and the thiocyanate ion removal rate per hour was determined. The results of the obtained aerobic culture test and anoxic culture test are shown in FIG.

この図3に示す結果から明らかなように、好気性条件下で培養した場合のチオシアン酸イオンの除去速度が、無酸素条件下で培養した場合に比べて、2.8倍も速く、チオシアン酸イオンを高速で除去するためには好気性条件下で操業する必要があることが判明した。   As is clear from the results shown in FIG. 3, the thiocyanate ion removal rate when cultured under aerobic conditions is 2.8 times faster than when cultured under anoxic conditions. It was found that it was necessary to operate under aerobic conditions in order to remove ions at high speed.

〔試験例2:チオシアン酸イオン及びアンモニウムイオン含有の生物学的処理におけるpHの影響についての確認試験〕
表2に示す溶質組成を有する人工排水(被処理水)を用意し、6本の100mL-プラスチックボトル内にそれぞれ被処理水50mLを仕込むと共に、塩酸水溶液又は水酸化ナトリウム水溶液を用いて、各プラスチックボトル内の被処理水のpHをそれぞれ6.0、6.5、7.0、7.5、8.0、及び8.5に調整した。また、これら各プラスチックボトル内の被処理水中には、以下に示す実施例1でチオシアン酸イオン除去能を有する微生物の定着が確認されている微生物定着流動担体5個を装入し、各プラスチックボトルをそれぞれ振とう器にセットし、150rpm往復振盪の下に室温及び培養期間6時間の培養試験を行った。
[Test Example 2: Confirmation test on influence of pH in biological treatment containing thiocyanate ion and ammonium ion]
Prepare artificial wastewater (treated water) having the solute composition shown in Table 2 and charge 50 ml of treated water into each of six 100 mL-plastic bottles, and each plastic using hydrochloric acid aqueous solution or sodium hydroxide aqueous solution. The pH of the water to be treated in the bottle was adjusted to 6.0, 6.5, 7.0, 7.5, 8.0, and 8.5, respectively. In addition, in the water to be treated in each of these plastic bottles, five microorganism fixing fluid carriers in which the fixation of microorganisms having thiocyanate ion removal ability in Example 1 shown below was confirmed were inserted, and each plastic bottle was Were placed on a shaker and subjected to a culture test at room temperature and a culture period of 6 hours under reciprocal shaking at 150 rpm.

これらの培養試験において、試験前の被処理水及び試験後の処理水に含まれるチオシアン酸イオンの濃度を測定し、1時間当たりのチオシアン酸イオン除去速度を算出した。その結果を図4に示す。
図4に示す結果から明らかなように、生物学的処理の際のpHが7.0未満であると、チオシアン酸イオン除去速度が遅くなる傾向にあり、pH7.5のチオシアン酸イオン除去速度を100%とした場合、pH6.0では81%にまで低下していた。
このため、アンモニウムイオンの酸化による亜硝酸イオンの生成等に起因してpHが低下したような場合には、必要によりpHを7.0以上に調整することが好ましいことが判明した。
In these culture tests, the concentration of thiocyanate ions contained in the water to be treated before the test and the treated water after the test was measured, and the thiocyanate ion removal rate per hour was calculated. The result is shown in FIG.
As is clear from the results shown in FIG. 4, when the pH during biological treatment is less than 7.0, the thiocyanate ion removal rate tends to be slow, and the thiocyanate ion removal rate at pH 7.5 is reduced. When it was set to 100%, it decreased to 81% at pH 6.0.
For this reason, it has been found that it is preferable to adjust the pH to 7.0 or higher if necessary when the pH is lowered due to the production of nitrite ions due to oxidation of ammonium ions.

〔実施例1〕
工業用水と自然海水とを体積比2:3で混合して得られた溶媒中に、表2に示す溶質を表2に示す濃度で溶解し、人工排水(被処理水)を調製した。
[Example 1]
In a solvent obtained by mixing industrial water and natural seawater at a volume ratio of 2: 3, solutes shown in Table 2 were dissolved at concentrations shown in Table 2 to prepare artificial drainage (treated water).

Figure 2016112556
Figure 2016112556

また、図5に示すように、1つの槽内で生物処理領域20aと沈降領域20bとが隔壁23により互いに隔てられていると共にこの隔壁23の下方で互いに連通する構造を有する一体型の生物処理装置20を2つ用意し、一方の生物処理装置20の生物処理領域20a内に10mm×10mm×10mmの大きさのスポンジ担体21〔流動担体(関東イノアック製AQ−1)〕を体積比で20%(v/v)となるように投入し、流動担体有り(b)の生物処理装置20(実施例1)を準備し、また、他方の生物処理装置20の生物処理領域20a内にはスポンジ担体21を投入することなく、流動担体無し(a)の生物処理装置20(対照例)を準備した。   Further, as shown in FIG. 5, an integrated biological treatment having a structure in which a biological treatment region 20 a and a sedimentation region 20 b are separated from each other by a partition wall 23 and communicated with each other below the partition wall 23. Two devices 20 are prepared, and a sponge carrier 21 [fluid carrier (AQ-1 manufactured by Kanto Inoac)] having a size of 10 mm × 10 mm × 10 mm is placed in a biological treatment region 20a of one biological treatment device 20 in a volume ratio of 20 % (v / v) is added to prepare a biological treatment apparatus 20 (Example 1) with a fluid carrier (b), and the other biological treatment apparatus 20 has a sponge in the biological treatment region 20a. Without introducing the carrier 21, a biological treatment apparatus 20 (control example) without a fluid carrier (a) was prepared.

このようにして準備された流動担体無し(a)及び流動担体有り(b)の各生物処理装置20内にそれぞれ上記の被処理水24を流入させると共に微生物植種源として活性汚泥を投入し、スポンジ担体に微生物を定着させる微生物馴致処理(第1段処理)時には、被処理水24の水理学的滞留時間が24時間となるように流入させ、また、各生物処理装置20内の被処理水24に空気曝気22を行って好気性流動床を形成させ、微生物の馴致を行った。   Into each biological treatment device 20 without the fluid carrier prepared in this way (a) and with the fluid carrier (b), the above-mentioned treated water 24 is allowed to flow and activated sludge is introduced as a microbial seed source, At the time of the microorganism habituation treatment (first stage treatment) for fixing microorganisms on the sponge carrier, the treated water 24 is allowed to flow so that the hydraulic retention time is 24 hours, and the treated water in each biological treatment apparatus 20 Air aeration 22 was performed on 24 to form an aerobic fluidized bed, and microorganisms were acclimatized.

この生物学的処理の運転開始後、すぐにチオシアン酸イオンの除去が認められたが、徐々にpHの低下傾向が認められ、また、チオシアン酸イオンの除去が不安定であったので、運転開始後69日目から5wt%-水酸化ナトリウム水溶液を用いてpHを7.5付近に調整しながら処理を継続し、チオシアン酸イオンの除去率が98%以上で安定した段階で微生物馴致処理(第1段処理)を終了した。この微生物馴致処理(第1段処理)の終了時には亜硝酸イオンが増加していた。   Immediately after the start of this biological treatment operation, thiocyanate ion removal was observed, but there was a gradual decrease in pH, and the thiocyanate ion removal was unstable. After 69 days, the treatment was continued while adjusting the pH to around 7.5 using a 5 wt% -sodium hydroxide aqueous solution, and the microorganisms were treated at the stage where the thiocyanate ion removal rate was stable at 98% or more (No. 1). 1-stage processing) was completed. Nitrite ions were increasing at the end of this microorganism habituation treatment (first stage treatment).

この微生物馴致処理(第1段処理)の終了後、各生物処理装置20の生物処理領域20a内の処理水についてチオシアン酸イオン濃度と亜硝酸イオン濃度とを測定してチオシアン酸イオン及び亜硝酸イオンのモニタリングを行いながら、また、各生物処理装置20の生物処理領域20a内の処理水のpHを測定してpH値のモニタリング行いながら、運転開始後90日目より領域内の水理学的滞留時間が18時間となるように被処理水24の流入量を増やし(第2段処理)、また、運転開始後111日目より領域内の水理学的滞留時間が12時間となるように被処理水24の流入量を更に増やし(第3段処理)、更に、運転開始後118日目より領域内の水理学的滞留時間が8時間となるように被処理水24の流入量を更に増やし(第4段処理)、最終的に132日目まで運転を継続した。   After the completion of the microorganism adaptation process (first stage process), thiocyanate ions and nitrite ions are measured by measuring the thiocyanate ion concentration and the nitrite ion concentration of the treated water in the biological treatment region 20a of each biological treatment device 20. And monitoring the pH value of the treated water in the biological treatment area 20a of each biological treatment device 20 while monitoring the pH value, the hydraulic residence time in the area from the 90th day after the start of operation. The amount of inflow of the water to be treated 24 is increased so that it becomes 18 hours (second stage treatment), and from the 111th day after the operation is started, the water staying in the region is 12 hours so that the hydraulic residence time is 12 hours. Further increase the inflow amount of the treated water 24 (third stage treatment), and further increase the inflow amount of the treated water 24 so that the hydraulic residence time in the region becomes 8 hours from the 118th day after the start of operation (the third stage treatment). 4-stage processing), finally 132 days I continued driving to my eyes.

この間、第2段処理において領域内の水理学的滞留時間を18時間に短縮したことにより、チオシアン酸イオンの除去率を高い値に維持しつつ、亜硝酸イオンの生成の減少傾向が観察され始め、また、第3段処理において領域内の水理学的滞留時間を12時間に短縮したことにより、チオシアン酸イオンの除去率を高い値に維持しつつ、亜硝酸イオンの生成をほぼ完全に抑制することができ、更に、第4段処理において領域内の水理学的滞留時間を8時間に短縮した場合にも、亜硝酸イオンの生成を抑制しつつチオシアン酸イオンの除去率を高い値に維持できることを確認した。   During this time, in the second stage treatment, the hydraulic residence time in the region was shortened to 18 hours, so that a tendency to reduce the production of nitrite ions began to be observed while maintaining the thiocyanate ion removal rate at a high value. In addition, by reducing the hydraulic residence time in the region to 12 hours in the third stage treatment, the generation of nitrite ions is almost completely suppressed while maintaining the thiocyanate ion removal rate at a high value. Furthermore, even when the hydraulic residence time in the region is shortened to 8 hours in the fourth stage treatment, the thiocyanate ion removal rate can be maintained at a high value while suppressing the generation of nitrite ions. It was confirmed.

この実施例1での生物学的処理において、運転日数に対するチオシアン酸イオン、亜硝酸イオン、及びpH値の測定結果を図6に示す。
また、実施例1及び対照例の生物学的処理において、領域内の水理学的滞留時間を8時間に短縮して操業した運転開始後8〜10日目の処理水について、チオシアン酸イオン及び亜硝酸イオンの濃度を調べた結果を表3に示す。
In the biological treatment in Example 1, the measurement results of thiocyanate ion, nitrite ion, and pH value with respect to the operating days are shown in FIG.
In addition, in the biological treatment of Example 1 and the control example, the thiocyanate ion and the sub-aqueous water were treated with respect to the treated water on the 8th to 10th day after the start of operation in which the hydraulic residence time in the region was reduced to 8 hours. The results of examining the concentration of nitrate ions are shown in Table 3.

Figure 2016112556
Figure 2016112556

ここで、実施例1の流動担体有り(b)の生物処理装置20を用いた場合と、対照例の流動担体無し(a)の生物処理装置20を用いた場合とを比較してみると、以下の通りであった。
すなわち、実施例1及び対照例のいずれの場合も、微生物馴致処理(第1段処理)の際には運転開始後よりチオシアン酸イオンの除去が認められたが、アンモニウムイオンの酸化による亜硝酸イオンの生成も確認された。
しかしながら、その後の領域内の水理学的滞留時間を短くする制御を行った場合には、実施例1及び対照例のいずれの場合も共に亜硝酸イオンの生成を抑制できたが、チオシアン酸イオンの除去に関しては、領域内の水理学的滞留時間を12時間に短縮した際に、対照例ではチオシアン酸イオン除去率が77%程度までであったのに対し、実施例1では90%以上で安定しており、また、領域内の水理学的滞留時間を8時間に短縮した際には、対照例ではチオシアン酸イオン除去率が62%程度に過ぎなかったのに対し、実施例1では90%以上で安定していた。
Here, comparing the case of using the biological treatment apparatus 20 with the fluid carrier of Example 1 (b) and the case of using the biological treatment apparatus 20 without the fluid carrier of the control example (a), It was as follows.
That is, in both cases of Example 1 and the control example, the thiocyanate ions were removed from the start of operation during the microorganism acclimation treatment (first stage treatment), but nitrite ions were oxidized by the oxidation of ammonium ions. Production was also confirmed.
However, when the hydraulic residence time in the subsequent region was controlled to be short, the production of nitrite ions could be suppressed in both cases of Example 1 and the control example. Regarding removal, when the hydraulic residence time in the region was reduced to 12 hours, the thiocyanate ion removal rate was up to about 77% in the control example, whereas in Example 1, it was stable at 90% or more. In addition, when the hydraulic residence time in the region was reduced to 8 hours, the thiocyanate ion removal rate was only about 62% in the control example, whereas in Example 1, it was 90%. That was stable.

〔実施例2〕
工業用水と自然海水とを体積比2:3で混合して得られた溶媒中に、表4に示す溶質を表4に示す濃度で溶解し、人工排水(被処理水)を調製した。この実施例2においては、実施例1の溶質に加えて、コークス炉排水に含まれる主なCOD成分のフェノール及びチオ硫酸イオンを追加した。
[Example 2]
In a solvent obtained by mixing industrial water and natural seawater at a volume ratio of 2: 3, the solutes shown in Table 4 were dissolved at the concentrations shown in Table 4 to prepare artificial drainage (treated water). In Example 2, in addition to the solute of Example 1, phenol and thiosulfate ions as main COD components contained in coke oven wastewater were added.

Figure 2016112556
Figure 2016112556

また、図5に示すように、1つの槽内で生物処理領域20aと沈降領域20bとが隔壁23により互いに隔てられていると共にこの隔壁23の下方で互いに連通する構造を有する一体型の生物処理装置20を用意した。また、ポリ瓶に10mm×10mm×10mmの大きさのスポンジ担体〔流動担体(関東イノアック製AQ−1)〕と微生物植種源として高濃度の活性汚泥を投入し、手でよく揉み、一晩蓋をして浸け置くことで、微生物をスポンジ担体に付着させた。   Further, as shown in FIG. 5, an integrated biological treatment having a structure in which a biological treatment region 20 a and a sedimentation region 20 b are separated from each other by a partition wall 23 and communicated with each other below the partition wall 23. A device 20 was prepared. Also, put a sponge carrier (fluid carrier (AQ-1 manufactured by Kanto Inoac)) of 10 mm x 10 mm x 10 mm in a plastic bottle and high-concentration activated sludge as a microbial seeding source. The microorganism was attached to the sponge carrier by immersing it with a lid.

このようにして準備されたスポンジ担体21と活性汚泥を生物処理装置20の生物処理領域20a内にスポンジ担体21の体積比が20%(v/v)となるように投入し、生物処理装置20(実施例2)を準備した。   The sponge carrier 21 and activated sludge prepared in this way are introduced into the biological treatment region 20a of the biological treatment apparatus 20 so that the volume ratio of the sponge carrier 21 is 20% (v / v). (Example 2) was prepared.

このようにして準備された生物処理装置20内にそれぞれ上記の被処理水24を流入させ、スポンジ担体に微生物を定着させる微生物馴致処理(第1段処理)時には、被処理水24の水理学的滞留時間が24時間となるように流入させ、また、各生物処理装置20内の被処理水24に空気曝気22を行って好気性流動床を形成させ、微生物の馴致を行った。また、5wt%-水酸化ナトリウム水溶液を用いてpHを7.5付近に調整しながら処理を行った。   In the microorganism treatment process (first stage treatment) in which the above-described treated water 24 flows into the biological treatment apparatus 20 thus prepared and the microorganisms are fixed on the sponge carrier, the hydraulic treatment of the treated water 24 is performed. The residence time was 24 hours and air aeration 22 was performed on the water to be treated 24 in each biological treatment apparatus 20 to form an aerobic fluidized bed, thereby acclimatizing the microorganisms. Further, the treatment was performed while adjusting the pH to around 7.5 using a 5 wt% -sodium hydroxide aqueous solution.

この実施例2での生物学的処理において、運転日数に対するチオシアン酸イオン、亜硝酸イオン、及びpH値の測定結果を図7に示す。この生物学的処理の運転開始後、すぐにチオシアン酸イオンの除去が認められ、その後チオシアン酸イオンの除去率が99%以上で安定したため、18日目で微生物馴致処理(第1段処理)を終了した。この微生物馴致処理(第1段処理)の期間、被処理水中のアンモニアの22%以上が亜硝酸イオンに酸化された。   In the biological treatment in Example 2, the measurement results of thiocyanate ion, nitrite ion, and pH value with respect to the operating days are shown in FIG. Immediately after the start of this biological treatment, thiocyanate ion removal was observed, and then the thiocyanate ion removal rate was stable at 99% or more. finished. During the microorganism acclimation treatment (first treatment), 22% or more of the ammonia in the water to be treated was oxidized to nitrite ions.

なお、スポンジ担体に予め微生物を定着させなかった実施例1よりも71日も早く微生物馴致処理(第1段処理)を終了できた。これは、pHを調整したためと、また事前にスポンジ担体21手でよく揉み、一晩蓋をして浸け置いたためである。   The microorganism acclimatization process (first stage process) was completed 71 days earlier than Example 1 in which the microorganisms were not previously fixed on the sponge carrier. This is because the pH was adjusted and the sponge carrier 21 was rubbed well in advance and covered with a lid overnight.

この微生物馴致処理(第1段処理)の終了後、生物処理装置20の生物処理領域20a内の処理水についてチオシアン酸イオン濃度と亜硝酸イオン濃度とを測定してチオシアン酸イオン及び亜硝酸イオンのモニタリングを行いながら、かつ、生物処理装置20の生物処理領域20a内の処理水のpHを測定してpH値のモニタリング行いながら、運転開始後19日目より領域内の水理学的滞留時間が18時間となるように被処理水24の流入量を増やし(第2段処理)、次に、運転開始後39日目より領域内の水理学的滞留時間が12時間となるように被処理水24の流入量を更に増やし(第3段処理)、更に、運転開始後46日目より領域内の水理学的滞留時間が8時間となるように被処理水24の流入量を更に増やした(第4段処理)。その後、74日目より領域内の水理学的滞留時間が10時間となるように被処理水24の流入量を減らし(第5段処理)、更に96日目より領域内の水理学的滞留時間が24時間となるように被処理水24の流入量を減らし(第6段処理)、最終的に151日目まで運転を継続した。   After the completion of the microorganism acclimation process (first stage process), the thiocyanate ion concentration and the nitrite ion concentration of the treated water in the biological treatment region 20a of the biological treatment apparatus 20 are measured to determine the thiocyanate ion and nitrite ion concentration. While monitoring, while measuring the pH of the treated water in the biological treatment area 20a of the biological treatment apparatus 20 and monitoring the pH value, the hydraulic residence time in the area is 18 from the 19th day after the start of operation. The amount of inflow of the water to be treated 24 is increased so as to become time (second stage treatment), and then the water to be treated 24 is set so that the hydraulic residence time in the region becomes 12 hours from the 39th day after the start of operation. The inflow amount of the water to be treated 24 was further increased so that the hydraulic residence time in the region was 8 hours from the 46th day after the start of operation (third stage treatment). 4-stage processing). After that, from the 74th day, the inflow amount of the water to be treated 24 is reduced so that the hydraulic residence time in the region becomes 10 hours (fifth stage treatment), and further from the 96th day, the hydraulic residence time in the region. The amount of inflow of the water to be treated 24 was reduced (sixth stage treatment) so as to be 24 hours, and the operation was continued until the 151st day.

この間、第2段処理において領域内の水理学的滞留時間を18時間に短縮したことにより、チオシアン酸イオンの除去率を高い値に維持しつつ、亜硝酸イオンの生成の減少傾向が観察され始め、更に領域内の水理学的滞留時間を12時間に短縮することにより、チオシアン酸イオンの除去率を高い値に維持しつつ、亜硝酸イオンの生成を更に抑制することができた。   During this time, in the second stage treatment, the hydraulic residence time in the region was shortened to 18 hours, so that a tendency to reduce the production of nitrite ions began to be observed while maintaining the thiocyanate ion removal rate at a high value. Further, by shortening the hydraulic residence time in the region to 12 hours, it was possible to further suppress the formation of nitrite ions while maintaining the thiocyanate ion removal rate at a high value.

しかしながら、更に、第4段処理において領域内の水理学的滞留時間を8時間に短縮した場合には、亜硝酸イオンの生成をほぼ完全に抑制しながらも、しばらく継続するとチオシアン酸イオンの除去率が低下した。これは実施例1の被処理水には含まれていなかったフェノール及びチオ硫酸を分解する微生物がスポンジ担体21の表面に生息したため、チオシアン酸イオンを除去する微生物スポンジ担体21の表面で生息する場が少なくなり、その結果除去率が低下してしまったものと考えられる。   However, when the hydraulic residence time in the region is shortened to 8 hours in the fourth stage treatment, the thiocyanate ion removal rate after a while while suppressing the production of nitrite ions almost completely. Decreased. This is because the microorganisms that decompose phenol and thiosulfuric acid that were not contained in the water to be treated in Example 1 lived on the surface of the sponge carrier 21, and therefore live on the surface of the microorganism sponge carrier 21 that removes thiocyanate ions. As a result, the removal rate is considered to have decreased.

このように、チオシアン酸イオンの除去率が目標値を超えて上昇してしまったため、第5段処理においては、水理学的滞留時間を第4段処理の条件(水理学的滞留時間が12時間)に近い10時間に戻して生物学的処理を行った。その結果、チオシアン酸イオンの除去率を94%以上に維持しつつ、亜硝酸イオンの生成をほぼ完全に抑制することができた。   Thus, since the thiocyanate ion removal rate has increased beyond the target value, in the fifth stage treatment, the hydraulic residence time is set to the condition of the fourth stage treatment (hydraulic residence time is 12 hours. The biological treatment was carried out at 10 hours close to). As a result, it was possible to almost completely suppress the formation of nitrite ions while maintaining the thiocyanate ion removal rate at 94% or more.

そこで更に、第6段処理においては、水理学的滞留時間を24時間に延長したところ、チオシアン酸イオンの除去率を高い値に維持しながらも、更に驚くべきことには、その後76日間にも亘って、亜硝酸イオンの生成をほぼ完全に抑制することができた。   Therefore, in the sixth stage treatment, when the hydraulic residence time was extended to 24 hours, the thirocyanate ion removal rate was maintained at a high value, but more surprisingly, the remaining 76 days. As a result, the production of nitrite ions could be suppressed almost completely.

この実施例2の生物学的処理において、領域内の水理学的滞留時間を10時間に短縮して操業した運転開始後13日目の処理水について、チオシアン酸イオン及び亜硝酸イオンの濃度を調べた結果を表5に示す。   In the biological treatment of Example 2, the concentration of thiocyanate ions and nitrite ions was examined for the treated water on the 13th day after the start of operation in which the hydraulic residence time in the region was shortened to 10 hours. The results are shown in Table 5.

Figure 2016112556
Figure 2016112556

ここで、実施例1と実施例2の結果についてみると、以下の通りであった。
すなわち、実施例1及び2のいずれの場合も、微生物馴致処理(第1段処理)の際には運転開始後よりチオシアン酸イオンの除去が認められたが、アンモニウムイオンの酸化による亜硝酸イオンの生成も確認された。
しかしながら、その後の領域内の水理学的滞留時間を短くする制御を行った場合には、実施例1では水理学的滞留時間を8時間に短縮した後に、また、実施例2では水理学的滞留時間を10時間に短縮した後に、いずれの場合も共にチオシアン酸イオンの除去率が90%以上で安定しつつ、亜硝酸イオンの生成を抑制することができた。
更に、実施例2では、水理学的滞留時間を10時間に維持した後に24時間まで延長したが亜硝酸イオンの生成抑制を維持していた。
Here, the results of Example 1 and Example 2 were as follows.
That is, in both cases of Examples 1 and 2, thiocyanate ions were removed from the start of operation during the acclimation treatment (first stage treatment), but nitrite ions were oxidized by oxidation of ammonium ions. Generation was also confirmed.
However, when control is performed to shorten the hydraulic residence time in the subsequent region, in Example 1, the hydraulic residence time is shortened to 8 hours, and in Example 2, the hydraulic residence time is reduced. After shortening the time to 10 hours, in both cases, the thiocyanate ion removal rate was stable at 90% or more, and the production of nitrite ions could be suppressed.
Furthermore, in Example 2, the hydraulic residence time was maintained at 10 hours and then extended to 24 hours, but the suppression of nitrite ion production was maintained.

以上の実施例1及び2の結果から、本発明の好気性流動床を構成して行う被処理水の生物学的処理を用いれば、単に亜硝酸イオンの生成を抑制しながらチオシアン酸イオンを選択的に除去できるだけでなく、水理学的滞留時間を短縮することによってチオシアン酸イオンを高速に処理できる。更に、一度水理学的滞留時間を短縮して微生物の馴致を行なった後は、水理学的滞留時間を再び延長してもしばらくは亜硝酸イオンの生成を抑制できることから、チオシアン酸イオンの除去率が低下した場合には水理学的滞留時間を延長し、また、亜硝酸イオンの生成量が増加する場合には水理学的滞留時間を短縮する操作を、チオシアン酸イオンと亜硝酸イオンの濃度をモニタリングしながら適宜選択して実施することにより、亜硝酸イオンの生成を抑制しながらチオシアン酸イオンを選択的に除去できることが判明した。   From the results of Examples 1 and 2 above, if the biological treatment of the water to be treated that constitutes the aerobic fluidized bed of the present invention is used, thiocyanate ions are simply selected while suppressing the production of nitrite ions. The thiocyanate ions can be processed at high speed by shortening the hydraulic residence time. In addition, once the hydraulic residence time has been shortened and the microorganisms have been acclimatized, the generation rate of thiocyanate ions can be suppressed for a while even if the hydraulic residence time is extended again. If the water content decreases, the hydraulic residence time is extended, and if the amount of nitrite produced increases, the hydraulic residence time is shortened, and the thiocyanate ion and nitrite ion concentrations are reduced. It was found that thiocyanate ions can be selectively removed while suppressing the production of nitrite ions by appropriately selecting and carrying out monitoring.

1…生物処理槽、2…沈降槽、3〜6…配管、7…アルカリ供給ポンプ、8…pH計、9:エアポンプ、10…流動担体、11…セパレーター、20…生物処理装置、20a…生物処理領域、20b…沈降領域、21…スポンジ担体(流動担体)、22…散気管、23…隔壁、24…被処理水、25…最終処理水。   DESCRIPTION OF SYMBOLS 1 ... Biological treatment tank, 2 ... Sedimentation tank, 3-6 ... Piping, 7 ... Alkaline supply pump, 8 ... pH meter, 9: Air pump, 10 ... Fluid carrier, 11 ... Separator, 20 ... Biological treatment apparatus, 20a ... Biological Treatment area, 20b ... Sedimentation area, 21 ... Sponge carrier (fluid carrier), 22 ... Air diffuser, 23 ... Partition, 24 ... Water to be treated, 25 ... Final treated water.

Claims (6)

流動担体が装入された生物処理槽内にチオシアン酸イオン及びアンモニウムイオンを含有する被処理水を連続的に導入すると共に曝気して前記流動担体に微生物を定着させて好気性流動床を構成し、この好気性流動床の生物学的処理により前記被処理水を連続的に処理する方法であって、
前記生物処理槽内には、生物処理槽内の処理水若しくはこの槽内から排出される処理水のチオシアン酸イオン及び亜硝酸イオンをモニタリングしながら、前記流動担体に微生物を定着させて好気性流動床を構成する微生物馴致処理の第1段処理から第N段処理へと水理学的滞留時間を段階的に又は連続的に変化させて被処理水を導入し、
第2段処理以降の水理学的滞留時間については、被処理水中のチオシアン酸イオンの除去及び処理水中の亜硝酸イオンの生成抑制が確認されるまで、前段処理の水理学的滞留時間よりも短くなるように制御し、
亜硝酸イオンの生成を抑制しつつチオシアン酸イオンを選択的に除去することを特徴とする好気性流動床による被処理水の生物学的処理方法。
An aerobic fluidized bed is formed by continuously introducing water to be treated containing thiocyanate ions and ammonium ions into a biological treatment tank charged with a fluid carrier and aeration to fix microorganisms on the fluid carrier. A method for continuously treating the water to be treated by biological treatment of the aerobic fluidized bed,
In the biological treatment tank, while monitoring the treated water in the biological treatment tank or the thiocyanate ions and nitrite ions discharged from the tank, microorganisms are fixed on the fluid carrier and aerobic flow is performed. Introducing water to be treated by changing the hydraulic residence time stepwise or continuously from the first stage treatment to the Nth stage treatment of the microbe-acclimation treatment constituting the floor,
The hydraulic residence time after the second stage treatment is shorter than the hydraulic residence time of the previous stage treatment until the removal of thiocyanate ions in the treated water and the suppression of the formation of nitrite ions in the treated water are confirmed. Control to be
A biological treatment method of water to be treated by an aerobic fluidized bed, wherein thiocyanate ions are selectively removed while suppressing generation of nitrite ions.
前記第2段処理以降における水理学的滞留時間の制御は、被処理水中のチオシアン酸イオンの除去及び処理水中の亜硝酸イオンの生成抑制が確認された後も、引き続いて前記第1段処理の水理学的滞留時間よりも短くなるように行われることを特徴とする請求項1に好気性流動床による被処理水の生物学的処理方法。   After the second stage treatment, the hydraulic residence time is controlled by the removal of thiocyanate ions in the treated water and the suppression of the formation of nitrite ions in the treated water. 2. The biological treatment method for water to be treated by an aerobic fluidized bed according to claim 1, wherein the treatment time is shorter than the hydraulic residence time. 前記第2段処理以降における水理学的滞留時間の制御は、被処理水中のチオシアン酸イオンの除去及び処理水中の亜硝酸イオンの生成抑制が確認された後も、引き続き短縮された水理学的滞留時間を維持するように行われることを特徴とする請求項1又は2に記載の好気性流動床による被処理水の生物学的処理方法。   The control of the hydraulic residence time after the second stage treatment was continued after the removal of thiocyanate ions in the treated water and the suppression of the formation of nitrite ions in the treated water. The biological treatment method for water to be treated by an aerobic fluidized bed according to claim 1 or 2, wherein the treatment is performed so as to maintain time. 前記第2段処理以降における水理学的滞留時間の制御は、被処理水中のチオシアン酸イオンの除去及び処理水中の亜硝酸イオンの生成抑制が確認された後には、前記処理水のチオシアン酸イオン及び亜硝酸イオンの濃度に応じて、前段処理の水理学的滞留時間に対して延長又は短縮するように行われることを特徴とする請求項1又は2に記載の好気性流動床による被処理水の生物学的処理方法。   After the second stage treatment, the hydraulic residence time is controlled by confirming the removal of thiocyanate ions in the treated water and the suppression of the formation of nitrite ions in the treated water. The water to be treated by the aerobic fluidized bed according to claim 1, wherein the water is treated so as to be extended or shortened with respect to the hydraulic residence time of the pretreatment according to the concentration of nitrite ions. Biological treatment method. 前記生物処理槽内への被処理水の導入は、前記水理学的滞留時間を段階的に変化させて行われることを特徴とする請求項1〜4のいずれか1項に記載の好気性流動床による被処理水の生物学的処理方法。   The aerobic flow according to any one of claims 1 to 4, wherein introduction of water to be treated into the biological treatment tank is performed by changing the hydraulic residence time stepwise. Biological treatment method of water to be treated by floor. 前記生物処理槽内の処理水若しくはこの槽内から排出される処理水のpH値をモニタリングし、前記生物処理槽内の処理水若しくはこの槽内から排出される処理水のチオシアン酸イオン濃度が所定の値以上になり、更に前記処理水のpH値が7.0未満に低下した際に、前記生物処理槽内のpH値を7.0〜8.5の範囲に調整することを特徴とする請求項1〜5のいずれか1項に記載の好気性流動床による被処理水の生物学的処理方法。   The pH value of the treated water in the biological treatment tank or the treated water discharged from the tank is monitored, and the thiocyanate ion concentration of the treated water in the biological treatment tank or the treated water discharged from the tank is predetermined. When the pH value of the treated water decreases to less than 7.0, the pH value in the biological treatment tank is adjusted to a range of 7.0 to 8.5. The biological treatment method of the to-be-processed water by the aerobic fluidized bed of any one of Claims 1-5.
JP2015196655A 2014-12-16 2015-10-02 Biological treatment method of treated water by aerobic fluidized bed Active JP6540437B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014254138 2014-12-16
JP2014254138 2014-12-16

Publications (2)

Publication Number Publication Date
JP2016112556A true JP2016112556A (en) 2016-06-23
JP6540437B2 JP6540437B2 (en) 2019-07-10

Family

ID=56140472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015196655A Active JP6540437B2 (en) 2014-12-16 2015-10-02 Biological treatment method of treated water by aerobic fluidized bed

Country Status (1)

Country Link
JP (1) JP6540437B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078767A (en) * 2018-11-12 2020-05-28 日本製鉄株式会社 Waste water treatment device, and waste water treatment method
CN114315022A (en) * 2021-12-24 2022-04-12 江苏蓝必盛化工环保股份有限公司 Full biological treatment method for high-concentration formaldehyde wastewater

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436062A (en) * 1977-08-24 1979-03-16 Niigata Eng Co Ltd Method of treating gas liquor
JPS59120294A (en) * 1982-12-25 1984-07-11 Nippon Steel Corp Treatment of ammonia water with activated sludge
JPS59160593A (en) * 1983-03-03 1984-09-11 Nippon Kokan Kk <Nkk> Treatment of waste liquid of high ammonia concentration with activated sludge
JPH0615294A (en) * 1992-07-02 1994-01-25 Nippon Steel Corp Immobilized carrier suitable for sulfur-oxidizing bacteria, immobilization of sulfur-oxidizing bacteria in immobilized carrier, culturing and propagating method for sulfur oxidizing bacteria in fixed bed type bioreactor and biological treatment of waste water containing reducing sulfur compound
JPH11299481A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp Breeding of bacterium oxidizing sulfur and removal of nitrogen from waste water with the bacterium oxidizing sulfur
JP2003080289A (en) * 2001-09-12 2003-03-18 Adchemco Corp Treating method for ammonia solution
JP2014217318A (en) * 2013-05-08 2014-11-20 新日鐵住金株式会社 Accumulation method of thiocyanogen decomposing bacteria and decomposition method of thiocyanogen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436062A (en) * 1977-08-24 1979-03-16 Niigata Eng Co Ltd Method of treating gas liquor
JPS59120294A (en) * 1982-12-25 1984-07-11 Nippon Steel Corp Treatment of ammonia water with activated sludge
JPS59160593A (en) * 1983-03-03 1984-09-11 Nippon Kokan Kk <Nkk> Treatment of waste liquid of high ammonia concentration with activated sludge
JPH0615294A (en) * 1992-07-02 1994-01-25 Nippon Steel Corp Immobilized carrier suitable for sulfur-oxidizing bacteria, immobilization of sulfur-oxidizing bacteria in immobilized carrier, culturing and propagating method for sulfur oxidizing bacteria in fixed bed type bioreactor and biological treatment of waste water containing reducing sulfur compound
JPH11299481A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp Breeding of bacterium oxidizing sulfur and removal of nitrogen from waste water with the bacterium oxidizing sulfur
JP2003080289A (en) * 2001-09-12 2003-03-18 Adchemco Corp Treating method for ammonia solution
JP2014217318A (en) * 2013-05-08 2014-11-20 新日鐵住金株式会社 Accumulation method of thiocyanogen decomposing bacteria and decomposition method of thiocyanogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078767A (en) * 2018-11-12 2020-05-28 日本製鉄株式会社 Waste water treatment device, and waste water treatment method
JP7099265B2 (en) 2018-11-12 2022-07-12 日本製鉄株式会社 Wastewater treatment equipment and wastewater treatment method
CN114315022A (en) * 2021-12-24 2022-04-12 江苏蓝必盛化工环保股份有限公司 Full biological treatment method for high-concentration formaldehyde wastewater
CN114315022B (en) * 2021-12-24 2023-12-22 江苏蓝必盛化工环保股份有限公司 Full biological treatment method for high-concentration formaldehyde wastewater

Also Published As

Publication number Publication date
JP6540437B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
WO2014043547A4 (en) Method and apparatus for nitrogen removal in wastewater treatment
JP6210883B2 (en) Operation method of waste water treatment equipment
JP4625508B2 (en) Nitrate waste liquid treatment method and apparatus
JP5814392B2 (en) Waste liquid treatment method and waste liquid treatment apparatus
JP4578278B2 (en) Sewage treatment apparatus and treatment method
JP2010221192A (en) Waste water treatment method
JP2011078938A (en) Waste water treatment method
JP2010000480A (en) Effective denitrification method for organic raw water
KR20140063454A (en) Apparatus and method for treatment wastewater
JP5992807B2 (en) Waste water treatment apparatus and waste water treatment method
JP6540437B2 (en) Biological treatment method of treated water by aerobic fluidized bed
WO2009099209A1 (en) Apparatus and method for treatment of radioactive nitrate salt liquid waste
JP6862617B2 (en) A method and an apparatus for maintaining a complex denitrification reaction by an anaerobic ammonia oxidation reaction (Anamox reaction) and a hydrogen oxidation denitrification reaction for a long period of time.
JP2010058078A (en) Water treating system used for water treating method and it
JP4838872B2 (en) Water treatment apparatus and water treatment method
KR20140091997A (en) Continuous removal of perchlorate and nitrate using enriched sulfur-oxidizing microorganisms
JP6540438B2 (en) Biological treatment method of treated water by aerobic fixed bed
JP2006524562A (en) Coke production wastewater purification method using gas permeable membrane structure
JP5782415B2 (en) Method and apparatus for treating water to be treated
JP6911582B2 (en) Treatment method of low pH microalgae culture water
JP5126691B2 (en) Wastewater treatment method
JP2006272081A (en) Ultrahigh-level method for treating water and water treatment system to be used therein
JP2008188498A (en) Treatment method and treatment equipment for water to be treated
JP2013022536A (en) Biological treatment method for amine-containing wastewater and treatment equipment
JP2006061764A (en) Waste water treating method and waste water treating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R151 Written notification of patent or utility model registration

Ref document number: 6540437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151