JP7099265B2 - Wastewater treatment equipment and wastewater treatment method - Google Patents

Wastewater treatment equipment and wastewater treatment method Download PDF

Info

Publication number
JP7099265B2
JP7099265B2 JP2018212118A JP2018212118A JP7099265B2 JP 7099265 B2 JP7099265 B2 JP 7099265B2 JP 2018212118 A JP2018212118 A JP 2018212118A JP 2018212118 A JP2018212118 A JP 2018212118A JP 7099265 B2 JP7099265 B2 JP 7099265B2
Authority
JP
Japan
Prior art keywords
activated sludge
tank
fluidized bed
treated
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018212118A
Other languages
Japanese (ja)
Other versions
JP2020078767A (en
Inventor
寿和 福島
敏朗 加藤
孝之 荒木
郁 安倍
秀起 岩橋
和久 工藤
俊克 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018212118A priority Critical patent/JP7099265B2/en
Publication of JP2020078767A publication Critical patent/JP2020078767A/en
Application granted granted Critical
Publication of JP7099265B2 publication Critical patent/JP7099265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、排水処理装置及び排水処理方法に関する。 The present invention relates to a wastewater treatment apparatus and a wastewater treatment method.

近年、環境保護等の観点から、フェノール類等のCOD(化学的酸素要求量)成分を含む排水を浄化する技術が強く求められている。このような技術として、活性汚泥法が知られている。活性汚泥法では、活性汚泥(上記排水中のCOD成分を分解する微生物)を用いて排水を処理する。ついで、処理後の排水(処理水)を沈殿槽に導入し、沈殿槽内で処理水中の活性汚泥を沈殿させる。これにより、処理水から活性汚泥を除去する。ついで、上澄み液を沈殿槽から排出し、放流する。 In recent years, from the viewpoint of environmental protection and the like, there is a strong demand for a technique for purifying wastewater containing COD (chemical oxygen demand) components such as phenols. The activated sludge method is known as such a technique. In the activated sludge method, wastewater is treated using activated sludge (a microorganism that decomposes COD components in the wastewater). Then, the treated wastewater (treated water) is introduced into the settling tank, and the activated sludge in the treated water is settled in the settling tank. This removes activated sludge from the treated water. Then, the supernatant liquid is discharged from the settling tank and discharged.

特許文献1~3には、活性汚泥法に関連する技術として、流動床担体法が記載されている。流動床担体法では、流動床担体槽内を流動する担体に活性汚泥を担持させる。そして、担体に担持させた活性汚泥を用いて排水を処理する。流動床担体法においても、処理後の排水(処理水)に活性汚泥法よりは少ないものの活性汚泥が含まれる。そこで、必要に応じて処理水を沈殿槽に導入し、沈殿槽内で処理水中の活性汚泥を沈殿させる。これにより、処理水から活性汚泥を除去する。ついで、上澄み液を沈殿槽から排出し、放流する。流動床担体法によれば、活性汚泥法よりも処理速度が高まることが期待できる。 Patent Documents 1 to 3 describe a fluidized bed carrier method as a technique related to the activated sludge method. In the fluidized bed carrier method, activated sludge is supported on a carrier that flows in the fluidized bed carrier tank. Then, the wastewater is treated using the activated sludge carried on the carrier. Also in the fluidized bed carrier method, the wastewater (treated water) after treatment contains activated sludge, although it is less than that in the activated sludge method. Therefore, if necessary, the treated water is introduced into the settling tank, and the activated sludge in the treated water is settled in the settling tank. This removes activated sludge from the treated water. Then, the supernatant liquid is discharged from the settling tank and discharged. According to the fluidized bed carrier method, it can be expected that the treatment speed will be higher than that of the activated sludge method.

特許第3410699号公報Japanese Patent No. 3410699 特開2010-17669号公報Japanese Unexamined Patent Publication No. 2010-17669 特開2002-86175号公報Japanese Patent Application Laid-Open No. 2002-86175

ところで、流動床担体法では、沈殿槽において活性汚泥が沈殿しにくいという問題があった。このため、上澄み液に多くの活性汚泥が含まれている可能性があった。このような問題を解決する方法として、沈殿槽から排出された処理水に沈殿剤を添加する方法が提案されている。この方法によれば、沈殿剤によって処理水中の活性汚泥を沈殿させることができる。しかし、この方法では多量の沈殿剤が必要となるので、操業上の手間が大きくなり、かつコストも高くなる。 By the way, the fluidized bed carrier method has a problem that activated sludge is difficult to settle in a settling tank. Therefore, there is a possibility that the supernatant liquid contains a large amount of activated sludge. As a method for solving such a problem, a method of adding a precipitating agent to the treated water discharged from the settling tank has been proposed. According to this method, activated sludge in the treated water can be precipitated by the precipitating agent. However, since this method requires a large amount of precipitating agent, it requires a large amount of labor in operation and also increases the cost.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、流動床担体槽から排出された処理水中の活性汚泥を沈殿させやすくすることができ、ひいては、沈殿剤の使用量を低減することが可能な、新規かつ改良された排水処理装置及び排水処理方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to facilitate the precipitation of activated sludge in the treated water discharged from the fluidized bed carrier tank, and by extension, the present invention. It is an object of the present invention to provide a new and improved wastewater treatment apparatus and wastewater treatment method capable of reducing the amount of precipitant used.

上記課題を解決するために、本発明のある観点によれば、被処理水を浄化する排水処理装置であって、被処理水を処理し、処理後の被処理水を処理水として排出する活性汚泥槽及び流動床担体槽と、活性汚泥槽及び流動床担体槽から排出された処理水を貯留し、当該処理水中に分散した活性汚泥を沈殿させる沈殿槽と、沈殿槽に沈殿した活性汚泥を少なくとも流動床担体槽に返送する汚泥返送機構と、を備えることを特徴とする、排水処理装置が提供される。 In order to solve the above problems, according to a certain viewpoint of the present invention, it is a wastewater treatment device that purifies the water to be treated, and has an activity of treating the water to be treated and discharging the treated water as the treated water. The sludge tank and the fluidized bed carrier tank, the settling tank that stores the treated water discharged from the activated sludge tank and the fluidized bed carrier tank and precipitates the activated sludge dispersed in the treated water, and the activated sludge that has settled in the settling tank. Provided is a wastewater treatment apparatus comprising, at least, a sludge returning mechanism for returning to a fluidized bed carrier tank.

ここで、流動床担体槽から排出される処理水中の浮遊物質の沈殿性、及び濃度のうち少なくとも何れかを計測する計測装置と、計測装置による計測値に基づいて、流動床担体槽に返送する活性汚泥の量を制御する制御装置と、を備えてもよい。 Here, it is returned to the fluidized bed carrier tank based on the measuring device for measuring at least one of the precipitation property and the concentration of the suspended substance in the treated water discharged from the fluidized bed carrier tank and the measured value by the measuring device. A control device for controlling the amount of active sludge may be provided.

また、制御装置は、計測装置による計測値が所定値となるように流動床担体槽に返送する活性汚泥の量を制御し、浮遊物質の沈殿性はSV30で示され、SV30に対応する所定値は100%未満であってもよい。 Further, the control device controls the amount of activated sludge returned to the fluidized bed carrier tank so that the value measured by the measuring device becomes a predetermined value, and the precipitation property of suspended solids is indicated by SV30, which is a predetermined value corresponding to SV30. May be less than 100%.

また、浮遊物質の濃度の所定値は、1000mg/L以上であってもよい。 Further, the predetermined value of the concentration of suspended solids may be 1000 mg / L or more.

また、被処理水を活性汚泥槽及び流動床担体槽に分配して導入する分流機構を備え、分流機構は、活性汚泥槽よりも流動床担体槽に多くの被処理水を導入してもよい。 Further, it is provided with a diversion mechanism for distributing and introducing the water to be treated into the activated sludge tank and the fluidized bed carrier tank, and the diversion mechanism may introduce more water to be treated into the fluidized bed carrier tank than the activated sludge tank. ..

また、被処理水がフェノール類を含んでいてもよい。 Further, the water to be treated may contain phenols.

また、被処理水がコークス炉排水を含んでいてもよい。 Further, the water to be treated may contain coke oven wastewater.

本発明の他の観点によれば、活性汚泥槽及び流動床担体槽を用いて被処理水を処理し、処理後の被処理水を処理水として排出する工程と、活性汚泥槽及び流動床担体槽から排出された処理水を沈殿槽に導入し、沈殿槽内で当該処理水中に分散した活性汚泥を沈殿させる工程と、沈殿槽に沈殿した活性汚泥を少なくとも流動床担体槽に返送する工程と、を含むことを特徴とする、排水処理方法が提供される。 According to another aspect of the present invention, a step of treating water to be treated using an activated sludge tank and a fluidized bed carrier tank and discharging the treated water as treated water, and an activated sludge tank and a fluidized bed carrier. A step of introducing the treated water discharged from the tank into the settling tank and precipitating the activated sludge dispersed in the treated water in the settling tank, and a step of returning the activated sludge settled in the settling tank to at least the fluidized bed carrier tank. , A method of treating wastewater is provided, which comprises.

ここで、流動床担体槽から排出される処理水中の浮遊物質の沈殿性、及び濃度のうち少なくとも何れかを計測し、沈殿性、及び濃度のうち少なくとも何れかの計測値に基づいて、流動床担体槽に返送する活性汚泥の量を制御してもよい。 Here, at least one of the precipitation property and the concentration of the suspended substance in the treated water discharged from the fluidized bed carrier tank is measured, and the fluidized bed is based on the measured value of at least one of the precipitation property and the concentration. The amount of active sludge returned to the carrier tank may be controlled.

また、計測値が所定値となるように流動床担体槽に返送する活性汚泥の量を制御し、浮遊物質の沈殿性はSV30で示され、前記SV30に対応する所定値は100%未満であってもよい。 Further, the amount of activated sludge returned to the fluidized bed carrier tank is controlled so that the measured value becomes a predetermined value, the precipitation property of suspended solids is indicated by SV30, and the predetermined value corresponding to the SV30 is less than 100%. May be.

また、浮遊物質の濃度の所定値は、1000mg/L以上であってもよい。 Further, the predetermined value of the concentration of suspended solids may be 1000 mg / L or more.

また、被処理水を活性汚泥槽及び流動床担体槽に分配して導入し、活性汚泥槽よりも流動床担体槽に多くの被処理水を導入してもよい。 Further, the water to be treated may be distributed and introduced into the activated sludge tank and the fluidized bed carrier tank, and more water to be treated may be introduced into the fluidized bed carrier tank than the activated sludge tank.

また、被処理水がフェノール類を含んでいてもよい。 Further, the water to be treated may contain phenols.

また、被処理水がコークス炉排水を含んでいてもよい。 Further, the water to be treated may contain coke oven wastewater.

以上説明したように本発明によれば、沈殿槽に沈殿した活性汚泥を少なくとも流動床担体槽に返送するので、流動床担体槽から排出された処理水中の活性汚泥を沈殿させやすくすることができ、ひいては、沈殿剤の使用量を低減することが可能となる。 As described above, according to the present invention, since the activated sludge settled in the settling tank is returned to at least the fluidized bed carrier tank, it is possible to facilitate the settling of the activated sludge in the treated water discharged from the fluidized bed carrier tank. As a result, it becomes possible to reduce the amount of the precipitant used.

本発明の実施形態に係る排水処理装置の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the wastewater treatment apparatus which concerns on embodiment of this invention. 排水処理装置の運転日数(日)と担体への活性汚泥の付着質量(g/10個)または流動床担体槽の処理水のCOD濃度(mg/L)との相関を示すグラフである。It is a graph which shows the correlation between the operation days (days) of a wastewater treatment apparatus, the mass adhering activated sludge to a carrier (g / 10 pieces), or the COD concentration (mg / L) of the treated water of a fluidized bed carrier tank. 排水処理装置の運転日数(日)と凝集剤の使用量(L/日)との相関を示すグラフである。It is a graph which shows the correlation between the operation day (day) of a wastewater treatment apparatus, and the use amount (L / day) of a coagulant. 排水処理装置の運転日数(日)と流動床担体槽の処理水のMLSS(mg/L)との相関を示すグラフである。It is a graph which shows the correlation between the operation days (days) of a wastewater treatment apparatus, and MLSS (mg / L) of the treated water of a fluidized bed carrier tank. 排水処理装置の運転日数(日)と流動床担体槽の処理水のSV30(%)との相関を示すグラフである。It is a graph which shows the correlation between the operation days (days) of a wastewater treatment apparatus, and SV30 (%) of the treated water of a fluidized bed carrier tank. 流動床担体槽への活性汚泥の返送を行わない場合における流動床担体槽の表面状態を示す写真である。It is a photograph which shows the surface state of the fluidized bed carrier tank when activated sludge is not returned to the fluidized bed carrier tank. 流動床担体槽への活性汚泥の返送を行った場合における流動床担体槽の表面状態を示す写真である。It is a photograph which shows the surface state of the fluidized bed carrier tank at the time of returning activated sludge to the fluidized bed carrier tank.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, and duplicate description will be omitted.

<1.排水処理装置の構成>
まず、図1に基づいて、本実施形態に係る排水処理装置1の全体構成について説明する。排水処理装置1は、活性汚泥槽10、流動床担体槽20、沈殿槽30、分流機構40、合流機構50、計測装置51、汚泥返送機構60、凝集沈殿槽70、及び制御装置100を備える。
<1. Configuration of wastewater treatment equipment>
First, the overall configuration of the wastewater treatment apparatus 1 according to the present embodiment will be described with reference to FIG. The wastewater treatment device 1 includes an activated sludge tank 10, a fluidized bed carrier tank 20, a settling tank 30, a diversion mechanism 40, a merging mechanism 50, a measuring device 51, a sludge return mechanism 60, a coagulation settling tank 70, and a control device 100.

分流機構40は、被処理水を活性汚泥槽10及び流動床担体槽20に分配して導入する。本実施形態で処理対象となる被処理水は、COD成分を含むものであれば特に制限されない。COD成分は例えばフェノール類である。COD成分を含む被処理水としては、例えばコークス製造工程で発生するコークス炉排水(安水)、石炭ガス化工程で発生する石炭ガス化排水、アセチレン精製工程で発生する洗浄排水等が挙げられる。本実施形態では、これらの排水を海水で希釈化したものを被処理水とすることも可能である。 The shunt mechanism 40 distributes and introduces the water to be treated into the activated sludge tank 10 and the fluidized bed carrier tank 20. The water to be treated in this embodiment is not particularly limited as long as it contains a COD component. The COD component is, for example, phenols. Examples of the water to be treated containing a COD component include coke oven effluent (cheap water) generated in the coke manufacturing process, coal gasified effluent generated in the coal gasification process, and washing effluent generated in the acetylene refining process. In the present embodiment, it is also possible to use the wastewater diluted with seawater as the water to be treated.

分流機構40は、被処理水の供給源と流動床担体槽20とを連結する主配管40aと、主配管40aから分岐して活性汚泥槽10に連結する分岐管40bとを有する。主配管40aは被処理水を流動床担体槽20に導入し、分岐管40bは被処理水を活性汚泥槽10に導入する。ここで、主配管40aにはバルブ41aが設けられ、分岐管40bにはバルブ41bが設けられる。これらのバルブ41a、41bの開度を調整することによって活性汚泥槽10及び流動床担体槽20に導入される被処理水の流量が調整される。流動床担体槽20の処理速度(処理能力)は一般的には活性汚泥槽10の処理速度よりも高い。このため、排水処理装置1の運転中には、活性汚泥槽10よりも流動床担体槽20に多くの被処理水を導入することが好ましい。なお、分流機構40は必ずしも上記構成に限られず、被処理水を活性汚泥槽10及び流動床担体槽20に分配して導入できる機構であればどのようなものであってもよい。また、活性汚泥槽10及び流動床担体槽20に導入する機構は必ずしも分流機構40に限定されない。例えば、活性汚泥槽10に被処理水を導入する配管系と流動床担体槽20に被処理水を導入する配管系とは互いに独立していてもよい。 The shunt mechanism 40 has a main pipe 40a that connects the supply source of the water to be treated and the fluidized bed carrier tank 20, and a branch pipe 40b that branches from the main pipe 40a and connects to the activated sludge tank 10. The main pipe 40a introduces the water to be treated into the fluidized bed carrier tank 20, and the branch pipe 40b introduces the water to be treated into the activated sludge tank 10. Here, the main pipe 40a is provided with a valve 41a, and the branch pipe 40b is provided with a valve 41b. By adjusting the opening degrees of these valves 41a and 41b, the flow rate of the water to be treated introduced into the activated sludge tank 10 and the fluidized bed carrier tank 20 is adjusted. The treatment speed (treatment capacity) of the fluidized bed carrier tank 20 is generally higher than the treatment speed of the activated sludge tank 10. Therefore, it is preferable to introduce more water to be treated into the fluidized bed carrier tank 20 than the activated sludge tank 10 during the operation of the wastewater treatment device 1. The flow dividing mechanism 40 is not necessarily limited to the above configuration, and may be any mechanism as long as the water to be treated can be distributed and introduced into the activated sludge tank 10 and the fluidized bed carrier tank 20. Further, the mechanism introduced into the activated sludge tank 10 and the fluidized bed carrier tank 20 is not necessarily limited to the shunt mechanism 40. For example, the piping system for introducing the water to be treated into the activated sludge tank 10 and the piping system for introducing the water to be treated into the fluidized bed carrier tank 20 may be independent of each other.

活性汚泥槽10は、活性汚泥により被処理水中のCOD成分を分解する槽である。活性汚泥槽10の具体的な構成は特に制限されず、従来の活性汚泥槽と同様の構成であればよい。概略的には、活性汚泥槽10内には、COD成分を分解する活性汚泥が馴養されている。そして、活性汚泥槽10内に被処理水が導入された後、被処理水が曝気される。これにより、被処理水中に分散した活性汚泥がCOD成分を分解しつつ増殖する。活性汚泥槽10により処理された被処理水、すなわち処理水は後述する合流管50aを通って沈殿槽30に導入される。処理水中には活性汚泥が分散しており、沈殿槽30において処理水中の活性汚泥が沈殿する。これにより、活性汚泥を回収する。以下、活性汚泥槽10から排出された処理水を「活性汚泥処理水」とも称する。 The activated sludge tank 10 is a tank that decomposes the COD component in the water to be treated by the activated sludge. The specific configuration of the activated sludge tank 10 is not particularly limited, and may be any configuration similar to that of the conventional activated sludge tank. Generally, activated sludge that decomposes COD components is acclimatized in the activated sludge tank 10. Then, after the water to be treated is introduced into the activated sludge tank 10, the water to be treated is aerated. As a result, the activated sludge dispersed in the water to be treated proliferates while decomposing the COD component. The water to be treated, that is, the treated water treated by the activated sludge tank 10 is introduced into the settling tank 30 through a confluence pipe 50a described later. Activated sludge is dispersed in the treated water, and the activated sludge in the treated water precipitates in the settling tank 30. As a result, activated sludge is collected. Hereinafter, the treated water discharged from the activated sludge tank 10 is also referred to as "activated sludge treated water".

活性汚泥を活性汚泥槽10内に導入する方法は特に問われない。例えば、すでに本実施形態と同様の被処理水を処理している他の活性汚泥槽から活性汚泥を採取し、これを種として活性汚泥槽10に投入してもよい。その後、活性汚泥槽10に被処理水を導入し、さらに被処理水を曝気することで、種となった活性汚泥がCOD成分を分解しつつ増殖する。これにより、活性汚泥槽10に活性汚泥が導入される。本実施形態と異なる被処理水を処理している他の活性汚泥槽から活性汚泥を採取し、これを種として活性汚泥槽10に投入してもよい。ただし、被処理水が異なると、活性汚泥は異なる微生物種で構成されているため、活性汚泥槽10が十分な処理能力を有するようになるまでに時間がかかる可能性がある。他の方法として、被処理水が海水を含む場合、活性汚泥槽10に被処理水を導入し、被処理水を曝気する方法が挙げられる。被処理水には海水が混合されているので、被処理水には海水中で生息していた微生物が含まれる。このような微生物が曝気によってCOD成分を酸化分解し、増殖する。これにより、活性汚泥槽10に活性汚泥が導入される。ただし、この方法では活性汚泥槽10が十分な処理能力を有するようになるまでに時間がかかる。したがって、本実施形態と同様の被処理水を処理している他の活性汚泥槽から採取した活性汚泥を種として活性汚泥槽10に投入する方法が好ましい。 The method of introducing the activated sludge into the activated sludge tank 10 is not particularly limited. For example, activated sludge may be collected from another activated sludge tank that has already been treated with the same water to be treated as in the present embodiment, and the activated sludge may be charged into the activated sludge tank 10 as a seed. Then, by introducing the water to be treated into the activated sludge tank 10 and further aerating the water to be treated, the activated sludge as a seed proliferates while decomposing the COD component. As a result, the activated sludge is introduced into the activated sludge tank 10. Activated sludge may be collected from another activated sludge tank treated with water to be treated different from the present embodiment, and the activated sludge may be charged into the activated sludge tank 10 as a seed. However, if the water to be treated is different, since the activated sludge is composed of different microbial species, it may take time for the activated sludge tank 10 to have sufficient treatment capacity. As another method, when the water to be treated contains seawater, a method of introducing the water to be treated into the activated sludge tank 10 and aerating the water to be treated can be mentioned. Since seawater is mixed in the treated water, the treated water contains microorganisms that lived in the seawater. Such microorganisms oxidatively decompose and proliferate COD components by aeration. As a result, the activated sludge is introduced into the activated sludge tank 10. However, in this method, it takes time for the activated sludge tank 10 to have sufficient treatment capacity. Therefore, it is preferable to use the activated sludge collected from another activated sludge tank that is treating the water to be treated as in the present embodiment as a seed and put it into the activated sludge tank 10.

流動床担体槽20は、担体に担持された活性汚泥により被処理水中のCOD成分を分解する槽である。流動床担体槽20の具体的な構成は特に制限されず、従来の流動床担体槽20と同様の構成であればよい。例えば、特許文献1~3に開示された流動床担体槽の他、特開2016-112556号公報に開示された流動床担体槽を本実施形態に適用してもよい。概略的には、流動床担体槽20内には、活性汚泥を担持する多数の担体が投入されている。そして、流動床担体槽20内に被処理水が導入された後、被処理水が曝気される。これにより、被処理水中に分散した担体が流動する。さらに、担体に担持された活性汚泥がCOD成分を分解しつつ増殖する。さらに、本実施形態では、後述するように、沈殿槽30で回収された活性汚泥が流動床担体槽20に返送される。このような活性汚泥は、流動床担体槽20内に分散し、担体に担持された活性汚泥とともにCOD成分を分解する。流動床担体槽20により処理された被処理水、すなわち処理水は後述する合流管50bを通って沈殿槽30に導入される。以下、流動床担体槽20から排出された処理水を「流動床処理水」とも称する。 The fluidized bed carrier tank 20 is a tank that decomposes the COD component in the water to be treated by the activated sludge carried on the carrier. The specific configuration of the fluidized bed carrier tank 20 is not particularly limited, and may be any configuration similar to that of the conventional fluidized bed carrier tank 20. For example, in addition to the fluidized bed carrier tank disclosed in Patent Documents 1 to 3, the fluidized bed carrier tank disclosed in Japanese Patent Application Laid-Open No. 2016-11256 may be applied to the present embodiment. Generally, a large number of carriers carrying activated sludge are charged in the fluidized bed carrier tank 20. Then, after the water to be treated is introduced into the fluidized bed carrier tank 20, the water to be treated is aerated. As a result, the carrier dispersed in the water to be treated flows. Further, the activated sludge carried on the carrier proliferates while decomposing the COD component. Further, in the present embodiment, as will be described later, the activated sludge collected in the settling tank 30 is returned to the fluidized bed carrier tank 20. Such activated sludge is dispersed in the fluidized bed carrier tank 20 and decomposes the COD component together with the activated sludge carried on the carrier. The water to be treated, that is, the treated water treated by the fluidized bed carrier tank 20, is introduced into the settling tank 30 through the confluence pipe 50b described later. Hereinafter, the treated water discharged from the fluidized bed carrier tank 20 is also referred to as “fluidized bed treated water”.

流動床処理水中には活性汚泥が分散している。流動床処理水中に分散している活性汚泥としては、担体から剥がれた活性汚泥、付着性の無い活性汚泥の他、沈殿槽30から返送された活性汚泥も含まれる。したがって、流動床担体槽20に活性汚泥を返送しない場合に比べ、流動床処理水中に多くの浮遊物質が含まれることになる。つまり、流動床処理水のMLSSの値が大きくなる。しかしながら、後述する実施例で説明するように、流動床担体槽20に活性汚泥を返送することによって、流動床処理水中の活性汚泥が沈殿しやすくなる。なお、単に沈殿槽30に活性汚泥処理水及び流動床処理水を導入するだけではこのような効果が得られない。したがって、活性汚泥を沈殿しやすくするためには、流動床担体槽20に活性汚泥を返送することが重要である。本発明者は、この理由を以下のように考えている。沈殿槽30で沈殿する活性汚泥、すなわち流動床担体槽20に返送される活性汚泥には、活性汚泥槽10で馴養された活性汚泥が含まれる。このような活性汚泥は沈殿しやすい。したがって、沈殿性の良好な活性汚泥が流動床担体槽20内で沈殿性の悪い活性汚泥(すなわち、担体から引き剥がされ、流動床処理水とともに排出される活性汚泥または付着性がなく分散性の高い活性汚泥)を巻き込むことで、活性汚泥全体として沈殿性が向上したと考えられる。 Activated sludge is dispersed in the fluidized bed treated water. The activated sludge dispersed in the fluidized bed-treated water includes activated sludge peeled off from the carrier, activated sludge having no adhesiveness, and activated sludge returned from the settling tank 30. Therefore, more suspended solids are contained in the fluidized bed treated water than in the case where the activated sludge is not returned to the fluidized bed carrier tank 20. That is, the value of MLSS of the fluidized bed treated water becomes large. However, as described in Examples described later, by returning the activated sludge to the fluidized bed carrier tank 20, the activated sludge in the fluidized bed treated water is likely to settle. It should be noted that such an effect cannot be obtained simply by introducing the activated sludge treated water and the fluidized bed treated water into the settling tank 30. Therefore, in order to facilitate the precipitation of activated sludge, it is important to return the activated sludge to the fluidized bed carrier tank 20. The present inventor considers this reason as follows. The activated sludge that settles in the settling tank 30, that is, the activated sludge that is returned to the fluidized bed carrier tank 20, contains the activated sludge that has been acclimatized in the active sludge tank 10. Such activated sludge tends to settle. Therefore, the activated sludge having good sedimentation property is the activated sludge having poor sedimentation property in the fluidized bed carrier tank 20 (that is, the activated sludge that is peeled off from the carrier and discharged together with the fluidized bed treated water or is non-adhesive and dispersible. It is considered that the sedimentation property of the activated sludge as a whole was improved by involving the activated sludge).

流動床担体槽20に使用される担体は特に制限されず、従来の流動床担体法で使用される担体を使用することができる。例えば、産業排水処理施設、食品排水処理施設、工業用水処理施設、ゴミ処分場排水処理施設、コミュニティープラント、または浄化槽等でこれまで使用されてきた従来公知の担体を用いることができる。より具体的には、多様な形状(例えば多孔質立方体状、骨格様球状、小円筒状、チューブ状等)の担体が各種メーカから販売されており、これらを特に制限なく使用することができる。担体は、比表面積が大きく、微生物が入り込める大きさ(通常、微生物は直径1μm程度)の多孔性を有するものが好ましい。 The carrier used in the fluidized bed carrier tank 20 is not particularly limited, and the carrier used in the conventional fluidized bed carrier method can be used. For example, conventionally known carriers that have been used so far in industrial wastewater treatment facilities, food wastewater treatment facilities, industrial water treatment facilities, waste disposal site wastewater treatment facilities, community plants, septic tanks, and the like can be used. More specifically, carriers having various shapes (for example, porous cube, skeleton-like sphere, small cylinder, tube, etc.) are sold by various manufacturers, and these can be used without particular limitation. The carrier preferably has a large specific surface area and a porosity of a size that allows microorganisms to enter (usually, the diameter of the carrier is about 1 μm).

担体に活性汚泥を担持させる方法は特に問われない。例えば、活性汚泥槽10で馴養された活性汚泥または他の活性汚泥槽(この活性汚泥槽は本実施形態と同様の被処理水を処理しているものであることが好ましい)から採取した活性汚泥を種として流動床担体槽20に投入してもよい。その後、流動床担体槽20に被処理水を導入し、さらに被処理水を曝気することで、種となった活性汚泥がCOD成分を分解しつつ担体に担持される。これにより、担体に活性汚泥が担持される。他の方法として、流動床担体槽20に被処理水を導入し、被処理水を曝気する方法が挙げられる。被処理水には海水が混合されているので、被処理水には海水中で生息していた微生物が含まれる。このような微生物が曝気によってCOD成分を分解し、増殖する。そして、増殖した微生物が活性汚泥として担体に担持される。ただし、この方法では流動床担体槽20が十分な処理能力を有するようになるまでに時間がかかる。したがって、種となる活性汚泥を流動床担体槽20に投入する方法が好ましい。後述する実施例では、活性汚泥槽10で馴養された活性汚泥を種として流動床担体槽20に投入することで、担体に活性汚泥を担持させている。 The method of supporting the activated sludge on the carrier is not particularly limited. For example, activated sludge collected in the activated sludge tank 10 or another activated sludge tank (preferably, this activated sludge tank is treated with the same water to be treated as in the present embodiment). May be charged into the sludge carrier tank 20 as a seed. After that, the water to be treated is introduced into the fluidized bed carrier tank 20, and the water to be treated is further aerated, so that the activated sludge as a seed is supported on the carrier while decomposing the COD component. As a result, activated sludge is supported on the carrier. As another method, a method of introducing water to be treated into the fluidized bed carrier tank 20 and aerating the water to be treated can be mentioned. Since seawater is mixed in the treated water, the treated water contains microorganisms that lived in the seawater. Such microorganisms decompose the COD component by aeration and proliferate. Then, the grown microorganisms are supported on the carrier as activated sludge. However, in this method, it takes time for the fluidized bed carrier tank 20 to have sufficient processing capacity. Therefore, a method of charging the activated sludge as a seed into the fluidized bed carrier tank 20 is preferable. In the examples described later, the activated sludge acclimated in the activated sludge tank 10 is charged into the fluidized bed carrier tank 20 as a seed to support the activated sludge on the carrier.

なお、担体に活性汚泥がある程度の厚さで担持された場合、担体の近傍に存在する活性汚泥は他の活性汚泥で覆われることになる。したがって、担体の近傍に存在する活性汚泥には空気が届きにくい。つまり、嫌気性の環境となる。このような環境下では、嫌気性の活性汚泥が増殖することが期待できる。したがって、流動床担体槽20内には、好気性の活性汚泥の他、嫌気性の活性汚泥も馴養されていると考えられるので、流動床担体槽20はより多様なCOD成分を分解することが期待できる。 When the activated sludge is supported on the carrier to a certain thickness, the activated sludge existing in the vicinity of the carrier is covered with other activated sludge. Therefore, it is difficult for air to reach the activated sludge existing in the vicinity of the carrier. In other words, it becomes an anaerobic environment. Under such an environment, anaerobic activated sludge can be expected to grow. Therefore, it is considered that not only aerobic activated sludge but also anaerobic activated sludge is acclimatized in the fluidized bed carrier tank 20, so that the fluidized bed carrier tank 20 can decompose more various COD components. You can expect it.

合流機構50は、合流管50a、50bを備える。上述したように、合流管50aは活性汚泥処理水を沈殿槽30に導入し、合流管50bは流動床処理水を沈殿槽30に導入する。これらの処理水は、沈殿槽30で合流する。ただし、流動床処理水には沈殿槽30で沈殿した活性汚泥(このような活性汚泥には、活性汚泥槽10で馴養された活性汚泥、すなわち沈殿しやすい活性汚泥が含まれる)が含まれている。 The merging mechanism 50 includes merging pipes 50a and 50b. As described above, the combined pipe 50a introduces the activated sludge treated water into the settling tank 30, and the combined pipe 50b introduces the fluidized bed treated water into the settling tank 30. These treated waters merge in the settling tank 30. However, the liquid bed treated water contains activated sludge that has settled in the settling tank 30 (such activated sludge includes activated sludge that has been acclimatized in the active sludge tank 10, that is, activated sludge that tends to settle). There is.

沈殿槽30には、活性汚泥処理水及び流動床処理水が混合された処理水(以下、「混合処理水」とも称する)が貯留される。沈殿槽30は、混合処理水中の活性汚泥を沈殿させる。混合処理水中の活性汚泥には、活性汚泥処理水中に分散していた活性汚泥と、流動床担体処理水中に分散していた活性汚泥とが含まれる。前者の活性汚泥は沈殿しやすい。後者の活性汚泥は、沈殿槽30で沈殿した活性汚泥を流動床担体槽20に返送することによって沈殿しやすくなっている。したがって、沈殿槽30内で活性汚泥が全体として沈殿しやすくなっている。すなわち、沈殿槽30内で活性汚泥の沈殿を促すことができる。沈殿した活性汚泥は汚泥返送機構60を介して少なくとも流動床担体槽20に返送される。 The settling tank 30 stores treated water (hereinafter, also referred to as “mixed treated water”) in which activated sludge treated water and fluidized bed treated water are mixed. The settling tank 30 precipitates activated sludge in the mixed treatment water. The activated sludge in the mixed-treated water includes activated sludge dispersed in the activated sludge-treated water and activated sludge dispersed in the fluidized bed carrier-treated water. The former activated sludge tends to settle. The latter activated sludge is easily settled by returning the activated sludge settled in the settling tank 30 to the fluidized bed carrier tank 20. Therefore, activated sludge is likely to settle in the settling tank 30 as a whole. That is, it is possible to promote the precipitation of activated sludge in the settling tank 30. The precipitated activated sludge is returned to at least the fluidized bed carrier tank 20 via the sludge return mechanism 60.

汚泥返送機構60は、沈殿槽30で沈殿した活性汚泥を活性汚泥槽10及び流動床担体槽20に返送する。具体的には、汚泥返送機構60は、沈殿槽30の下端部と活性汚泥槽10とを連結する主配管60aと、主配管60aから分岐して流動床担体槽20に連結する分岐管60bとを有する。主配管60aは、活性汚泥(実質的には活性汚泥が分散した混合処理水)を活性汚泥槽10に返送する。分岐管60bは、活性汚泥(実質的には活性汚泥が分散した混合処理水)を流動床担体槽20に返送する。ここで、主配管60aにはバルブ61aが設けられ、分岐管60bにはバルブ61bが設けられる。これらのバルブ61a、61bの開度を調整することによって活性汚泥槽10及び流動床担体槽20に返送される活性汚泥量(実質的には活性汚泥が分散した混合処理水の流量)が調整される。なお、汚泥返送機構60は、活性汚泥槽10内の活性汚泥量が十分であれば必ずしも活性汚泥を活性汚泥槽10に返送しなくてもよい。すなわち、汚泥返送機構60は少なくとも流動床担体槽20に活性汚泥を返送すればよい。また、返送できずに過剰となった活性汚泥に対しては焼却等の処理を行ってもよい。 The sludge return mechanism 60 returns the activated sludge settled in the settling tank 30 to the activated sludge tank 10 and the fluidized bed carrier tank 20. Specifically, the sludge return mechanism 60 includes a main pipe 60a that connects the lower end of the settling tank 30 and the activated sludge tank 10, and a branch pipe 60b that branches from the main pipe 60a and connects to the fluidized bed carrier tank 20. Has. The main pipe 60a returns the activated sludge (substantially mixed treated water in which the activated sludge is dispersed) to the activated sludge tank 10. The branch pipe 60b returns the activated sludge (substantially mixed treated water in which the activated sludge is dispersed) to the fluidized bed carrier tank 20. Here, the main pipe 60a is provided with a valve 61a, and the branch pipe 60b is provided with a valve 61b. By adjusting the opening degrees of these valves 61a and 61b, the amount of activated sludge returned to the activated sludge tank 10 and the fluidized bed carrier tank 20 (substantially the flow rate of the mixed treated water in which the activated sludge is dispersed) is adjusted. To. The sludge returning mechanism 60 does not necessarily have to return the activated sludge to the activated sludge tank 10 if the amount of activated sludge in the activated sludge tank 10 is sufficient. That is, the sludge returning mechanism 60 may return the activated sludge to at least the fluidized bed carrier tank 20. In addition, activated sludge that cannot be returned and becomes excessive may be treated by incineration or the like.

沈殿槽30の上澄み液は、凝集沈殿槽70に導入される。凝集沈殿槽70に導入された処理水には、わずかに活性汚泥が分散している。このような活性汚泥は、処理水の品質を低下させる可能性がある。そこで、凝集沈殿槽70では、このような活性汚泥を凝集剤により沈殿させる。凝集剤の投入量は特に制限されず、排水処理装置1から排出される処理水に求められる品質に応じて適宜調整されればよい。本実施形態によれば、活性汚泥を流動床担体槽20に返送することで、沈殿槽30内で活性汚泥の沈殿を促すことができる。したがって、凝集沈殿槽70に導入された処理水に含まれる活性汚泥は少ない。このため、凝集剤の投入量を少なくすることができる。凝集剤の種類は特に制限されず、例えば鉄系無機凝集剤、有機高分子凝集剤等であってもよい。凝集沈殿槽70の上澄み液が最終的な処理水として排水処理装置1の外部に排出される。 The supernatant liquid of the settling tank 30 is introduced into the coagulation settling tank 70. Activated sludge is slightly dispersed in the treated water introduced into the coagulation sedimentation tank 70. Such activated sludge can reduce the quality of treated water. Therefore, in the coagulation settling tank 70, such activated sludge is settled with a coagulant. The amount of the flocculant input is not particularly limited, and may be appropriately adjusted according to the quality required for the treated water discharged from the wastewater treatment device 1. According to the present embodiment, by returning the activated sludge to the fluidized bed carrier tank 20, it is possible to promote the precipitation of the activated sludge in the settling tank 30. Therefore, the amount of activated sludge contained in the treated water introduced into the coagulation sedimentation tank 70 is small. Therefore, the amount of the flocculant input can be reduced. The type of the flocculant is not particularly limited, and may be, for example, an iron-based inorganic flocculant, an organic polymer flocculant, or the like. The supernatant liquid of the coagulation sedimentation tank 70 is discharged to the outside of the wastewater treatment apparatus 1 as the final treatment water.

上述したように、本実施形態では、活性汚泥を流動床担体槽20に返送することで、流動床処理水中の活性汚泥が沈殿しやすくなっている。したがって、沈殿槽30内で活性汚泥の沈殿を促すことができる。さらに、活性汚泥を流動床担体槽20に返送することによって、流動床担体槽20に生じた発泡を消失させることができる。例えば非特許文献「Colic, M., Morse, W., Lechter, A., Hicks, J., Holley, S., & Mattia, C. (2008). Enabling the performance of the MBBR installed to treat meat processing wastewater. Proceedings of the Water Environment Federation, 2008(13), 3358-3374」に開示されるように、流動床担体槽20にも発泡が生じることが知られている。発泡が生じる原因は定かではないが、本発明者は、担体同士が擦れ合うことによって発泡が生じると推察している。このような発泡は排水処理装置1から最終的に排出される処理水の品質を低下させる可能性がある。すなわち、発泡そのものが処理水の品質を低下させる可能性がある。さらに、凝集沈殿槽70においては、凝集剤を発泡の上から投入することになるので、凝集剤が処理水に浸透しにくくなる可能性もある。したがって、凝集沈殿槽70での沈殿効率が低下する可能性がある。したがって、発泡はできる限り抑制されることが好ましい。後述する実施例で示される通り、活性汚泥を流動床担体槽20に返送することによって、流動床担体槽20に生じた発泡を消失させることができる。返送された活性汚泥によって、担体同士の擦れ合いが抑制されたと推察される。 As described above, in the present embodiment, by returning the activated sludge to the fluidized bed carrier tank 20, the activated sludge in the fluidized bed treated water is likely to settle. Therefore, it is possible to promote the precipitation of activated sludge in the settling tank 30. Further, by returning the activated sludge to the fluidized bed carrier tank 20, the foaming generated in the fluidized bed carrier tank 20 can be eliminated. For example, the non-patent literature "Colic, M., Morse, W., Lechter, A., Hicks, J., Holley, S., & Mattia, C. (2008). As disclosed in "wastewater. Patenting's of the Water Environment Federation, 2008 (13), 3358-3374", it is known that foaming also occurs in the fluidized bed carrier tank 20. Although the cause of foaming is not clear, the present inventor speculates that foaming occurs when the carriers rub against each other. Such foaming may reduce the quality of the treated water finally discharged from the wastewater treatment device 1. That is, the foaming itself may deteriorate the quality of the treated water. Further, in the coagulation sedimentation tank 70, since the coagulant is charged from above the foaming, it may be difficult for the coagulant to permeate into the treated water. Therefore, the sedimentation efficiency in the coagulation sedimentation tank 70 may decrease. Therefore, it is preferable that foaming is suppressed as much as possible. As shown in Examples described later, by returning the activated sludge to the fluidized bed carrier tank 20, the foaming generated in the fluidized bed carrier tank 20 can be eliminated. It is presumed that the returned activated sludge suppressed the rubbing between the carriers.

ここで、沈殿槽30内で活性汚泥の沈殿を促すための構成についてより詳細に説明する。すなわち、合流管50bには、計測装置51が設けられている。この計測装置51は、流動床処理水中の浮遊物質の濃度を測定する。ここで、浮遊物質には活性汚泥が含まれる。より具体的には、計測装置51は、流動床処理水のMLSS(mg/L)を測定する。計測装置51は、例えば市販のMLSS計であればよい。MLSSは、JIS K 0102に準拠した方法により測定される。計測装置51により測定されたMLSSは制御装置100に入力される。 Here, a configuration for promoting the precipitation of activated sludge in the settling tank 30 will be described in more detail. That is, the confluence pipe 50b is provided with a measuring device 51. The measuring device 51 measures the concentration of suspended solids in the fluidized bed treated water. Here, the suspended solids include activated sludge. More specifically, the measuring device 51 measures the MLSS (mg / L) of the fluidized bed treated water. The measuring device 51 may be, for example, a commercially available MLSS meter. MLSS is measured by a method according to JIS K 0102. The MLSS measured by the measuring device 51 is input to the control device 100.

制御装置100は、例えばCPU、ROM、RAM、通信装置(計測装置51からの情報を受信可能な装置)、バルブ61、62の駆動装置等のハードウェア構成を有する。ROMには、以下の処理を行うために必要なプログラム等が記録されており、CPUは当該プログラムを読み出して実行する。これにより、制御装置100は以下の処理を行う。 The control device 100 has a hardware configuration such as a CPU, a ROM, a RAM, a communication device (a device capable of receiving information from the measuring device 51), and a drive device for valves 61 and 62. A program or the like necessary for performing the following processing is recorded in the ROM, and the CPU reads and executes the program. As a result, the control device 100 performs the following processing.

すなわち、制御装置100は、計測装置51による計測値、すなわち流動床処理水のMLSSに基づいて、流動床担体槽20に返送する活性汚泥の量を制御する。より具体的には、制御装置100は、流動床処理水のMLSSが所定値となるように流動床担体槽20に返送する活性汚泥の量を制御する。ここで、所定値は、流動床処理水中のSV30が100%未満となる際の流動床処理水のMLSSである。SV30(%)は、沈殿性、すなわち沈殿がどの程度生じるのかを示す指標であり、沈殿量が多いほど値が小さくなる。したがって、流動床処理水を30分静置した後に沈殿が全く生じない場合にはSV30が100%となり、沈殿量が少しでも生じるとSV30は100%未満となる。そして、沈殿量が多いほどSV30が小さくなる。SV30とは、JIS B 9944の5.6で測定される値である。 That is, the control device 100 controls the amount of activated sludge returned to the fluidized bed carrier tank 20 based on the value measured by the measuring device 51, that is, the MLSS of the fluidized bed treated water. More specifically, the control device 100 controls the amount of activated sludge returned to the fluidized bed carrier tank 20 so that the MLSS of the fluidized bed treated water becomes a predetermined value. Here, the predetermined value is the MLSS of the fluidized bed treated water when the SV30 of the fluidized bed treated water is less than 100%. SV30 (%) is a precipitate, that is, an index indicating how much precipitation occurs, and the value becomes smaller as the amount of precipitation increases. Therefore, if no precipitation occurs after the fluidized bed treated water is allowed to stand for 30 minutes, the SV30 becomes 100%, and if even a small amount of precipitation occurs, the SV30 becomes less than 100%. The larger the amount of precipitation, the smaller the SV30. SV30 is a value measured by 5.6 of JIS B 9944.

後述する実施例に示される通り、流動床処理水のMLSSが大きいほどSV30が小さくなる傾向がある。SV30が100%未満であれば沈殿が促されるので、所定値は、SV30が100%未満となる際のMLSSであればよい。そして、制御装置100は、流動床処理水のMLSSが所定値となるように、流動床担体槽20に返送する活性汚泥の量を制御する。具体的には制御装置100は、バルブ61、62の開度を調整する。ここで、所定値は1000mg/L以上であることが好ましい。MLSSが1000mg/L以上となる場合、SV30が非常に小さくなる(具体的には30%未満となる)ので、沈殿槽30内で活性汚泥の沈殿をより強く促すことができる。 As shown in Examples described later, the larger the MLSS of the fluidized bed treated water, the smaller the SV30 tends to be. If SV30 is less than 100%, precipitation is promoted, so the predetermined value may be MLSS when SV30 is less than 100%. Then, the control device 100 controls the amount of activated sludge returned to the fluidized bed carrier tank 20 so that the MLSS of the fluidized bed treated water becomes a predetermined value. Specifically, the control device 100 adjusts the opening degrees of the valves 61 and 62. Here, the predetermined value is preferably 1000 mg / L or more. When the MLSS is 1000 mg / L or more, the SV30 becomes very small (specifically, less than 30%), so that the precipitation of activated sludge can be more strongly promoted in the settling tank 30.

以上詳述したように、本実施形態によれば、沈殿槽30で沈殿した活性汚泥を流動床担体槽20に返送することで、沈殿槽30内で活性汚泥の沈殿を促し、かつ、流動床担体槽20における発泡を抑制することができる。さらに、沈殿槽30における活性汚泥の沈殿を促すことができるので、排水処理装置1の処理能力を容易に高めることができる。つまり、排水処理装置1の処理能力を高めるためには、流動床担体槽20に多くの被処理水を導入すればよい。しかし、単に流動床担体槽20に多くの被処理水を導入しただけでは、凝集沈殿槽70において多くの凝集剤が必要になる。流動床担体槽20に多くの被処理水を導入した場合、流動床処理水には、沈殿しにくい活性汚泥が多く含まれることになるからである。これらの活性汚泥は沈殿槽30で十分に沈殿しないので、多くの活性汚泥が凝集沈殿槽70に導入されることになる。したがって、多くの凝集剤が必要になる。一方、本実施形態によれば、沈殿槽30で沈殿した活性汚泥を流動床担体槽20に返送するので、沈殿槽30内で活性汚泥の沈殿を促すことができる。したがって、流動床担体槽20に多くの被処理水を導入した場合であっても、沈殿槽30で多くの活性汚泥を沈殿させることができる。すなわち、凝集沈殿槽70に導入される活性汚泥の量を減少させることができ、ひいては凝集剤の使用量を低減することができる。したがって、排水処理装置1の処理能力を容易に高めることができる。 As described in detail above, according to the present embodiment, the activated sludge settled in the settling tank 30 is returned to the fluidized bed carrier tank 20 to promote the settling of the activated sludge in the settling tank 30 and to promote the settling of the activated sludge in the fluidized bed 30. Foaming in the carrier tank 20 can be suppressed. Further, since the settling of activated sludge in the settling tank 30 can be promoted, the treatment capacity of the wastewater treatment device 1 can be easily increased. That is, in order to increase the treatment capacity of the wastewater treatment device 1, a large amount of water to be treated may be introduced into the fluidized bed carrier tank 20. However, simply introducing a large amount of water to be treated into the fluidized bed carrier tank 20 requires a large amount of coagulant in the coagulation sedimentation tank 70. This is because when a large amount of water to be treated is introduced into the fluidized bed carrier tank 20, the fluidized bed treated water contains a large amount of activated sludge that is difficult to settle. Since these activated sludges do not sufficiently settle in the settling tank 30, a large amount of activated sludge will be introduced into the coagulation and settling tank 70. Therefore, many flocculants are needed. On the other hand, according to the present embodiment, since the activated sludge settled in the settling tank 30 is returned to the fluidized bed carrier tank 20, it is possible to promote the settling of the activated sludge in the settling tank 30. Therefore, even when a large amount of water to be treated is introduced into the fluidized bed carrier tank 20, a large amount of activated sludge can be settled in the settling tank 30. That is, the amount of activated sludge introduced into the coagulation sedimentation tank 70 can be reduced, and the amount of the coagulant used can be reduced. Therefore, the treatment capacity of the wastewater treatment device 1 can be easily increased.

なお、図1に示すように、本実施形態では、活性汚泥槽10及び流動床担体槽20が並列に配置されており、かつ、沈殿槽30で沈殿した活性汚泥が流動床担体槽20に返送される。これにより、上述した効果が得られる。特許文献1には、流動床担体槽の後段に活性汚泥槽を配置し、さらにその後段に沈殿槽を配置した技術が開示されている。沈殿槽で沈殿した活性汚泥は活性汚泥槽に返送される。特許文献2にも同様の技術が開示されている。しかし、この技術では本実施形態の効果が得られない。まず、活性汚泥を流動床担体槽に返送しないため、沈殿槽において活性汚泥が沈殿しにくい。さらに、流動床担体槽の発泡も抑制することができない。この結果、大量の発泡が活性汚泥槽に流入することになる。さらに、活性汚泥槽に導入される被処理水は、流動床担体槽ですでに処理されているため、その成分がばらつく可能性がある。このように、活性汚泥槽に導入される被処理水には大量の発泡が含まれており、かつその組成がばらついている。したがって、活性汚泥槽の制御が困難になる可能性もある。特許文献3では排水処理装置の立ち上げ時に活性汚泥を流動床担体槽に返送しているが、この技術はあくまで排水処理装置の立ち上げ時に関するものである。さらに、流動床担体槽に返送される活性汚泥は流動床担体槽で生じたものであり、そもそも活性汚泥の量が非常に少ない。したがって、特許文献3でも本実施形態の効果は得られない。 As shown in FIG. 1, in the present embodiment, the activated sludge tank 10 and the fluidized bed carrier tank 20 are arranged in parallel, and the activated sludge settled in the settling tank 30 is returned to the fluidized bed carrier tank 20. Will be done. As a result, the above-mentioned effect can be obtained. Patent Document 1 discloses a technique in which an activated sludge tank is arranged in the subsequent stage of a fluidized bed carrier tank, and a settling tank is further arranged in the subsequent stage. The activated sludge settled in the settling tank is returned to the activated sludge tank. Patent Document 2 also discloses a similar technique. However, the effect of this embodiment cannot be obtained by this technique. First, since the activated sludge is not returned to the fluidized bed carrier tank, the activated sludge is unlikely to settle in the settling tank. Furthermore, foaming of the fluidized bed carrier tank cannot be suppressed. As a result, a large amount of foam flows into the activated sludge tank. Further, since the water to be treated introduced into the activated sludge tank has already been treated in the fluidized bed carrier tank, its components may vary. As described above, the water to be treated introduced into the activated sludge tank contains a large amount of foaming and its composition varies. Therefore, it may be difficult to control the activated sludge tank. In Patent Document 3, activated sludge is returned to the fluidized bed carrier tank when the wastewater treatment device is started up, but this technique is only related to the start-up time of the wastewater treatment device. Further, the activated sludge returned to the fluidized bed carrier tank is generated in the fluidized bed carrier tank, and the amount of activated sludge is very small in the first place. Therefore, even in Patent Document 3, the effect of this embodiment cannot be obtained.

<2.排水処理装置を用いた排水処理方法>
(2-1.準備段階)
つぎに、排水処理装置1を用いた排水処理方法について説明する。準備段階では、まず活性汚泥槽10内で活性汚泥を十分に(具体的には、活性汚泥槽10のみで所望の品質の処理水が得られる程度に)馴養する。馴養の方法は上述した通りである。
<2. Wastewater treatment method using wastewater treatment equipment>
(2-1. Preparation stage)
Next, a wastewater treatment method using the wastewater treatment device 1 will be described. In the preparatory stage, first, the activated sludge is sufficiently acclimatized in the activated sludge tank 10 (specifically, to the extent that the treated water of a desired quality can be obtained only in the activated sludge tank 10). The method of acclimatization is as described above.

ついで、排水処理装置1の運転を開始する。具体的には、まず、分流機構40を用いて活性汚泥槽10及び流動床担体槽20のそれぞれに被処理水を導入する。ここで、流動床担体槽20には予め所望量の担体及び種となる活性汚泥を投入しておく。この活性汚泥の出所は特に制限されず、例えば活性汚泥槽10内で馴養されたものであってもよいし、他の活性汚泥槽(この活性汚泥槽は本実施形態と同様の被処理水を処理しているものであることが好ましい)から採取したものであってもよいし、沈殿槽30から返送されたものであってもよい。このような活性汚泥の事前投入は省略されてもよいが、流動床担体槽20を早期に運用可能とするためには、活性汚泥を事前に投入することが好ましい。この時点では担体に活性汚泥が担持されていないため、後述するように、沈殿槽30より返送させる汚泥量は活性汚泥槽10と同程度とすることが好ましい。また、流動床担体槽20よりも活性汚泥槽10に多くの被処理水を導入するようにしてもよい。バルブ41a、41bの調整は人為的に行ってもよいし、制御装置100を用いて自動で行ってもよい。 Then, the operation of the wastewater treatment device 1 is started. Specifically, first, the water to be treated is introduced into each of the activated sludge tank 10 and the fluidized bed carrier tank 20 by using the shunting mechanism 40. Here, a desired amount of carrier and activated sludge as a seed are charged into the fluidized bed carrier tank 20 in advance. The source of this activated sludge is not particularly limited, and may be, for example, one acclimatized in the activated sludge tank 10, or another activated sludge tank (this activated sludge tank uses the same water to be treated as in the present embodiment). It may be collected from (preferably processed) or returned from the settling tank 30. Although such pre-filling of activated sludge may be omitted, it is preferable to pre-fill the activated sludge in order to enable the fluidized bed carrier tank 20 to operate at an early stage. Since the activated sludge is not supported on the carrier at this point, it is preferable that the amount of sludge returned from the settling tank 30 is about the same as that of the activated sludge tank 10, as will be described later. Further, more water to be treated may be introduced into the activated sludge tank 10 than the fluidized bed carrier tank 20. The valves 41a and 41b may be adjusted artificially or automatically by using the control device 100.

ついで、活性汚泥槽10内で被処理水の処理を行う。具体的には、活性汚泥槽10内で被処理水を曝気する。これにより、被処理水中に分散した活性汚泥がCOD成分を分解しつつ増殖する。活性汚泥槽10により処理された被処理水、すなわち活性汚泥処理水は合流管50aを通って沈殿槽30に導入される。一方、流動床担体槽20内でも被処理水の処理を行う。具体的には、流動床担体槽20内で被処理水を曝気する。この時点では担体にほとんど活性汚泥は担持されていないが、流動床担体槽20に予め投入された活性汚泥、沈殿槽30で沈殿し、汚泥返送機構60を介して返送される活性汚泥、及び被処理水に含まれる微生物(すなわち活性汚泥)がCOD成分を分解するとともに、担体に付着する。流動床担体槽20により処理された被処理水、すなわち流動床処理水は合流管50bを通って沈殿槽30に導入される。 Then, the water to be treated is treated in the activated sludge tank 10. Specifically, the water to be treated is aerated in the activated sludge tank 10. As a result, the activated sludge dispersed in the water to be treated proliferates while decomposing the COD component. The water to be treated by the activated sludge tank 10, that is, the activated sludge treated water is introduced into the settling tank 30 through the confluence pipe 50a. On the other hand, the water to be treated is also treated in the fluidized bed carrier tank 20. Specifically, the water to be treated is aerated in the fluidized bed carrier tank 20. At this point, almost no activated sludge is carried on the carrier, but the activated sludge previously charged into the fluidized bed carrier tank 20, the activated sludge that is settled in the settling tank 30 and returned via the sludge returning mechanism 60, and the subject. Microorganisms (that is, activated sludge) contained in the treated water decompose the COD component and adhere to the carrier. The water to be treated by the fluidized bed carrier tank 20, that is, the fluidized bed treated water is introduced into the settling tank 30 through the confluence pipe 50b.

沈殿槽30には、活性汚泥処理水及び流動床処理水が混合された処理水、すなわち混合処理水が貯留される。沈殿槽30は、混合処理水中の活性汚泥を沈殿させる。沈殿した活性汚泥は汚泥返送機構60を介して活性汚泥槽10及び流動床担体槽20に返送される。ここで、バルブ61、62の開度を調整することで、活性汚泥槽10及び流動床担体槽20に返送される活性汚泥の量(実質的には活性汚泥が分散した混合処理水)が調整される。バルブ61、62の調整は人為的に行ってもよいし、制御装置100を用いて自動で行ってもよい。準備段階の初期段階では、担体に担持される活性汚泥の量が少ない。このため、流動床担体槽20に返送される活性汚泥の量を多めにする(一例として、活性汚泥槽10に返送する量と同程度とする)ことが好ましい。流動床担体槽20に返送された活性汚泥は、担体に担持される。 In the settling tank 30, treated water in which activated sludge treated water and fluidized bed treated water are mixed, that is, mixed treated water is stored. The settling tank 30 precipitates activated sludge in the mixed treatment water. The precipitated activated sludge is returned to the activated sludge tank 10 and the fluidized bed carrier tank 20 via the sludge return mechanism 60. Here, by adjusting the opening degrees of the valves 61 and 62, the amount of activated sludge returned to the activated sludge tank 10 and the fluidized bed carrier tank 20 (substantially the mixed treated water in which the activated sludge is dispersed) is adjusted. Will be done. The valves 61 and 62 may be adjusted artificially or automatically by using the control device 100. In the early stages of the preparatory stage, the amount of activated sludge carried on the carrier is small. Therefore, it is preferable to increase the amount of activated sludge returned to the fluidized bed carrier tank 20 (for example, the amount returned to the activated sludge tank 10 is about the same). The activated sludge returned to the fluidized bed carrier tank 20 is supported on the carrier.

一方、沈殿槽30の上澄み液は凝集沈殿槽70に導入される。凝集沈殿槽70では、処理水に凝集剤が投入される。これにより、処理水中に残留した活性汚泥が沈殿する。凝集沈殿槽70の上澄み液が最終的な処理水として排水処理装置1の外部に排出される。 On the other hand, the supernatant liquid of the settling tank 30 is introduced into the coagulation settling tank 70. In the coagulation sedimentation tank 70, the coagulant is added to the treated water. As a result, the activated sludge remaining in the treated water precipitates. The supernatant liquid of the coagulation sedimentation tank 70 is discharged to the outside of the wastewater treatment apparatus 1 as the final treatment water.

準備段階では、排水処理装置1の運転を継続して行う。これにより、流動床担体槽20の担体に担持される活性汚泥の量が徐々に増加していく。すなわち、流動床担体槽20内で活性汚泥が馴養される。ここで、流動床担体槽20の処理能力は活性汚泥槽10の処理能力よりも高い。そこで、流動床担体槽20の担体に担持される活性汚泥の量が増加するにしたがって、活性汚泥槽10に導入する被処理水を減らし、流動床担体槽20に導入する被処理水を増やすことが好ましい。さらに、流動床担体槽20に返送する活性汚泥の量も徐々に減らしていくことが好ましい。ここで、流動床処理水のMLSSが所定値以上となるように、流動床担体槽20に返送する活性汚泥の量が調整されることが特に好ましい。 In the preparation stage, the operation of the wastewater treatment device 1 is continuously performed. As a result, the amount of activated sludge carried on the carrier of the fluidized bed carrier tank 20 gradually increases. That is, the activated sludge is acclimatized in the fluidized bed carrier tank 20. Here, the processing capacity of the fluidized bed carrier tank 20 is higher than the processing capacity of the activated sludge tank 10. Therefore, as the amount of activated sludge carried on the carrier of the fluidized bed carrier tank 20 increases, the amount of water to be treated to be introduced into the activated sludge tank 10 is reduced, and the amount of water to be treated to be introduced into the fluidized bed carrier tank 20 is increased. Is preferable. Further, it is preferable to gradually reduce the amount of activated sludge returned to the fluidized bed carrier tank 20. Here, it is particularly preferable to adjust the amount of activated sludge returned to the fluidized bed carrier tank 20 so that the MLSS of the fluidized bed treated water becomes a predetermined value or more.

流動床担体槽20内で活性汚泥が十分に(具体的には、流動床担体槽20のみで所望の品質の処理水が得られる程度に)馴養された段階で、準備段階を終了する。 The preparation stage is completed when the activated sludge is sufficiently acclimatized in the fluidized bed carrier tank 20 (specifically, to the extent that the treated water of a desired quality can be obtained only in the fluidized bed carrier tank 20).

(2-2.定常運転)
準備段階が終了した後、排水処理装置1の定常運転を行う。まず、分流機構40を用いて活性汚泥槽10及び流動床担体槽20のそれぞれに被処理水を導入する。ここで、バルブ41a、41bの開度を調整することで活性汚泥槽10及び流動床担体槽20に導入する被処理水の流量を調整する。流動床担体槽20の処理能力は活性汚泥槽10の処理能力よりも高いので、活性汚泥槽10よりも流動床担体槽20に多くの被処理水を導入することが好ましい。例えば、活性汚泥槽10には、流動床担体槽20に返送する活性汚泥が馴養できる程度の被処理水を導入し、大部分の被処理水を流動床担体槽20に導入してもよい。つまり、活性汚泥槽10で馴養された活性汚泥を凝集剤と考えれば、本実施形態での活性汚泥槽10は凝集剤となる活性汚泥を生成する槽であると考えることもできる。本実施形態では、被処理水を活性汚泥槽10に導入するので、凝集剤となる活性汚泥を安定して生成することができる。
(2-2. Steady operation)
After the preparatory stage is completed, the wastewater treatment device 1 is operated in a steady state. First, the water to be treated is introduced into each of the activated sludge tank 10 and the fluidized bed carrier tank 20 by using the shunting mechanism 40. Here, the flow rate of the water to be treated to be introduced into the activated sludge tank 10 and the fluidized bed carrier tank 20 is adjusted by adjusting the opening degrees of the valves 41a and 41b. Since the treatment capacity of the fluidized bed carrier tank 20 is higher than the treatment capacity of the activated sludge tank 10, it is preferable to introduce more water to be treated into the fluidized bed carrier tank 20 than the activated sludge tank 10. For example, the activated sludge tank 10 may be introduced with water to be treated to the extent that the activated sludge returned to the fluidized bed carrier tank 20 can be acclimatized, and most of the water to be treated may be introduced into the fluidized bed carrier tank 20. That is, if the activated sludge acclimatized in the activated sludge tank 10 is considered as a coagulant, the activated sludge tank 10 in the present embodiment can be considered as a tank that produces activated sludge as a coagulant. In the present embodiment, since the water to be treated is introduced into the activated sludge tank 10, activated sludge serving as a flocculant can be stably produced.

ついで、活性汚泥槽10内で被処理水を処理する。具体的には、活性汚泥槽10内で被処理水を曝気する。これにより、被処理水中に分散した活性汚泥がCOD成分を分解しつつ増殖する。活性汚泥槽10により処理された被処理水、すなわち活性汚泥処理水は合流管50aを通って沈殿槽30に導入される。一方、流動床担体槽20内でも被処理水の処理を行う。具体的には、流動床担体槽20内に被処理水が導入された後、被処理水が曝気される。これにより、被処理水中に分散した担体が流動する。さらに、担体に担持された活性汚泥がCOD成分を分解しつつ増殖する。流動床担体槽20には、沈殿槽30で沈殿した活性汚泥が返送される。沈殿槽30から返送された活性汚泥は、流動床担体槽20内に分散し、担体に担持された活性汚泥とともにCOD成分を分解する。さらに、沈殿槽30から返送された活性汚泥は、流動床担体槽20の発泡を抑制する。流動床担体槽20により処理された被処理水、すなわち流動床処理水は合流管50bを通って沈殿槽30に導入される。 Then, the water to be treated is treated in the activated sludge tank 10. Specifically, the water to be treated is aerated in the activated sludge tank 10. As a result, the activated sludge dispersed in the water to be treated proliferates while decomposing the COD component. The water to be treated by the activated sludge tank 10, that is, the activated sludge treated water is introduced into the settling tank 30 through the confluence pipe 50a. On the other hand, the water to be treated is also treated in the fluidized bed carrier tank 20. Specifically, after the water to be treated is introduced into the fluidized bed carrier tank 20, the water to be treated is aerated. As a result, the carrier dispersed in the water to be treated flows. Further, the activated sludge carried on the carrier proliferates while decomposing the COD component. The activated sludge settled in the settling tank 30 is returned to the fluidized bed carrier tank 20. The activated sludge returned from the settling tank 30 is dispersed in the fluidized bed carrier tank 20 and decomposes the COD component together with the activated sludge carried on the carrier. Further, the activated sludge returned from the settling tank 30 suppresses foaming of the fluidized bed carrier tank 20. The water to be treated by the fluidized bed carrier tank 20, that is, the fluidized bed treated water is introduced into the settling tank 30 through the confluence pipe 50b.

沈殿槽30には、活性汚泥処理水及び流動床処理水が混合された処理水、すなわち混合処理水が貯留される。沈殿槽30は、混合処理水中の活性汚泥を沈殿させる。ここで、沈殿槽30で沈殿した活性汚泥が流動床担体槽20に返送されるため、沈殿槽30内で活性汚泥が非常に沈殿しやすい。沈殿した活性汚泥は汚泥返送機構60を介して活性汚泥槽10及び流動床担体槽20に返送される。ここで、バルブ61、62の開度を調整することで、活性汚泥槽10及び流動床担体槽20に返送される活性汚泥の量(実質的には活性汚泥が分散した混合処理水)が調整される。 In the settling tank 30, treated water in which activated sludge treated water and fluidized bed treated water are mixed, that is, mixed treated water is stored. The settling tank 30 precipitates activated sludge in the mixed treatment water. Here, since the activated sludge settled in the settling tank 30 is returned to the fluidized bed carrier tank 20, the activated sludge is very likely to settle in the settling tank 30. The precipitated activated sludge is returned to the activated sludge tank 10 and the fluidized bed carrier tank 20 via the sludge return mechanism 60. Here, by adjusting the opening degrees of the valves 61 and 62, the amount of activated sludge returned to the activated sludge tank 10 and the fluidized bed carrier tank 20 (substantially the mixed treated water in which the activated sludge is dispersed) is adjusted. Will be done.

具体的には、計測装置51は、流動床処理水のMLSS(mg/L)を測定する。計測装置51により測定されたMLSSは制御装置100に入力される。制御装置100は、計測装置51による計測値、すなわち流動床処理水のMLSSに基づいて、流動床担体槽20に返送する活性汚泥の量を制御する。より具体的には、制御装置100は、流動床処理水のMLSSが所定値となるように流動床担体槽20に返送する活性汚泥の量を制御する。ここで、所定値は、流動床処理水中のSV30が100%未満となる際の流動床処理水のMLSSである。所定値は1000mg/L以上であることが好ましい。この場合、SV30が非常に小さくなる(具体的には30%未満となる)ので、沈殿槽30における活性汚泥の沈殿をより強く促すことができる。 Specifically, the measuring device 51 measures the MLSS (mg / L) of the fluidized bed treated water. The MLSS measured by the measuring device 51 is input to the control device 100. The control device 100 controls the amount of activated sludge returned to the fluidized bed carrier tank 20 based on the value measured by the measuring device 51, that is, the MLSS of the fluidized bed treated water. More specifically, the control device 100 controls the amount of activated sludge returned to the fluidized bed carrier tank 20 so that the MLSS of the fluidized bed treated water becomes a predetermined value. Here, the predetermined value is the MLSS of the fluidized bed treated water when the SV30 of the fluidized bed treated water is less than 100%. The predetermined value is preferably 1000 mg / L or more. In this case, since the SV 30 becomes very small (specifically, less than 30%), the precipitation of activated sludge in the settling tank 30 can be more strongly promoted.

一方、沈殿槽30の上澄み液は凝集沈殿槽70に導入される。凝集沈殿槽70では、処理水に凝集剤が投入される。これにより、処理水中に残留した活性汚泥が沈殿する。本実施形態では、活性汚泥を流動床担体槽20に返送することで、沈殿槽30内で活性汚泥の沈殿を促している。したがって、凝集沈殿槽70に導入された処理水に含まれる活性汚泥の量は少ない。このため、凝集剤の投入量を少なくすることができる。凝集沈殿槽70の上澄み液が最終的な処理水として排水処理装置1の外部に排出される。その後、上述した定常運転が繰り返し行われる。 On the other hand, the supernatant liquid of the settling tank 30 is introduced into the coagulation settling tank 70. In the coagulation sedimentation tank 70, the coagulant is added to the treated water. As a result, the activated sludge remaining in the treated water precipitates. In the present embodiment, the activated sludge is returned to the fluidized bed carrier tank 20 to promote the precipitation of the activated sludge in the settling tank 30. Therefore, the amount of activated sludge contained in the treated water introduced into the coagulation sedimentation tank 70 is small. Therefore, the amount of the flocculant input can be reduced. The supernatant liquid of the coagulation sedimentation tank 70 is discharged to the outside of the wastewater treatment apparatus 1 as the final treatment water. After that, the above-mentioned steady operation is repeated.

以上説明した排水処理方法はあくまで一例であり、他の方法で排水処理装置1を運転してもよい。例えば、上述した例では準備段階で流動床担体槽20に活性汚泥を返送していたが、準備段階ではこのような返送を省略してもよい。この場合、流動床担体槽20に予め投入された活性汚泥、及び被処理水に含まれる微生物が徐々に担体に付着し、増殖していくことになる。また、制御装置100で行う処理は人為的に行ってもよい。すなわち、排水処理装置1の管理者は、計測装置51による計測値を確認し、その結果に応じてバルブ61、62の開度を調整してもよい。上述したように、MLSSに対応するパラメータとしてSV30が挙げられる。そこで、排水処理装置1の管理者は、計測装置51による計測値に応じてバルブ61、62の開度を調整する処理と並行して、あるいは当該処理に代えて、以下の処理を行ってもよい。すなわち、管理者は、流動床処理水のSV30を手分析にて計測する。計測方法はJIS B 9944の5.6に準拠した方法であればよい。管理者は、SV30が所定値となるように、バルブ61、62の開度を調整する。すなわち、管理者は、活性汚泥槽10及び流動床担体槽20に返送する活性汚泥の量を調整する。ここで、上述したように、沈殿量が少しでも生じるとSV30が100%未満となる。このため、SV30に対応する所定値は100%未満となる。所定値は、好ましくは70%未満、より好ましくは30%未満である。この場合、流動床処理水からより多くの活性汚泥が沈殿する。このような処理は自動で行われても(すなわち、SV30を計測装置で計測し、その値に応じて制御装置100がバルブ61、62の開度を調整するようにしても)よい。 The wastewater treatment method described above is merely an example, and the wastewater treatment device 1 may be operated by another method. For example, in the above-mentioned example, the activated sludge was returned to the fluidized bed carrier tank 20 in the preparation stage, but such return may be omitted in the preparation stage. In this case, the activated sludge charged in advance into the fluidized bed carrier tank 20 and the microorganisms contained in the water to be treated gradually adhere to the carrier and proliferate. Further, the processing performed by the control device 100 may be performed artificially. That is, the manager of the wastewater treatment device 1 may check the measured value by the measuring device 51 and adjust the opening degrees of the valves 61 and 62 according to the result. As described above, SV30 is mentioned as a parameter corresponding to MLSS. Therefore, the administrator of the wastewater treatment device 1 may perform the following processing in parallel with or in place of the processing for adjusting the opening degree of the valves 61 and 62 according to the measured value by the measuring device 51. good. That is, the manager measures the SV30 of the fluidized bed treated water by hand analysis. The measuring method may be any method conforming to JIS B 9944 5.6. The administrator adjusts the opening degrees of the valves 61 and 62 so that the SV 30 becomes a predetermined value. That is, the manager adjusts the amount of activated sludge to be returned to the activated sludge tank 10 and the fluidized bed carrier tank 20. Here, as described above, if even a small amount of precipitation occurs, the SV30 becomes less than 100%. Therefore, the predetermined value corresponding to SV30 is less than 100%. The predetermined value is preferably less than 70%, more preferably less than 30%. In this case, more activated sludge precipitates from the fluidized bed treated water. Such processing may be performed automatically (that is, the SV 30 may be measured by the measuring device, and the control device 100 may adjust the opening degrees of the valves 61 and 62 according to the value).

つぎに、本実施形態の実施例について説明する。本実施例では、本実施形態による効果が得られることを確認するために、排水処理装置1を以下のように運転し、その際に各パラメータを測定、検証した。 Next, an embodiment of the present embodiment will be described. In this embodiment, in order to confirm that the effect of this embodiment is obtained, the wastewater treatment apparatus 1 is operated as follows, and each parameter is measured and verified at that time.

<1.排水処理装置の運転>
排水処理装置1を以下のように運転した。まず、被処理水を準備した。被処理水は、コークス炉排水を海水で希釈したものとした。コークス炉排水はCOD成分を2000~8000mg/L程度含むコークス炉排水であり、このコークス炉排水を海水で希釈したものを被処理水とした。ここで、COD成分の濃度は、JIS K 0102に規定された「100℃における過マンガン酸カリウムによる酸素消費量」に基づいて測定した。
<1. Operation of wastewater treatment equipment>
The wastewater treatment device 1 was operated as follows. First, the water to be treated was prepared. The water to be treated was coke oven wastewater diluted with seawater. The coke oven wastewater is a coke oven wastewater containing about 2000 to 8000 mg / L of COD component, and the coke oven wastewater diluted with seawater was used as the treated water. Here, the concentration of the COD component was measured based on "oxygen consumption by potassium permanganate at 100 ° C." specified in JIS K 0102.

ついで、活性汚泥槽10に活性汚泥を投入した。ここで、活性汚泥槽10の容積は2000m程度である。活性汚泥槽10に投入する活性汚泥は、すでに上記被処理水を処理している活性汚泥槽から採取したものである。一方、市販の担体を流動床担体槽20の容積に対して概ね10体積%の割合で流動床担体槽20に投入した(1回目投入)。ここで、流動床担体槽20の容積は2000m程度である。担体は運転開始日から95日経過した時点で再度投入し(2回目投入)、最終的に担体の体積%は流動床担体槽20の容積に対して概ね16体積%とした。 Then, the activated sludge was put into the activated sludge tank 10. Here, the volume of the activated sludge tank 10 is about 2000 m 3 . The activated sludge to be put into the activated sludge tank 10 is collected from the activated sludge tank that has already been treated with the water to be treated. On the other hand, a commercially available carrier was charged into the fluidized bed carrier tank 20 at a ratio of approximately 10% by volume with respect to the volume of the fluidized bed carrier tank 20 (first loading). Here, the volume of the fluidized bed carrier tank 20 is about 2000 m 3 . The carrier was charged again 95 days after the start date of operation (second loading), and finally the volume% of the carrier was approximately 16% by volume with respect to the volume of the fluidized bed carrier tank 20.

ついで、排水処理装置1の運転を開始した。具体的な運転方法は上述した準備段階の運転方法と同様とした。ここで、運転開始日(運転日数=0)には、活性汚泥槽10への流量(排水流入負荷)を110m/hrとし、流動床担体槽20への流量を100m/hrとした。そして、運転日数の経過とともに活性汚泥槽10への流量を減少させ、流動床担体槽20への流量を増加させた。そして、以下の期間Tの末日の時点で活性汚泥槽10への流量を89m/hrとし、流動床担体槽20への流量を121m/hrとした。その後、流動床担体槽20への流量を段階的に高めた。すなわち、運転日数が233日目となった際に活性汚泥槽10への流量/流動床担体槽20への流量を95m/hr/130m/hrとし、運転日数が258日目となった際に活性汚泥槽10への流量/流動床担体槽20への流量を90m/hr/135m/hrとした。さらに、運転日数が265日目となった際に活性汚泥槽10への流量/流動床担体槽20への流量を85m/hr/140m/hrとし、運転日数が288日目となった際に活性汚泥槽10への流量/流動床担体槽20への流量を80m/hr/145m/hrとした。 Then, the operation of the wastewater treatment device 1 was started. The specific operation method was the same as the operation method in the preparation stage described above. Here, on the operation start date (operation days = 0), the flow rate to the activated sludge tank 10 (drainage inflow load) was set to 110 m 3 / hr, and the flow rate to the fluidized bed carrier tank 20 was set to 100 m 3 / hr. Then, as the number of operating days elapsed, the flow rate to the activated sludge tank 10 was decreased, and the flow rate to the fluidized bed carrier tank 20 was increased. Then, at the last day of the following period T6, the flow rate to the activated sludge tank 10 was set to 89 m 3 / hr, and the flow rate to the fluidized bed carrier tank 20 was set to 121 m 3 / hr. After that, the flow rate to the fluidized bed carrier tank 20 was gradually increased. That is, when the number of operating days reached the 233rd day, the flow rate to the activated sludge tank 10 / the flow rate to the fluidized bed carrier tank 20 was set to 95 m 3 / hr / 130 m 3 / hr, and the number of operating days became the 258th day. The flow rate to the activated sludge tank 10 / the flow rate to the fluidized bed carrier tank 20 was set to 90 m 3 / hr / 135 m 3 / hr. Further, when the number of operating days reached the 265th day, the flow rate to the activated sludge tank 10 / the flow rate to the fluidized bed carrier tank 20 was set to 85 m 3 / hr / 140 m 3 / hr, and the number of operating days became 288 days. The flow rate to the activated sludge tank 10 / the flow rate to the fluidized bed carrier tank 20 was set to 80 m 3 / hr / 145 m 3 / hr.

また、活性汚泥槽10への活性汚泥の返送量(具体的には、活性汚泥が分散した混合処理水の流量)は90m/hrで固定した。一方、流動床担体槽20への活性汚泥の返送量(具体的には、活性汚泥が分散した混合処理水の流量)は、運転日数の経過に応じて減少させた。具体的には、操業開始日(運転日数=0)~69日目(期間T)には90m/hr、70日目~83日目(期間T)には70m/hr、84日目~94日目(期間T)には50m/hr、95日目~109日目(期間T)には30m/hr、110日目~130日目(期間T)には10m/hrとした。そして、131日目~221日目(期間T)には0m/hrとした。つまり、期間Tでは流動床担体槽20に活性汚泥を返送しなかった。221日目以降(期間T)では20m/hrとした。つまり、期間Tでは流動床担体槽20への活性汚泥の返送を再開した。 The amount of activated sludge returned to the activated sludge tank 10 (specifically, the flow rate of the mixed treated water in which the activated sludge was dispersed) was fixed at 90 m 3 / hr. On the other hand, the amount of activated sludge returned to the fluidized bed carrier tank 20 (specifically, the flow rate of the mixed treated water in which the activated sludge was dispersed) was reduced as the number of operating days elapsed. Specifically, 90 m 3 / hr from the operation start date (number of operating days = 0) to 69 days (period T 1 ), and 70 m 3 / hr, 84 from 70 days to 83 days (period T 2 ). 50m 3 / hr from day to 94th (period T 3 ), 30m 3 / hr from 95th to 109th (period T 4 ), 110th to 130th (period T 5 ) Was 10 m 3 / hr. Then, it was set to 0 m 3 / hr from the 131st day to the 221st day (period T 6 ). That is, during the period T6 , the activated sludge was not returned to the fluidized bed carrier tank 20. After the 221st day (period T 7 ), it was set to 20 m 3 / hr. That is, in period T7 , the return of activated sludge to the fluidized bed carrier tank 20 was resumed.

<2.活性汚泥の担体への付着質量の推移>
上記期間T~T内の任意のタイミングで活性汚泥の担体への付着重量(付着質量)(g/10個)を測定し、付着質量の推移を評価した。測定は以下の方法で行った。すなわち、流動床担体槽20から任意に10個の担体を採取した。ついで、ジッパー付きビニール袋にこれらの担体及び純水50mlを投入することで、試験サンプルを作製した。ついで、超音波洗浄器(アズワン社製ASU-D)に試験サンプルを装入し、出力Highにて5分間超音波処理を行った。ついで、試験サンプル中の分散液を乾燥皿に投入した。この操作を担体の付着物が目視できなくなるまで繰り返し、都度分散液を乾燥皿に投入した。ついで、分散液を100℃で乾燥し、残存物の乾燥質量を測定した。これを付着質量とした。担体の2回目の投入を行った後には、1回目投入の担体及び2回目投入の担体のそれぞれについて付着質量を測定した。なお、1回目投入の担体と2回目投入の担体とは、それらの外観で区別可能である。図2の上側のグラフが測定結果を示す。2回目投入の担体に関しては、投入後所定期間の測定結果のみ示す。点P1は1回目投入の担体の付着質量を示し、点P2は2回目投入の担体の付着質量を示す。このグラフから明らかな通り、運転日数の経過に伴って活性汚泥の付着質量が増加していることがわかる。また、期間Tが終了した時点以降で付着質量がほぼ安定した。
<2. Changes in the mass of activated sludge attached to the carrier>
The adhered weight (adhered mass) (g / 10 pieces) of the activated sludge to the carrier was measured at any timing within the above period T1 to T7 , and the transition of the adhered mass was evaluated. The measurement was performed by the following method. That is, 10 carriers were arbitrarily collected from the fluidized bed carrier tank 20. Then, these carriers and 50 ml of pure water were put into a plastic bag with a zipper to prepare a test sample. Then, the test sample was charged into an ultrasonic washer (AS ONE manufactured by AS ONE), and ultrasonic treatment was performed at output High for 5 minutes. Then, the dispersion liquid in the test sample was put into a drying dish. This operation was repeated until the deposits on the carrier became invisible, and the dispersion was added to the drying dish each time. Then, the dispersion was dried at 100 ° C., and the dry mass of the residue was measured. This was taken as the adhesion mass. After the second loading of the carrier, the adhered mass was measured for each of the carrier of the first loading and the carrier of the second loading. In addition, the carrier of the first charge and the carrier of the second charge can be distinguished by their appearance. The graph on the upper side of FIG. 2 shows the measurement result. For the carrier added for the second time, only the measurement results for a predetermined period after the addition are shown. The point P1 indicates the adhered mass of the carrier of the first charge, and the point P2 indicates the adhered mass of the carrier of the second charge. As is clear from this graph, it can be seen that the adhered mass of activated sludge increases with the lapse of operating days. In addition, the adhered mass became almost stable after the end of the period T6 .

<3.COD濃度の推移>
上記期間T~T内の任意のタイミングで流動床排出液のCOD濃度を測定し、COD濃度の推移を評価した。COD成分の濃度は、JIS K 0102に規定された「100℃における過マンガン酸カリウムによる酸素消費量」に基づいて測定した。図2の下側のグラフが測定結果を示す。具体的には、グラフ中の点P3がCOD濃度を示す。このグラフから明らかな通り、流動床担体槽20によってCOD成分が分解されていることがわかる。期間Tでは一時的にCOD濃度が上昇しているが、これは活性汚泥の返送を行わなかったからである。活性汚泥の返送を再開した期間Tでは、COD濃度が再度減少した。また、期間Tでは流動床担体槽20への被処理水の流量を高めているが、問題なく被処理水を処理することができた。
<3. Changes in COD concentration>
The COD concentration of the fluidized bed drainage was measured at any timing within the above period T1 to T7 , and the transition of the COD concentration was evaluated. The concentration of the COD component was measured based on "oxygen consumption by potassium permanganate at 100 ° C." specified in JIS K 0102. The lower graph in FIG. 2 shows the measurement results. Specifically, the point P3 in the graph indicates the COD concentration. As is clear from this graph, it can be seen that the COD component is decomposed by the fluidized bed carrier tank 20. The COD concentration temporarily increased during the period T6 , because the activated sludge was not returned. During the period T7 when the return of activated sludge was resumed, the COD concentration decreased again. Further, in the period T7 , the flow rate of the water to be treated to the fluidized bed carrier tank 20 was increased, but the water to be treated could be treated without any problem.

<4.凝集剤使用量の推移>
上記期間T~T内の任意のタイミングで、凝集剤使用量の推移を評価した。ここで、本実施例では、凝集剤として市販の鉄系無機凝集剤を使用し、凝集沈殿槽70から排出される処理液の透視度が予め設定された管理値以上となるように凝集剤の使用量を調整した。ここで、透視度はJIS K 0102に規定された「透視度」に基づいて測定し、管理値は上記期間T~T内で一定とした。結果を図3に示す。図3から明らかな通り、活性汚泥を流動床担体槽20に返送している期間T~T、Tでは凝集剤の使用量が低下しているのに対し、活性汚泥を流動床担体槽20に返送していない期間期間Tでは凝集剤の使用量が増加している。したがって、流動床担体槽20に活性汚泥を返送することで、沈殿槽30で多くの活性汚泥が沈殿していることがわかる。
<4. Changes in the amount of coagulant used>
The transition of the amount of the flocculant used was evaluated at any timing within the above period T1 to T7 . Here, in this embodiment, a commercially available iron-based inorganic coagulant is used as the coagulant, and the coagulant is used so that the transparency of the treatment liquid discharged from the coagulation sedimentation tank 70 becomes equal to or higher than a preset control value. Adjusted usage. Here, the transparency was measured based on the "transparency" specified in JIS K 0102, and the control value was kept constant within the above period T1 to T7 . The results are shown in FIG. As is clear from FIG. 3, during the period T 1 to T 5 and T 7 in which the activated sludge is returned to the fluidized bed carrier tank 20, the amount of the flocculant used decreases, whereas the activated sludge is used as the fluidized bed carrier. During the period T6 when the sludge was not returned to the tank 20, the amount of the flocculant used increased. Therefore, it can be seen that a large amount of activated sludge is settled in the settling tank 30 by returning the activated sludge to the fluidized bed carrier tank 20.

<5.MLSSとSV30との相関>
上記期間T~T内の任意のタイミングで、流動床処理液のMLSS(mg/L)及びSV30(%)を測定した。各パラメータの測定方法は上述した通りである。結果を図4及び図5に示す。図4及び図5から明らかな通り、流動床担体槽20に活性汚泥を返送していない期間TではMLSSが概ね1000mg/L未満となり、かつSV30が100(%)となっている。一方、流動床担体槽20に活性汚泥を返送している期間TではMLSSが概ね1000mg/L以上まで上昇する。さらに、MLSSが1000mg/L以上となる期間では、SV30が100%未満、特に30%未満となっている。つまり、流動床処理水中の活性汚泥が沈殿しやすくなっている。上記<4.凝集剤使用量の推移>及び本試験の結果を踏まえると、計測装置51による計測値と対比される所定値は1000mg/L以上であることが好ましいことがわかる。
<5. Correlation between MLSS and SV30>
The MLSS (mg / L) and SV30 (%) of the fluidized bed treatment liquid were measured at any timing within the above period T 6 to T 7 . The measurement method of each parameter is as described above. The results are shown in FIGS. 4 and 5. As is clear from FIGS. 4 and 5 , the MLSS is approximately less than 1000 mg / L and the SV30 is 100 (%) during the period T6 in which the activated sludge is not returned to the fluidized bed carrier tank 20. On the other hand, during the period T7 in which the activated sludge is returned to the fluidized bed carrier tank 20, the MLSS rises to about 1000 mg / L or more. Further, in the period when the MLSS is 1000 mg / L or more, the SV30 is less than 100%, particularly less than 30%. That is, activated sludge in the fluidized bed treated water is likely to settle. Above <4. Based on the transition of the amount of coagulant used> and the result of this test, it can be seen that the predetermined value to be compared with the value measured by the measuring device 51 is preferably 1000 mg / L or more.

<6.流動床担体槽への活性汚泥の返送と発泡との相関>
図6は、期間Tにおける流動床担体槽20の表面状態を示す写真であり、図7は期間Tにおける流動床担体槽20の表面状態を示す写真である。図6及び図7から明らかな通り、流動床担体槽20に活性汚泥を返送することで発泡が大きく抑制されていることがわかる。
<6. Correlation between the return of activated sludge to the fluidized bed carrier tank and foaming>
FIG. 6 is a photograph showing the surface state of the fluidized bed carrier tank 20 in the period T6, and FIG. 7 is a photograph showing the surface state of the fluidized bed carrier tank 20 in the period T7. As is clear from FIGS. 6 and 7, it can be seen that foaming is greatly suppressed by returning the activated sludge to the fluidized bed carrier tank 20.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to these examples. It is clear that a person having ordinary knowledge in the field of the art to which the present invention belongs can come up with various modifications or modifications within the scope of the technical idea described in the claims. , These are also naturally understood to belong to the technical scope of the present invention.

1 排水処理装置
10 活性汚泥槽
20 流動床担体槽
30 沈殿槽
40 分流機構
50 合流機構
51 計測装置
60 汚泥返送機構
70 凝集沈殿槽
100 制御装置

1 Wastewater treatment equipment 10 Activated sludge tank 20 Fluidized bed carrier tank 30 Sedimentation tank 40 Dividing mechanism 50 Confluence mechanism 51 Measuring device 60 Sludge return mechanism 70 Coagulation sedimentation tank 100 Control device

Claims (14)

被処理水を浄化する排水処理装置であって、
前記被処理水を処理し、処理後の前記被処理水を処理水として排出する活性汚泥槽及び流動床担体槽と、
前記活性汚泥槽及び前記流動床担体槽から排出された処理水を貯留し、当該処理水中に分散した活性汚泥を沈殿させる沈殿槽と、
前記沈殿槽に沈殿した活性汚泥を少なくとも前記流動床担体槽に返送する汚泥返送機構と、を備えることを特徴とする、排水処理装置。
A wastewater treatment device that purifies the water to be treated.
An activated sludge tank and a fluidized bed carrier tank that treat the treated water and discharge the treated water as treated water.
A settling tank that stores the treated water discharged from the activated sludge tank and the fluidized bed carrier tank and precipitates the activated sludge dispersed in the treated water.
A wastewater treatment apparatus comprising: a sludge returning mechanism for returning activated sludge settled in the settling tank to at least the fluidized bed carrier tank.
前記流動床担体槽から排出される処理水中の浮遊物質の沈殿性、及び濃度のうち少なくとも何れかを計測する計測装置と、
前記計測装置による計測値に基づいて、前記流動床担体槽に返送する活性汚泥の量を制御する制御装置と、を備えることを特徴とする、請求項1記載の排水処理装置。
A measuring device for measuring at least one of the precipitation property and the concentration of suspended solids in the treated water discharged from the fluidized bed carrier tank.
The wastewater treatment device according to claim 1, further comprising a control device for controlling the amount of activated sludge returned to the fluidized bed carrier tank based on the measured values by the measuring device.
前記制御装置は、前記計測装置による計測値が所定値となるように前記流動床担体槽に返送する活性汚泥の量を制御し、
前記浮遊物質の沈殿性はSV30で示され、前記SV30に対応する所定値は100%未満であることを特徴とする、請求項2記載の排水処理装置。
The control device controls the amount of activated sludge returned to the fluidized bed carrier tank so that the value measured by the measuring device becomes a predetermined value.
The wastewater treatment apparatus according to claim 2, wherein the precipitation property of the suspended solid is indicated by SV30, and the predetermined value corresponding to the SV30 is less than 100%.
前記浮遊物質の濃度の所定値は、1000mg/L以上であることを特徴とする、請求項3記載の排水処理装置。 The wastewater treatment apparatus according to claim 3, wherein the predetermined value of the concentration of the suspended solid is 1000 mg / L or more. 前記被処理水を前記活性汚泥槽及び前記流動床担体槽に分配して導入する分流機構を備え、
前記分流機構は、前記活性汚泥槽よりも前記流動床担体槽に多くの前記被処理水を導入することを特徴とする、請求項1~4のいずれか1項に記載の排水処理装置。
A shunt mechanism for distributing and introducing the water to be treated into the activated sludge tank and the fluidized bed carrier tank is provided.
The wastewater treatment apparatus according to any one of claims 1 to 4, wherein the shunting mechanism introduces a larger amount of the water to be treated into the fluidized bed carrier tank than the activated sludge tank.
前記被処理水がフェノール類を含むことを特徴とする、請求項1~5のいずれか1項に記載の排水処理装置。 The wastewater treatment apparatus according to any one of claims 1 to 5, wherein the water to be treated contains phenols. 前記被処理水がコークス炉排水を含むことを特徴とする、請求項6記載の排水処理装置。 The wastewater treatment apparatus according to claim 6, wherein the treated water contains coke oven wastewater. 活性汚泥槽及び流動床担体槽を用いて被処理水を処理し、処理後の前記被処理水を処理水として排出する工程と、
前記活性汚泥槽及び前記流動床担体槽から排出された処理水を沈殿槽に導入し、前記沈殿槽内で当該処理水中に分散した活性汚泥を沈殿させる工程と、
前記沈殿槽に沈殿した活性汚泥を少なくとも前記流動床担体槽に返送する工程と、を含むことを特徴とする、排水処理方法。
A step of treating water to be treated using an activated sludge tank and a fluidized bed carrier tank, and discharging the treated water as treated water.
A step of introducing the treated water discharged from the activated sludge tank and the fluidized bed carrier tank into the settling tank and precipitating the activated sludge dispersed in the treated water in the settling tank.
A wastewater treatment method comprising a step of returning the activated sludge settled in the settling tank to at least the fluidized bed carrier tank.
前記流動床担体槽から排出される処理水中の浮遊物質の沈殿性、及び濃度のうち少なくとも何れかを計測し、
前記沈殿性、及び濃度のうち少なくとも何れかの計測値に基づいて、前記流動床担体槽に返送する活性汚泥の量を制御することを特徴とする、請求項8記載の排水処理方法。
At least one of the precipitation property and the concentration of suspended solids in the treated water discharged from the fluidized bed carrier tank was measured.
The wastewater treatment method according to claim 8, wherein the amount of activated sludge returned to the fluidized bed carrier tank is controlled based on the measured value of at least one of the precipitability and the concentration.
前記計測値が所定値となるように前記流動床担体槽に返送する活性汚泥の量を制御し、
前記浮遊物質の沈殿性はSV30で示され、前記SV30に対応する所定値は100%未満であることを特徴とする、請求項9記載の排水処理方法。
The amount of activated sludge returned to the fluidized bed carrier tank is controlled so that the measured value becomes a predetermined value.
The wastewater treatment method according to claim 9, wherein the precipitation property of the suspended solid is indicated by SV30, and the predetermined value corresponding to the SV30 is less than 100%.
前記浮遊物質の濃度の所定値は、1000mg/L以上であることを特徴とする、請求項10記載の排水処理方法。 The wastewater treatment method according to claim 10, wherein the predetermined value of the concentration of the suspended solid is 1000 mg / L or more. 前記被処理水を前記活性汚泥槽及び前記流動床担体槽に分配して導入し、
前記活性汚泥槽よりも前記流動床担体槽に多くの前記被処理水を導入することを特徴とする、請求項8~11のいずれか1項に記載の排水処理方法。
The water to be treated is distributed and introduced into the activated sludge tank and the fluidized bed carrier tank.
The wastewater treatment method according to any one of claims 8 to 11, wherein a larger amount of the water to be treated is introduced into the fluidized bed carrier tank than the activated sludge tank.
前記被処理水がフェノール類を含むことを特徴とする、請求項8~12のいずれか1項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 8 to 12, wherein the water to be treated contains phenols. 前記被処理水がコークス炉排水を含むことを特徴とする、請求項13記載の排水処理方法。

13. The wastewater treatment method according to claim 13, wherein the water to be treated contains coke oven wastewater.

JP2018212118A 2018-11-12 2018-11-12 Wastewater treatment equipment and wastewater treatment method Active JP7099265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018212118A JP7099265B2 (en) 2018-11-12 2018-11-12 Wastewater treatment equipment and wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018212118A JP7099265B2 (en) 2018-11-12 2018-11-12 Wastewater treatment equipment and wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2020078767A JP2020078767A (en) 2020-05-28
JP7099265B2 true JP7099265B2 (en) 2022-07-12

Family

ID=70801239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018212118A Active JP7099265B2 (en) 2018-11-12 2018-11-12 Wastewater treatment equipment and wastewater treatment method

Country Status (1)

Country Link
JP (1) JP7099265B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211788A (en) 2004-01-29 2005-08-11 Daiki Co Ltd Organic wastewater treatment apparatus
JP2006158996A (en) 2004-12-02 2006-06-22 Kurita Water Ind Ltd Nitrogen-containing wastewater treatment method and apparatus
US20110284461A1 (en) 2010-05-20 2011-11-24 Otv Sa Controlled Aeration of Integrated Fixed-Film Activated Sludge Bioreactor Systems for the Treatment of Wastewater
JP5413665B2 (en) 2009-05-25 2014-02-12 清水建設株式会社 Liquefaction countermeasure structure
JP5573393B2 (en) 2010-06-15 2014-08-20 コベルコクレーン株式会社 Telescopic boom jib coupling device
JP2016112556A (en) 2014-12-16 2016-06-23 新日鐵住金株式会社 Method for biologically treating water to be treated by using aerobic fluidized bed

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595037B2 (en) * 1977-07-04 1984-02-02 荏原インフイルコ株式会社 How to treat organic wastewater
JPS5573393A (en) * 1978-11-30 1980-06-03 Ebara Infilco Co Ltd Waste water treatment
JP3414240B2 (en) * 1998-01-30 2003-06-09 栗田工業株式会社 Agent and method for suppressing solid-liquid separation failure in activated sludge treatment system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211788A (en) 2004-01-29 2005-08-11 Daiki Co Ltd Organic wastewater treatment apparatus
JP2006158996A (en) 2004-12-02 2006-06-22 Kurita Water Ind Ltd Nitrogen-containing wastewater treatment method and apparatus
JP5413665B2 (en) 2009-05-25 2014-02-12 清水建設株式会社 Liquefaction countermeasure structure
US20110284461A1 (en) 2010-05-20 2011-11-24 Otv Sa Controlled Aeration of Integrated Fixed-Film Activated Sludge Bioreactor Systems for the Treatment of Wastewater
JP5573393B2 (en) 2010-06-15 2014-08-20 コベルコクレーン株式会社 Telescopic boom jib coupling device
JP2016112556A (en) 2014-12-16 2016-06-23 新日鐵住金株式会社 Method for biologically treating water to be treated by using aerobic fluidized bed

Also Published As

Publication number Publication date
JP2020078767A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
CN103265144B (en) Town wastewater treatment process and device with intensified nitrogen and phosphorus removing function
CN103880244B (en) Comprehensive treatment method for liquid dung of livestock and poultry and domestic wastewater in country
TW200927677A (en) Treatment of wastewater
JP5176542B2 (en) Biological treatment method and biological treatment apparatus for organic wastewater
JP2008284427A (en) Apparatus and method for treating waste water
Capodici et al. Co-treatment of landfill leachate in laboratory-scale sequencing batch reactors: analysis of system performance and biomass activity by means of respirometric techniques
JP2011078938A (en) Waste water treatment method
Sapari Treatment and reuse of textile wastewater by overland flow
JP2020058984A (en) Water treatment system and water treatment method
Liu et al. Achieving advanced nitrogen removal for small flow wastewater using a baffled bioreactor (BBR) with intermittent aeration
KR100460463B1 (en) A garden type wastewater treatment plant
CN109052867A (en) A kind of dispersed wastewater EGA processing unit and treatment process based on modified active carrier
JP7099265B2 (en) Wastewater treatment equipment and wastewater treatment method
CN211141834U (en) Fine chemical industry park sewage treatment system
TW200837023A (en) Method of wastewater disposal
JP2006130397A (en) Waste water treatment system
Quan et al. The assessment of technical-economic efficiency of Sequencing Batch Reactors in municipal wastewater treatment in developing countries
JP2011200767A (en) Wastewater treating method and wastewater treatment system
JPH08281284A (en) Combined septic tank
RU2605325C1 (en) Method of purifying waste water from ammonium and organic substance
JP6852214B2 (en) Sewage treatment system
Nasr et al. Performance evaluation of El-Agamy wastewater treatment plant–Egypt
JP2015160202A (en) Method and apparatus for biological treatment of 1,4-dioxane-containing organic waste water
Al-Hashimi et al. Aerobic granular sludge: An advanced technology to treat oil refinery and dairy wastewaters
Yulianto et al. Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210707

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R151 Written notification of patent or utility model registration

Ref document number: 7099265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151