JP2003080289A - Treating method for ammonia solution - Google Patents

Treating method for ammonia solution

Info

Publication number
JP2003080289A
JP2003080289A JP2001276840A JP2001276840A JP2003080289A JP 2003080289 A JP2003080289 A JP 2003080289A JP 2001276840 A JP2001276840 A JP 2001276840A JP 2001276840 A JP2001276840 A JP 2001276840A JP 2003080289 A JP2003080289 A JP 2003080289A
Authority
JP
Japan
Prior art keywords
aeration tank
activated sludge
oxygen
concentration
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001276840A
Other languages
Japanese (ja)
Inventor
Takamasa Takahashi
隆昌 高橋
Yoshikazu Nemoto
佳和 根本
Kazuya Ikeda
和哉 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adchemco Corp
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Adchemco Corp
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adchemco Corp, Mitsubishi Kakoki Kaisha Ltd filed Critical Adchemco Corp
Priority to JP2001276840A priority Critical patent/JP2003080289A/en
Publication of JP2003080289A publication Critical patent/JP2003080289A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide an ammonia solution treating method adopting an activated sludge process which makes a high-load treatment possible, facilitates an operation management, maintenance and inspection of an activated sludge facility and uses high-concentration oxygen-containing gas. SOLUTION: The method of introducing the ammonia solution 10 generated from a coke furnace into an aerator 1 and subjecting the ammonia solution to an activated sludge treatment, comprises steps of extracting a portion of the activated sludge in the aerator 1, injecting the high-concentration oxygen- containing gas 11 therein to form the enriched oxygen activated sludge, then jetting and circulating the activated sludge in the aerator 1, measuring the concentration of dissolved oxygen in the vessel, regulating the concentration of the dissolved oxygen so as to attain a prescribed value, expelling the carbon dioxide formed by decomposition of the organic matter contained in the ammonia solution by diffusion of air or nitrogen and performing the activated sludge treatment at a prescribed pH.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、安水の処理方法に
係り、特に、曝気槽内に高濃度酸素含有ガスを注入し、
溶存酸素濃度を適正範囲に調整して効率よく安水を処理
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating low water, and in particular, injecting a high-concentration oxygen-containing gas into an aeration tank,
The present invention relates to a method for efficiently treating ammonium hydroxide by adjusting the dissolved oxygen concentration within an appropriate range.

【0002】[0002]

【従来の技術】石炭を乾留するコークス炉で発生する安
水には、例えばフェノール、アンモニア化合物、シアン
化合物、硫化物等の有害物質が含まれており、通常、蒸
留してアンモニアを除去したのち活性汚泥法によって処
理される。
2. Description of the Related Art Anhydrous water generated in a coke oven for carbonization of coal contains harmful substances such as phenol, ammonia compounds, cyan compounds, and sulfides, and is usually distilled to remove ammonia. It is processed by the activated sludge method.

【0003】しかしながら、従来の活性汚泥法による安
水処理には、生物処理としての特性から、安水流入量の
変動、処理目的成分、例えば化学的酸素要求量(CO
D)等の変動、難分解性物質の混入等の理由から曝気槽
内の溶存酸素濃度の管理が困難となり、安定な処理を継
続できないという問題があった。例えば、CODの変動
に追従しようとして空気を過剰曝気すると被処理水中の
アンモニアが硝化して硝酸が生成し、これによってチオ
シアン分解菌の活動が阻害されるという問題が生じる。
一方、高負荷処理に対応できる活性汚泥を用いた排水処
理方法として、例えば空気の代わりに純酸素を用いた酸
素活性汚泥法が知られている。
[0006] However, in the conventional treatment of activated carbon by the activated sludge method, due to the characteristics of biological treatment, fluctuations in the amount of inflow of activated water, components to be treated, such as chemical oxygen demand (CO).
There is a problem that it is difficult to control the dissolved oxygen concentration in the aeration tank due to fluctuations in D) and the like, mixing of hardly decomposable substances, etc., and stable treatment cannot be continued. For example, when air is excessively aerated in order to follow changes in COD, ammonia in the water to be treated is nitrified to produce nitric acid, which causes a problem that the activity of the thiocyan-degrading bacteria is inhibited.
On the other hand, as a wastewater treatment method using activated sludge capable of handling high-load treatment, for example, an oxygen activated sludge method using pure oxygen instead of air is known.

【0004】図5は、酸素源として純酸素を用いた酸素
活性汚泥法を採用した従来装置の説明図である。図5に
おいて、この装置は、密閉構造の曝気槽31と、該曝気
槽31内の仕切り壁32で仕切られた複数の曝気ゾーン
33と、各曝気ゾーン33にそれぞれ設けられた表面曝
気機34と、前記曝気槽31の上部空間部に酸素を供給
する酸素供給装置35および排ガスを排出する排ガスラ
イン36とから主として構成されている。37および3
8は、それぞれ曝気槽31の上部空間部に設けられた圧
力計および酸素計である。
FIG. 5 is an explanatory view of a conventional apparatus adopting an oxygen activated sludge method using pure oxygen as an oxygen source. In FIG. 5, this apparatus comprises an aeration tank 31 having a closed structure, a plurality of aeration zones 33 partitioned by partition walls 32 in the aeration tank 31, and a surface aerator 34 provided in each aeration zone 33. An oxygen supply device 35 for supplying oxygen to the upper space of the aeration tank 31 and an exhaust gas line 36 for discharging exhaust gas are mainly included. 37 and 3
Reference numerals 8 are a pressure gauge and an oximeter, which are provided in the upper space of the aeration tank 31, respectively.

【0005】曝気槽31に導入された被処理水39は、
最初の曝気ゾーン33において表面曝気機34で攪拌さ
れ、酸素供給装置35から表面曝気法によって導入され
る酸素と接触し、排水中の汚染物質の一部が活性汚泥に
よって処理される。汚染物質の一部が処理された被処理
水39は、仕切り壁32を溢流して順次隣接する曝気ゾ
ーン33に流入し、同様にして汚染物質が処理されたの
ち処理水40として曝気槽31から流出する。
The water to be treated 39 introduced into the aeration tank 31 is
In the first aeration zone 33, the surface is agitated by the surface aerator 34, comes into contact with oxygen introduced from the oxygen supply device 35 by the surface aeration method, and a part of the pollutants in the waste water is treated by the activated sludge. The water 39 to be treated, which has been partially treated with pollutants, overflows the partition wall 32 and sequentially flows into the adjacent aeration zone 33, and after the pollutants have been similarly treated, it is treated water 40 from the aeration tank 31. leak.

【0006】しかしながら、上記従来技術には、以下の
ような問題があった。すなわち、密閉・多段式曝気槽を
採用しているために装置が複雑となり、設備費が嵩むだ
けでなく、運転管理や保守点検が困難であった。また、
密閉式曝気槽であるために、有機物の分解によって発生
した炭酸ガスが上部空間部に滞留して分圧が上昇し、結
果として活性汚泥のpHが低下するという問題があっ
た。さらに純酸素による表面曝気方式を採用していたこ
とから、被処理水中に炭化水素が混入した場合、支燃剤
である酸素と反応して爆発する危険性があった。なお、
このような純酸素活性汚泥法は種々の理由から、従来、
コークス炉から排出される安水処理には適用されていな
かった。
However, the above conventional technique has the following problems. That is, since the closed / multi-stage aeration tank is adopted, the device is complicated, the equipment cost is increased, and the operation management and maintenance / inspection are difficult. Also,
Since it is a closed type aeration tank, there is a problem that carbon dioxide gas generated by the decomposition of organic substances stays in the upper space and the partial pressure increases, resulting in a decrease in the pH of the activated sludge. Further, since the surface aeration method using pure oxygen is adopted, there is a risk that when hydrocarbons are mixed in the water to be treated, it reacts with oxygen as a combustion supporting agent and explodes. In addition,
Such a pure oxygen activated sludge method has been conventionally used for various reasons.
It was not applied to the treatment of cheap water discharged from the coke oven.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、上記
従来技術の問題点を解決し、曝気槽内の溶存酸素濃度の
管理が容易で、高負荷処理が可能な、高濃度酸素含有ガ
スを用いた活性汚泥法を採用した安水の処理方法を提供
することにある。
The object of the present invention is to solve the above-mentioned problems of the prior art, to easily manage the dissolved oxygen concentration in the aeration tank, and to carry out high-load treatment. An object of the present invention is to provide a method for treating cheap water that employs an activated sludge method using.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本願で特許請求する発明は以下のとおりである。 (1)コークス炉から発生する安水を曝気槽に導入して
活性汚泥処理する方法において、前記曝気槽内に高濃度
酸素含有ガスを注入するとともに、槽内溶存酸素濃度を
測定し、該溶存酸素濃度が所定値となるように調整して
活性汚泥処理することを特徴とする安水の処理方法。 (2)コークス炉から発生する安水を曝気槽に導入して
活性汚泥処理する方法において、前記曝気槽内の活性汚
泥の一部を抜き出し、高濃度酸素含有ガスを注入して富
酸素活性汚泥としたのち、前記曝気槽内に噴出、循環す
るとともに、槽内溶存酸素濃度を測定し、該溶存酸素濃
度が所定値となるように調整して活性汚泥処理すること
を特徴とする安水の処理方法。
In order to solve the above problems, the invention claimed in the present application is as follows. (1) In a method of introducing activated water generated from a coke oven into an aeration tank to treat activated sludge, a high-concentration oxygen-containing gas is injected into the aeration tank, the dissolved oxygen concentration in the tank is measured, and the dissolved oxygen is dissolved. A method for treating cheap water, which comprises treating activated sludge by adjusting the oxygen concentration to a predetermined value. (2) In the method of introducing activated water generated from a coke oven into an aeration tank to treat activated sludge, a part of the activated sludge in the aeration tank is extracted and a high-concentration oxygen-containing gas is injected to activate the oxygen-rich activated sludge. After that, while ejecting and circulating in the aeration tank, the dissolved oxygen concentration in the tank is measured, and the activated water is treated so that the dissolved oxygen concentration is adjusted to a predetermined value. Processing method.

【0009】(3)前記安水に含まれる有機物の分解に
よって生成する炭酸ガスを、空気または窒素を散気して
追い出し、曝気槽内のpHを調整することを特徴とする
上記(1)または(2)に記載の方法。 (4)前記安水に含まれる有機物の分解によって生成す
る炭酸成分を中和剤で中和して曝気槽内のpHを調整す
ることを特徴とする上記(1)または(2)に記載の方
法。
(3) The carbon dioxide gas produced by the decomposition of organic substances contained in the ammonium hydroxide is expelled by air or nitrogen diffusion to adjust the pH in the aeration tank. The method according to (2). (4) The pH in the aeration tank is adjusted by neutralizing a carbonic acid component generated by the decomposition of organic matter contained in the ammonium hydroxide with a neutralizing agent, according to the above (1) or (2). Method.

【0010】本発明においては、高濃度酸素含有ガスを
用いた活性汚泥法を採用する。これによって空気を用い
た活性汚泥法に比べて曝気槽内の溶存酸素濃度の調整が
容易となり、かつ溶存酸素濃度を高い値に維持すること
ができるので、負荷変動に対する応答性が向上し、高濃
度の安水であっても安定に処理することができる。
In the present invention, an activated sludge method using a high concentration oxygen-containing gas is adopted. This makes it easier to adjust the dissolved oxygen concentration in the aeration tank and maintains the dissolved oxygen concentration at a higher value compared to the activated sludge method using air, which improves the responsiveness to load fluctuations and increases the Even low-concentration low-water concentration can be treated stably.

【0011】本発明において、高濃度酸素含有ガスと
は、酸素濃度が高い混合ガスをいい、高濃度酸素含有ガ
ス中の酸素濃度は、30〜100%であり、好ましくは
60〜100%、より好ましくは90〜100%であ
る。混合ガス中の酸素濃度が高いほど、曝気槽内の溶存
酸素濃度の制御性が向上し、管理が容易となる。
In the present invention, the high-concentration oxygen-containing gas means a mixed gas having a high oxygen concentration, and the oxygen concentration in the high-concentration oxygen-containing gas is 30 to 100%, preferably 60 to 100%. It is preferably 90 to 100%. The higher the oxygen concentration in the mixed gas, the better the controllability of the dissolved oxygen concentration in the aeration tank, and the easier the management.

【0012】本発明において、安水に含まれる有機物の
分解によて生じる炭酸ガスは曝気槽内のpHが低下する
原因となるので、空気または窒素を散気して追い出すこ
とが好ましい。空気または窒素による散気は、連続的で
あっても、間欠的であってもよい。散気による炭酸ガス
の追い出しに代えて、例えばカセイソーダ等の中和剤を
注入して炭酸成分を中和することにより槽内pHを管理
してもよい。
In the present invention, carbon dioxide gas generated by the decomposition of organic matter contained in the ammonium hydroxide causes a decrease in pH in the aeration tank. Therefore, it is preferable to disperse air or nitrogen for expulsion. Air or nitrogen aeration may be continuous or intermittent. Instead of expelling carbon dioxide gas by air diffusion, the pH in the tank may be controlled by injecting a neutralizing agent such as caustic soda to neutralize the carbonic acid component.

【0013】本発明において、曝気槽内の溶存酸素濃度
(DO)は、0.5〜7.0mg/L、好ましくは1.
0〜5mg/L、より好ましくは2.0〜3.0mg/
Lに調整される。溶存酸素濃度が低すぎると安水中の汚
染物質を十分に処理することができず、高すぎると酸素
消費量が増加して処理効率が低下する。また曝気槽内の
pHは、5.5〜7.5、好ましくは6.0〜7.0、
より好ましくは6.0〜6.5に調整される。pHが低
すぎたり、高すぎたりすると微生物の機能が低下し、十
分な処理ができなくなる。
In the present invention, the dissolved oxygen concentration (DO) in the aeration tank is 0.5 to 7.0 mg / L, preferably 1.
0-5 mg / L, more preferably 2.0-3.0 mg / L
Adjusted to L. If the dissolved oxygen concentration is too low, the pollutants in the ammonium hydroxide cannot be sufficiently treated, while if it is too high, the oxygen consumption increases and the treatment efficiency decreases. The pH in the aeration tank is 5.5 to 7.5, preferably 6.0 to 7.0,
It is more preferably adjusted to 6.0 to 6.5. If the pH is too low or too high, the functions of the microorganisms are deteriorated and sufficient treatment cannot be performed.

【0014】本発明において曝気槽内のMLSSは、
5,000〜15,000mg/L、好ましくは7,0
00〜12,000mg/L、より好ましくは、8,0
00〜10,000mg/Lである。MLSS濃度が低
すぎると汚染物質を十分に処理することができず、高す
ぎると、酸素消費量が多くなって不経済である。
In the present invention, the MLSS in the aeration tank is
5,000 to 15,000 mg / L, preferably 7,0
00 to 12,000 mg / L, more preferably 8.0
It is 00-10,000 mg / L. If the MLSS concentration is too low, the pollutants cannot be sufficiently treated, and if it is too high, the oxygen consumption increases and it is uneconomical.

【0015】本発明において、曝気槽内の溶存酸素濃度
調整手段としては、例えば曝気槽に設けられた活性汚泥
の循環ラインと、該循環ラインに設けられた高濃度酸素
含有ガス注入手段としてのベンチュリ、および酸素注入
後の富酸素活性汚泥を前記曝気槽内に噴射する手段とし
ての噴射ノズルとからなる一連のものが挙げられる。ま
た、前記活性汚泥の循環、酸素注入手段に代えて超微細
気泡散気装置を用いて微細気泡の高濃度酸素含有ガスを
直接曝気槽に散気、供給することもできる。
In the present invention, the dissolved oxygen concentration adjusting means in the aeration tank is, for example, a circulation line of activated sludge provided in the aeration tank and a venturi as a means for injecting a high concentration oxygen-containing gas provided in the circulation line. , And an injection nozzle as a means for injecting the oxygen-rich activated sludge after oxygen injection into the aeration tank. Further, a high concentration oxygen-containing gas of fine bubbles can be diffused and supplied directly to the aeration tank using an ultrafine bubble diffuser instead of the activated sludge circulation and oxygen injection means.

【0016】本発明において、上記溶存酸素濃度調整手
段は、既設の活性汚泥処理設備にそのまま適用すること
ができ、この場合、大規模な改造を要することなく、既
存設備の有効利用を図ることができる。
In the present invention, the dissolved oxygen concentration adjusting means can be directly applied to the existing activated sludge treatment equipment. In this case, it is possible to effectively use the existing equipment without requiring a large-scale modification. it can.

【0017】[0017]

【発明の実施の形態】次に本発明を図面を用いて詳細に
説明する。図1は、本発明に適用される高濃度酸素含有
ガスを用いた活性汚泥装置の説明図である。図1におい
てこの装置は、上部開放型の曝気槽1と、該曝気槽1内
の、活性汚泥の一部を循環する循環ライン2と、該循環
ライン2に設けられた循環ポンプ3、ベンチュリ4およ
び噴射ノズル5と、曝気槽1内の溶存酸素を検出する溶
存酸素検出器(DOメータ)6および該DOメータ6の
検出値に基づいて前記ベンチュリ3に供給する酸素量を
調節する流量調節弁7と、前記曝気槽1の底部に設けら
れた、空気または窒素の散気装置8とから主として構成
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view of an activated sludge device using a high concentration oxygen-containing gas applied to the present invention. In FIG. 1, this apparatus comprises an upper open aeration tank 1, a circulation line 2 for circulating a part of activated sludge in the aeration tank 1, a circulation pump 3 and a venturi 4 provided in the circulation line 2. And a jet nozzle 5, a dissolved oxygen detector (DO meter) 6 for detecting dissolved oxygen in the aeration tank 1, and a flow rate control valve for adjusting the amount of oxygen supplied to the venturi 3 based on the detection value of the DO meter 6. 7 and an air or nitrogen diffuser 8 provided at the bottom of the aeration tank 1.

【0018】このような構成において、曝気槽1内の活
性汚泥の一部は循環ポンプ3によって抜き出され、汚泥
循環ライン2に設けられたベンチュリ4において、流量
調節弁7を経て注入される高濃度酸素含有ガス11を加
圧状態で混合、溶解して微細気泡の酸素を伴った富酸素
活性汚泥となって噴射ノズル5から高速流として曝気槽
1内に噴射され、前記曝気槽1全体に酸素を供給し、槽
内の溶存酸素濃度を例えば2.3mg/Lに調整、維持
する。このとき槽内温度は、例えば30℃に維持され
る。溶存酸素濃度が調整された曝気槽1に被処理水であ
る安水10が導入され、該安水10に含まれるCOD、
フェノール、チオシアン、NH3 等が酸素の供給を受け
た微生物の作用によって浄化、処理される。このとき有
機物の分解によって発生する炭酸ガス(CO2 )は、散
気装置8から供給される空気または窒素12によって曝
気槽1から追い出され、槽内pHは、例えばpH=6.
0に維持される。なお、処理水13は曝気槽1から溢流
して、例えば図示省略した最終沈殿池に流入する。
In such a structure, a part of the activated sludge in the aeration tank 1 is extracted by the circulation pump 3 and is injected into the venturi 4 provided in the sludge circulation line 2 via the flow rate control valve 7. The oxygen-containing gas 11 is mixed and melted under pressure to form oxygen-rich activated sludge accompanied by fine bubbles of oxygen, which is jetted from the jet nozzle 5 into the aeration tank 1 as a high-speed flow to the entire aeration tank 1. Oxygen is supplied to adjust and maintain the dissolved oxygen concentration in the tank to 2.3 mg / L, for example. At this time, the temperature in the bath is maintained at 30 ° C., for example. CO2 contained in the ammonium hydroxide 10, which is the water to be treated, is introduced into the aeration tank 1 in which the dissolved oxygen concentration is adjusted.
Phenol, thiocyan, NH 3, etc. are purified and treated by the action of microorganisms supplied with oxygen. At this time, carbon dioxide gas (CO 2 ) generated by the decomposition of organic matter is expelled from the aeration tank 1 by the air or nitrogen 12 supplied from the air diffuser 8, and the tank pH is, for example, pH = 6.
It is maintained at 0. The treated water 13 overflows from the aeration tank 1 and flows into, for example, a final settling tank (not shown).

【0019】本実施例によれば、曝気槽1内の活性汚泥
の一部を抜き出してベンチュリ4によって高濃度酸素含
有ガス11を混合、溶解して富酸素活性汚泥としたの
ち、噴射ノズル5を介して槽内に循環することにより、
注入された酸素が剪断力を受けて微細な気泡となり、活
性汚泥とともに槽内に高速噴射されるので、曝気槽1内
で前記酸素がさらに微細な気泡となって効率よく溶解す
る。従って、従来の空気曝気式の活性汚泥法に比べて溶
存酸素濃度制御における追従性が向上し、必要最小限の
酸素で適正な溶存酸素濃度を維持して効率よく安水を処
理することができる。また、曝気槽1内の溶存酸素濃度
の調整が容易となるので、MLSS濃度を例えば5,0
00〜15,000mg/Lと幅広い範囲で運転するこ
とができる。従って、従来技術の2〜3倍の高負荷処理
が可能となる上、例えば被処理安水の導入量の変動、C
OD等の負荷変動に対しても大きな影響を受けることな
く安定な処理が可能となる。さらに、従来の空気曝気方
式に比べて同一負荷の場合、設備を小型化し、設備費お
よび運転管理費を低減することができる。
According to this embodiment, a part of the activated sludge in the aeration tank 1 is extracted and the venturi 4 mixes and dissolves the high-concentration oxygen-containing gas 11 into the oxygen-rich activated sludge. By circulating in the tank through
The injected oxygen is subjected to shearing force to form fine bubbles and is jetted at high speed into the tank together with the activated sludge, so that the oxygen becomes finer bubbles and is efficiently dissolved in the aeration tank 1. Therefore, the followability in the dissolved oxygen concentration control is improved compared to the conventional air aeration type activated sludge method, and it is possible to maintain an appropriate dissolved oxygen concentration with the minimum necessary amount of oxygen and efficiently process the ammonium hydroxide. . Further, since it becomes easy to adjust the dissolved oxygen concentration in the aeration tank 1, the MLSS concentration is set to, for example, 5,0.
It can be operated in a wide range of 00 to 15,000 mg / L. Therefore, it is possible to carry out high load treatment which is 2 to 3 times as high as that of the conventional technique, and, for example, fluctuations in the amount of introduced untreated water, C
Stable processing is possible without being greatly affected by load fluctuations such as OD. Further, in the case of the same load as in the conventional air aeration system, the equipment can be downsized and the equipment cost and the operation management cost can be reduced.

【0020】本実施例によれば、空気または窒素12を
散気する散気装置8を設けたことにより、安水10に含
まれる有機物の分解によって生成した炭酸ガスを素早く
曝気槽1から追い出すことができるので、曝気槽1内の
pHの異常な低下を回避し、適正なpHによって長期間
安定処理を継続することができる。
According to this embodiment, since the air diffuser 8 for diffusing air or nitrogen 12 is provided, the carbon dioxide gas generated by the decomposition of the organic matter contained in the ammonium hydroxide 10 can be quickly expelled from the aeration tank 1. Therefore, it is possible to avoid an abnormal decrease in pH in the aeration tank 1 and to continue stable treatment for a long time with an appropriate pH.

【0021】また、本実施例によれば、曝気槽1として
開放型の曝気槽を採用することができるので、密閉型曝
気槽を採用した従来技術に比べて設備費が低減するとと
もに、運転管理、保守点検が容易となる。また曝気動力
は炭酸ガス脱気用としてのみ消費されるので、従来の空
気曝気式の活性汚泥方法に比べて、消費電力が減少し、
ランニングコストを低減することができる。本実施例に
おいて、曝気槽1への安水10の導入は、溶存酸素濃度
の調整開始と同時、またはその前であってもよい。
Further, according to the present embodiment, since the open type aeration tank can be adopted as the aeration tank 1, the equipment cost is reduced as compared with the conventional technique adopting the closed type aeration tank, and the operation management is performed. , Maintenance and inspection becomes easy. Also, since the aeration power is consumed only for carbon dioxide degassing, power consumption is reduced compared to the conventional air aeration type activated sludge method,
The running cost can be reduced. In the present embodiment, the introduction of the ammonium hydroxide 10 into the aeration tank 1 may be performed at the same time as or before the start of adjusting the dissolved oxygen concentration.

【0022】実施例2 図2は、本発明の別の実施例を示す装置系統図である。
図2において、この装置が図1の装置と異なるところ
は、酸素の供給手段としての汚泥循環ライン2に代え
て、超微細気泡散気装置14を設けたものである。この
ような構成において、高濃度酸素含有ガス11は、超微
細気泡散気装置14を介して曝気槽1内に供給され、該
曝気槽1内に均等に供給されて上記実施例と同様に安水
10が処理される。
Embodiment 2 FIG. 2 is an apparatus system diagram showing another embodiment of the present invention.
In FIG. 2, this device is different from the device in FIG. 1 in that an ultrafine bubble diffuser 14 is provided instead of the sludge circulation line 2 as an oxygen supply means. In such a configuration, the high-concentration oxygen-containing gas 11 is supplied into the aeration tank 1 through the ultrafine bubble diffusing device 14, and is evenly supplied into the aeration tank 1 to achieve the same safety as in the above embodiment. Water 10 is treated.

【0023】本実施例によれば、超微細気泡散気装置1
4を設けたことにより、上記実施例と同様、溶存酸素濃
度の制御追従性が向上し、安水の性状が変化しても適正
な槽内溶存酸素濃度を維持して必要最小限の酸素で効率
よく処理することができる。また、上記実施例と同様、
有機物の分解によって生成した炭酸ガスを散気装置8か
ら導入される空気または窒素12によって素早く曝気槽
1から追い出すことができるので、曝気槽内のpHの著
しい低下を回避し、長期間安定に安水処理を継続するこ
とができる。
According to this embodiment, the ultrafine bubble diffuser 1
By providing No. 4, the control followability of the dissolved oxygen concentration is improved and the proper dissolved oxygen concentration in the tank is maintained even if the properties of the ammonium hydroxide are changed, so that the minimum required oxygen can be obtained. It can be processed efficiently. Also, similar to the above embodiment,
The carbon dioxide gas generated by the decomposition of the organic matter can be quickly expelled from the aeration tank 1 by the air or nitrogen 12 introduced from the air diffuser 8, so that a significant decrease in pH in the aeration tank can be avoided and the stability can be kept stable for a long period of time. Water treatment can be continued.

【0024】次に本発明の具体的実施例を説明する。 実施例1 曝気槽の容量を970Lとした図1の装置を用い、原水
装入量:0.17〜0.52L/min、希釈水装入
量:0.26〜0.78L/min、汚泥循環流量:
8.0L/min、曝気槽内DO:0.5〜2.5mg
/L、MLSS:8,000〜10,000mg/L、
炭酸ガス追い出し用曝気空気量:30〜50NL/mi
n、曝気槽内温度:30℃としてコークス炉から排出さ
れた安水を処理したところ、曝気槽内のpHは6.0〜
7.0で安定し、COD:115mg/L、総シアン:
4.6mg/L、チオシアン:5.6mg/L、フェノ
ール:traceの処理水が得られた。
Next, specific examples of the present invention will be described. Example 1 Using the apparatus of FIG. 1 with the aeration tank capacity of 970 L, raw water charge: 0.17 to 0.52 L / min, dilution water charge: 0.26 to 0.78 L / min, sludge Circulation flow rate:
8.0 L / min, DO in the aeration tank: 0.5 to 2.5 mg
/ L, MLSS: 8,000-10,000 mg / L,
Aeration air amount for carbon dioxide purging: 30 to 50 NL / mi
n, the temperature in the aeration tank was set to 30 ° C., and when the low water discharged from the coke oven was treated, the pH in the aeration tank was 6.0.
Stable at 7.0, COD: 115 mg / L, total cyan:
Treated water of 4.6 mg / L, thiocyanate: 5.6 mg / L, phenol: trace was obtained.

【0025】結果を表1に示した。 表1において、CODとチオシアンは、90%以上除去
されており、フェノールについてはほぼ100%除去で
きたことが分かる。なお、NH3 がほとんど処理されて
いないのは、高濃度酸素含有ガスを用いて曝気槽内のD
Oを容易かつ安定に維持することができたので、被処理
水中のアンモニアの消化による硝酸が生成されなかった
ためと考えられる。
The results are shown in Table 1. In Table 1, it can be seen that 90% or more of COD and thiocyanate were removed, and almost 100% of phenol was removed. It should be noted that NH 3 is hardly treated because the high concentration oxygen-containing gas is used to remove the D 3 in the aeration tank.
Since O could be easily and stably maintained, it is considered that nitric acid was not produced by digestion of ammonia in the water to be treated.

【0026】実施例2 実施例1の条件で、原水中のCOD負荷を徐々に増加さ
せながら、約2ケ月間連続処理を行ったところ、COD
負荷を3.5kg/m3 ・Dに上げても、曝気槽内のp
Hは6.0〜7.0と安定しており、長期間良好な処理
を継続することができた。
Example 2 Under the conditions of Example 1, when the COD load in the raw water was gradually increased and continuous treatment was carried out for about 2 months, COD
Even if the load is increased to 3.5 kg / m 3 · D, p in the aeration tank
H was stable at 6.0 to 7.0, and good treatment could be continued for a long time.

【0027】実施例3 炭酸ガス追い出し用の空気または窒素散気を行わない以
外は、上記実施例2と同様に同様の連続処理を行ったと
ころ、COD負荷が1.0kg/m3 ・Dを越えたあた
りから曝気槽内のpHが低下しはじめた。
Example 3 A COD load of 1.0 kg / m 3 · D was obtained when the same continuous treatment was carried out as in Example 2 except that air or nitrogen was not diffused to expel carbon dioxide. The pH in the aeration tank began to drop from around the point where it was exceeded.

【0028】実施例2および実施例3の結果をそれぞれ
図3および図4に示した。図3および図4から、空気ま
たは窒素を散気することにより、有機物の分解によって
生じた炭酸ガスを曝気槽から追い出すことができるの
で、pHの低下を回避して長期間連続して安定な処理が
継続できることが分かる。
The results of Example 2 and Example 3 are shown in FIGS. 3 and 4, respectively. From FIG. 3 and FIG. 4, it is possible to expel the carbon dioxide gas generated by the decomposition of the organic matter from the aeration tank by aerating the air or nitrogen. Therefore, it is possible to avoid a decrease in pH and perform a stable treatment for a long period of time. It turns out that can be continued.

【0029】[0029]

【発明の効果】本願の請求項1に記載の発明によれば、
槽内DO調整の追従性が向上し、MLSSの適用範囲が
拡大するので、適正な溶存酸素濃度で安水を効率よく処
理することができる。本願の請求項2に記載の発明によ
れば、上記発明と同様の効果が得られる。
According to the invention described in claim 1 of the present application,
Since the followability of DO adjustment in the tank is improved and the applicable range of MLSS is expanded, it is possible to efficiently treat the ammonium hydroxide with an appropriate dissolved oxygen concentration. According to the invention described in claim 2 of the present application, the same effect as the above invention can be obtained.

【0030】本願の請求項3に記載の発明によれば、上
記発明の効果に加え、高濃度の安水であっても曝気槽内
のpHを低下させることなく、長期間連続して安定に処
理することができる。本願の請求項4に記載の発明によ
れば、上記発明と同様、曝気槽内のpHを低下させるこ
となく、安水を長期間連続して安定に処理することがで
きる。
According to the invention described in claim 3 of the present application, in addition to the effects of the above-mentioned invention, even if the concentration of the ammonium hydroxide is high, the pH in the aeration tank is not lowered, and it is stable for a long period of time. Can be processed. According to the invention of claim 4 of the present application, similar to the above-mentioned invention, it is possible to continuously and stably treat the ammonium hydroxide for a long period of time without lowering the pH in the aeration tank.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に適用される装置系統を示す図。FIG. 1 is a diagram showing an apparatus system applied to the present invention.

【図2】本発明に適用される他の装置系統を示す図。FIG. 2 is a diagram showing another device system applied to the present invention.

【図3】本発明の一実施例の結果を示す図。FIG. 3 is a diagram showing a result of one example of the present invention.

【図4】本発明の他の実施例の結果を示す図。FIG. 4 is a diagram showing the results of another example of the present invention.

【図5】従来技術を示す説明図。FIG. 5 is an explanatory diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

1…曝気槽、2…汚泥循環ライン、3…循環ポンプ、4
…ベンチュリ、5…噴射ノズル、6…DOメータ、7…
流量調節弁、8…散気装置、10…安水、11…高濃度
酸素含有ガス、12…空気または窒素、13…処理水、
14…超微細気泡散気装置、31…曝気槽、32…仕切
り壁、33…曝気ゾーン、34…表面曝気機、35…酸
素供給装置、36…排ガスライン、37…圧力計、38
…酸素計、39…被処理水、40…処理水。
1 ... Aeration tank, 2 ... Sludge circulation line, 3 ... Circulation pump, 4
... Venturi, 5 ... Injection nozzle, 6 ... DO meter, 7 ...
Flow rate control valve, 8 ... Air diffuser, 10 ... Ansui, 11 ... High concentration oxygen-containing gas, 12 ... Air or nitrogen, 13 ... Treated water,
14 ... Ultrafine air bubble diffuser, 31 ... Aeration tank, 32 ... Partition wall, 33 ... Aeration zone, 34 ... Surface aeration machine, 35 ... Oxygen supply device, 36 ... Exhaust gas line, 37 ... Pressure gauge, 38
... Oxygen meter, 39 ... Treated water, 40 ... Treated water.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 根本 佳和 東京都千代田区九段北四丁目1番3号 ア ドケムコ株式会社内 (72)発明者 池田 和哉 神奈川県川崎市川崎区大川町2番1号 三 菱化工機株式会社内 Fターム(参考) 4D011 AA15 AD03 4D028 AB05 BC26 BD00 BD07 BD10 CA04 CA09 CB02 CC07 CD01 4D029 AA01 AB03 CC01 4D037 AA11 AB11 BA03 BB01 BB05 CA07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshikazu Nemoto             9-3 Kitankita 4-chome, Chiyoda-ku, Tokyo             Dochemco Ltd. (72) Inventor Kazuya Ikeda             3-1, Okawa-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa             Ryoka Koki Co., Ltd. F-term (reference) 4D011 AA15 AD03                 4D028 AB05 BC26 BD00 BD07 BD10                       CA04 CA09 CB02 CC07 CD01                 4D029 AA01 AB03 CC01                 4D037 AA11 AB11 BA03 BB01 BB05                       CA07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コークス炉から発生する安水を曝気槽に
導入して活性汚泥処理する方法において、前記曝気槽内
に高濃度酸素含有ガスを注入するとともに、槽内溶存酸
素濃度を測定し、該溶存酸素濃度が所定値となるように
調整して活性汚泥処理することを特徴とする安水の処理
方法。
1. A method of introducing activated water generated from a coke oven into an aeration tank to treat activated sludge, injecting a high-concentration oxygen-containing gas into the aeration tank, and measuring the dissolved oxygen concentration in the tank, A method for treating ammonium hydroxide, which comprises treating the activated sludge by adjusting the dissolved oxygen concentration to a predetermined value.
【請求項2】 コークス炉から発生する安水を曝気槽に
導入して活性汚泥処理する方法において、前記曝気槽内
の活性汚泥の一部を抜き出し、高濃度酸素含有ガスを注
入して富酸素活性汚泥としたのち、前記曝気槽内に噴
出、循環するとともに、槽内溶存酸素濃度を測定し、該
溶存酸素濃度が所定値となるように調整して活性汚泥処
理することを特徴とする安水の処理方法。
2. A method for treating activated sludge by introducing an ammonium hydroxide generated from a coke oven into an aeration tank, extracting a part of the activated sludge in the aeration tank, and injecting a high-concentration oxygen-containing gas into the oxygen-rich oxygen. After activated sludge is ejected and circulated in the aeration tank, the dissolved oxygen concentration in the tank is measured, and the activated oxygen is adjusted so that the dissolved oxygen concentration becomes a predetermined value. Water treatment method.
【請求項3】 前記安水に含まれる有機物の分解によっ
て生成する炭酸ガスを、空気または窒素を散気して追い
出し、曝気槽内のpHを調整することを特徴とする請求
項1または2に記載の方法。
3. The pH in the aeration tank is adjusted by diffusing air or nitrogen to expel carbon dioxide gas generated by the decomposition of organic matter contained in the ammonium hydroxide, thereby adjusting the pH in the aeration tank. The method described.
【請求項4】 前記安水に含まれる有機物の分解によっ
て生成する炭酸成分を中和剤で中和して曝気槽内のpH
を調整することを特徴とする請求項1または2に記載の
方法。
4. The pH in the aeration tank is obtained by neutralizing a carbonic acid component produced by decomposition of organic matter contained in the ammonium hydroxide with a neutralizing agent.
The method according to claim 1 or 2, characterized in that
JP2001276840A 2001-09-12 2001-09-12 Treating method for ammonia solution Pending JP2003080289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001276840A JP2003080289A (en) 2001-09-12 2001-09-12 Treating method for ammonia solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001276840A JP2003080289A (en) 2001-09-12 2001-09-12 Treating method for ammonia solution

Publications (1)

Publication Number Publication Date
JP2003080289A true JP2003080289A (en) 2003-03-18

Family

ID=19101484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001276840A Pending JP2003080289A (en) 2001-09-12 2001-09-12 Treating method for ammonia solution

Country Status (1)

Country Link
JP (1) JP2003080289A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009500A1 (en) * 2002-07-22 2004-01-29 C & R Co. Sewage treatment process by activated-sludge method comprising line atomizing treatment
JP2008229436A (en) * 2007-03-19 2008-10-02 Matsushita Electric Ind Co Ltd Wastewater treatment method and apparatus
KR100913726B1 (en) * 2008-12-19 2009-08-24 조정선 Method of controlling dissolved oxygen level in waste water treatment system
KR101140800B1 (en) * 2004-12-21 2012-05-03 재단법인 포항산업과학연구원 Removal Apparatus of Organic Matter and Nitrogen Using Activated Oxygen and Method Thereof
JP2016112557A (en) * 2014-12-16 2016-06-23 新日鐵住金株式会社 Method for biologically treating water to be treated by using aerobic fixed bed
JP2016112556A (en) * 2014-12-16 2016-06-23 新日鐵住金株式会社 Method for biologically treating water to be treated by using aerobic fluidized bed

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009500A1 (en) * 2002-07-22 2004-01-29 C & R Co. Sewage treatment process by activated-sludge method comprising line atomizing treatment
US7105092B2 (en) 2002-07-22 2006-09-12 C & R Co. Sewage treatment process by activated-sludge method comprising line atomizing treatment
KR101140800B1 (en) * 2004-12-21 2012-05-03 재단법인 포항산업과학연구원 Removal Apparatus of Organic Matter and Nitrogen Using Activated Oxygen and Method Thereof
JP2008229436A (en) * 2007-03-19 2008-10-02 Matsushita Electric Ind Co Ltd Wastewater treatment method and apparatus
KR100913726B1 (en) * 2008-12-19 2009-08-24 조정선 Method of controlling dissolved oxygen level in waste water treatment system
JP2016112557A (en) * 2014-12-16 2016-06-23 新日鐵住金株式会社 Method for biologically treating water to be treated by using aerobic fixed bed
JP2016112556A (en) * 2014-12-16 2016-06-23 新日鐵住金株式会社 Method for biologically treating water to be treated by using aerobic fluidized bed

Similar Documents

Publication Publication Date Title
EP1976804B1 (en) Ozonation of wastewater for reduction of sludge or foam and bulking control
JP3831949B2 (en) Biological treatment method and apparatus for organic drainage
EP1905743A1 (en) System and method for eliminating sludge via ozonation
KR101045124B1 (en) Treatment method and treatment unit for organic waste water
JP5566147B2 (en) Rice processing wastewater treatment method and equipment
EP1905744A1 (en) System and method for treating wastewater
JPS5933439B2 (en) Microbiological wastewater treatment equipment for nitrogenous wastewater
KR100392831B1 (en) Treatment Method and Apparatus for Concentrated Wastewater
US20090250396A1 (en) Drainage water-treating method and drainage water-treating apparatus
JP2003080289A (en) Treating method for ammonia solution
JP2015226889A (en) Method for treating liquid including amine-based organic compound
KR20090109956A (en) Advanced wastewater treatment apparatus and method using a submerged type membrane adapted deaerator
KR20090109957A (en) Advanced wastewater treatment apparatus and method using a submerged type membrane adapted ultrasonic deaerator
EP2727886A1 (en) Methods for treating liquid waste with high purity oxygen
KR20130041598A (en) Waste water treatment system and method having dissolved oxygen level controlling apparatus
KR101203944B1 (en) Denitrification system using micro bubble floating device
KR101370513B1 (en) Bio-chemical water treatment apparatus and method
KR101665011B1 (en) Bioreactor for treating waste water
JP2017080682A (en) Denitrification method and device of ammonia-containing waste water
KR20090083141A (en) Method for removal of ammonia from waste water
JP2000202485A (en) Treatment of organic sewage
JPH0985279A (en) Oxygen aeration type denitrification treatment apparatus
JP3877262B2 (en) Organic wastewater treatment method and equipment
JP4025972B2 (en) Advanced wastewater treatment method and advanced treatment equipment
KR20190033317A (en) Membrane water treatment apparatus using micro-bubble