JP2008180677A - マイクロチップ検査システム、マイクロチップ検査装置及びプログラム - Google Patents

マイクロチップ検査システム、マイクロチップ検査装置及びプログラム Download PDF

Info

Publication number
JP2008180677A
JP2008180677A JP2007016153A JP2007016153A JP2008180677A JP 2008180677 A JP2008180677 A JP 2008180677A JP 2007016153 A JP2007016153 A JP 2007016153A JP 2007016153 A JP2007016153 A JP 2007016153A JP 2008180677 A JP2008180677 A JP 2008180677A
Authority
JP
Japan
Prior art keywords
reaction
microchip
fluorescence intensity
reagent
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007016153A
Other languages
English (en)
Inventor
Tsuneo Sawasumi
庸生 澤住
Akihisa Nakajima
彰久 中島
Yasuhiro Santo
康博 山東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2007016153A priority Critical patent/JP2008180677A/ja
Priority to EP08150345A priority patent/EP1950555A3/en
Priority to US12/017,130 priority patent/US20080181822A1/en
Priority to CNA2008100085536A priority patent/CN101271069A/zh
Publication of JP2008180677A publication Critical patent/JP2008180677A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics

Abstract

【課題】反応前後での蛍光強度の変化分を正確に測定し、精度良い検出を行うことのできるマイクロチップ検査システムを提供する。
【解決手段】標的物質と蛍光標識された標的物質に特異的に結合する試薬とを含み、標的物質と前記試薬との反応が行われ、被検出部において蛍光強度の検出が行われるマイクロチップと、マイクロチップを収容可能なマイクロチップ収容部と、収容されたマイクロチップの被検出部に対応して設けられ、被検出部に励起光を照射する発光部と被検出部からの蛍光を受光する受光部とを有する光検出部と、を有するマイクロチップ検査システムにおいて、反応を開始させる反応開始手段と、反応開始手段の反応開始タイミング及び光検出部による反応前及び反応後の蛍光強度の検出タイミングを制御する制御部と、を有し、制御部は、光検出部による反応前の蛍光強度の検出タイミングと、反応開始手段による反応開始タイミングとを対応付ける。
【選択図】図5

Description

本発明は、マイクロチップ検査システム、マイクロチップ検査装置及びプログラムに関する。
近年、微細流路が集積加工されたマイクロチップ上において、複数の溶液を混合して反応させ、当該反応の状態を検出して分析を行うマイクロ総合分析システム(Micro Total Analysis System;μTAS)が注目されている。
μTASでは、試料の量が少ない、反応時間が短い、廃棄物が少ない等のメリットがある。医療分野に使用した場合、検体(血液、尿、拭い液等)の量を少なくすることで患者への負担を軽減でき、試薬の量を少なくすることで検査のコストを下げることができる。また、検体、試薬の量が少ないことから、反応時間が大幅に短縮され、検査の効率化が図れる。さらに、装置が小型であるため小さな医療機関にも設置することができ、場所を選ばず迅速に検査を行うことができる。
マイクロチップ検査システムでは、マイクロポンプ等からマイクロチップに駆動液を供給することにより、マイクロチップ内に収容されている検体及び試薬が流路に沿って送液される。これにより、検体及び試薬は、流路内で混合され反応を生じる。反応液はマイクロチップ内の被検出部に送液され、被検出部において反応液内の標的物質の濃度等の検出が行われる。
例えば、特許文献1には、微細流路が集積加工されたマイクロチップを用いる標的遺伝子の検出例が記載されている。まず、マイクロチップの被検出部には、標的遺伝子をトラップする物質が予め固定化されている。次に、標的遺伝子の増幅に用いる試薬と検体とを反応させて増幅産物を生成する。これにより、検体に標的遺伝子が含まれていれば、増幅産物内に増幅された標的遺伝子が存在することになる。次に、増幅された標的遺伝子を一本鎖に変性する。これを被検出部に供給することで、被検出部に固定化されている標的遺伝子をトラップする物質に標的遺伝子をトラップさせる。次に、当該一本鎖の標的遺伝子にハイブリダイズするDNAプローブを被検出部に供給し、ハイブリダイゼーション反応により標的遺伝子とDNAプローブとを結合させる。DNAプローブは予め蛍光標識されている。次に、トラップされた標的遺伝子に結合しているDNAプローブに結合する金コロイド液を被検出部に供給し、金コロイドをDNAプローブに結合させる。次に、結合していない金コロイドを被検出部から除去するため、被検出部に洗浄液を供給する。そして、被検出部の金コロイドの濃度を光学的に検出することにより、標的遺伝子の検出を行っている。
また、特許文献2には、バイオチップ内の標的遺伝子の検出において、蛍光標識された標的遺伝子とDNAプローブとがハイブリダイズした処理液に励起光を照射し、処理液から発せられる蛍光の蛍光強度を検出することが記載されている。
また、特許文献3には、標的遺伝子の検出を高感度に行うことができる技術としてサイクリングプローブ法が記載されている。標的遺伝子を鋳型にしてDNAプローブの標的遺伝子へのハイブリダイズ、遊離をサイクル的に繰り返すことにより、少数の標的遺伝子に対して多数の蛍光標識を生成することができる方法である。
サイクリングプローブ法では、蛍光共鳴エネルギー移動を利用した蛍光色素によりDNAプローブの標識化がなされている。当該DNAプローブは、通常状態ではドナーである蛍光物質とアクセプタであるクエンチャとが対になって存在しており、励起光が照射されても蛍光物質から発せられた蛍光はクエンチャにより吸収され、ドナーの蛍光は発生しない。当該DNAプローブが標的遺伝子とハイブリダイゼーション反応を起こした状態では、蛍光物質とクエンチャとの結合が切断され、蛍光物質の蛍光が外部に発せられるようになる。蛍光物質とクエンチャとの結合が切断されると、当該DNAプローブは標的遺伝子から遊離する。そして、フリーになった標的遺伝子に通常状態のDNAプローブが再びハイブリダイゼーション反応により結合する。このように、ハイブリダイゼーション反応が繰り返されることにより、クエンチャの切断されたDNAプローブが増幅され、反応の進行に伴い、強い蛍光強度が得られる。
国際公開第2005/108571号パンフレット 特開2001−255328号公報 特表2003−517591号公報
特許文献2のように蛍光強度により検出を行う場合、精度良い検出を行うためには、ハイブリダイゼーション反応前の蛍光強度を測定し、反応後の蛍光強度を補正する必要が生じる。
特に、サイクリングプローブ法を用いる場合には、ハイブリダイゼーション反応前において、蛍光物質からの蛍光はクエンチャにより吸収されるはずであるが、現実にはクエンチャに吸収されなかった蛍光物質からの蛍光が微弱な蛍光となって現れている。このため、反応前の蛍光強度を測定し反応後の蛍光強度を補正することには大きな意義がある。
本発明は、このような要請に基づいてなされたものであり、反応前後での蛍光強度の変化分を正確に測定し、精度良い検出を行うことのできるマイクロチップ検査システム、マイクロチップ検査装置及びプログラムを提供することを目的としている。
本発明のマイクロチップ検査システムは、少なくとも標的物質と前記標的物質に特異的に結合する蛍光標識された試薬とを含み、前記標的物質と前記試薬との反応が行われ、被検出部において蛍光強度の検出が行われるマイクロチップと、前記マイクロチップを収容可能なマイクロチップ収容部と、前記マイクロチップ収容部に収容されたマイクロチップの被検出部に対応して設けられ、前記被検出部に励起光を照射する発光部と前記被検出部からの蛍光を受光する受光部とを有する光検出部と、を有するマイクロチップ検査システムにおいて、前記反応を開始させる反応開始手段と、前記反応開始手段の反応開始タイミング及び前記光検出部による反応前及び反応後の蛍光強度の検出タイミングを制御する制御部と、を有し、前記制御部は、前記光検出部による反応前の蛍光強度の検出タイミングと、前記反応開始手段による前記反応開始タイミングとを対応付けることを特徴としている。
本発明のマイクロチップ検査装置は、少なくとも標的物質と蛍光標識された前記標的物質に特異的に結合する試薬とを含み、前記標的物質と前記試薬との反応が行われ、被検出部において蛍光強度の検出が行われるマイクロチップ、を収容可能なマイクロチップ収容部と、前記マイクロチップ収容部に収容されたマイクロチップの被検出部に対応して設けられ、前記被検出部に励起光を照射する発光部と前記被検出部からの蛍光を受光する受光部とを有する光検出部と、を有するマイクロチップ検査装置において、前記反応を開始させる反応開始手段と、前記反応開始手段の反応開始タイミング及び前記光検出部による反応前及び反応後の蛍光強度の検出タイミングを制御する制御部と、を有し、前記制御部は、前記光検出部による反応前の蛍光強度の検出タイミングと、前記反応開始手段による前記反応開始タイミングとを対応付けることを特徴としている。
本発明のプログラムは、マイクロチップ収容部に収容されたマイクロチップの被検出部に少なくとも標的物質と蛍光標識された前記標的物質に特異的に結合する試薬とを収容させるステップと、反応開始手段により前記標的物質と前記試薬との反応を開始させるステップと、光検出部による反応前の蛍光強度の検出を行わせるステップと、光検出部による反応後の蛍光強度の検出を行わせるステップと、をコンピュータに実行させるプログラムであって、前記光検出部による反応前の蛍光強度の検出タイミングと、前記反応開始手段による反応開始タイミングとが対応付けられていることを特徴としている。
請求項1、10、11に記載の発明によれば、反応前の蛍光強度の検出タイミングと反応開始タイミングとを対応づけているので、反応前後での蛍光強度の変化分をマイクロチップ毎に正確にかつ効率よく測定することができる。
請求項2に記載の発明によれば、反応開始を加熱によって行うことで、反応前後での蛍光強度の変化分をマイクロチップ毎に正確にかつ効率よく測定することが容易になる。
請求項3に記載の発明によれば、反応前の蛍光強度の検出の所定時間経過後に加熱により反応を開始させるので、加熱による液の対流などに起因した混合や反応のバラツキの影響を排除でき、測定精度が向上する。
請求項4に記載の発明によれば、加熱開始と同時又は加熱開始から所定時間後に反応前の蛍光強度の検出を行うので、温度条件を近づけた状態で、反応前後での蛍光強度の変化分を求めることが可能となり、測定が正確に行えるようになる。
請求項5、7に記載の発明によれば、反応開始を標的物質又は及び試薬の送液によって行い、反応前の蛍光強度の検出タイミングと前記送液による標的物質と試薬との混合が完了する混合完了タイミングとを対応付けているので、温度依存性の無い反応であっても、反応前後での蛍光強度の変化分をマイクロチップ毎に正確にかつ効率よく測定することができる。
請求項6に記載の発明によれば、標的物質と前記試薬との混合が完了する混合完了時又は混合完了から所定時間後に反応前の蛍光強度の検出を行うので、被検出部に収容される反応前と反応後とで液量が同等になるので、反応前後での蛍光強度の変化分をより正確に検出することができる。
請求項8に記載の発明によれば、最終結果である検出値の補正まで行うので検査効率が向上する。
請求項9に記載の発明によれば、標的遺伝子と蛍光標識したDNAプローブとのハイブリダイゼーションにより蛍光共鳴エネルギー遷移現象に変化を生じる反応における系に適用するので、非常に意義が大きい。
以下、図面に基づいて本実施形態について説明するが、一例であり、本実施形態に限定するものではない。
ここで、「マイクロチップ」と「検査システム」とは、DNA,RNAなど核酸やタンパク質などのバイオ分子の混合、分離、合成、抽出などの化学操作と生化学反応を小型のチップ内で行い、さらにその反応結果を検出する装置と組み合わせて成るシステムをいう。
(装置構成)
図1は、本実施形態に係るマイクロチップを用いる検査装置80の外観図である。検査装置80は、マイクロチップ1に予め注入された検体と試薬とを自動的に反応させ、反応結果を自動的に出力する装置である。
検査装置80の筐体82には、マイクロチップ1を装置内部に挿入するための挿入口83、表示部84、メモリカードスロット85、プリント出力口86、操作パネル87、外部入出力端子88が設けられている。
検査担当者は、図1の矢印方向にマイクロチップ1を挿入し、操作パネル87を操作して検査を開始させる。開始操作に伴って、後述するように、検査装置80内にあるマイクロチップ1内では蛍光反応が開始され、蛍光の検出結果に基づく検査結果が表示部84に表示される。検査結果は操作パネル87の操作により、プリント出力口86よりプリントを出力したり、メモリカードスロット85に挿入されたメモリカードに記憶することができる。また、外部入出力端子88から例えばLANケーブルを使って、パソコンなどにデータを保存することができる。検査終了後、検査担当者はマイクロチップ1を挿入口83から取り出す。
図2は、本実施形態に係るマイクロチップを用いる検査装置80の構成図である。図2においては、マイクロチップが図1に示す挿入口83から挿入され、セットが完了している状態を示している。
検査装置80は、マイクロチップ1に予め注入された検体及び試薬を送液するための駆動液11を貯留する駆動液タンク10、マイクロチップ1に駆動液11を供給するためのマイクロポンプ5、マイクロポンプ5とマイクロチップ1とを駆動液11が漏れないように接続するパッキン6、マイクロチップ1の必要部分を温調する温度調節ユニット3、マイクロチップ1をずれないように温度調節ユニット3及びパッキン6に密着させるためのチップ押圧板2、チップ押圧板2を昇降させるための押圧板駆動部21、マイクロチップ1をマイクロポンプ5に対して精度良く位置決めする規制部材22、マイクロチップ1内の検体と試薬との反応状態等を検出する光検出部4、等を備えている。
チップ押圧板2は、初期状態においては、図2に示す位置より上方に退避している。これにより、マイクロチップ1は矢印X方向に挿抜可能であり、検査担当者は挿入口83(図1参照)から規制部材22に当接するまでマイクロチップ1を挿入する。その後、チップ押圧板2は、押圧板駆動部21により下降してマイクロチップ1に当接し、マイクロチップ1の下面が温度調節ユニット3及びパッキン6に密着される。これにより、マイクロチップ1のセットが完了する。規制部材22、押圧板2、温度調節ユニット3及びパッキン6等で本発明のマイクロチップ収容部が構成される。また、チップ押圧板2の内部には、セットされたマイクロチップ1の被検出部125、126(図3参照)を加熱し、後述の標的遺伝子の増幅反応及びハイブリダイゼーション反応を促進するためのヒータ23が設けられている。ヒータ23は、本発明の加熱手段に相当する。
温度調節ユニット3は、マイクロチップ1と対向する面にペルチェ素子31を備え、マイクロチップ1が検査装置80にセットされたときに、ペルチェ素子31がマイクロチップ1に密着するようになっている。試薬が収容されている部分をペルチェ素子31で冷却して試薬が変性しないようにする。
光検出部4は、本発明の発光部としてのLED等の励起光源41、励起光源41から発せられた励起光の波長帯域を制限する励起光フィルタ42、励起光フィルタ42を透過した励起光をマイクロチップ1の被検出部125、126(図3参照)をカバーするサイズに適合したビームスポットに整形するための集光レンズ43、集光レンズ43を透過した励起光を反射してマイクロチップ1の被検出部125、126に照射するとともに当該励起光により発せられたマイクロチップ1の被検出部125、126からの蛍光を透過するダイクロイックミラー44、ダイクロイックミラー44を透過した蛍光を受光部47に導光するための受光レンズ45、受光レンズ45を透過した蛍光の波長帯域を制限する検出光フィルタ46、検出光フィルタ46を透過した蛍光を受光するフォトダイオード等からなる受光部47、等から構成されている。
マイクロポンプ5は、ポンプ室52、ポンプ室52の容積を変化させる圧電素子51、ポンプ室52のマイクロチップ1側に位置する第1絞り流路53、ポンプ室の駆動液タンク10側に位置する第2絞り流路54、等から構成されている。第1絞り流路53及び第2絞り流路54は絞られた狭い流路となっており、また、第1絞り流路53は第2絞り流路54よりも長い流路となっている。
駆動液11を順方向(マイクロチップ1に向かう方向)に送液する場合には、まず、ポンプ室52の容積を急激に減少させるように圧電素子51を駆動する。そうすると、短い絞り流路である第2絞り流路54において乱流が発生し、第2絞り流路54における流路抵抗が長い絞り流路である第1絞り流路53に比べて相対的に大きくなる。これにより、ポンプ室52内の駆動液11は、第1絞り流路53の方に支配的に押し出され送液される。次に、ポンプ室52の容積を緩やかに増加させるように圧電素子51を駆動する。そうすると、ポンプ室52内の容積増加に伴って駆動液11が第1絞り流路53及び第2絞り流路54から流れ込む。このとき、第2絞り流路54の方が第1絞り流路53と比べて長さが短いので、第2絞り流路54の方が第1絞り流路53と比べて流路抵抗が小さくなり、ポンプ室52内には第2絞り流路54の方から支配的に駆動液11が流入する。以上の動作を圧電素子51が繰り返すことにより、駆動液11が順方向に送液されることになる。
一方、駆動液11を逆方向(駆動液タンク10に向かう方向)に送液する場合には、まず、ポンプ室52の容積を緩やかに減少させるように圧電素子51を駆動する。そうすると、第2絞り流路54の方が第1絞り流路53と比べて長さが短いので、第2絞り流路54の方が第1絞り流路53と比べて流路抵抗が小さくなる。これにより、ポンプ室52内の駆動液11は、第2絞り流路54の方に支配的に押し出され送液される。次に、ポンプ室52の容積を急激に増加させるように圧電素子51を駆動する。そうすると、ポンプ室52内の容積増加に伴って駆動液11が第1絞り流路53及び第2絞り流路54から流れ込む。このとき、短い絞り流路である第2絞り流路54において乱流が発生し、第2絞り流路54における流路抵抗が長い絞り流路である第1絞り流路53に比べて相対的に大きくなる。これにより、ポンプ室52内には第1絞り流路53の方から支配的に駆動液11が流入する。以上の動作を圧電素子51が繰り返すことにより、駆動液11が逆方向に送液されることになる。
(マイクロチップの構成)
図3は、本実施形態に係るマイクロチップ1の構成図である。図3(a)は、マイクロチップ1の上面図である。図3(b)は、マイクロチップ1の側面図である。図3(c)は、図3(a)において被覆基板109を取り外した図である。一例の構成を示すものであり、これに限定されない。
図3(a)において矢印は、検査装置80にマイクロチップ1を挿入する挿入方向であり、図3(a)は挿入時にマイクロチップ1の下面となる面を図示している。図3(b)はマイクロチップ1の側面図である。
図3(b)に示すように、マイクロチップ1は溝形成基板108と、溝形成基板108を覆う被覆基板109から構成されている。
溝形成基板108には、図3(c)に示すように、検体と試薬とをマイクロチップ1上で混合・反応させるための微細流路及び流路エレメントが配設されている。図3(c)では、微細流路を矢印で、流路エレメントを四角形で模式的に示している。
マイクロチップ1上には、以下の流路エレメントが設けられている。
駆動液注入部110a〜110eは、マイクロポンプから駆動液11を注入するための注入部である。
検体注入部113は、マイクロチップ1に検体を注入するための注入部である。
駆動液注入部110a〜110eの下流には、それぞれ、検体を収容する検体収容部120、標的遺伝子のポジティブコントロール用試薬を収容するポジティブコントロール収容部121、ネガティブコントロール用試薬を収容するネガティブコントール収容部122、標的遺伝子を増幅するための酵素及び基質の収容部123、プライマー及び蛍光標識されたDNAプローブの収容部124、が設けられている。各試薬は、予め各収容部に収容されている。
ポジティブコントロール用試薬及びネガティブコントロール用試薬は、検査が正常に行われたか否かをモニタリングするための試薬である。
サイクリングプローブ法で用いる蛍光標識されたDNAプローブは、RNAとDNAからなるキメラオリゴヌクレオチドで、一方の末端が蛍光物質で、もう一方の末端がクエンチャで修飾されている。インタクトな状態では、蛍光共鳴エネルギー遷移現象により、蛍光を発しないが、標的遺伝子とハイブリダイゼーション反応を起こすと、RNA部分が切断されて蛍光を発する。
上記の各収容部は、マイクロチップ1を検査装置80にセットした際にペルチェ素子31に対向し、収容されている検体や試薬が変性しないように冷却される。
検体収容部120、ポジティブコントロール収容部121、酵素及び基質の収容部123、プライマー及び蛍光標識されたDNAプローブの収容部124の下流には、検体とポジティブコントロール用試薬との混合液に対して増幅反応及び検出を行うための被検出部125が設けられている。
また、検体収容部120、ネガティブコントール収容部122、酵素及び基質の収容部123、プライマー及び蛍光標識されたDNAプローブの収容部124の下流には、検体とネガティブコントール用の試薬との混合液に対して増幅反応及び検出を行うための被検出部126が設けられている。
被検出部125、126は、マイクロチップ1を検査装置80にセットした際にヒータ23に対向し、増幅促進のために加熱される。
被検出部125、126、及び被検出部125、126に対応する被覆基板109の窓部109aは、光学的な検出を行うことができるよう、透明なガラスや樹脂等の材料から構成されている。
検体及び各試薬の流れについて説明する。まず、マイクロチップ1による検査を行うに先立って、検査担当者は検体を検体注入部113から注射器等を用いて注入する。検体注入部113から注入された検体は、連通する微細流路を通って検体収容部120に収容される。
次に、検体の注入されたマイクロチップ1は、検査担当者により図1に示す検査装置80の挿入口83に挿入され、図2に示すようにセットされる。これにより、マイクロポンプ5を駆動して駆動液注入部110a〜110eから駆動液11を注入することが可能となる。
まず、駆動液注入部110aから駆動液11を注入すると、連通する微細流路を通って検体収容部120に収容されている検体が押し出され、被検出部125、126に検体が送り込まれる。
次に、駆動液注入部110bから駆動液11を注入すると、連通する微細流路を通ってポジティブコントロール収容部121に収容されているポジティブコントール用の試薬(標的遺伝子と同一のDNA配列箇所をもつ試薬)が押し出され、被検出部125にポジティブコントロール用試薬が送り込まれ、先に送液された検体と混合される。
次に、駆動液注入部110cから駆動液11を注入すると、連通する微細流路を通ってネガティブコントロール収容部122に収容されているネガティブコントロール用試薬(例えば純水)が押し出され、被検出部126にネガティブコントロールが送り込まれ、先に送液された検体と混合される。
次に、駆動液注入部110dと110eから駆動液11を注入すると、連通する微細流路を通って、123、124の各収容部から酵素及び基質、並びにプライマー及び蛍光標識されたDNAプローブが被検出部125、126にそれぞれ送りこまれ、先に送液された検体及びコントロール液の混合液と混合される。
次に、被検出部125,126をヒータ23により加熱すると、それぞれの被検出部において標的遺伝子(及びポジティブコントロールDNA)の増幅反応、増幅産物と蛍光プローブのハイブリダイゼーション反応、及び蛍光物質とクエンチャとの遊離反応が同時進行し、増幅から蛍光物質生成までの反応が一括して行われる。
そして、被検出部125、126に光検出部4の励起光源41から励起光を照射し、被検出部125、126から発せられる蛍光を受光部47で受光することにより光検出を行うことが可能となる。
尚、変形例として、増幅反応、ハイブリダイゼーション反応、検出を別個の流路エレメントで行うようにしても構わない。また、装置構成上、ヒータ23やペルチェ素子31の位置は、それらの機能を満足する限り多少変動することがあっても構わない。
表1に、被検出部125、126の検出結果を基づいて検査の総合判定を行うルールの一例を示す。
Figure 2008180677
ポジティブコントロールは、その試薬単独でも、標的遺伝子と同等の増幅反応、DNAプローブとのハイブリダイゼーション反応、及び蛍光物質の生成反応を起こす。ネガティブコントロールは、その試薬単独では、蛍光物質の生成反応を起こさない。
これらの試薬を検体と混合した混合液に対して反応及び検出を行うことで、表1に示した検査結果の良否判定が可能となる。
陽性すなわち検体に標的遺伝子が含まれる場合、検体とポジティブコントロール用試薬との混合液、及び検体とネガティブコントロール用試薬との混合液のいずれの混合液も蛍光発光が生じる。陰性すなわち検体に標的遺伝子が含まれない場合、検体とポジティブコントロール用試薬との混合液は、ポジティブコントロールの反応による蛍光発光が生じるが、検体とネガティブコントロール用試薬との混合液は、反応が生じず蛍光発光は生じない。これら2つのケースは、正常な反応が行われた検査結果として扱う事ができる。
一方、例えば、検体に反応の阻害物質が混入した場合等は、検体とポジティブコントロール用試薬との混合液、及び検体とネガティブコントロール用試薬との混合液のいずれの混合液も蛍光発光は生じない。また、検体とポジティブコントロール用試薬との混合液での蛍光発光無し、検体とネガティブコントロール用試薬との混合液での蛍光発光有りの場合は、マイクロチップ1に収容した試薬の失活などの異常が考えられる。これら2つのケースは、異常な反応を行った検査結果として、再検査を促すことが可能となる。
(制御構成)
図4は、本実施形態に係るマイクロチップを用いる検査装置の制御構成の要部を示す図である。本発明の制御に関係する主な構成要素について示している。
プログラムに従って検査装置80の制御を実行するCPU90を中心に、バス91により、ROM92、RAM93、不揮発性メモリ94、光検出部4、ペルチェ素子31、ヒータ23、表示部84、操作パネル87、等が相互に接続されている。
ROM92は、CPU90によって実行される各種制御プログラムやデータ等を記憶する。
RAM93は、CPU90によってワークエリアとして利用され、CPU90が制御を実行する際に必要なプログラムやデータを一時的に記憶する。
不揮発性メモリ94は、光検出部4による検出結果等を記憶する。
CPU90がROM92に記憶されているプログラムに基づいて制御を実行する。本発明の制御部として機能する。
光検出部4、ペルチェ素子31、ヒータ23、表示部84及び操作パネル87についての説明は、前述したので省略する。
(検出制御フロー)
図5は、本実施形態に係る検出制御のフロー図である。ヒータ23による加熱が行われることによりサイクリングプローブ法による標的遺伝子の増幅反応及び標的遺伝子とDNAプローブとのハイブリダイゼーション反応が開始される場合を一例に説明する。ヒータ23が本発明の反応開始手段に相当する。
検出制御は、ROM92に記憶されている検出制御プログラムに基づいてCPU90が処理を実行することにより行われる。尚、前提として、検査装置80の操作パネル87から検査開始の入力がされて検査が開始され、既に被検出部125、126には、マイクロチップ1内の流路で混合等の化学操作された各試薬が送り込まれているものとする。
まず、CPU90は、光検出部4により反応前の蛍光強度を測定する(ステップS1)。これにより、クエンチャに吸収されなかった蛍光物質からの微弱な蛍光を検出することが可能となる。
次に、CPU90は、所定時間T1(例えば数秒)が経過したか否かを判断する(ステップS2)。
所定時間T1が経過したと判断すると(ステップS2;Yes)、CPU90は、ヒータ23により被検出部125、126を加熱する(ステップS3)。標的遺伝子の増幅反応及びハイブリダイゼーション反応に適した温度に温調制御される。
所定時間T1が経過していないと判断すると(ステップS2;No)、CPU90は、所定時間T1が経過するまで待機する。
次に、CPU90は、所定時間T2(例えば数分)が経過したか否かを判断する(ステップS4)。つまり、所定時間T2の経過によって十分にハイブリダイゼーション反応が進行したか否かを判断する。
所定時間T2が経過したと判断すると(ステップS4;Yes)、CPU90は、光検出部4により反応後の蛍光強度を測定する(ステップS5)。
所定時間T2が経過していないと判断すると(ステップS4;No)、CPU90は、所定時間T2が経過するまで待機する。この間、加熱は継続される。
次に、CPU90は、反応前の蛍光強度を基に反応後の蛍光強度を補正する(ステップS6)。例えば、反応後の蛍光強度から反応前の蛍光強度を差し引くことにより補正を行う。
次に、CPU90は、補正後の蛍光強度を表示部84に表示したり、不揮発性メモリ94に保存したりする(ステップS7)。その後、フローは終了する。
以上のように、本実施形態によれば、反応前の検出タイミングから反応開始タイミングである加熱開始までの時間(所定時間T1)を管理して制御を行っているので、例えば、反応開始の直前に反応前の検出のタイミングが行われるように所定時間T1を設定すれば、反応による蛍光強度の変化分を正確に測定することができる。
本実施形態では、反応前の測定をヒータ23による加熱前に蛍光強度の測定を行ったが、試薬によっては、加熱を開始しても暫く反応が進行しない場合もあり得る。このような場合には、加熱と同時、又は加熱後反応が進行する前に蛍光強度の測定を行ってもよい。加熱後反応が進行する前に蛍光強度の測定を行うようにすると、例えば、被検出部125、126の加熱による液の対流等が蛍光強度や検出に与える影響を取り除くことができる。この場合には、図5において、ステップS1とステップS3とを入れ替えればよい。
また、温度により蛍光強度が大きく変化する場合には、加熱開始から所定時間T1経過した後に反応前の検出を行うよう制御すればよい。この場合には、図5において、ステップS1で、前述したマイクロポンプ5を駆動し、送液が完了する所定時間T1経過後(ステップS2)、反応前の蛍光強度を測定(ステップS3)すればよい。
本実施形態では、加熱により反応が開始される場合について説明したが、混合のみにより反応が進行する場合にも本発明の制御を適用することができる。この場合、検出試薬収容部124から被検出部125、126へのDNAプローブの送液が完了した後に、反応前の蛍光強度の測定を行うことが好ましい。被検出部125、126に収容される反応前と反応後とで液量が同等になるので、より正確に蛍光強度の測定を行うことができる。送液の完了の判断は、マイクロポンプ5の送液量から予測して行ってもよいし、被検出部125、126の液量を検知する液面センサ等のセンサを別途設けてもよい。この場合には、マイクロポンプ5が本発明の反応開始手段及び送液手段に相当する。
本実施形態のように、微弱な蛍光が生じやすいサイクリングプローブ法による標的遺伝子のDNA配列検出反応が行われる系に本発明の制御を適用することは、反応前後での蛍光強度の変化分を正確に測定を行う上で大きな意義がある。また、サイクリングプローブ法による反応は、急速に反応が進行するので反応を考慮して測定タイミングを決定しておくことは、反応前後での蛍光強度の変化分を正確に測定を行う上で重要である。
以上のように、本発明によれば、反応前の検出タイミングを反応開始タイミングに対応付けて設定するようにしているので、反応前後での蛍光強度の変化分を正確に測定することができ、精度良い検出を行うことができる。
本実施形態に係るマイクロチップを用いる検査装置の外観図である。 本実施形態に係るマイクロチップを用いる検査装置の構成図である。 本実施形態に係るマイクロチップ1の構成図である。図3(a)は、マイクロチップ1の上面図である。図3(b)は、マイクロチップ1の側面図である。図3(c)は、図3(a)において被覆基板109を取り外した図である。 本実施形態に係るマイクロチップを用いる検査装置の制御構成の要部を示す図である。 本実施形態に係る検出制御のフロー図である。
符号の説明
1 マイクロチップ
4 光検出部
5 マイクロポンプ
23 ヒータ
80 検査装置
90 CPU
111 被検出部
120 検体収容部
124 検出試薬収容部

Claims (11)

  1. 少なくとも標的物質と前記標的物質に特異的に結合する蛍光標識された試薬とを含み、前記標的物質と前記試薬との反応が行われ、被検出部において蛍光強度の検出が行われるマイクロチップと、
    前記マイクロチップを収容可能なマイクロチップ収容部と、
    前記マイクロチップ収容部に収容されたマイクロチップの被検出部に対応して設けられ、前記被検出部に励起光を照射する発光部と前記被検出部からの蛍光を受光する受光部とを有する光検出部と、
    を有するマイクロチップ検査システムにおいて、
    前記反応を開始させる反応開始手段と、
    前記反応開始手段の反応開始タイミング及び前記光検出部による反応前及び反応後の蛍光強度の検出タイミングを制御する制御部と、を有し、
    前記制御部は、前記光検出部による反応前の蛍光強度の検出タイミングと、前記反応開始手段による前記反応開始タイミングとを対応付けることを特徴とするマイクロチップ検査システム。
  2. 前記反応開始手段は、前記マイクロチップ収容部に収容されたマイクロチップを加熱する加熱手段であり、
    前記制御部は、前記光検出部による反応前の蛍光強度の検出タイミングと、前記加熱手段による加熱開始タイミングとを対応付けることを特徴とする請求項1に記載のマイクロチップ検査システム。
  3. 前記制御部は、前記光検出部による反応前の蛍光強度の検出タイミングから所定時間後に、前記加熱手段による加熱を開始させることを特徴とする請求項2に記載のマイクロチップ検査システム。
  4. 前記制御部は、前記加熱手段の加熱開始タイミングと同時又は当該加熱開始タイミングから所定時間後に、前記光検出部による反応前の蛍光強度の検出を行わせることを特徴とする請求項2に記載のマイクロチップ検査システム。
  5. 前記反応開始手段は、前記マイクロチップ内の前記標的物質又は前記試薬を送液する送液手段であり、
    前記制御部は、前記光検出部による反応前の蛍光強度の検出タイミングと、前記送液手段による前記標的物質と前記試薬との混合が完了する混合完了タイミングとを対応付けることを特徴とする請求項1に記載のマイクロチップ検査システム。
  6. 前記制御部は、前記標的物質と前記試薬との混合が完了する混合完了タイミングと同時又は当該混合完了タイミングから所定時間後に、前記光検出部による反応前の蛍光強度の検出を行わせることを特徴とする請求項5に記載のマイクロチップ検査システム。
  7. 前記混合完了タイミングは、前記送液手段による前記標的物質又は前記試薬の前記被検出部への送液が完了したタイミングであることを特徴とする請求項5又は6に記載のマイクロチップ検査システム。
  8. 前記制御部は、前記光検出部による反応前の蛍光強度の検出値に基づいて、前記光検出部による反応後の蛍光強度の検出値を補正することを特徴とする請求項1〜7の何れか一項に記載のマイクロチップ検査システム。
  9. 前記標的物質は、標的遺伝子であり、
    前記標的物質に特異的に結合する蛍光標識された試薬は、蛍光標識したDNAプローブであり、
    前記反応は、前記標的遺伝子と前記DNAプローブとのハイブリダイゼーションにより蛍光共鳴エネルギー遷移現象に変化を生じる反応であることを特徴とする請求項1〜8の何れか一項に記載のマイクロチップ検査システム。
  10. 少なくとも標的物質と蛍光標識された前記標的物質に特異的に結合する試薬とを含み、前記標的物質と前記試薬との反応が行われ、被検出部において蛍光強度の検出が行われるマイクロチップ、を収容可能なマイクロチップ収容部と、
    前記マイクロチップ収容部に収容されたマイクロチップの被検出部に対応して設けられ、前記被検出部に励起光を照射する発光部と前記被検出部からの蛍光を受光する受光部とを有する光検出部と、
    を有するマイクロチップ検査装置において、
    前記反応を開始させる反応開始手段と、
    前記反応開始手段の反応開始タイミング及び前記光検出部による反応前及び反応後の蛍光強度の検出タイミングを制御する制御部と、を有し、
    前記制御部は、前記光検出部による反応前の蛍光強度の検出タイミングと、前記反応開始手段による前記反応開始タイミングとを対応付けることを特徴とするマイクロチップ検査装置。
  11. マイクロチップ収容部に収容されたマイクロチップの被検出部に少なくとも標的物質と蛍光標識された前記標的物質に特異的に結合する試薬とを収容させるステップと、
    反応開始手段により前記標的物質と前記試薬との反応を開始させるステップと、
    光検出部による反応前の蛍光強度の検出を行わせるステップと、
    光検出部による反応後の蛍光強度の検出を行わせるステップと、
    をコンピュータに実行させるプログラムであって、
    前記光検出部による反応前の蛍光強度の検出タイミングと、前記反応開始手段による反応開始タイミングとが対応付けられていることを特徴とするプログラム。
JP2007016153A 2007-01-26 2007-01-26 マイクロチップ検査システム、マイクロチップ検査装置及びプログラム Pending JP2008180677A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007016153A JP2008180677A (ja) 2007-01-26 2007-01-26 マイクロチップ検査システム、マイクロチップ検査装置及びプログラム
EP08150345A EP1950555A3 (en) 2007-01-26 2008-01-17 Microchip inspection system, microchip inspection apparatus and a computer readable medium
US12/017,130 US20080181822A1 (en) 2007-01-26 2008-01-21 Microchip inspection system, microchip inspection apparatus and a computer readable medium
CNA2008100085536A CN101271069A (zh) 2007-01-26 2008-01-23 微型芯片检查系统、检查装置和计算机能读入的媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016153A JP2008180677A (ja) 2007-01-26 2007-01-26 マイクロチップ検査システム、マイクロチップ検査装置及びプログラム

Publications (1)

Publication Number Publication Date
JP2008180677A true JP2008180677A (ja) 2008-08-07

Family

ID=39303577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016153A Pending JP2008180677A (ja) 2007-01-26 2007-01-26 マイクロチップ検査システム、マイクロチップ検査装置及びプログラム

Country Status (4)

Country Link
US (1) US20080181822A1 (ja)
EP (1) EP1950555A3 (ja)
JP (1) JP2008180677A (ja)
CN (1) CN101271069A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210308A (ja) * 2012-03-30 2013-10-10 Sony Corp マイクロチップローディング装置、マイクロチップ型フローサイトメータ及びマイクロチップローディング方法
JP2015521274A (ja) * 2012-04-16 2015-07-27 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション 検体の検出または試料の分類のための方法およびシステム
JP2020095010A (ja) * 2017-12-15 2020-06-18 プレシジョンバイオセンサー インコーポレーテッド 診断システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109092380A (zh) * 2018-09-19 2018-12-28 深圳先进技术研究院 数字微流控系统及液滴驱动方法
CN111829822B (zh) * 2019-04-18 2023-10-20 中国科学院微电子研究所 一种电镜液体芯片进样装置
CN112138735A (zh) * 2020-09-12 2020-12-29 深圳市和来生物技术有限公司 微流控芯片的加热、温度检测与光学检测装置和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286300A (ja) * 1999-04-20 2001-10-16 Japan Bioindustry Association 核酸の測定方法、それに用いる核酸プローブ及びその方法によって得られるデータを解析する方法
JP2005515404A (ja) * 2001-07-16 2005-05-26 セファイド プローブの完全性を検証するための方法、装置、およびコンピュータプログラム
JP2005237378A (ja) * 2004-01-29 2005-09-08 Canon Inc ハイブリダイゼーション装置および方法
JP2006220566A (ja) * 2005-02-10 2006-08-24 Kyoto Institute Of Technology 偏光解消法による生体高分子のスクリーニング方法及びそれに用いる反応容器
WO2006106643A1 (ja) * 2005-04-01 2006-10-12 Konica Minolta Medical & Graphic, Inc. マイクロ総合分析システム、検査用チップ、及び検査方法
JP2006523095A (ja) * 2003-04-02 2006-10-12 クロンディアグ チップ テヒノロギーズ ゲーエムベーハー 核酸の増幅および検出装置
JP2006292472A (ja) * 2005-04-07 2006-10-26 Konica Minolta Medical & Graphic Inc マイクロ総合分析システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69128520T2 (de) * 1990-10-31 1998-07-09 Tosoh Corp Verfahren zum Nachweis oder Quantifizierung von Zielnukleinsäuren
US5491063A (en) * 1994-09-01 1996-02-13 Hoffmann-La Roche Inc. Methods for in-solution quenching of fluorescently labeled oligonucleotide probes
DE60045059D1 (de) * 1999-04-20 2010-11-18 Nat Inst Of Advanced Ind Scien Verfahren und Sonden zur Bestimmung der Konzentration von Nukleinsäure-Molekülen und Verfahren zur Analyse der gewonnenen Daten
JP2003517591A (ja) 1999-12-09 2003-05-27 モトローラ・インコーポレイテッド 分析試料の反応を行うための多層微量流体デバイス
JP3871846B2 (ja) * 2000-03-10 2007-01-24 日立ソフトウエアエンジニアリング株式会社 ハイブリダイゼーション反応検出方法及び検出装置
EP1746158A4 (en) * 2004-05-07 2009-11-25 Konica Minolta Med & Graphic MICROREACTOR FOR TESTING, GENETIC TEST EQUIPMENT AND GENETIC TEST PROCEDURE
JP2007016153A (ja) 2005-07-08 2007-01-25 Konoshima Chemical Co Ltd 高い耐熱性を有する水酸化マグネシウム系難燃剤、難燃性樹脂組成物および成型体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286300A (ja) * 1999-04-20 2001-10-16 Japan Bioindustry Association 核酸の測定方法、それに用いる核酸プローブ及びその方法によって得られるデータを解析する方法
JP2005515404A (ja) * 2001-07-16 2005-05-26 セファイド プローブの完全性を検証するための方法、装置、およびコンピュータプログラム
JP2006523095A (ja) * 2003-04-02 2006-10-12 クロンディアグ チップ テヒノロギーズ ゲーエムベーハー 核酸の増幅および検出装置
JP2005237378A (ja) * 2004-01-29 2005-09-08 Canon Inc ハイブリダイゼーション装置および方法
JP2006220566A (ja) * 2005-02-10 2006-08-24 Kyoto Institute Of Technology 偏光解消法による生体高分子のスクリーニング方法及びそれに用いる反応容器
WO2006106643A1 (ja) * 2005-04-01 2006-10-12 Konica Minolta Medical & Graphic, Inc. マイクロ総合分析システム、検査用チップ、及び検査方法
JP2006292472A (ja) * 2005-04-07 2006-10-26 Konica Minolta Medical & Graphic Inc マイクロ総合分析システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210308A (ja) * 2012-03-30 2013-10-10 Sony Corp マイクロチップローディング装置、マイクロチップ型フローサイトメータ及びマイクロチップローディング方法
JP2015521274A (ja) * 2012-04-16 2015-07-27 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション 検体の検出または試料の分類のための方法およびシステム
JP2020095010A (ja) * 2017-12-15 2020-06-18 プレシジョンバイオセンサー インコーポレーテッド 診断システム

Also Published As

Publication number Publication date
EP1950555A2 (en) 2008-07-30
EP1950555A3 (en) 2010-03-17
US20080181822A1 (en) 2008-07-31
CN101271069A (zh) 2008-09-24

Similar Documents

Publication Publication Date Title
US20150284775A1 (en) Microfluidic cartridge
JP6442543B2 (ja) 熱対流型ポリメラーゼ連鎖反応の装置
JP2008180677A (ja) マイクロチップ検査システム、マイクロチップ検査装置及びプログラム
EP3064928B1 (en) Detection device, detection method using said detection device
US9523123B2 (en) DNA detection method and DNA detection device
JPWO2008096563A1 (ja) マイクロチップ検査システム、マイクロチップ検査装置及びプログラム
JP2010139491A (ja) 反応液温度測定方法、反応液温度測定装置、反応液温度調整装置及び遺伝子の増幅反応処理を行うための装置
JPWO2008096562A1 (ja) マイクロチップ検査システム、マイクロチップ、マイクロチップ検査装置及びプログラム
JPWO2008090760A1 (ja) 蛍光検出装置、マイクロチップ、及び検査システム
JP2009183179A (ja) マイクロチップ
JP2009150809A (ja) マイクロチップ
JPWO2008090759A1 (ja) マイクロ総合分析システム
JPWO2007097257A1 (ja) マイクロチップを用いる検査装置
JPWO2008096564A1 (ja) マイクロチップ検査システム、マイクロチップ検査装置及びプログラム
JPWO2009054254A1 (ja) マイクロチップとそれを用いた検査装置
JP5245831B2 (ja) マイクロチップ及びマイクロチップ検査システム
JP5339838B2 (ja) 遺伝子検査装置
JP2009183178A (ja) マイクロチップ
US20230226540A1 (en) Test container, test device, and nucleic acid test method
JP2007225419A (ja) マイクロチップを用いる検査装置及びマイクロチップを用いる検査システム
JP5176951B2 (ja) マイクロチップを用いた検査装置および検査システム
WO2009081733A1 (ja) マイクロチップ
JP2007240356A (ja) マイクロチップを用いた検査装置および検査システム
JPWO2008065911A1 (ja) マイクロチップ
JPWO2007105391A1 (ja) マイクロチップを用いる検査装置及びマイクロチップを用いる検査システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612