JP2008173122A - 新規蛋白質およびその用途 - Google Patents

新規蛋白質およびその用途 Download PDF

Info

Publication number
JP2008173122A
JP2008173122A JP2007338577A JP2007338577A JP2008173122A JP 2008173122 A JP2008173122 A JP 2008173122A JP 2007338577 A JP2007338577 A JP 2007338577A JP 2007338577 A JP2007338577 A JP 2007338577A JP 2008173122 A JP2008173122 A JP 2008173122A
Authority
JP
Japan
Prior art keywords
protein
present
salt
polynucleotide
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007338577A
Other languages
English (en)
Inventor
Yuji Matsuzawa
佑次 松澤
Toru Funabashi
徹 船橋
Iichiro Shimomura
伊一郎 下村
Naoki Furuyama
直樹 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP2007338577A priority Critical patent/JP2008173122A/ja
Publication of JP2008173122A publication Critical patent/JP2008173122A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Diabetes (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Immunology (AREA)
  • Cardiology (AREA)
  • Toxicology (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

【課題】脂肪細胞の分化および/または代謝機能に関連する新規分泌/膜蛋白質の提供。
【解決手段】特定な配列からなるアミノ酸配列と同一もしくは実質的に同一のアミノ酸酸配列を含有する新規脂肪細胞由来分泌/膜蛋白質、それをコードする核酸、それに対する抗体、それらを用いた脂肪細胞の分化/代謝機能の異常が関与する疾患の予防・治療薬のスクリーニング方法・キット、それらを含有する当該疾患の予防・治療剤または診断剤。
【選択図】なし

Description

本発明は、マウス白色脂肪細胞由来の新規分泌もしくは膜蛋白質またはその塩およびそれをコードするDNA、並びにそれらの用途に関する。
内臓脂肪が蓄積した肥満者は糖尿病や高血圧、動脈硬化などの血管病の確率が高いことで、内臓脂肪蓄積は実際に病態を発症させる引き金となる共通の基盤と考えられる。脂肪蓄積によりおこる病態の発症には脂肪細胞がつくる蛋白質が関係している可能性が考えられるが、脂肪組織に発現する遺伝子には分泌蛋白質遺伝子の頻度が高く、その中には補体、増殖因子等の生理活性物質の遺伝子が含まれていることが示されている。このような物質(adipocytokineとも呼ばれる)は、元来脂肪細胞自身の代謝に重要な役割を果たすが、脂肪蓄積時に過剰分泌や逆に分泌不全が起こり個体全体の代謝に悪影響を及ぼす可能性が考えられる。例えば、下村らは線溶系の重要な調節因子であるプラスミノーゲンアクティベータインヒビター1(PAI−1)が、脂肪蓄積がおこると特に内臓脂肪で著しく発現量が増加して血中濃度も増加し、血管合併症の成因のひとつとなり得ることを明らかにした(非特許文献1)。また、脂肪組織に特異的かつ高頻度に発現していた遺伝子adipose most abundant gene transcript-1はコラーゲン様の蛋白質(adiponectin)をコードしており、この物質はヒトの血中に多量存在し、血管平滑筋細胞の増殖を強く抑制する作用を持っているが、肥満者では血中レベルが逆に低下しており血管病へとつながることがわかってきている(非特許文献2)。
また、脂肪細胞は多量の脂肪を合成するとともに脂肪分解も活発に行っており、血中に脂肪酸とグリセロールを放出するが、栗山らがクローニングした膜蛋白質aquaporin adiposeは脂肪細胞でグリセロールチャネル分子として機能する可能性が示唆されている(非特許文献3)。
下村(Shimomura, I.)ら、「ネイチャー・メディシン(Nat. Med.)」、(米国)、第2巻(第7号)、pp.800−803(1996年) 有田(Arita, Y.)ら、「バイオケミカル・アンド・バイオフィジカル・リサーチ・コミュニケーションズ(Biochem. Biophys. Res. Commun.)」、(米国)、第257巻(第1号)、pp.79−83(1999年) 岸田(Kishida, K.)ら、「ジャーナル・オヴ・バイオロジカル・ケミストリー(J. Biol. Chem.)」、(米国)、第275巻(第27号)、pp.20896−20902(2000年)
このように脂肪細胞は様々な生理活性物質(即ち、リガンド)を分泌し、また、膜蛋白質(即ち、レセプター)を細胞表面に発現している。したがって、これらの分泌・膜蛋白質の発現もしくは生理活性を調節することによって、新規な肥満、糖尿病、血管病(例、動脈硬化)の予防・治療法が開発されることが期待される。
従来、細胞表面レセプターと生理活性物質(即ち、リガンド)との結合を阻害する物質や、レセプターと結合して生理活性物質(即ち、リガンド)と同様なシグナル伝達を引き起こす物質は、これらレセプターの特異的なアンタゴニストまたはアゴニストとして、生体機能を調節する医薬品に活用されてきた。従って、このように生体内での発現において重要であるばかりでなく、医薬品開発の標的ともなりうる膜レセプター蛋白質およびそのリガンド分子(例えば、分泌蛋白質)を新規に見出し、その遺伝子(例えばcDNA)をクローニングすることは、新規レセプター蛋白質の特異的リガンドや、アゴニスト、アンタゴニストを見出す、もしくは新規分泌蛋白質の特異的レセプターを見出す際に、非常に重要な手段となる。
しかし、脂肪細胞で分泌もしくは細胞表面に発現する蛋白質はその全てが見出されているわけではなく、現時点でもなお未知の分泌・膜蛋白質が多数存在しており、新たなリガンド、レセプターの探索および機能解明が切望されている。
したがって、本発明は、肥満、糖尿病、動脈硬化などの予防・治療薬開発の有用なツール、あるいはこれらの疾患の有用な診断マーカーとなり得るような、脂肪細胞で特異的もしくは高発現している新規分泌・膜蛋白質遺伝子を同定することを目的とする。さらに、本発明は、該新規遺伝子を含有する組換えベクター、該組換えベクターを保持する形質転換体、該形質転換体を培養することによる該分泌・膜蛋白質の製造方法、該分泌・膜蛋白質もしくはその部分ペプチドまたはその塩に対する抗体、該分泌・膜蛋白質の発現量を変化させる化合物、該分泌・膜蛋白質に対して特異的親和性を有する生体物質の決定方法、該特異的親和性を有する生体物質と該分泌・膜蛋白質との結合性を変化させる化合物(アンタゴニスト、アゴニスト)またはその塩のスクリーニング方法、該スクリーニング用キット、該スクリーニング方法もしくはスクリーニングキットを用いて得られる該特異的親和性を有する生体物質と該分泌・膜蛋白質との結合性を変化させる化合物(アンタゴニスト、アゴニスト)またはその塩、および該特異的親和性を有する生体物質と該分泌・膜蛋白質との結合性を変化させる化合物(アンタゴニスト、アゴニスト)もしくは該分泌・膜蛋白質の発現量を変化させる化合物またはその塩を含有してなる医薬などを提供することを目的とする。
本発明者らは、上記の目的を達成すべく、高脂肪食負荷マウスの内臓脂肪組織由来のcDNAライブラリーを作製し、該cDNAをN末端の細胞外領域を欠失させた恒常的活性型トロンボポイエチン受容体(498位のセリンがアスパラギンに置換されている)cDNAの5’側に組み込んだレトロウイルス発現ライブラリーを構築、パッケージング細胞から高力価レトロウイルスを回収してマウスプロB細胞株(Ba/F3)を感染させ、増殖性を保持した細胞を選択した。選択された細胞からゲノムDNAを抽出、PCR法を用いて導入されたマウス脂肪細胞由来cDNAをサブクローニングし、その塩基配列を決定した。その結果、8つの未知分泌もしくは膜蛋白質をコードすると考えられるcDNA断片が同定された。これらのcDNA断片を用いて、マウス脂肪細胞由来cDNAから蛋白質コード領域の全長を含むcDNAクローンを単離し、それらの塩基配列を決定したところ、いずれも新規遺伝子であることが分かった。
さらに、これら遺伝子の発現の組織特異性、肥満・糖尿病モデルにおける発現量の変動、食餌に対する応答、インスリン抵抗性惹起因子もしくは改善薬に対する応答、脂肪細胞分化に及ぼす効果等を解析した結果、これらの遺伝子は脂肪細胞の分化や糖・脂質代謝機能に関連することが明らかとなった。
本発明者らは、これらの知見に基づいて、さらに研究を重ねた結果、本発明を完成するに至った。
すなわち、本発明は、
[1]配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩;
[2]上記[1]記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド;
[3]上記[2]記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド;
[4]上記[1]記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体;
[5]配列番号:4で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩;
[6]上記[5]記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド;
[7]上記[6]記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド;
[8]上記[5]記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体;
[9]配列番号:6で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩;
[10]上記[9]記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド;
[11]上記[10]記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド;
[12]上記[9]記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体;
[13]配列番号:8で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩;
[14]上記[13]記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド;
[15]上記[14]記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド;
[16]上記[13]記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体;
[17]配列番号:10で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩;
[18]上記[17]記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド;
[19]上記[18]記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド;
[20]上記[17]記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体;
[21]配列番号:12で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩;
[22]上記[21]記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド;
[23]上記[22]記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド;
[24]上記[21]記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体;
[25]配列番号:14で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩;
[26]上記[25]記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド;
[27]上記[26]記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド;
[28]上記[25]記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体;
[29]配列番号:16で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩;
[30]上記[29]記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド;
[31]上記[30]記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド;
[32]上記[29]記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体;
[33]配列番号:18で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩;
[34]上記[33]記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド;
[35]上記[34]記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド;
[36]上記[33]記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体;
[37]配列番号:20で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩;
[38]上記[37]記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド;
[39]上記[38]記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド;
[40]上記[37]記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体;
[41]配列番号:22で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩;
[42]上記[41]記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド;
[43]上記[42]記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド;
[44]上記[41]記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体;
[45]上記[1]、[5]、[9]、[13]、[17]、[21]、[25]、[29]、[33]、[37]または[41]記載の蛋白質もしくはその部分ペプチドまたはその塩を含有してなる医薬;
[46]上記[2]、[6]、[10]、[14]、[18]、[22]、[26]、[30]、[34]、[38]または[42]記載のポリヌクレオチドを含有してなる医薬;
[47]上記[3]、[7]、[11]、[15]、[19]、[23]、[27]、[31]、[35]、[39]または[43]記載のポリヌクレオチドを含有してなる医薬;
[48]上記[4]、[8]、[12]、[16]、[20]、[24]、[28]、[32]、[36]、[40]または[44]記載の抗体を含有してなる医薬;
[49]脂肪細胞の分化および/または代謝機能の異常が関与する疾患の予防・治療剤である上記[45]〜[48]のいずれかに記載の医薬;
[50]上記[2]、[6]、[10]、[14]、[18]、[22]、[26]、[30]、[34]、[38]もしくは[42]記載のポリヌクレオチドまたはその一部を含有してなる診断薬;
[51]上記[3]、[7]、[11]、[15]、[19]、[23]、[27]、[31]、[35]、[39]または[43]記載のポリヌクレオチドを含有してなる診断薬
[52]上記[4]、[8]、[12]、[16]、[20]、[24]、[28]、[32]、[36]、[40]または[44]記載の抗体を含有してなる診断薬;
[53]脂肪細胞の分化および/または代謝機能の異常が関与する疾患の診断用である上記[50]〜[52]のいずれかに記載の診断薬;
[54]上記[1]、[5]、[9]、[13]、[17]、[21]、[25]、[29]、[33]、[37]または[41]記載の蛋白質もしくはその部分ペプチドまたはその塩を用いることを含む、該蛋白質またはその塩に対して特異的親和性を有する化合物またはその塩、あるいは該蛋白質またはその塩と該化合物またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法;
[55]上記[1]、[5]、[9]、[13]、[17]、[21]、[25]、[29]、[33]、[37]または[41]記載の蛋白質もしくはその部分ペプチドまたはその塩を含んでなる、該蛋白質またはその塩に対して特異的親和性を有する化合物またはその塩、あるいは該蛋白質またはその塩と該化合物またはその塩との結合性を変化させる化合物またはその塩のスクリーニング用キット;
[56]上記[54]記載の方法または上記[55]記載のキットを用いて得られうる化合物またはその塩を含有してなる医薬;
[57]脂肪細胞の分化および/または代謝機能の異常が関与する疾患の予防・治療剤である上記[56]記載の医薬;
[58]上記[2]、[6]、[10]、[14]、[18]、[22]、[26]、[30]、[34]、[38]もしくは[42]記載のポリヌクレオチドまたはその一部を用いることを特徴とする、上記[1]、[5]、[9]、[13]、[17]、[21]、[25]、[29]、[33]、[37]または[41]記載の蛋白質をコードする遺伝子の発現量を変化させる化合物またはその塩のスクリーニング方法;
[59]上記[2]、[6]、[10]、[14]、[18]、[22]、[26]、[30]、[34]、[38]もしくは[42]記載のポリヌクレオチドまたはその一部を含んでなる、上記[1]、[5]、[9]、[13]、[17]、[21]、[25]、[29]、[33]、[37]または[41]記載の蛋白質をコードする遺伝子の発現量を変化させる化合物またはその塩のスクリーニング用キット;
[60]上記[58]記載の方法または上記[59]記載のキットを用いて得られうる化合物またはその塩を含有してなる医薬;
[61]脂肪細胞の分化および/または代謝機能の異常が関与する疾患の予防・治療剤である上記[60]記載の医薬;
[62]上記[4]、[8]、[12]、[16]、[20]、[24]、[28]、[32]、[36]、[40]または[44]記載の抗体を用いることを特徴とする、細胞膜もしくは細胞外液における上記[1]、[5]、[9]、[13]、[17]、[21]、[25]、[29]、[33]、[37]または[41]記載の蛋白質またはその塩の量を変化させる化合物またはその塩のスクリーニング方法;
[63]上記[4]、[8]、[12]、[16]、[20]、[24]、[28]、[32]、[36]、[40]または[44]記載の抗体を含んでなる、細胞膜もしくは細胞外液における上記[1]、[5]、[9]、[13]、[17]、[21]、[25]、[29]、[33]、[37]または[41]記載の蛋白質またはその塩の量を変化させる化合物またはその塩のスクリーニング用キット;
[64]上記[62]記載の方法または上記[63]記載のキットを用いて得られうる化合物またはその塩を含有してなる医薬;および
[65]脂肪細胞の分化および/または代謝機能の異常が関与する疾患の予防・治療剤である上記[64]記載の医薬;
などを提供する。
本発明の蛋白質は、高脂肪食負荷により白色脂肪細胞で発現する分泌もしくは膜蛋白質であることなどから、脂肪細胞の分化や代謝機能の異常に関連する疾患の予防・治療剤として、あるいは当該疾患の予防・治療に有効な医薬品候補化合物のスクリーニングのためのツールとして優れた効果を発揮する。
本発明の蛋白質は、高脂肪食負荷により白色脂肪細胞で発現する分泌もしくは膜蛋白質であることなどから、脂肪細胞の分化や代謝機能の異常に関連する疾患の予防・治療剤として、あるいは当該疾患の予防・治療に有効な医薬品候補化合物のスクリーニングのためのツールとして優れた効果を発揮する。
本発明は、高脂肪食負荷されたヒトまたは他の哺乳動物の白色脂肪組織で特異的に、もしくは高発現する分泌もしくは膜蛋白質(以下、これらを総称して「本発明の蛋白質」という場合がある)を提供する。具体的には、本発明の蛋白質は、配列番号:2で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質(以下、「SST20-14(Long form)」という場合もある);配列番号:4で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質(以下、「SST20-14(Short form)」という場合もある);配列番号:6で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質(以下、「SST22-22(Long form)」という場合もある);配列番号:8で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質(以下、「SST22-22(Short form)」という場合もある);配列番号:10で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質(以下、「SST8-5」という場合もある);配列番号:12で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質(以下、「SST19-15(Long form)」という場合もある);配列番号:14で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質(以下、「SST19-15(Short form)」という場合もある);配列番号:16で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質(以下、「SST13-11」という場合もある);配列番号:18で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質(以下、「SST9-8」という場合もある);配列番号:20で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質(以下、「SST21-3」という場合もある);または配列番号:22で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質(以下、「SST20-6」という場合もある)である。
本発明の蛋白質は、哺乳動物の脂肪組織、特に白色脂肪組織で高発現する分泌もしくは膜蛋白質であるが、上記の性質を有する限りその由来に特に制限はなく、例えば、哺乳動物(例えば、ヒト、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サル、チンパンジーなど)の細胞[例えば、肝細胞、脾細胞、神経細胞、グリア細胞、膵臓β細胞、骨髄細胞、メサンギウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、杯細胞、内皮細胞、平滑筋細胞、繊維芽細胞、繊維細胞、筋細胞、脂肪細胞、免疫細胞(例、マクロファージ、T細胞、B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、好酸球、単球)、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、乳腺細胞、肝細胞もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞もしくはガン細胞など]もしくはそれらの細胞が存在するあらゆる組織[例えば、脳、脳の各部位(例、嗅球、扁桃核、大脳基底球、海馬、視床、視床下部、大脳皮質、延髄、小脳)、脊髄、下垂体、胃、膵臓、腎臓、肝臓、生殖腺、甲状腺、胆嚢、骨髄、副腎、皮膚、肺、消化管(例、大腸、小腸)、血管、心臓、胸腺、脾臓、顎下腺、末梢血、前立腺、睾丸、卵巣、胎盤、子宮、骨、関節、脂肪組織(例、褐色脂肪組織、白色脂肪組織)、骨格筋など]等から単離・精製される蛋白質であってもよい。また、化学合成もしくは無細胞翻訳系で生化学的に合成された蛋白質であってもよいし、あるいは上記アミノ酸配列をコードする塩基配列を有する核酸を導入された形質転換体から産生される組換え蛋白質であってもよい。
上記「実質的に同一のアミノ酸配列」としては、上記各配列番号(配列番号:2、4、6、8、10、12、14、16、18、20または22)で表されるアミノ酸配列と約70%以上、好ましくは約80%以上、さらに好ましくは約90%以上、特に好ましくは約95%以上の相同性を有するアミノ酸配列などが挙げられる。ここで「相同性」とは、当該技術分野において公知の数学的アルゴリズムを用いて2つのアミノ酸配列をアラインさせた場合の、最適なアラインメント(好ましくは、該アルゴリズムは最適なアラインメントのために配列の一方もしくは両方へのギャップの導入を考慮し得るものである)における、オーバーラップする全アミノ酸残基に対する同一アミノ酸および類似アミノ酸残基の割合(%)を意味する。「類似アミノ酸」とは物理化学的性質において類似したアミノ酸を意味し、例えば、芳香族アミノ酸(Phe、Trp、Tyr)、脂肪族アミノ酸(Ala、Leu、Ile、Val)、極性アミノ酸(Gln、Asn)、塩基性アミノ酸(Lys、Arg、His)、酸性アミノ酸(Glu、Asp)、水酸基を有するアミノ酸(Ser、Thr)、側鎖の小さいアミノ酸(Gly、Ala、Ser、Thr、Met)などの同じグループに分類されるアミノ酸が挙げられる。このような類似アミノ酸による置換は蛋白質の表現型に変化をもたらさない(即ち、保存的アミノ酸置換である)ことが予測される。保存的アミノ酸置換の具体例は当該技術分野で周知であり、種々の文献に記載されている(例えば、Bowieら,Science, 247: 1306-1310 (1990)を参照)。
本明細書におけるアミノ酸配列の相同性は、相同性計算アルゴリズムNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)を用い、以下の条件(期待値=10;ギャップを許す;マトリクス=BLOSUM62;フィルタリング=OFF)にて計算することができる。アミノ酸配列の相同性を決定するための他のアルゴリズムとしては、例えば、Karlinら, Proc. Natl. Acad. Sci. USA, 90: 5873-5877 (1993)に記載のアルゴリズム[該アルゴリズムはNBLASTおよびXBLASTプログラム(version 2.0)に組み込まれている(Altschulら, Nucleic Acids Res., 25: 3389-3402 (1997))]、Needlemanら, J. Mol. Biol., 48: 444-453 (1970)に記載のアルゴリズム[該アルゴリズムはGCGソフトウェアパッケージ中のGAPプログラムに組み込まれている]、MyersおよびMiller, CABIOS, 4: 11-17 (1988)に記載のアルゴリズム[該アルゴリズムはCGC配列アラインメントソフトウェアパッケージの一部であるALIGNプログラム(version 2.0)に組み込まれている]、Pearsonら, Proc. Natl. Acad. Sci. USA, 85: 2444-2448 (1988)に記載のアルゴリズム[該アルゴリズムはGCGソフトウェアパッケージ中のFASTAプログラムに組み込まれている]等が挙げられ、それらも同様に好ましく用いられ得る。
より好ましくは、「実質的に同一のアミノ酸配列」とは、上記各配列番号で表されるアミノ酸配列と約60%以上、好ましくは約70%以上、さらに好ましくは約80%以上、特に好ましくは約90%以上の同一性を有するアミノ酸配列である。
「実質的に同一のアミノ酸配列を含有する蛋白質」としては、例えば、前記した「実質的に同一のアミノ酸配列」を含有し、且つ上記各配列番号で表されるアミノ酸配列を含有する蛋白質と実質的に同質の活性を有する蛋白質が好ましい。 「実質的に同質の活性」としては、例えば、レセプター(もしくはリガンド)結合活性およびシグナル情報伝達作用などが挙げられる。「実質的に同質」とは、それらの活性が性質的に(例:生理学的に、または薬理学的に)同質であることを示す。したがって、レセプター(リガンド)結合活性やシグナル情報伝達作用などの活性が同等(例:約0.5〜約2倍)であることが好ましいが、これらの活性の程度や蛋白質の分子量などの量的要素は異なっていてもよい。
レセプター(もしくはリガンド)結合活性やシグナル情報伝達作用などの活性の測定は、自体公知の方法に準じて行なうことができるが、例えば、後述する特異的親和性を有する生体物質(レセプターもしくはリガンド)の決定方法やアゴニスト、アンタゴニストのスクリーニング方法において用いられる方法に従って測定することができる。
また、本発明の蛋白質としては、例えば、〔1〕上記各配列番号で表されるアミノ酸配列のうち1または2個以上(好ましくは、1〜30個程度、より好ましくは1〜10個程度、さらに好ましくは数(1〜5)個)のアミノ酸が欠失したアミノ酸配列、〔2〕上記各配列番号で表されるアミノ酸配列に1または2個以上(好ましくは、1〜30個程度、より好ましくは1〜10個程度、さらに好ましくは数(1〜5)個)のアミノ酸が付加したアミノ酸配列、〔3〕上記各配列番号で表されるアミノ酸配列に1または2個以上(好ましくは、1〜30個程度、より好ましくは1〜10個程度、さらに好ましくは数(1〜5)個)のアミノ酸が挿入されたアミノ酸配列、〔4〕上記各配列番号で表されるアミノ酸配列のうち1または2個以上(好ましくは、1〜30個程度、より好ましくは1〜10個程度、さらに好ましくは数(1〜5)個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、または〔5〕それらを組み合わせたアミノ酸配列を含有する蛋白質であって、且つ上記各配列番号で表されるアミノ酸配列を含有する蛋白質と実質的に同質の活性を有する蛋白質も含まれる。ここで「実質的に同質の活性」とは前記と同義である。
上記のようにアミノ酸配列が挿入、欠失または置換されている場合、その挿入、欠失または置換の位置は、蛋白質の活性が保持される限り特に限定されない。 本発明の蛋白質は分泌もしくは膜蛋白質であり、通常、生体内ではN末端にシグナルペプチドを有する前駆ポリペプチドとして翻訳された後、シグナルペプチダーゼによるプロセッシングを受けて成熟(もしくはプロ)蛋白質となる。シグナルペプチドの開裂部位(成熟(プロ)蛋白質のN末端)は、例えば、完全もしくは部分精製した本発明の蛋白質をエドマン分解法に付すことにより決定することができるが、前駆ポリペプチドの一次構造から公知の数学的アルゴリズムを用いて予測することができる。このようなアルゴリズムとしては、例えば、Nielsenら,Int. Neural Syst., 8(5-6): 581-599 (1997)に記載のアルゴリズム[該アルゴリズムはSignalPプログラム(WWWサーバー:http://www.cbs.dtu.dk/services/SignalP/上で利用可能)に組み込まれている]、Emanuelssonら, J. Mol. Biol. 300: 1005-1016 (2000)に記載のアルゴリズム[該アルゴリズムはTargetPプログラム(WWWサーバー:http://www.cbs.dtu.dk/services/TargetP/上で利用可能)に組み込まれている]、von Heijne, Nucl. Acids Res., 14: 4683 (1986)に記載のアルゴリズム[該アルゴリズムはPSORT IIプログラム(WWWサーバー:http://psort.ims.u-tokyo.ac.jp/form2.html上で利用可能)に組み込まれている]、SOSUI(Signal)プログラム Beta Version(WWWサーバー:http://sosui.proteome.bio.tuat.ac.jp/cgi-bin/sosui.cgi?/sosuisignal/sosuisignal_submit.html上で利用可能)に組み込まれるアルゴリズム等が挙げられるが、これらに限定されない。例えば上記PSORT IIプログラムを用いた場合、上記各配列番号で表されるアミノ酸配列を有するポリペプチドはそれぞれアミノ酸番号−1とアミノ酸番号1の間で開裂し得ると予測されるが、それらは現実の開裂部位と必ずしも一致するわけではなく、また、本発明の蛋白質を発現させる細胞種によってシグナルの切断位置が異なる場合も起こり得る。従って、本発明の蛋白質には、上記各配列番号で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列、あるいは該アミノ酸配列において1または2個以上のアミノ酸が付加もしくは欠失したアミノ酸配列を含有する蛋白質も包含される。
本発明の蛋白質は、好ましくは、配列番号:2で表されるアミノ酸配列を有するマウスSST20-14(Long form)、配列番号:4で表されるアミノ酸配列を有するマウスSST20-14(Short form)、配列番号:6で表されるアミノ酸配列を有するマウスSST22-22(Long form)、配列番号:8で表されるアミノ酸配列を有するマウスSST22-22(Short form)、配列番号:10で表されるアミノ酸配列を有するマウスSST8-5、配列番号:12で表されるアミノ酸配列を有するマウスSST19-15(Long form)、配列番号:14で表されるアミノ酸配列を有するマウスSST19-15(Short form)、配列番号:16で表されるアミノ酸配列を有するマウスSST13-11、配列番号:18で表されるアミノ酸配列を有するマウスSST9-8、配列番号:20で表されるアミノ酸配列を有するマウスSST21-3または配列番号:22で表されるアミノ酸配列を有するマウスSST20-6、あるいは他の哺乳動物におけるそれらのホモログである。
本明細書において、蛋白質およびペプチドは、ペプチド標記の慣例に従って左端がN末端(アミノ末端)、右端がC末端(カルボキシル末端)で記載される。配列番号:2または4で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列を含有する蛋白質をはじめとする、本発明の蛋白質は、C末端がカルボキシル基(−COOH)、カルボキシレート(−COO)、アミド(−CONH)またはエステル(−COOR)の何れであってもよい。
ここでエステルにおけるRとしては、例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチルなどのC1−6アルキル基;例えば、シクロペンチル、シクロヘキシルなどのC3−8シクロアルキル基;例えば、フェニル、α−ナフチルなどのC6−12アリール基;例えば、ベンジル、フェネチルなどのフェニル−C1−2アルキル基;α−ナフチルメチルなどのα−ナフチル−C1−2アルキル基などのC7−14アラルキル基;ピバロイルオキシメチル基などが用いられる。
本発明の蛋白質がC末端以外にカルボキシル基(またはカルボキシレート)を有している場合、カルボキシル基がアミド化またはエステル化されているものも本発明の蛋白質に含まれる。この場合のエステルとしては、例えば上記したC末端のエステルなどが用いられる。
さらに、本発明の蛋白質には、N末端のアミノ酸残基のアミノ基が保護基(例えば、ホルミル基、アセチル基などのC1−6アルカノイルなどのC1−6アシル基など)で保護されているもの、生体内で切断されて生成し得るN末端のグルタミン残基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基(例えば−OH、−SH、アミノ基、イミダゾール基、インドール基、グアニジノ基など)が適当な保護基(例えば、ホルミル基、アセチル基などのC1−6アルカノイル基などのC1−6アシル基など)で保護されているもの、あるいは糖鎖が結合したいわゆる糖蛋白質などの複合蛋白質なども含まれる。
本発明の蛋白質の部分ペプチド(以下、単に「本発明の部分ペプチド」と略称する場合もある)は、上記した本発明の蛋白質の部分アミノ酸配列を有するペプチドであり、且つ本発明の蛋白質と実質的に同質の活性を有する限り、何れのものであってもよい。ここで「実質的に同質の活性」とは上記と同意義を示す。また、「実質的に同質の活性」の測定は本発明の蛋白質の場合と同様に行なうことができる。
具体的には、本発明の部分ペプチドとして、例えば、上記各配列番号で表されるアミノ酸配列のうち、本発明の蛋白質と相互作用し得る生体物質(レセプターもしくはリガンド)との結合に関わる領域および該相互作用を介したシグナル伝達に関わる領域をさらに含む部分アミノ酸配列を有するものなどが用いられる。 本発明の部分ペプチドとしては、少なくとも30個以上、好ましくは60個以上、より好ましくは100個以上のアミノ酸を有するペプチドなどが好ましい。
一方、本発明の蛋白質の部分アミノ酸配列を含むが該蛋白質と実質的に同質の活性を有しないペプチド、例えば、上記各配列番号で表されるアミノ酸配列のうち、本発明の蛋白質と相互作用し得る生体物質(レセプターもしくはリガンド)との結合に関わる領域を含むが、該相互作用を介したシグナル伝達に関わる領域を含まない部分アミノ酸配列を有するものなどは、「本発明の部分ペプチド」には含まれない。しかしながら、かかるペプチドは、本発明の蛋白質と相互作用し得る生体物質(レセプターもしくはリガンド)と結合して該蛋白質によるシグナル伝達作用を遮断することができるので、該シグナル伝達の異常亢進が関与する病態・疾患の予防・治療などに有用であり得る。
また、本発明の部分ペプチドはC末端がカルボキシル基(−COOH)、カルボキシレート(−COO)、アミド(−CONH)またはエステル(−COOR)の何れであってもよい。ここでエステルにおけるRとしては、本発明の蛋白質について前記したと同様のものが挙げられる。本発明の部分ペプチドがC末端以外にカルボキシル基(またはカルボキシレート)を有している場合、カルボキシル基がアミド化またはエステル化されているものも本発明の部分ペプチドに含まれる。この場合のエステルとしては、例えば、C末端のエステルと同様のものなどが用いられる。
さらに、本発明の部分ペプチドには、上記した本発明の蛋白質と同様に、N末端のアミノ酸残基のアミノ基が保護基で保護されているもの、N末端のグルタミン残基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基が適当な保護基で保護されているもの、あるいは糖鎖が結合したいわゆる糖ペプチドなどの複合ペプチドなども含まれる。
本発明の蛋白質またはその部分ペプチドの塩としては、酸または塩基との生理学的に許容される塩が挙げられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸)との塩などが用いられる。
本発明の蛋白質またはその塩は、前述した哺乳動物の細胞または組織から自体公知の蛋白質の精製方法によって製造することができる。具体的には、本発明の蛋白質が細胞膜に局在する場合は、哺乳動物の組織または細胞をホモジナイズし、低速遠心により細胞デブリスを除去した後、上清を高速遠心して細胞膜含有画分を沈澱させ(必要に応じて密度勾配遠心などにより細胞膜画分を精製し)、該画分を逆相クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィーなどのクロマトグラフィー等に付すことにより該蛋白質またはその塩を調製することができる。また、本発明の蛋白質が細胞外に分泌される場合は、哺乳動物の組織または細胞を適当な培地中で培養した後、濾過または遠心分離等により培養上清を分取し、該上清を上記と同様にクロマトグラフィー等に付すことにより該蛋白質またはその塩を調製することができる。
本発明の蛋白質もしくはその部分ペプチドまたはその塩(以下、「本発明の蛋白質(ペプチド)」と略記する場合がある)は、公知のペプチド合成法に従って製造することもできる。
ペプチド合成法は、例えば、固相合成法、液相合成法のいずれであってもよい。本発明の蛋白質(ペプチド)を構成し得る部分ペプチドもしくはアミノ酸と残余部分とを縮合し、生成物が保護基を有する場合は保護基を脱離することにより目的とする蛋白質を製造することができる。
ここで、縮合や保護基の脱離は、自体公知の方法、例えば、以下の〔1〕〜〔5〕に記載された方法に従って行われる。
〔1〕M. Bodanszky および M.A. Ondetti、ペプチド・シンセシス (Peptide Synthesis), Interscience Publishers, New York (1966年)
〔2〕SchroederおよびLuebke、ザ・ペプチド(The Peptide), Academic Press, New York (1965年)
〔3〕泉屋信夫他、ペプチド合成の基礎と実験、 丸善(株) (1975年)
〔4〕矢島治明 および榊原俊平、生化学実験講座 1、 蛋白質の化学IV、 205、(1977年)
〔5〕矢島治明監修、続医薬品の開発、第14巻、ペプチド合成、広川書店
このようにして得られた蛋白質(ペプチド)は、公知の精製法により精製単離することができる。ここで、精製法としては、例えば、溶媒抽出、蒸留、カラムクロマトグラフィー、液体クロマトグラフィー、再結晶、これらの組み合わせなどが挙げられる。
上記方法で得られる蛋白質(ペプチド)が遊離体である場合には、該遊離体を公知の方法あるいはそれに準じる方法によって適当な塩に変換することができるし、逆に蛋白質(ペプチド)が塩として得られた場合には、該塩を公知の方法あるいはそれに準じる方法によって遊離体または他の塩に変換することができる。
本発明の蛋白質(ペプチド)の合成には、通常市販の蛋白質合成用樹脂を用いることができる。そのような樹脂としては、例えば、クロロメチル樹脂、ヒドロキシメチル樹脂、ベンズヒドリルアミン樹脂、アミノメチル樹脂、4−ベンジルオキシベンジルアルコール樹脂、4−メチルベンズヒドリルアミン樹脂、PAM樹脂、4−ヒドロキシメチルメチルフェニルアセトアミドメチル樹脂、ポリアクリルアミド樹脂、4−(2’,4’−ジメトキシフェニル−ヒドロキシメチル)フェノキシ樹脂、4−(2’,4’−ジメトキシフェニル−Fmocアミノエチル)フェノキシ樹脂などを挙げることができる。このような樹脂を用い、α−アミノ基と側鎖官能基を適当に保護したアミノ酸を、目的とする蛋白質(ペプチド)の配列通りに、自体公知の各種縮合方法に従い、樹脂上で縮合させる。反応の最後に樹脂から蛋白質等を切り出すと同時に各種保護基を除去し、さらに高希釈溶液中で分子内ジスルフィド結合形成反応を実施し、目的の蛋白質(ペプチド)またはそのアミド体を取得する。
上記した保護アミノ酸の縮合に関しては、蛋白質合成に使用できる各種活性化試薬を用いることができるが、特に、カルボジイミド類がよい。カルボジイミド類としては、DCC、N,N’−ジイソプロピルカルボジイミド、N−エチル−N’−(3−ジメチルアミノプロリル)カルボジイミドなどが用いられる。これらによる活性化にはラセミ化抑制添加剤(例えば、HOBt、HOOBt)とともに保護アミノ酸を直接樹脂に添加するか、または、対称酸無水物またはHOBtエステルあるいはHOOBtエステルとしてあらかじめ保護アミノ酸の活性化を行なった後に樹脂に添加することができる。
保護アミノ酸の活性化や樹脂との縮合に用いられる溶媒は、蛋白質縮合反応に使用しうることが知られている溶媒から適宜選択されうる。例えば、N,N−ジメチルホルムアミド,N,N−ジメチルアセトアミド,N−メチルピロリドンなどの酸アミド類、塩化メチレン,クロロホルムなどのハロゲン化炭化水素類、トリフルオロエタノールなどのアルコール類、ジメチルスルホキシドなどのスルホキシド類、ピリジンなどのアミン類,ジオキサン,テトラヒドロフランなどのエーテル類、アセトニトリル,プロピオニトリルなどのニトリル類、酢酸メチル,酢酸エチルなどのエステル類あるいはこれらの適宜の混合物などが用いられる。反応温度は蛋白質結合形成反応に使用され得ることが知られている範囲から適宜選択され、通常約−20℃〜50℃の範囲から適宜選択される。活性化されたアミノ酸誘導体は通常1.5〜4倍過剰で用いられる。ニンヒドリン反応を用いたテストの結果、縮合が不十分な場合には保護基の脱離を行うことなく縮合反応を繰り返すことにより十分な縮合を行なうことができる。反応を繰り返しても十分な縮合が得られないときには、無水酢酸またはアセチルイミダゾールを用いて未反応アミノ酸をアセチル化することができる。
原料の反応に関与すべきでない官能基の保護ならびに保護基、およびその保護基の脱離、反応に関与する官能基の活性化などは公知の基または公知の手段から適宜選択しうる。
原料のアミノ基の保護基としては、例えば、Z、Boc、ターシャリーペンチルオキシカルボニル、イソボルニルオキシカルボニル、4−メトキシベンジルオキシカルボニル、Cl−Z、Br−Z、アダマンチルオキシカルボニル、トリフルオロアセチル、フタロイル、ホルミル、2−ニトロフェニルスルフェニル、ジフェニルホスフィノチオイル、Fmocなどが用いられる。
カルボキシル基は、例えば、アルキルエステル化(例えば、メチル、エチル、プロピル、ブチル、ターシャリーブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、2−アダマンチルなどの直鎖状、分枝状もしくは環状アルキルエステル化)、アラルキルエステル化(例えば、ベンジルエステル、4−ニトロベンジルエステル、4−メトキシベンジルエステル、4−クロロベンジルエステル、ベンズヒドリルエステル化)、フェナシルエステル化、ベンジルオキシカルボニルヒドラジド化、ターシャリーブトキシカルボニルヒドラジド化、トリチルヒドラジド化などによって保護することができる。
セリンの水酸基は、例えば、エステル化またはエーテル化によって保護することができる。このエステル化に適する基としては、例えば、アセチル基などの低級アルカノイル基、ベンゾイル基などのアロイル基、ベンジルオキシカルボニル基、エトキシカルボニル基などの炭酸から誘導される基などが用いられる。また、エーテル化に適する基としては、例えば、ベンジル基、テトラヒドロピラニル基、t−ブチル基などである。
チロシンのフェノール性水酸基の保護基としては、例えば、Bzl、Cl−Bzl、2−ニトロベンジル、Br−Z、ターシャリーブチルなどが用いられる。
ヒスチジンのイミダゾールの保護基としては、例えば、Tos、4−メトキシ−2,3,6−トリメチルベンゼンスルホニル、DNP、ベンジルオキシメチル、Bum、Boc、Trt、Fmocなどが用いられる。
保護基の除去(脱離)方法としては、例えば、Pd−黒あるいはPd−炭素などの触媒の存在下での水素気流中での接触還元や、また、無水フッ化水素、メタンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸あるいはこれらの混合液などによる酸処理や、ジイソプロピルエチルアミン、トリエチルアミン、ピペリジン、ピペラジンなどによる塩基処理、また液体アンモニア中ナトリウムによる還元なども用いられる。上記酸処理による脱離反応は、一般に約−20℃〜40℃の温度で行なわれるが、酸処理においては、例えば、アニソール、フェノール、チオアニソール、メタクレゾール、パラクレゾール、ジメチルスルフィド、1,4−ブタンジチオール、1,2−エタンジチオールなどのようなカチオン捕捉剤の添加が有効である。また、ヒスチジンのイミダゾール保護基として用いられる2,4−ジニトロフェニル基はチオフェノール処理により除去され、トリプトファンのインドール保護基として用いられるホルミル基は上記の1,2−エタンジチオール、1,4−ブタンジチオールなどの存在下の酸処理による脱保護以外に、希水酸化ナトリウム溶液、希アンモニアなどによるアルカリ処理によっても除去される。
原料のカルボキシル基の活性化されたものとしては、例えば、対応する酸無水物、アジド、活性エステル〔アルコール(例えば、ペンタクロロフェノール、2,4,5−トリクロロフェノール、2,4−ジニトロフェノール、シアノメチルアルコール、パラニトロフェノール、HONB、N−ヒドロキシスクシミド、N−ヒドロキシフタルイミド、HOBt)とのエステル〕などが用いられる。原料のアミノ基の活性化されたものとしては、例えば、対応するリン酸アミドが用いられる。
蛋白質(ペプチド)のアミド体を得る別の方法としては、例えば、まず、カルボキシ末端アミノ酸のα−カルボキシル基をアミド化して保護した後、アミノ基側にペプチド鎖を所望の鎖長まで延ばした後、該ペプチド鎖のN末端のα−アミノ基の保護基のみを除いた蛋白質(ペプチド)とC末端のカルボキシル基の保護基のみを除去した蛋白質(ペプチド)とを製造し、この両蛋白質(ペプチド)を上記したような混合溶媒中で縮合させる。縮合反応の詳細については上記と同様である。縮合により得られた保護蛋白質(保護ペプチド)を精製した後、上記方法によりすべての保護基を除去し、所望の粗蛋白質(粗ペプチド)を得ることができる。この粗蛋白質(粗ペプチド)は既知の各種精製手段を駆使して精製し、主要画分を凍結乾燥することで所望の蛋白質(ペプチド)のアミド体を得ることができる。
蛋白質(ペプチド)のエステル体は、例えば、カルボキシ末端アミノ酸のα−カルボキシル基を所望のアルコール類と縮合しアミノ酸エステルとした後、上記蛋白質(ペプチド)のアミド体の場合と同様にして得ることができる。
本発明の部分ペプチドまたはその塩は、本発明の蛋白質またはその塩を適当なペプチダーゼで切断することによっても製造することができる。
さらに、本発明の蛋白質(ペプチド)は、本発明の蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有する形質転換体を培養し、得られる培養物から本発明の蛋白質(ペプチド)を分離精製することによって製造することもできる。本発明の蛋白質またはその部分ペプチドをコードするポリヌクレオチドはDNAであってもRNAであってもよく、あるいはDNA/RNAキメラであってもよい。好ましくはDNAが挙げられる。また、該ポリヌクレオチドは二本鎖であっても、一本鎖であってもよい。二本鎖の場合は、二本鎖DNA、二本鎖RNAまたはDNA:RNAのハイブリッドでもよい。一本鎖の場合は、センス鎖(即ち、コード鎖)であっても、アンチセンス鎖(即ち、非コード鎖)であってもよい。
本発明の蛋白質またはその部分ペプチドをコードするDNAとしては、哺乳動物(例えば、ヒト、ウシ、サル、ウマ、ブタ、ヒツジ、ヤギ、イヌ、ネコ、モルモット、ラット、マウス、ウサギ、ハムスターなど)のゲノムDNA、該哺乳動物のあらゆる細胞[例えば、肝細胞、脾細胞、神経細胞、グリア細胞、膵臓β細胞、骨髄細胞、メサンギウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、杯細胞、内皮細胞、平滑筋細胞、繊維芽細胞、繊維細胞、筋細胞、脂肪細胞、免疫細胞(例、マクロファージ、T細胞、B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、好酸球、単球)、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、乳腺細胞、肝細胞もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞もしくはガン細胞など]もしくはそれらの細胞が存在するあらゆる組織[例えば、脳、脳の各部位(例、嗅球、扁桃核、大脳基底球、海馬、視床、視床下部、大脳皮質、延髄、小脳)、脊髄、下垂体、胃、膵臓、腎臓、肝臓、生殖腺、甲状腺、胆嚢、骨髄、副腎、皮膚、肺、消化管(例、大腸、小腸)、血管、心臓、胸腺、脾臓、顎下腺、末梢血、前立腺、睾丸、卵巣、胎盤、子宮、骨、関節、脂肪組織(例、褐色脂肪組織、白色脂肪組織)、骨格筋など]由来のcDNA、合成DNAなどが挙げられる。本発明の蛋白質またはその部分ペプチドをコードするゲノムDNAおよびcDNAは、上記した細胞・組織より調製したゲノムDNA画分および全RNAもしくはmRNA画分をそれぞれ鋳型として用い、Polymerase Chain Reaction(以下、「PCR法」と略称する)およびReverse Transcriptase-PCR(以下、「RT−PCR法」と略称する)によって直接増幅することもできる。あるいは、本発明の蛋白質またはその部分ペプチドをコードするゲノムDNAおよびcDNAは、上記した細胞・組織より調製したゲノムDNAおよび全RNAもしくはmRNAの断片を適当なベクター中に挿入して調製されるゲノムDNAライブラリーおよびcDNAライブラリーから、コロニーもしくはプラークハイブリダイゼーション法またはPCR法などにより、それぞれクローニングすることもできる。ライブラリーに使用するベクターは、バクテリオファージ、プラスミド、コスミド、ファージミドなどいずれであってもよい。
本発明の蛋白質をコードするDNAとしては、例えば、配列番号:1で表される塩基配列を含有するDNAまたは該塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を含有し、配列番号:2で表されるアミノ酸配列を含有する蛋白質と実質的に同質の活性を有する蛋白質をコードするDNA(以下、「Sst20−14(Long form)」と略記する場合がある);配列番号:3で表される塩基配列を含有するDNAまたは該塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を含有し、配列番号:4で表されるアミノ酸配列を含有する蛋白質と実質的に同質の活性を有する蛋白質をコードするDNA(以下、「Sst20−14(Short form)」と略記する場合がある);配列番号:5で表される塩基配列を含有するDNAまたは該塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を含有し、配列番号:6で表されるアミノ酸配列を含有する蛋白質と実質的に同質の活性を有する蛋白質をコードするDNA(以下、「Sst22-22(Long form)」と略記する場合がある);配列番号:7で表される塩基配列を含有するDNAまたは該塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を含有し、配列番号:8で表されるアミノ酸配列を含有する蛋白質と実質的に同質の活性を有する蛋白質をコードするDNA(以下、「Sst22-22(Short form)」と略記する場合がある);配列番号:9で表される塩基配列を含有するDNAまたは該塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を含有し、配列番号:10で表されるアミノ酸配列を含有する蛋白質と実質的に同質の活性を有する蛋白質をコードするDNA(以下、「Sst8-5」と略記する場合がある);配列番号:11で表される塩基配列を含有するDNAまたは該塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を含有し、配列番号:12で表されるアミノ酸配列を含有する蛋白質と実質的に同質の活性を有する蛋白質をコードするDNA(以下、「Sst19-15(Long form)」と略記する場合がある);配列番号:13で表される塩基配列を含有するDNAまたは該塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を含有し、配列番号:14で表されるアミノ酸配列を含有する蛋白質と実質的に同質の活性を有する蛋白質をコードするDNA(以下、「Sst19-15(Short form)」と略記する場合がある);配列番号:15で表される塩基配列を含有するDNAまたは該塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を含有し、配列番号:16で表されるアミノ酸配列を含有する蛋白質と実質的に同質の活性を有する蛋白質をコードするDNA(以下、「Sst13-11」と略記する場合がある);配列番号:17で表される塩基配列を含有するDNAまたは該塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を含有し、配列番号:18で表されるアミノ酸配列を含有する蛋白質と実質的に同質の活性を有する蛋白質をコードするDNA(以下、「Sst9-8」と略記する場合がある);配列番号:19で表される塩基配列を含有するDNAまたは該塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を含有し、配列番号:20で表されるアミノ酸配列を含有する蛋白質と実質的に同質の活性を有する蛋白質をコードするDNA(以下、「Sst21-3」と略記する場合がある)または配列番号:21で表される塩基配列を含有するDNAまたは該塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を含有し、配列番号:22で表されるアミノ酸配列を含有する蛋白質と実質的に同質の活性を有する蛋白質をコードするDNA(以下、「Sst20-6」と略記する場合がある)が挙げられる。
上記各配列番号(配列番号:1、3、5、7、9、11、13、15、17、19または21)で表される塩基配列とハイストリンジェントな条件下でハイブリダイズできるDNAとしては、当該塩基配列と約50%以上、好ましくは約60%以上、さらに好ましくは約70%以上、特に好ましくは約80%以上、最も好ましくは約90%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。
本明細書における塩基配列の相同性は、相同性計算アルゴリズムNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)を用い、以下の条件(期待値=10;ギャップを許す;フィルタリング=ON;マッチスコア=1;ミスマッチスコア=-3)にて計算することができる。塩基配列の相同性を決定するための他のアルゴリズムとしては、上記したアミノ酸配列の相同性計算アルゴリズムが同様に好ましく例示される。
ハイブリダイゼーションは、自体公知の方法あるいはそれに準じる方法、例えば、モレキュラー・クローニング(Molecular Cloning)第2版(J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989)に記載の方法などに従って行なうことができる。また、市販のライブラリーを使用する場合、ハイブリダイゼーションは、添付の使用説明書に記載の方法に従って行なうことができる。ハイブリダイゼーションは、好ましくは、ハイストリンジェントな条件に従って行なうことができる。
ハイストリンジェントな条件としては、例えば、ナトリウム塩濃度が約19〜約40mM、好ましくは約19〜約20mMで、温度が約50〜約70℃、好ましくは約60〜約65℃の条件等が挙げられる。特に、ナトリウム塩濃度が約19mMで温度が約65℃の場合が好ましい。当業者は、ハイブリダイゼーション溶液の塩濃度、ハイブリダゼーション反応の温度、プローブ濃度、プローブの長さ、ミスマッチの数、ハイブリダイゼーション反応の時間、洗浄液の塩濃度、洗浄の温度等を適宜変更することにより、所望のストリンジェンシーに容易に調節することができる。
本発明の蛋白質をコードするDNAは、好ましくは、配列番号:1で表される塩基配列を有する、マウスSST20-14(Long form)蛋白質をコードするDNA、配列番号:3で表される塩基配列を有する、マウスSST20-14(Short form)蛋白質をコードするDNA、配列番号:5で表される塩基配列を有する、マウスSST22-22(Long form)蛋白質をコードするDNA、配列番号:7で表される塩基配列を有する、マウスSST22-22(Short form)蛋白質をコードするDNA、配列番号:9で表される塩基配列を有する、マウスSST8-5蛋白質をコードするDNA、配列番号:11で表される塩基配列を有する、マウスSST19-15(Long form)蛋白質をコードするDNA、配列番号:13で表される塩基配列を有する、マウスSST19-15(Short form)蛋白質をコードするDNA、配列番号:15で表される塩基配列を有する、マウスSST13-11蛋白質をコードするDNA、配列番号:17で表される塩基配列を有する、マウスSST9-8蛋白質をコードするDNA、配列番号:19で表される塩基配列を有する、マウスSST21-3蛋白質をコードするDNA、または配列番号:21で表される塩基配列を有する、マウスSST20-6蛋白質をコードするDNAなどである。
上記各DNAをプラスミドとして保持する大腸菌株[順に(1) Escherichia coli Top10/pCR4-TOPO(SST20-14long form)、(2) Escherichia coli Top10/pCR4-TOPO(SST20-14short form)、(3) Escherichia coli Top10/pCR4-TOPO(SST22-22long form)、(4) Escherichia coli Top10/pCR4-TOPO(SST22-22short form)、(5) Escherichia coli Top10/pCR4-TOPO(SST8-5)、(6) Escherichia coli Top10/pCR4-TOPO(SST19-15long form)、(7) Escherichia coli Top10/pCR4-TOPO(SST19-15short form)、(8) Escherichia coli Top10/pCR4-TOPO(SST13-11)、(9) Escherichia coli Top10/pENTR/D-TOPO(SST9-8)、(10) Escherichia coli Top10/pCR4-TOPO(SST21-3)および(11) Escherichia coli Top10/pCR4-TOPO(SST20-6)]は、それぞれFERM BP-8406、FERM BP-8407、FERM BP-8408、FERM BP-8409、FERM BP-8402、FERM BP-8404、FERM BP-8405、FERM BP-8403、FERM BP-8411、FERM BP-8413およびFERM BP-8412の受託番号を付され、(1)〜(8)については平成15(2003)年6月20日付で、(9)〜(11)については平成15(2003)年6月24日付で独立行政法人 産業技術総合研究所 特許生物寄託センター(〒305-8566 茨城県つくば市東1−1−1 中央第6)に寄託されている。
本発明の蛋白質のような分泌もしくは膜蛋白質をコードする核酸をクローニングする簡便な手法としてシグナルシークエンストラップ(SST)法が知られている。この方法は、基本的には、目的の組織由来のcDNAライブラリーを作製し、これを分泌もしくは細胞膜へ移行した場合にのみ細胞の選択を可能にする蛋白質をコードするDNAの5’側に組み込んだ融合蛋白質発現ベクターを用い、該蛋白質の分泌もしくは細胞膜への移行を指標にして分泌もしくは膜蛋白質をコードするcDNAを選択するというものである。例えば、スクロースを資化できない変異インベルターゼを有する酵母に、目的cDNAライブラリーをシグナル配列欠失変異インベルターゼ遺伝子の5’側に融合させた酵母発現プラスミドを導入し、スクロースを炭素源とする培地で増殖性を有する酵母を選択する方法(Kleinら,Proc. Natl. Acad. Sci. USA, 93: 7108-7113, 1996)、シグナル欠損変異CD25抗原遺伝子の5’側に目的cDNAライブラリーを融合させた哺乳動物用発現ベクターを適当な哺乳動物細胞に導入し、抗CD25抗体を用いた免疫染色により分泌・膜蛋白質をコードするcDNAを有するクローンを選択する方法(Tashiroら,Science, 261: 600-603, 1993)、Ba/F3細胞株をIL−3非依存的に増殖可能にする変異トロンボポイエチン受容体(N末端細胞外ドメインコード領域を欠失する)の5’側に目的cDNAライブラリーを融合させた哺乳動物用発現ベクターをBa/F3細胞に導入し、IL−3非存在下で増殖性を有する細胞を選択する方法(KojimaおよびKitamura,Nature Biotech., 17: 487-490, 1999; Tsurugaら,Biochem. Biophys. Res. Commun., 272: 293-297, 2000)等が挙げられる。
選択された細胞からゲノムDNA(導入されたcDNAがゲノムに組み込まれている場合)またはプラスミドDNAもしくはウイルスDNA(導入されたcDNAがゲノムに組み込まれていない場合)を抽出し、使用したベクターの5’フランキング配列と融合させたマーカー蛋白質遺伝子の5’側配列とを基にしてセンスおよびアンチセンスプライマーを作製し、前記DNAを鋳型としてPCR法を行うことにより分泌もしくは膜蛋白質の一部をコードするcDNAを単離し、適当なクローニングベクター中にサブクローニングすることができる。
こうして得られたcDNAの塩基配列は自体公知の方法(マキサム・ギルバート法、ジデオキシターミネーション法等)を用いて決定することができる。
本発明の蛋白質をコードする核酸のクローニングの手段としては、上記のようにして同定され、配列決定された上記cDNAの部分塩基配列を有する2種の合成DNAプライマーと適当なアダプタープライマーとを用いて、目的の組織由来のmRNAを鋳型とする5’−および3’−RACE反応を行い、得られた各増幅断片を制限酵素とリガーゼを用いて連結するなどして完全長のcDNAを得る方法、あるいは配列決定された上記cDNAの一部あるいは全領域を含むDNAをプローブとして用い、ライブラリーから再度ハイブリダイゼーションによるスクリーニングを行って完全長cDNAを得る方法等が挙げられるが、これらに限定されない。RACE法による場合、アダプタープライマーとしては任意のアダプター配列(例えば、サブクローニング用の制限酵素認識部位を含む配列)の3’末端にオリゴdTが付加されたもの等が好ましく用いられ得る。5’−RACEにおいて、逆転写酵素の内在のターミナルトランスフェラーゼ活性を利用する場合は主として数個のdCが付加されるので、3’末端にdGを付加したアダプタープライマーが好ましく用いられ得る。ハイブリダイゼーション法による場合、ハイブリダイゼーションは自体公知の方法あるいはそれに準じる方法、例えば、モレキュラー・クローニング(Molecular Cloning)第2版(J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989)に記載の方法などに従って行なうことができる。また、市販のライブラリーを使用する場合、ハイブリダイゼーションは、添付の使用説明書に記載の方法に従って行なうことができる。
こうして得られた完全長cDNAの塩基配列は、部分配列と同様に自体公知の方法(マキサム・ギルバート法、ジデオキシターミネーション法等)を用いて決定することができる。
配列番号:1で表される塩基配列を有する、マウスSST20-14(Long form)蛋白質の完全長をコードするDNA(mSst20-14(Long form))、および配列番号:3で表される塩基配列を有する、マウスSST20-14(Short form)蛋白質の完全長をコードするDNA(mSst20-14(Short form))は、例えば、高脂肪食負荷されたマウス白色脂肪組織由来のcDNAライブラリーから、上記SST法を用いて得られ、大腸菌Escherichia coli Top10/pENTR/D-TOPO (20-14)株にクローニングされた核酸(mSst20-14(partial))の塩基配列(配列番号:23)を基に設計したプライマーと、アダプタープライマーとを用いた5’−および3’−RACE反応により得ることができる。
配列番号:5で表される塩基配列を有する、マウスSST22-22(Long form)蛋白質の完全長をコードするDNA(mSst22-22(Long form))、および配列番号:7で表される塩基配列を有する、マウスSST22-22(Short form)蛋白質の完全長をコードするDNA(mSst22-22(Short form))は、例えば、高脂肪食負荷されたマウス白色脂肪組織由来のcDNAライブラリーから、上記SST法を用いて得られ、大腸菌Escherichia coli Top10/pENTR/D-TOPO (22-22)株にクローニングされた核酸(mSst22-22(partial))の塩基配列(配列番号:24)を基に設計したプライマーと、アダプタープライマーとを用いた5’−および3’−RACE反応により得ることができる。
配列番号:9で表される塩基配列を有する、マウスSST8-5蛋白質の完全長をコードするDNA(mSst8-5)は、例えば、高脂肪食負荷されたマウス白色脂肪組織由来のcDNAライブラリーから、上記SST法を用いて得られ、大腸菌Escherichia coli Top10/pENTR/D-TOPO (8-5)株にクローニングされた核酸(mSst8-5(partial))の塩基配列(配列番号:25)を基に設計したプライマーと、アダプタープライマーとを用いた5’−および3’−RACE反応により得ることができる。
配列番号:11で表される塩基配列を有する、マウスSST19-15(Long form)蛋白質の完全長をコードするDNA(mSst19-15(Long form))、および配列番号:13で表される塩基配列を有する、マウスSST19-15(Short form)蛋白質の完全長をコードするDNA(mSst19-15(Short form))は、例えば、高脂肪食負荷されたマウス白色脂肪組織由来のcDNAライブラリーから、上記SST法を用いて得られ、大腸菌Escherichia coli Top10/pENTR/D-TOPO (19-15)株にクローニングされた核酸(mSst19-15(partial))の塩基配列(配列番号:26)を基に設計したプライマーと、アダプタープライマーとを用いた5’−および3’−RACE反応により得ることができる。
配列番号:15で表される塩基配列を有する、マウスSST13-11蛋白質の完全長をコードするDNA(mSst13-11)は、例えば、高脂肪食負荷されたマウス白色脂肪組織由来のcDNAライブラリーから、上記SST法を用いて得られ、大腸菌Escherichia coli Top10/pENTR/D-TOPO (13-11)株にクローニングされた核酸(mSst13-11(partial))の塩基配列(配列番号:27)を基に設計したプライマーと、アダプタープライマーとを用いた5’−および3’−RACE反応により得ることができる。
配列番号:17で表される塩基配列を有する、マウスSST9-8蛋白質の完全長をコードするDNA(mSst9-8)は、例えば、高脂肪食負荷されたマウス白色脂肪組織由来のcDNAライブラリーから、上記SST法を用いて得られ、大腸菌Escherichia coli Top10/pENTR/D-TOPO (9-8)株にクローニングされた核酸(mSst9-8(partial))の塩基配列(配列番号:28)を基に設計したプライマーと、アダプタープライマーとを用いた5’−および3’−RACE反応により得ることができる。
配列番号:19で表される塩基配列を有する、マウスSST21-3蛋白質の完全長をコードするDNA(mSst21-3)は、例えば、高脂肪食負荷されたマウス白色脂肪組織由来のcDNAライブラリーから、上記SST法を用いて得られ、大腸菌Escherichia coli Top10/pENTR/D-TOPO (21-3)株にクローニングされた核酸(mSst21-3(partial))の塩基配列(配列番号:29)を基に設計したプライマーと、アダプタープライマーとを用いた5’−および3’−RACE反応により得ることができる。
配列番号:21で表される塩基配列を有する、マウスSST20-6蛋白質の完全長をコードするDNA(mSst20-6)は、例えば、高脂肪食負荷されたマウス白色脂肪組織由来のcDNAライブラリーから、上記SST法を用いて得られ、大腸菌Escherichia coli Top10/pENTR/D-TOPO (20-6)株にクローニングされた核酸(mSst20-6(partial))の塩基配列(配列番号:30)を基に設計したプライマーと、アダプタープライマーとを用いた5’−および3’−RACE反応により得ることができる。
上記のEscherichia coli Top10/pENTR/D-TOPO (20-14)株、Escherichia coli Top10/pENTR/D-TOPO (22-22)株、Escherichia coli Top10/pENTR/D-TOPO (8-5)株、Escherichia coli Top10/pENTR/D-TOPO (19-15)株、Escherichia coli Top10/pENTR/D-TOPO (13-11)株、Escherichia coli Top10/pENTR/D-TOPO (9-8)株、Escherichia coli Top10/pENTR/D-TOPO (21-3)株およびEscherichia coli Top10/pENTR/D-TOPO (20-6)株は、それぞれFERM BP-8104、FERM BP-8109、FERM BP-8110、FERM BP-8108、FERM BP-8107、FERM BP-8105、FERM BP-8102およびFERM BP-8106の受託番号を付され、平成14(2002)年7月2日付で独立行政法人 産業技術総合研究所 特許生物寄託センター(〒305-8566 茨城県つくば市東1−1−1 中央第6)に寄託されている。
本発明の部分ペプチドをコードするDNAは、上記各配列番号(配列番号:2、4、6、8、10、12、14、16、18、20または22)で表されるアミノ酸配列の一部と同一もしくは実質的に同一のアミノ酸配列を有するペプチドをコードする塩基配列を含むものであればいかなるものであってもよい。具体的には、本発明の部分ペプチドをコードするDNAとしては、例えば、(1)上記各配列番号で表される塩基配列の部分塩基配列または(2)上記各配列番号で表される塩基配列を有するDNAとハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、前記した本発明の蛋白質と実質的に同質の活性(例:レセプター(もしくはリガンド)結合活性、シグナル伝達作用など)を有するペプチドをコードするDNAなどが用いられる。
上記各配列番号で表される塩基配列を有するDNAとハイストリンジェントな条件下でハイブリダイズできるDNAとしては、例えば、該塩基配列と約60%以上、好ましくは約70%以上、より好ましくは約80%以上、最も好ましくは約90%以上の同一性を有する塩基配列を含有するDNAなどが挙げられる。ハイストリンジェントな条件としては上記と同様の条件が挙げられる。
クローン化された本発明の蛋白質またはその部分ペプチドをコードするDNAの塩基配列は、公知のキット、例えば、MutanTM-super Express Km(宝酒造(株))、MutanTM-K(宝酒造(株))等を用いて、ODA-LA PCR法、Gapped duplex法、Kunkel法等の自体公知の方法あるいはそれらに準じる方法に従って変換することができる。
クローン化されたDNAは、目的によりそのまま、または所望により制限酵素で消化するか、リンカーを付加した後に、使用することができる。該DNAはその5’末端側に翻訳開始コドンとしてのATGを有し、また3’末端側には翻訳終止コドンとしてのTAA、TGAまたはTAGを有していてもよい。これらの翻訳開始コドンや翻訳終止コドンは、適当な合成DNAアダプターを用いて付加することができる。
上記した本発明の蛋白質またはその部分ペプチドをコードするDNAを含む発現ベクターで宿主を形質転換し、得られる形質転換体を培養することによって、本発明の蛋白質(ペプチド)を製造することができる。
本発明の蛋白質またはその部分ペプチドをコードするDNAを含む発現ベクターは、例えば、該蛋白質をコードするDNAから目的とするDNA断片を切り出し、該DNA断片を適当な発現ベクター中のプロモーターの下流に連結することにより製造することができる。
発現ベクターとしては、大腸菌由来のプラスミド(例、pBR322,pBR325,pUC12,pUC13);枯草菌由来のプラスミド(例、pUB110,pTP5,pC194);酵母由来プラスミド(例、pSH19,pSH15);昆虫細胞発現プラスミド(例:pFast−Bac);動物細胞発現プラスミド(例:pA1−11、pXT1、pRc/CMV、pRc/RSV、pcDNAI/Neo);λファージなどのバクテリオファージ;バキュロウイルスなどの昆虫ウイルスベクター(例:BmNPV、AcNPV);レトロウイルス、ワクシニアウイルス、アデノウイルスなどの動物ウイルスベクターなどが用いられる。
プロモーターとしては、遺伝子の発現に用いる宿主に対応して適切なプロモーターであればいかなるものでもよい。
例えば、宿主が動物細胞である場合、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、、RSV(ラウス肉腫ウイルス)プロモーター、MoMuLV(モロニーマウス白血病ウイルス)LTR、HSV-TK(単純ヘルペスウイルスチミジンキナーゼ)プロモーターなどが用いられる。なかでも、CMVプロモーター、SRαプロモーターなどが好ましい。
宿主がエシェリヒア属菌である場合、trpプロモーター、lacプロモーター、recAプロモーター、λPプロモーター、lppプロモーター、T7プロモーターなどが好ましい。
宿主がバチルス属菌である場合、SPO1プロモーター、SPO2プロモーター、penPプロモーターなどが好ましい。
宿主が酵母である場合、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーターなどが好ましい。
宿主が昆虫細胞である場合、ポリヘドリンプロモーター、P10プロモーターなどが好ましい。
発現ベクターとしては、上記の他に、所望によりエンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、SV40複製起点(以下、SV40 oriと略称する場合がある)などを含有しているものを用いることができる。選択マーカーとしては、例えば、ジヒドロ葉酸還元酵素遺伝子(以下、dhfrと略称する場合がある、メソトレキセート(MTX)耐性)、アンピシリン耐性遺伝子(以下、ampと略称する場合がある)、ネオマイシン耐性遺伝子(以下、neoと略称する場合がある、G418耐性)等が挙げられる。特に、dhfr遺伝子欠損チャイニーズハムスター細胞を用い、dhfr遺伝子を選択マーカーとして使用する場合、チミジンを含まない培地によって目的遺伝子を選択することもできる。
また、必要に応じて、宿主に合ったシグナル配列をコードする塩基配列(シグナルコドン)を、本発明の蛋白質またはその部分ペプチドをコードするDNAの5’末端側に付加(またはネイティブなシグナルコドンと置換)してもよい。例えば、宿主がエシェリヒア属菌である場合、PhoA・シグナル配列、OmpA・シグナル配列などが;宿主がバチルス属菌である場合、α−アミラーゼ・シグナル配列、サブチリシン・シグナル配列などが;宿主が酵母である場合、MFα・シグナル配列、SUC2・シグナル配列などが;宿主が動物細胞である場合、インスリン・シグナル配列、α−インターフェロン・シグナル配列、抗体分子・シグナル配列などがそれぞれ用いられる。
宿主としては、例えば、エシェリヒア属菌、バチルス属菌、酵母、昆虫細胞、昆虫、動物細胞などが用いられる。
エシェリヒア属菌としては、例えば、エシェリヒア・コリ(Escherichia coli)K12・DH1〔プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー(Proc. Natl. Acad. Sci. USA),60巻,160(1968)〕,エシェリヒア・コリJM103〔ヌクレイック・アシッズ・リサーチ(Nucleic Acids Research),9巻,309(1981)〕,エシェリヒア・コリJA221〔ジャーナル・オブ・モレキュラー・バイオロジー(Journal of Molecular Biology),120巻,517(1978)〕,エシェリヒア・コリHB101〔ジャーナル・オブ・モレキュラー・バイオロジー,41巻,459(1969)〕,エシェリヒア・コリC600〔ジェネティックス(Genetics),39巻,440(1954)〕などが用いられる。
バチルス属菌としては、例えば、バチルス・サブチルス(Bacillus subtilis)MI114〔ジーン,24巻,255(1983)〕,バチルス・サブチルス207−21〔ジャーナル・オブ・バイオケミストリー(Journal of Biochemistry),95巻,87(1984)〕などが用いられる。
酵母としては、例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)AH22,AH22R,NA87−11A,DKD−5D,20B−12、シゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)NCYC1913,NCYC2036、ピキア・パストリス(Pichia pastoris)KM71などが用いられる。
昆虫細胞としては、例えば、ウイルスがAcNPVの場合、夜盗蛾の幼虫由来株化細胞(Spodoptera frugiperda cell;Sf細胞)、Trichoplusia niの中腸由来のMG1細胞、Trichoplusia niの卵由来のHigh FiveTM細胞、Mamestra brassicae由来の細胞、Estigmena acrea由来の細胞などが用いられる。ウイルスがBmNPVの場合、昆虫細胞としては、蚕由来株化細胞(Bombyx mori N 細胞;BmN細胞)などが用いられる。該Sf細胞としては、例えば、Sf9細胞(ATCC CRL1711)、Sf21細胞(以上、Vaughn, J.L.ら、イン・ヴィボ(In Vivo),13, 213-217,(1977))などが用いられる。
昆虫としては、例えば、カイコの幼虫などが用いられる〔前田ら、ネイチャー(Nature),315巻,592(1985)〕。
動物細胞としては、例えば、サルCOS−7細胞、サルVero細胞、チャイニーズハムスター細胞CHO(以下、CHO細胞と略記)、dhfr遺伝子欠損チャイニーズハムスター細胞CHO(以下、CHO(dhfr)細胞と略記)、マウスL細胞,マウスAtT−20細胞、マウスミエローマ細胞,ラットGH3細胞、ヒトFL細胞などが用いられる。
形質転換は、宿主の種類に応じ、公知の方法に従って実施することができる。 エシェリヒア属菌は、例えば、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー(Proc. Natl. Acad. Sci. USA),69巻,2110(1972)やジーン(Gene),17巻,107(1982)などに記載の方法に従って形質転換することができる。
バチルス属菌は、例えば、モレキュラー・アンド・ジェネラル・ジェネティックス(Molecular & General Genetics),168巻,111(1979)などに記載の方法に従って形質転換することができる。
酵母は、例えば、メソッズ・イン・エンザイモロジー(Methods in Enzymology),194巻,182−187(1991)、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー(Proc. Natl. Acad. Sci. USA),75巻,1929(1978)などに記載の方法に従って形質転換することができる。
昆虫細胞および昆虫は、例えば、バイオ/テクノロジー(Bio/Technology),6巻,47−55(1988)などに記載の方法に従って形質転換することができる。
動物細胞は、例えば、細胞工学別冊8 新細胞工学実験プロトコール,263−267(1995)(秀潤社発行)、ヴィロロジー(Virology),52巻,456(1973)に記載の方法に従って形質転換することができる。
形質転換体の培養は、宿主の種類に応じ、公知の方法に従って実施することができる。
例えば、宿主がエシェリヒア属菌またはバチルス属菌である形質転換体を培養する場合、培養に使用される培地としては液体培地が好ましい。また、培地は、形質転換体の生育に必要な炭素源、窒素源、無機物などを含有することが好ましい。ここで、炭素源としては、例えば、グルコース、デキストリン、可溶性澱粉、ショ糖などが;窒素源としては、例えば、アンモニウム塩類、硝酸塩類、コーンスチープ・リカー、ペプトン、カゼイン、肉エキス、大豆粕、バレイショ抽出液などの無機または有機物質が;無機物としては、例えば、塩化カルシウム、リン酸二水素ナトリウム、塩化マグネシウムなどがそれぞれ挙げられる。また、培地には、酵母エキス、ビタミン類、生長促進因子などを添加してもよい。培地のpHは、好ましくは約5〜約8である。
宿主がエシェリヒア属菌である形質転換体を培養する場合の培地としては、例えば、グルコース、カザミノ酸を含むM9培地〔ミラー(Miller),ジャーナル・オブ・エクスペリメンツ・イン・モレキュラー・ジェネティックス(Journal of Experiments in Molecular Genetics),431−433,Cold Spring Harbor Laboratory, New York 1972〕が好ましい。必要により、プロモーターを効率よく働かせるために、例えば、3β−インドリルアクリル酸のような薬剤を培地に添加してもよい。
宿主がエシェリヒア属菌である形質転換体の培養は、通常約15〜約43℃で、約3〜約24時間行なわれる。必要により、通気や撹拌を行ってもよい。
宿主がバチルス属菌である形質転換体の培養は、通常約30〜約40℃で、約6〜約24時間行なわれる。必要により、通気や撹拌を行ってもよい。
宿主が酵母である形質転換体を培養する場合の培地としては、例えば、バークホールダー(Burkholder)最小培地〔Bostian, K.L.ら,プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー(Proc. Natl. Acad. Sci. USA),77巻,4505(1980)〕や0.5%カザミノ酸を含有するSD培地〔Bitter, G.A.ら,プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー(Proc. Natl. Acad. Sci. USA),81巻,5330(1984)〕などが挙げられる。培地のpHは、好ましくは約5〜約8である。培養は、通常約20℃〜約35℃で、約24〜約72時間行なわれる。必要に応じて、通気や撹拌を行ってもよい。
宿主が昆虫細胞または昆虫である形質転換体を培養する場合の培地としては、例えばGrace's Insect Medium〔Grace, T.C.C.,ネイチャー(Nature),195巻,788(1962)〕に非働化した10%ウシ血清等の添加物を適宜加えたものなどが用いられる。培地のpHは、好ましくは約6.2〜約6.4である。培養は、通常約27℃で、約3〜約5日間行なわれる。必要に応じて通気や撹拌を行ってもよい。
宿主が動物細胞である形質転換体を培養する場合の培地としては、例えば、約5〜約20%の胎児ウシ血清を含む最小必須培地(MEM)〔サイエンス(Science),122巻,501(1952)〕,ダルベッコ改変イーグル培地(DMEM)〔ヴィロロジー(Virology),8巻,396(1959)〕,RPMI 1640培地〔ジャーナル・オブ・ザ・アメリカン・メディカル・アソシエーション(The Journal of the American Medical Association),199巻,519(1967)〕,199培地〔プロシージング・オブ・ザ・ソサイエティ・フォー・ザ・バイオロジカル・メディスン(Proceeding of the Society for the Biological Medicine),73巻,1(1950)〕などが用いられる。培地のpHは、好ましくは約6〜約8である。培養は、通常約30℃〜約40℃で、約15〜約60時間行なわれる。必要に応じて通気や撹拌を行ってもよい。
以上のようにして、形質転換体の細胞内または細胞外に本発明の蛋白質(ペプチド)を製造せしめることができる。
前記形質転換体を培養して得られる培養物から本発明の蛋白質(ペプチド)を自体公知の方法に従って分離精製することができる。
例えば、本発明の蛋白質(ペプチド)を培養菌体あるいは細胞の細胞質から抽出する場合、培養物から公知の方法で集めた菌体あるいは細胞を適当な緩衝液に懸濁し、超音波、リゾチームおよび/または凍結融解などによって菌体あるいは細胞を破壊した後、遠心分離やろ過により可溶性蛋白質の粗抽出液を得る方法などが適宜用いられる。該緩衝液は、尿素や塩酸グアニジンなどの蛋白質変性剤や、トリトンX−100TMなどの界面活性剤を含んでいてもよい。一方、膜画分から本発明の蛋白質(ペプチド)を抽出する場合は、上記と同様に菌体あるいは細胞を破壊した後、低速遠心で細胞デブリスを沈澱除去し、上清を高速遠心して細胞膜含有画分を沈澱させる(必要に応じて密度勾配遠心などにより細胞膜画分を精製する)などの方法が用いられる。また、本発明の蛋白質(ペプチド)が菌体(細胞)外に分泌される場合には、培養物から遠心分離またはろ過等により培養上清を分取するなどの方法が用いられる。
このようにして得られた可溶性画分、膜画分あるいは培養上清中に含まれる本発明の蛋白質(ペプチド)の単離精製は、自体公知の方法に従って行うことができる。このような方法としては、塩析や溶媒沈澱法などの溶解度を利用する方法;透析法、限外ろ過法、ゲルろ過法、およびSDS−ポリアクリルアミドゲル電気泳動法などの主として分子量の差を利用する方法;イオン交換クロマトグラフィーなどの荷電の差を利用する方法;アフィニティークロマトグラフィーなどの特異的親和性を利用する方法;逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法;等電点電気泳動法などの等電点の差を利用する方法;などが用いられる。これらの方法は、適宜組み合わせることもできる。
かくして得られる蛋白質(ペプチド)が遊離体である場合には、自体公知の方法あるいはそれに準じる方法によって、該遊離体を塩に変換することができ、蛋白質(ペプチド)が塩として得られた場合には、自体公知の方法あるいはそれに準じる方法により、該塩を遊離体または他の塩に変換することができる。
なお、形質転換体が産生する本発明の蛋白質(ペプチド)を、精製前または精製後に適当な蛋白修飾酵素を作用させることにより、任意に修飾を加えたり、ポリペプチドを部分的に除去することもできる。該蛋白修飾酵素としては、例えば、トリプシン、キモトリプシン、アルギニルエンドペプチダーゼ、プロテインキナーゼ、グリコシダーゼなどが用いられる。
かくして得られる本発明の蛋白質(ペプチド)の存在は、それに対する特異抗体を用いたエンザイムイムノアッセイやウエスタンブロッティングなどにより確認することができる。
さらに、本発明の蛋白質(ペプチド)は、上記の本発明の蛋白質またはその部分ペプチドをコードするDNAに対応するRNAを鋳型として、ウサギ網状赤血球ライセート、コムギ胚芽ライセート、大腸菌ライセートなどからなる無細胞蛋白質翻訳系を用いてインビトロ合成することができる。あるいは、さらにRNAポリメラーゼを含む無細胞転写/翻訳系を用いて、本発明の蛋白質またはその部分ペプチドをコードするDNAを鋳型としても合成することができる。
「本発明の蛋白質(即ち、配列番号2、4、6、8、10、12、14、16、18、20または22で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する蛋白質)をコードする塩基配列またはその一部」、あるいは「該塩基配列と相補的な塩基配列またはその一部」を含有する核酸とは、前述の本発明の蛋白質またはその部分ペプチドをコードする核酸だけではなく、フレームの合わない塩基配列をも含む意味で用いられる。
目的核酸の標的領域と相補的な塩基配列を含む核酸、即ち、目的核酸とハイブリダイズすることができる核酸は、該目的核酸に対して「アンチセンス」であるということができる。一方、目的核酸の標的領域と相同性を有する塩基配列を含む核酸は、該目的核酸に対して「センス」であるということができる。ここで「相同性を有する」または「相補的である」とは、塩基配列間で約70%以上、好ましくは約80%以上、より好ましくは約90%以上、最も好ましくは約95%以上の同一性または相補性を有することをいう。
本発明の蛋白質をコードする塩基配列と相補的な塩基配列またはその一部を含有する核酸(以下、「本発明のアンチセンス核酸」ともいう)は、クローン化した、あるいは決定された本発明の蛋白質をコードする核酸の塩基配列情報に基づき設計し、合成しうる。そうした核酸は、本発明の蛋白質をコードする遺伝子の複製または発現を阻害することができる。即ち、本発明のアンチセンス核酸は、本発明の蛋白質をコードする遺伝子から転写されるRNAとハイブリダイズすることができ、mRNAの合成(プロセッシング)または機能(蛋白質への翻訳)を阻害することができる。
本発明のアンチセンス核酸の標的領域は、アンチセンス核酸がハイブリダイズすることにより、結果として本発明の蛋白質の翻訳が阻害されるものであればその長さに特に制限はなく、該蛋白質をコードするmRNAの全配列であっても部分配列であってもよく、短いもので約15塩基程度、長いものでmRNAまたは初期転写産物の全配列が挙げられる。合成の容易さや抗原性の問題を考慮すれば、約15〜約30塩基からなるオリゴヌクレオチドが好ましいがそれに限定されない。具体的には、例えば、本発明の蛋白質をコードする核酸の5’端ヘアピンループ、5’端6−ベースペア・リピート、5’端非翻訳領域、ポリペプチド翻訳開始コドン、蛋白質コード領域、ORF翻訳終止コドン、3’端非翻訳領域、3’端パリンドローム領域、および3’端ヘアピンループが標的領域として選択しうるが、本発明の蛋白質をコードする遺伝子内の如何なる領域も標的として選択しうる。例えば、該遺伝子のイントロン部分を標的領域とすることもまた好ましい。
さらに、本発明のアンチセンス核酸は、本発明の蛋白質をコードするmRNAもしくは初期転写産物とハイブリダイズして蛋白質への翻訳を阻害するだけでなく、二本鎖DNAである本発明の蛋白質をコードする遺伝子と結合して三重鎖(トリプレックス)を形成し、RNAの転写を阻害し得るものであってもよい。
アンチセンス核酸は、2−デオキシ−D−リボースを含有しているデオキシリボヌクレオチド、D−リボースを含有しているリボヌクレオチド、プリンまたはピリミジン塩基のN−グリコシドであるその他のタイプのヌクレオチド、あるいは非ヌクレオチド骨格を有するその他のポリマー(例えば、市販の蛋白質核酸および合成配列特異的な核酸ポリマー)または特殊な結合を含有するその他のポリマー(但し、該ポリマーはDNAやRNA中に見出されるような塩基のペアリングや塩基の付着を許容する配置をもつヌクレオチドを含有する)などが挙げられる。それらは、2本鎖DNA、1本鎖DNA、2本鎖RNA、1本鎖RNA、さらにDNA:RNAハイブリッドであることができ、さらに非修飾ポリヌクレオチド(または非修飾オリゴヌクレオチド)、さらには公知の修飾の付加されたもの、例えば当該分野で知られた標識のあるもの、キャップの付いたもの、メチル化されたもの、1個以上の天然のヌクレオチドを類縁物で置換したもの、分子内ヌクレオチド修飾のされたもの、例えば非荷電結合(例えば、メチルホスホネート、ホスホトリエステル、ホスホルアミデート、カルバメートなど)を持つもの、電荷を有する結合または硫黄含有結合(例えば、ホスホロチオエート、ホスホロジチオエートなど)を持つもの、例えば蛋白質(ヌクレアーゼ、ヌクレアーゼ・インヒビター、トキシン、抗体、シグナルペプチド、ポリ−L−リジンなど)や糖(例えば、モノサッカライドなど)などの側鎖基を有しているもの、インターカレント化合物(例えば、アクリジン、プソラレンなど)を持つもの、キレート化合物(例えば、金属、放射活性をもつ金属、ホウ素、酸化性の金属など)を含有するもの、アルキル化剤を含有するもの、修飾された結合を持つもの(例えば、αアノマー型の核酸など)であってもよい。ここで「ヌクレオシド」、「ヌクレオチド」および「核酸」とは、プリンおよびピリミジン塩基を含有するのみでなく、修飾されたその他の複素環型塩基をもつようなものを含んでいて良い。こうした修飾物は、メチル化されたプリンおよびピリミジン、アシル化されたプリンおよびピリミジン、あるいはその他の複素環を含むものであってよい。修飾されたヌクレオチドおよび修飾されたヌクレオチドはまた糖部分が修飾されていてよく、例えば、1個以上の水酸基がハロゲンとか、脂肪族基などで置換されていたり、あるいはエーテル、アミンなどの官能基に変換されていてよい。
アンチセンス核酸は、RNA、DNA、あるいは修飾された核酸(RNA、DNA)である。修飾された核酸の具体例としては核酸の硫黄誘導体やチオホスフェート誘導体、そしてポリヌクレオシドアミドやオリゴヌクレオシドアミドの分解に抵抗性のものが挙げられるが、それに限定されるものではない。本発明のアンチセンス核酸は次のような方針で好ましく設計されうる。すなわち、細胞内でのアンチセンス核酸をより安定なものにする、アンチセンス核酸の細胞透過性をより高める、目標とするセンス鎖に対する親和性をより大きなものにする、そしてもし毒性があるならアンチセンス核酸の毒性をより小さなものにする。こうした修飾は当該分野で数多く知られており、例えば J. Kawakami et al., Pharm Tech Japan, Vol. 8, pp.247, 1992; Vol. 8, pp.395, 1992; S. T. Crooke et al. ed., Antisense Research and Applications, CRC Press, 1993 などに開示がある。
アンチセンス核酸は、変化せしめられたり、修飾された糖、塩基、結合を含有していて良く、リポゾーム、ミクロスフェアのような特殊な形態で供与されたり、遺伝子治療により適用されたり、付加された形態で与えられることができうる。こうして付加形態で用いられるものとしては、リン酸基骨格の電荷を中和するように働くポリリジンのようなポリカチオン体、細胞膜との相互作用を高めたり、核酸の取込みを増大せしめるような脂質(例えば、ホスホリピド、コレステロールなど)といった疎水性のものが挙げられる。付加するに好ましい脂質としては、コレステロールやその誘導体(例えば、コレステリルクロロホルメート、コール酸など)が挙げられる。こうしたものは、核酸の3’端あるいは5’端に付着させることができ、塩基、糖、分子内ヌクレオシド結合を介して付着させることができうる。その他の基としては、核酸の3’端あるいは5’端に特異的に配置されたキャップ用の基で、エキソヌクレアーゼ、RNaseなどのヌクレアーゼによる分解を阻止するためのものが挙げられる。こうしたキャップ用の基としては、ポリエチレングリコール、テトラエチレングリコールなどのグリコールをはじめとした当該分野で知られた水酸基の保護基が挙げられるが、それに限定されるものではない。
本発明の蛋白質をコードするmRNAもしくは初期転写産物を、コード領域の内部(初期転写産物の場合はイントロン部分を含む)で特異的に切断し得るリボザイムもまた、本発明のアンチセンス核酸に包含され得る。「リボザイム」とは核酸を切断する酵素活性を有するRNAをいうが、最近では当該酵素活性部位の塩基配列を有するオリゴDNAも同様に核酸切断活性を有することが明らかになっているので、本明細書では配列特異的な核酸切断活性を有する限りDNAをも包含する概念として用いるものとする。リボザイムとして最も汎用性の高いものとしては、ウイロイドやウイルソイド等の感染性RNAに見られるセルフスプライシングRNAがあり、ハンマーヘッド型やヘアピン型等が知られている。ハンマーヘッド型は約40塩基程度で酵素活性を発揮し、ハンマーヘッド構造をとる部分に隣接する両端の数塩基ずつ(合わせて約10塩基程度)をmRNAの所望の切断部位と相補的な配列にすることにより、標的mRNAのみを特異的に切断することが可能である。このタイプのリボザイムは、RNAのみを基質とするので、ゲノムDNAを攻撃することがないというさらなる利点を有する。本発明の蛋白質をコードするmRNAが自身で二本鎖構造をとる場合には、RNAヘリカーゼと特異的に結合し得るウイルス核酸由来のRNAモチーフを連結したハイブリッドリボザイムを用いることにより、標的配列を一本鎖にすることができる[Proc. Natl. Acad. Sci. USA, 98(10): 5572-5577 (2001)]。さらに、リボザイムを、それをコードするDNAを含む発現ベクターの形態で使用する場合には、転写産物の細胞質への移行を促進するために、tRNAを改変した配列をさらに連結したハイブリッドリボザイムとすることもできる[Nucleic Acids Res., 29(13): 2780-2788 (2001)]。
本発明の蛋白質をコードするmRNAもしくは初期転写産物のコード領域内の部分配列(初期転写産物の場合はイントロン部分を含む)に相補的な二本鎖オリゴRNA(siRNA)もまた、本発明のアンチセンス核酸に包含され得る。短い二本鎖RNAを細胞内に導入するとそのRNAに相補的なmRNAが分解される、いわゆるRNA干渉(RNAi)と呼ばれる現象は、以前から線虫、昆虫、植物等で知られていたが、最近、この現象が哺乳動物細胞でも起こることが確認されたことから[Nature, 411(6836): 494-498 (2001)]、リボザイムの代替技術として注目されている。
本発明のアンチセンスオリゴヌクレオチド及びリボザイムは、本発明の蛋白質をコードするcDNA配列もしくはゲノムDNA配列情報に基づいてmRNAもしくは初期転写産物の標的領域を決定し、市販のDNA/RNA自動合成機(アプライド・バイオシステムズ社、ベックマン社等)を用いて、これに相補的な配列を合成することにより調製することができる。RNAi活性を有するsiRNAは、センス鎖及びアンチセンス鎖をDNA/RNA自動合成機でそれぞれ合成し、適当なアニーリング緩衝液中で、例えば、約90〜約95℃で約1分程度変性させた後、約30〜約70℃で約1〜約8時間アニーリングさせることにより調製することができる。また、相補的なオリゴヌクレオチド鎖を交互にオーバーラップするように合成して、これらをアニーリングさせた後リガーゼでライゲーションすることにより、より長い二本鎖ポリヌクレオチドを調製することもできる。
本発明のアンチセンス核酸の遺伝子発現阻害活性は、本発明の蛋白質をコードする核酸を含有する形質転換体、生体内や生体外の本発明の蛋白質をコードする遺伝子発現系または本発明の蛋白質の生体内や生体外の翻訳系を用いて調べることができる。該核酸それ自体公知の各種の方法で細胞に適用できる。
本発明はまた、本発明の蛋白質(ペプチド)に対する抗体を提供する。該抗体は、本発明の蛋白質(ペプチド)に対して特異的親和性を有するものであれば、モノクローナル抗体であってもポリクローナル抗体であってもよい。本発明の蛋白質(ペプチド)に対する抗体は、該蛋白質(ペプチド)を抗原として用い、自体公知の抗体または抗血清の製造法に従って製造することができる。
〔モノクローナル抗体の作製〕
(a)モノクロナール抗体産生細胞の作製
本発明の蛋白質(ペプチド)は、哺乳動物に対して投与により抗体産生が可能な部位にそれ自体あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投与は通常2〜6週毎に1回ずつ、計2〜10回程度行なわれる。用いられる哺乳動物としては、例えば、サル、ウサギ、イヌ、モルモット、マウス、ラット、ヒツジ、ヤギが挙げられるが、マウスおよびラットが好ましく用いられる。
モノクローナル抗体産生細胞の作製に際しては、抗原を免疫された哺乳動物、例えば、マウスから抗体価の認められた個体を選択し最終免疫の2〜5日後に脾臓またはリンパ節を採取し、それらに含まれる抗体産生細胞を骨髄腫細胞と融合させることにより、モノクローナル抗体産生ハイブリドーマを調製することができる。抗血清中の抗体価の測定は、例えば、後記の標識した本発明の蛋白質(ペプチド)と抗血清とを反応させた後、抗体に結合した標識剤の活性を測定することにより行なうことができる。融合操作は既知の方法、例えば、ケーラーとミルスタインの方法〔ネイチャー(Nature)、256巻、495頁(1975年)〕に従い実施することができる。融合促進剤としては、例えば、ポリエチレングリコール(PEG)やセンダイウィルスなどが挙げられるが、好ましくはPEGが用いられる。
骨髄腫細胞としては、例えば、NS−1、P3U1、SP2/0などが挙げられるが、P3U1が好ましく用いられる。用いられる抗体産生細胞(脾臓細胞)数と骨髄腫細胞数との好ましい比率は1:1〜20:1程度であり、PEG(好ましくは、PEG1000〜PEG6000)が10〜80%程度の濃度で添加され、約20〜40℃、好ましくは約30〜37℃で約1〜10分間インキュベートすることにより効率よく細胞融合を実施できる。
モノクローナル抗体産生ハイブリドーマのスクリーニングには種々の方法が使用できるが、例えば、蛋白質等の抗原を直接あるいは担体とともに吸着させた固相(例、マイクロプレート)にハイブリドーマ培養上清を添加し、次に放射性物質や酵素などで標識した抗免疫グロブリン抗体(細胞融合に用いられる細胞がマウスの場合、抗マウス免疫グロブリン抗体が用いられる)またはプロテインAを加え、固相に結合したモノクローナル抗体を検出する方法、抗免疫グロブリン抗体またはプロテインAを吸着させた固相にハイブリドーマ培養上清を添加し、放射性物質や酵素などで標識した本発明の蛋白質(ペプチド)を加え、固相に結合したモノクローナル抗体を検出する方法などが挙げられる。
モノクローナル抗体の選別は、自体公知あるいはそれに準じる方法に従って行なうことができるが、通常はHAT(ヒポキサンチン、アミノプテリン、チミジン)を添加した動物細胞用培地などで行なうことができる。選別および育種用培地としては、ハイブリドーマが生育できるものならばどのような培地を用いても良い。例えば、1〜20%、好ましくは10〜20%の牛胎児血清を含むRPMI 1640培地、1〜10%の牛胎児血清を含むGIT培地(和光純薬工業(株))またはハイブリドーマ培養用無血清培地(SFM−101、日水製薬(株))などを用いることができる。培養温度は、通常20〜40℃、好ましくは約37℃である。培養時間は、通常5日〜3週間、好ましくは1週間〜2週間である。培養は、通常5%炭酸ガス下で行なうことができる。ハイブリドーマ培養上清の抗体価は、上記の抗血清中の抗体価の測定と同様にして測定できる。
(b)モノクロナール抗体の精製
モノクローナル抗体の分離精製は、通常のポリクローナル抗体の分離精製と同様に免疫グロブリンの分離精製法〔例、塩析法、アルコール沈殿法、等電点沈殿法、電気泳動法、イオン交換体(例、DEAE)による吸脱着法、超遠心法、ゲルろ過法、抗原結合固相またはプロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合を解離させて抗体を得る特異的精製法〕に従って行なうことができる。
〔ポリクローナル抗体の作製〕
本発明のポリクローナル抗体は、それ自体公知あるいはそれに準じる方法にしたがって製造することができる。例えば、免疫抗原(本発明の蛋白質(ペプチド))とキャリアー蛋白質との複合体を作り、上記のモノクローナル抗体の製造法と同様に哺乳動物に免疫を行ない、該免疫動物から本発明の蛋白質(ペプチド)に対する抗体含有物を採取して、抗体の分離精製を行なうことにより製造できる。
哺乳動物を免疫するために用いられる免疫抗原とキャリアー蛋白質との複合体に関し、キャリアー蛋白質の種類およびキャリアーとハプテンとの混合比は、キャリアーに架橋させて免疫したハプテンに対して抗体が効率良くできれば、どの様なものをどの様な比率で架橋させてもよいが、例えば、ウシ血清アルブミン、ウシサイログロブリン、キーホール・リンペット・ヘモシアニン等を重量比でハプテン1に対し、約0.1〜20、好ましくは約1〜5の割合でカプルさせる方法が用いられる。
また、ハプテンとキャリアーのカプリングには、種々の縮合剤を用いることができるが、グルタルアルデヒドやカルボジイミド、マレイミド活性エステル、チオール基、ジチオビリジル基を含有する活性エステル試薬等が用いられる。
縮合生成物は、哺乳動物に対して、抗体産生が可能な部位にそれ自体あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投与は、通常約2〜6週毎に1回ずつ、計約3〜10回程度行なうことができる。 ポリクローナル抗体は、上記の方法で免疫された哺乳動物の血液、腹水など、好ましくは血液から採取することができる。
抗血清中のポリクローナル抗体価の測定は、上記の血清中の抗体価の測定と同様にして測定できる。ポリクローナル抗体の分離精製は、上記のモノクローナル抗体の分離精製と同様の免疫グロブリンの分離精製法に従って行なうことができる。
前記の方法によりクローニングされ、配列決定された本発明の蛋白質をコードするcDNAに対応する遺伝子の発現局在性(例:白色脂肪組織、褐色脂肪組織、肝臓、骨格筋など)や所定のストレス(例:高脂肪食負荷、絶食、絶食後再給餌、インスリン抵抗性惹起因子刺激など)条件下における発現変動は、クローニングされたcDNAをそのまま、もしくは決定された塩基配列に基づいて該cDNAの一部を合成したものをプローブとして、種々の組織由来のRNAについて、あるいはストレス条件下および非ストレス条件下における所定の組織由来のRNAについてノーザンブロット分析を行うか、合成オリゴヌクレオチドをプライマーとして定量的RT−PCRを実施することにより同定することができる。
本発明の蛋白質をコードする遺伝子は、いずれも高脂肪食負荷された白色脂肪組織で高発現している。このうちSst20-14遺伝子は白色脂肪組織特異的な発現を示すが、Sst19-15、Sst13-11、Sst9-8およびSst21-3遺伝子は褐色脂肪組織でも発現している。Sst21-3遺伝子は未分化な前駆脂肪細胞でも発現している。
Sst20-14遺伝子は絶食時に発現が低下し、絶食後再給餌により発現が上昇(回復)する。さらに、該遺伝子はTNF−αなどのインスリン抵抗性惹起因子の刺激に応答して発現が低下する。また、該遺伝子の過剰発現により、前駆脂肪細胞の成熟脂肪細胞への分化が抑制される。
Sst8-5遺伝子はインスリン抵抗性改善薬の刺激に応答して発現が上昇する。
Sst13-11遺伝子は絶食時に発現が低下し、絶食後再給餌により発現が上昇(回復)する。また、該遺伝子は高脂肪−高スクロース負荷に応答して発現が上昇する。さらに、該遺伝子は肥満モデルにおいて高発現している。
Sst21-3遺伝子は絶食時に発現が低下し、絶食後再給餌により発現が上昇(回復)する。また、該遺伝子は糖尿病モデルにおいて高発現している。
Sst19-15遺伝子もまた絶食時に発現が低下し、絶食後再給餌により発現が上昇(回復)する。
上記の通り、本発明の蛋白質をコードする遺伝子は、食事やインスリン抵抗性調節薬の刺激に応答して、あるいは肥満や糖尿病の病態において発現が変動し、また、その発現の変動により脂肪細胞の分化に影響を及ぼす。
したがって、本発明の蛋白質(ペプチド)、該蛋白質(ペプチド)をコードする核酸(アンチセンス核酸を含む)、および該蛋白質(ペプチド)に対する抗体は、(1)本発明の蛋白質に対して特異的親和性を有する化合物(本発明の蛋白質が膜蛋白質の場合はそれに対するリガンド、分泌蛋白質の場合はそれに対するレセプター)の決定、(2)本発明の蛋白質の機能不全に関連する疾患の予防・治療剤、(3)本発明の蛋白質の過剰発現に関連する疾患の予防・治療剤、(4)遺伝子診断剤、(5)本発明の蛋白質の発現量を変化させる化合物のスクリーニング方法、(6)本発明の蛋白質の発現量を変化させる化合物を含有する各種疾患の予防・治療剤、(7)本発明の蛋白質に対して特異的親和性を有する化合物の定量法、(8)本発明の蛋白質とそれに対して特異的親和性を有する化合物との結合性を変化させる化合物(アゴニスト、アンタゴニストなど)のスクリーニング方法、(9)本発明の蛋白質とそれに対して特異的親和性を有する化合物との結合性を変化させる化合物(アゴニスト、アンタゴニスト)を含有する各種疾患の予防・治療剤、(10)本発明の蛋白質(ペプチド)の定量、(11)細胞膜または細胞外液における本発明の蛋白質の量を変化させる化合物のスクリーニング方法、(12)細胞膜または細胞外液における本発明の蛋白質の量を変化させる化合物を含有する各種疾患の予防・治療剤、(13)本発明の蛋白質(ペプチド)をコードするDNAを有するトランスジェニック非ヒト動物の作製、(14)本発明の蛋白質をコードする遺伝子が不活性化されたノックアウト非ヒト動物の作製などに用いることができる。
特に、本発明の組換え蛋白質(ペプチド)の発現系を用いたアフィニティーアッセイ系を使用することによって、本発明の蛋白質とそのレセプター(もしくはリガンド)の結合性を変化させる化合物(例:アゴニスト、アンタゴニストなど)をスクリーニングすることができ、該アゴニストまたはアンタゴニストを各種疾患の予防・治療剤などとして使用することができる。
本発明の蛋白質(ペプチド)、該蛋白質(ペプチド)をコードするDNA(以下、「本発明のDNA」と略記する場合がある)、本発明のアンチセンス核酸および本発明の蛋白質(ペプチド)に対する抗体(以下、「本発明の抗体」と略記する場合がある)の用途について、以下に具体的に説明する。
(1)本発明の蛋白質に対して特異的親和性を有する化合物の決定
本発明の蛋白質(ペプチド)は、本発明の蛋白質またはその塩に対して特異的親和性を有する化合物(レセプターもしくはリガンド)を探索し、または決定するための試薬として有用である。
すなわち、本発明は、本発明の蛋白質(ペプチド)と試験化合物とを接触させることを特徴とする本発明の蛋白質またはその塩に対して特異的親和性を有する化合物の決定方法を提供する。
試験化合物としては、本発明の蛋白質が膜レセプターである場合、公知のリガンド(例えば、アンギオテンシン、ボンベシン、カナビノイド、コレシストキニン、グルタミン、セロトニン、メラトニン、ニューロペプチドY、オピオイド、プリン、バソプレッシン、オキシトシン、PACAP、セクレチン、グルカゴン、カルシトニン、アドレノメジュリン、ソマトスタチン、GHRH、CRF、ACTH、GRP、PTH、VIP(バソアクティブ インテスティナル アンド リレイテッド ポリペプチド)、ソマトスタチン、ドーパミン、モチリン、アミリン、ブラジキニン、CGRP(カルシトニンジーンリレーティッドペプチド)、ロイコトリエン、パンクレアスタチン、プロスタグランジン、トロンボキサン、アデノシン、アドレナリン、αおよびβ−ケモカイン(chemokine)(例えば、IL−8、GROα、GROβ、GROγ、NAP−2、ENA−78、PF4、IP10、GCP−2、MCP−1、HC14、MCP−3、I−309、MIP1α、MIP−1β、RANTESなど)、エンドセリン、エンテロガストリン、ヒスタミン、ニューロテンシン、TRH、パンクレアティックポリペプタイドまたはガラニンなど)の他に、例えば、哺乳動物(例えば、ヒト、マウス、ラット、ブタ、ウシ、ヒツジ、サルなど)の組織抽出物、細胞培養上清などが用いられる。例えば、該組織抽出物、細胞培養上清などを本発明のレセプター蛋白質に添加し、細胞刺激活性などを測定しながら分画し、最終的に単一のリガンドを得ることができる。一方、本発明の蛋白質が分泌蛋白質である場合、試験化合物として、例えば上記リガンドに対する公知のレセプターの他に、上記と同様にヒトまたは哺乳動物の組織抽出物、無傷細胞、細胞膜画分、細胞培養上清などが用いられる。例えば、該組織抽出物、無傷細胞、細胞膜画分、細胞培養上清などを本発明の分泌蛋白質に添加し、細胞刺激活性などを測定しながら分画し、最終的に単一のレセプター等を得ることができる。
具体的には、本発明の蛋白質またはその塩に対して特異的親和性を有する化合物の決定方法は、本発明の蛋白質(ペプチド)を用いるか、または組換えによる該蛋白質(ペプチド)の発現系を構築し、該発現系を用いたアフィニティーアッセイ系を用いることによって、本発明のレセプター蛋白質に結合して細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca2+遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c−fos活性化、pHの低下などを促進する活性または抑制する活性)を有する化合物(例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物など)、または本発明の分泌蛋白質に結合して上記の細胞刺激活性を有する化合物、あるいはそれらの塩を決定する方法である。
本発明の蛋白質またはその塩に対して特異的親和性を有する化合物の決定方法においては、本発明の蛋白質(ペプチド)と試験化合物とを接触させた場合の、例えば、該蛋白質(ペプチド)に対する試験化合物の結合量や、細胞刺激活性などを測定することを特徴とする。
より具体的には、本発明は、
〔1〕標識した試験化合物を、本発明の蛋白質(ペプチド)に接触させた場合における、標識した試験化合物の該蛋白質(ペプチド)に対する結合量を測定することを特徴とする、本発明の蛋白質またはその塩に対して特異的親和性を有する化合物の決定方法、
〔2〕標識した試験化合物を、本発明の蛋白質を産生する細胞または細胞膜画分、あるいは細胞外液または細胞培養上清(この場合、例えば、上記の本発明の抗体を固定化した固相(細胞培養プレート等)を用いて分泌蛋白質を固相化する)に接触させた場合における、標識した試験化合物の該細胞、該膜画分、該細胞外液または該細胞培養上清に対する結合量を測定することを特徴とする、本発明の蛋白質またはその塩に対して特異的親和性を有する化合物の決定方法、
〔3〕標識した試験化合物を、本発明の蛋白質またはその部分ペプチドをコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現した、または培養上清に分泌された本発明の蛋白質(ペプチド)(この場合、例えば、上記の本発明の抗体を固定化した固相(細胞培養プレート等)を用いて分泌蛋白質(ペプチド)を固相化する)に接触させた場合における、標識した試験化合物の該蛋白質またはその塩に対する結合量を測定することを特徴とする、本発明の蛋白質またはその塩に対して特異的親和性を有する化合物の決定方法、
〔4〕試験化合物(または試験化合物である膜蛋白質等を細胞膜上に含有する細胞)を、本発明の膜蛋白質を産生する細胞(または本発明の分泌蛋白質を生成する細胞の培養上清)に接触させた場合における、本発明の膜蛋白質(または試験化合物である膜蛋白質等)を介した細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca2+遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c−fosの活性化、pHの低下などを促進する活性または抑制する活性など)を測定することを特徴とする本発明の膜蛋白質(または分泌蛋白質)またはその塩に対するリガンド(またはレセプター)の決定方法、および
〔5〕試験化合物(または試験化合物である膜蛋白質等を細胞膜上に含有する細胞)を、本発明の膜蛋白質をコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現した該膜蛋白質(または本発明の分泌蛋白質をコードするDNAを含有する形質転換体を培養することによって培養上清中に分泌された該分泌蛋白質)に接触させた場合における、本発明の膜蛋白質(または試験化合物である膜蛋白質等)を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca2+遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c−fosの活性化、pHの低下などを促進する活性または抑制する活性など)を測定することを特徴とする本発明の膜蛋白質(または分泌蛋白質)またはその塩に対するリガンド(またはレセプター)の決定方法を提供する。
特に、上記〔1〕〜〔3〕の試験を行ない、試験化合物が本発明の蛋白質(ペプチド)に結合することを確認した後に、上記〔4〕〜〔5〕の試験を行なうことが好ましい。
まず、リガンド(またはレセプター)決定方法に用いる本発明の蛋白質(ペプチド)としては、上記した本発明の蛋白質もしくはその部分ペプチドまたはその塩であれば何れのものであってもよいが、動物細胞を用いて大量発現させた本発明の組換え蛋白質などが適している。
本発明の組換え蛋白質を製造するには、前述の発現方法が用いられるが、本発明の蛋白質をコードするDNAを哺乳動物細胞や昆虫細胞で発現させることにより行なうことが好ましい。目的とする蛋白質部分をコードするDNA断片には、通常、cDNAが用いられるが、必ずしもこれに制約されるものではない。例えば、遺伝子断片や合成DNAを用いてもよい。本発明の蛋白質をコードするDNA断片を宿主動物(または昆虫)細胞に導入し、それらを効率よく発現させるためには、該DNA断片を、SV40由来のプロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒトヒートショックプロモーター、サイトメガロウイルスプロモーター、SRαプロモーター、昆虫を宿主とするバキュロウイルスに属する核多角体病ウイルス(nuclear polyhedrosis virus;NPV)のポリヘドリンプロモーターなどの下流に組み込むのが好ましい。発現した蛋白質の量と質の検査はそれ自体公知の方法で行なうことができる。例えば、文献〔Nambi,P.ら、ザ・ジャーナル・オブ・バイオロジカル・ケミストリー(J. Biol. Chem.),267巻,19555〜19559頁,1992年〕に記載の方法に従って行なうことができる。
本発明のリガンド(またはレセプター)決定方法において、本発明の蛋白質(ペプチド)は、それ自体公知の方法に従って精製した本発明の蛋白質(ペプチド)であってもよいし、本発明の蛋白質(ペプチド)を産生する細胞またはその細胞膜画分、あるいは本発明の蛋白質(ペプチド)を分泌する細胞の培養上清の形態で用いてもよい。
本発明のリガンド決定方法において、本発明の蛋白質(ペプチド)を産生する細胞を用いる場合、該細胞をグルタルアルデヒド、ホルマリンなどで固定化してもよい。固定化方法はそれ自体公知の方法に従って行なうことができる。
本発明の蛋白質(ペプチド)を含有する細胞とは、本発明の蛋白質(ペプチド)を発現した宿主細胞をいうが、該宿主細胞としては、大腸菌、枯草菌、酵母、昆虫細胞、動物細胞などが用いられる。
前記細胞膜画分とは、細胞を破砕した後、それ自体公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破砕方法としては、Potter−Elvehjem型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやポリトロン(Kinematica社製)による破砕、超音波による破砕、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破砕などが挙げられる。細胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破砕液を低速(500rpm〜3,000rpm)で短時間(通常、約1〜10分)遠心し、上清をさらに高速(15,000rpm〜30,000rpm)で通常30分〜2時間遠心し、得られる沈澱を膜画分とする。該膜画分中には、発現した本発明の蛋白質(ペプチド)と細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。
本発明の蛋白質(ペプチド)を産生する細胞やその膜画分中の本発明の蛋白質(ペプチド)の量は、1細胞当たり10〜10分子であるのが好ましく、10〜10分子であるのがより好適である。なお、発現量が多いほど膜画分当たりのリガンド結合活性(比活性)が高くなり、高感度なスクリーニング系の構築が可能になるばかりでなく、同一ロットで大量の試料を測定できるようになる。
本発明の蛋白質またはその塩に対するリガンドを決定する上記の〔1〕〜〔3〕の方法を実施するためには、適当な本発明の蛋白質(ペプチド)含有膜画分と標識した試験化合物が必要である。
本発明の蛋白質(ペプチド)含有膜画分としては、天然型の本発明の蛋白質含有膜画分か、またはそれと同等の活性を有する組換え型の本発明の蛋白質(ペプチド)含有膜画分などが望ましい。ここで、同等の活性とは、同等のリガンド結合活性、シグナル情報伝達作用などを示す。
標識した試験化合物としては、〔H〕、〔125I〕、〔14C〕、〔35S〕などで標識したアンギオテンシン、ボンベシン、カナビノイド、コレシストキニン、グルタミン、セロトニン、メラトニン、ニューロペプチドY、オピオイド、プリン、バソプレッシン、オキシトシン、PACAP、セクレチン、グルカゴン、カルシトニン、アドレノメジュリン、ソマトスタチン、GHRH、CRF、ACTH、GRP、PTH、VIP(バソアクティブ インテスティナル アンド リイテッド ポリペプチド)、ソマトスタチン、ドーパミン、モチリン、アミリン、ブラジキニン、CGRP(カルシトニンジーンリレーティッドペプチド)、ロイコトリエン、パンクレアスタチン、プロスタグランジン、トロンボキサン、アデノシン、アドレナリン、αおよびβ−ケモカイン(chemokine)(例えば、IL−8、GROα、GROβ、GROγ、NAP−2、ENA−78、PF4、IP10、GCP−2、MCP−1、HC14、MCP−3、I−309、MIP1α、MIP−1β、RANTESなど)、エンドセリン、エンテロガストリン、ヒスタミン、ニューロテンシン、TRH、パンクレアティックポリペプタイドまたはガラニンなどが好適である。
具体的には、本発明の蛋白質またはその塩に対するリガンドの決定方法を行なうには、まず本発明の蛋白質(ペプチド)を産生する細胞またはその膜画分を、決定方法に適したバッファーに懸濁することにより本発明の蛋白質(ペプチド)標品を調製する。バッファーには、pH4〜10(望ましくはpH6〜8)のリン酸バッファー、トリス−塩酸バッファーなどの本発明の蛋白質とそのリガンドとの結合を阻害しないバッファーであればいずれでもよい。また、非特異的結合を低減させる目的で、CHAPS、Tween−80TM(花王−アトラス社)、ジギトニン、デオキシコレートなどの界面活性剤やウシ血清アルブミンやゼラチンなどの各種蛋白質をバッファーに加えることもできる。さらに、プロテアーゼによるレセプターやリガンドの分解を抑える目的でPMSF、ロイペプチン、E−64(ペプチド研究所製)、ペプスタチンなどのプロテアーゼ阻害剤を添加することもできる。0.01ml〜10ml本発明の蛋白質(ペプチド)懸濁液に、一定量(5000cpm〜500000cpm)の〔H〕、〔125I〕、〔14C〕、〔35S〕などで標識した試験化合物を共存させる。非特異的結合量(NSB)を知るために大過剰の未標識の試験化合物を加えた反応チューブも用意する。反応は約0〜50℃、望ましくは約4〜37℃で、約20分〜24時間、望ましくは約30分〜3時間行なう。反応後、ガラス繊維濾紙等で濾過し、適量の同バッファーで洗浄した後、ガラス繊維濾紙に残存する放射活性を液体シンチレーションカウンターあるいはγ−カウンターで計測する。全結合量(B)から非特異的結合量(NSB)を引いたカウント(B−NSB)が0cpmを越える試験化合物を本発明の蛋白質またはその塩に対するリガンド(アゴニスト)として選択することができる。
本発明の蛋白質またはその塩に対するリガンドを決定する上記の〔4〕〜〔5〕の方法を実施するためには、本発明の蛋白質を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca2+遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c−fosの活性化、pHの低下などを促進する活性または抑制する活性など)を公知の方法または市販の測定用キットを用いて測定することができる。具体的には、まず、本発明の蛋白質(ペプチド)を産生する細胞をマルチウェルプレート等に培養する。リガンド決定を行なうにあたっては前もって新鮮な培地あるいは細胞に毒性を示さない適当なバッファーに交換し、試験化合物などを添加して一定時間インキュベートした後、細胞を抽出あるいは上清を回収して、生成した産物をそれぞれの方法に従って定量する。細胞刺激活性の指標とする物質(例えば、アラキドン酸など)の生成が、細胞が含有する分解酵素によって検定困難な場合は、該分解酵素に対する阻害剤を添加してアッセイを行なってもよい。また、cAMP産生抑制などの活性については、フォルスコリンなどで細胞の基礎的産生量を増大させておいた細胞に対する産生抑制作用として検出することができる。
本発明の蛋白質に対して特異的親和性を有する化合物の決定方法について、本発明の蛋白質が膜蛋白質の場合を取り上げて具体的に説明したが、当業者は、上記の手法を応用して、本発明の蛋白質が分泌蛋白質の場合についても容易に特異的親和性を有する化合物の決定を実施することができるだろう。
本発明の蛋白質またはその塩に対して特異的親和性を有する化合物の決定用キットは、本発明の蛋白質(ペプチド)、本発明の蛋白質を産生する細胞またはその膜画分、本発明の蛋白質を分泌する細胞の培養上清などを含有するものである。
本発明のリガンド(レセプター)決定用キットの例としては、次のものが挙げられる。
1.リガンド(レセプター)決定用試薬
〔1〕測定用緩衝液および洗浄用緩衝液
Hanks' Balanced Salt Solution(ギブコ社製)に、0.05%のウシ血清アルブミン(シグマ社製)を加えたもの。
孔径0.45μmのフィルターで濾過滅菌し、4℃で保存するか、あるいは用時調製しても良い。
〔2〕本発明の蛋白質(ペプチド)標品
本発明の蛋白質(ペプチド)を発現させたCHO細胞を、12穴プレートに5×10個/穴で継代し、37℃、5%CO、95%airで2日間培養したもの(本発明の蛋白質が分泌蛋白質の場合、該プレートは該蛋白質に対する抗体でコーティングされている)。
〔3〕標識試験化合物
市販の〔H〕、〔125I〕、〔14C〕、〔35S〕などで標識した化合物、または適当な方法で標識化したもの。
水溶液の状態のものを4℃あるいは−20℃にて保存し、用時に測定用緩衝液にて1μMに希釈する。水に難溶性を示す試験化合物については、ジメチルホルムアミド、DMSO、メタノール等に溶解する。
〔4〕非標識試験化合物
標識化合物と同じものを100〜1,000倍濃い濃度に調製する。
2.測定法
〔1〕12穴組織培養用プレートにて培養した本発明の蛋白質(ペプチド)発現CHO細胞を、測定用緩衝液1mlで2回洗浄した後(本発明の蛋白質が分泌される場合は、細胞および培養上清を除去後プレートを測定用緩衝液で同様に洗浄した後)、490μlの測定用緩衝液を各穴に加える。
〔2〕標識試験化合物を5μl加え、室温にて1時間反応させる。非特異的結合量を知るためには非標識試験化合物を5μl加えておく。
〔3〕反応液を除去し、1mlの洗浄用緩衝液で3回洗浄する。細胞(プレート)に結合した標識試験化合物を0.2N NaOH−1%SDSで溶解し、4mlの液体シンチレーターA(和光純薬製)と混合する。
〔4〕液体シンチレーションカウンター(ベックマン社製)を用いて放射活性を測定する。
本発明の膜蛋白質またはその塩に結合することができるリガンドとしては、例えば、脳、下垂体、膵臓などに特異的に存在する物質などが挙げられ、具体的には、アンギオテンシン、ボンベシン、カナビノイド、コレシストキニン、グルタミン、セロトニン、メラトニン、ニューロペプチドY、オピオイド、プリン、バソプレッシン、オキシトシン、PACAP、セクレチン、グルカゴン、カルシトニン、アドレノメジュリン、ソマトスタチン、GHRH、CRF、ACTH、GRP、PTH、VIP(バソアクティブ インテスティナル アンド リレイテッド ポリペプチド)、ソマトスタチン、ドーパミン、モチリン、アミリン、ブラジキニン、CGRP(カルシトニンジーンリレーティッドペプチド)、ロイコトリエン、パンクレアスタチン、プロスタグランジン、トロンボキサン、アデノシン、アドレナリン、αおよびβ−ケモカイン(chemokine)(例えば、IL−8、GROα、GROβ、GROγ、NAP−2、ENA−78、PF4、IP10、GCP−2、MCP−1、HC14、MCP−3、I−309、MIP1α、MIP−1β、RANTESなど)、エンドセリン、エンテロガストリン、ヒスタミン、ニューロテンシン、TRH、パンクレアティックポリペプタイド、ガラニンなどが用いられる。また、本発明の分泌蛋白質またはその塩に結合することができるレセプターとしては、上記したリガンドに対するレセプターや種々のオーファンレセプターなどが用いられる。
(2)本発明の蛋白質の機能不全に関連する疾患の予防・治療剤
上記(1)において、本発明の蛋白質に対して特異的親和性を有する化合物が明らかになれば、該化合物が有する作用に応じて、〔1〕本発明の蛋白質(ペプチド)または〔2〕該蛋白質(ペプチド)をコードするDNAを、本発明の蛋白質の機能不全に関連する疾患の予防・治療剤などの医薬として使用することができる。
例えば、生体内において本発明の蛋白質が減少しているためにリガンド(またはレセプター)の生理作用が期待できない(本発明の蛋白質の欠乏症)患者がいる場合に、〔1〕本発明の蛋白質(ペプチド)を該患者に投与し本発明の蛋白質の量を補充したり、〔2〕(イ)本発明の蛋白質(ペプチド)をコードするDNAを該患者に投与し発現させることによって、あるいは(ロ)対象となる細胞に本発明の蛋白質(ペプチド)をコードするDNAを導入し発現させた後に、該細胞を該患者に移植することなどによって、患者の体内における本発明の蛋白質の量を増加させ、リガンド(またはレセプター)の作用を充分に発揮させることができる。即ち、本発明の蛋白質(ペプチド)またはそれをコードするDNAは、安全で低毒性な、本発明の蛋白質の機能不全に関連する疾患の予防・治療剤として有用である。
本発明の蛋白質は、高脂肪食負荷ストレス時に白色脂肪細胞で高発現し、さらに食事、インスリン抵抗性調節薬による刺激、肥満・糖尿病などの病態に応じて発現が変動し、その発現の変動が脂肪細胞の分化に影響することなどから、本発明の蛋白質の機能不全に関連する疾患としては、脂肪細胞の分化および/または代謝機能(特に糖・脂質代謝)の異常(不全もしくは亢進)が関与する疾患(例えば、肥満症、糖尿病、耐糖能異常、動脈硬化、高血圧、高脂血症など)などが挙げられる。
〔1〕本発明の蛋白質(ペプチド)および〔2〕該蛋白質(ペプチド)をコードするDNA(本明細書中、「本発明のDNA」と称する場合もある)は、必要に応じて薬理学的に許容し得る担体とともに混合して医薬組成物とした後に、本発明の蛋白質の機能不全に関連する疾患の予防・治療剤として用いることができる。
ここで、薬理学的に許容される担体としては、製剤素材として慣用の各種有機あるいは無機担体物質が用いられ、固形製剤における賦形剤、滑沢剤、結合剤、崩壊剤;液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤などとして配合される。また必要に応じて、防腐剤、抗酸化剤、着色剤、甘味剤などの製剤添加物を用いることもできる。
賦形剤の好適な例としては、乳糖、白糖、D−マンニトール、D−ソルビトール、デンプン、α化デンプン、デキストリン、結晶セルロース、低置換度ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム、アラビアゴム、デキストリン、プルラン、軽質無水ケイ酸、合成ケイ酸アルミニウム、メタケイ酸アルミン酸マグネシウムなどが挙げられる。
滑沢剤の好適な例としては、ステアリン酸マグネシウム、ステアリン酸カルシウム、タルク、コロイドシリカなどが挙げられる。
結合剤の好適な例としては、α化デンプン、ショ糖、ゼラチン、アラビアゴム、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、結晶セルロース、白糖、D−マンニトール、トレハロース、デキストリン、プルラン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドンなどが挙げられる。
崩壊剤の好適な例としては、乳糖、白糖、デンプン、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム、軽質無水ケイ酸、低置換度ヒドロキシプロピルセルロースなどが挙げられる。
溶剤の好適な例としては、注射用水、生理的食塩水、リンゲル液、アルコール、プロピレングリコール、ポリエチレングリコール、ゴマ油、トウモロコシ油、オリーブ油、綿実油などが挙げられる。
溶解補助剤の好適な例としては、ポリエチレングリコール、プロピレングリコール、D−マンニトール、トレハロース、安息香酸ベンジル、エタノール、トリスアミノメタン、コレステロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム、サリチル酸ナトリウム、酢酸ナトリウムなどが挙げられる。 懸濁化剤の好適な例としては、ステアリルトリエタノールアミン、ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩化ベンザルコニウム、塩化ベンゼトニウム、モノステアリン酸グリセリンなどの界面活性剤;例えばポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどの親水性高分子;ポリソルベート類、ポリオキシエチレン硬化ヒマシ油などが挙げられる。
等張化剤の好適な例としては、塩化ナトリウム、グリセリン、D−マンニトール、D−ソルビトール、ブドウ糖などが挙げられる。
緩衝剤の好適な例としては、リン酸塩、酢酸塩、炭酸塩、クエン酸塩などの緩衝液などが挙げられる。
無痛化剤の好適な例としては、ベンジルアルコールなどが挙げられる。
防腐剤の好適な例としては、パラオキシ安息香酸エステル類、クロロブタノール、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸などが挙げられる。
抗酸化剤の好適な例としては、亜硫酸塩、アスコルビン酸塩などが挙げられる。
着色剤の好適な例としては、水溶性食用タール色素(例、食用赤色2号および3号、食用黄色4号および5号、食用青色1号および2号などの食用色素、水不溶性レーキ色素(例、前記水溶性食用タール色素のアルミニウム塩など)、天然色素(例、β−カロチン、クロロフィル、ベンガラなど)などが挙げられる。
甘味剤の好適な例としては、サッカリンナトリウム、グリチルリチン酸二カリウム、アスパルテーム、ステビアなどが挙げられる。
前記医薬組成物の剤形としては、例えば錠剤、カプセル剤(ソフトカプセル、マイクロカプセルを含む)、顆粒剤、散剤、シロップ剤、乳剤、懸濁剤などの経口剤;および注射剤(例、皮下注射剤、静脈内注射剤、筋肉内注射剤、腹腔内注射剤など)、外用剤(例、経鼻投与製剤、経皮製剤、軟膏剤など)、坐剤(例、直腸坐剤、膣坐剤など)、ペレット、点滴剤、徐放性製剤(例、徐放性マイクロカプセルなど)等の非経口剤が挙げられる。
医薬組成物は、製剤技術分野において慣用の方法、例えば日本薬局方に記載の方法等により製造することができる。以下に、製剤の具体的な製造法について詳述する。医薬組成物中の有効成分の含量は、剤形、有効成分の投与量などにより異なるが、例えば約0.1ないし100重量%である。
例えば、経口剤は、有効成分に、賦形剤(例、乳糖,白糖,デンプン,D−マンニトールなど)、崩壊剤(例、カルボキシメチルセルロースカルシウムなど)、結合剤(例、α化デンプン,アラビアゴム,カルボキシメチルセルロース,ヒドロキシプロピルセルロース,ポリビニルピロリドンなど)または滑沢剤(例、タルク,ステアリン酸マグネシウム,ポリエチレングリコール6000など)などを添加して圧縮成形し、次いで必要により、味のマスキング、腸溶性あるいは持続性を目的として、コーティング基剤を用いて自体公知の方法でコーティングすることにより製造される。
該コーティング基剤としては、例えば糖衣基剤、水溶性フィルムコーティング基剤、腸溶性フィルムコーティング基剤、徐放性フィルムコーティング基剤などが挙げられる。
糖衣基剤としては、白糖が用いられ、さらに、タルク、沈降炭酸カルシウム、ゼラチン、アラビアゴム、プルラン、カルナバロウなどから選ばれる1種または2種以上を併用してもよい。
水溶性フィルムコーティング基剤としては、例えばヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、メチルヒドロキシエチルセルロースなどのセルロース系高分子;ポリビニルアセタールジエチルアミノアセテート、アミノアルキルメタアクリレートコポリマーE〔オイドラギットE(商品名)、ロームファルマ社〕、ポリビニルピロリドンなどの合成高分子;プルランなどの多糖類などが挙げられる。
腸溶性フィルムコーティング基剤としては、例えばヒドロキシプロピルメチルセルロース フタレート、ヒドロキシプロピルメチルセルロース アセテートサクシネート、カルボキシメチルエチルセルロース、酢酸フタル酸セルロースなどのセルロース系高分子;メタアクリル酸コポリマーL〔オイドラギットL(商品名)、ロームファルマ社〕、メタアクリル酸コポリマーLD〔オイドラギットL−30D55(商品名)、ロームファルマ社〕、メタアクリル酸コポリマーS〔オイドラギットS(商品名)、ロームファルマ社〕などのアクリル酸系高分子;セラックなどの天然物などが挙げられる。
徐放性フィルムコーティング基剤としては、例えばエチルセルロースなどのセルロース系高分子;アミノアルキルメタアクリレートコポリマーRS〔オイドラギットRS(商品名)、ロームファルマ社〕、アクリル酸エチル・メタアクリル酸メチル共重合体懸濁液〔オイドラギットNE(商品名)、ロームファルマ社〕などのアクリル酸系高分子などが挙げられる。
上記したコーティング基剤は、その2種以上を適宜の割合で混合して用いてもよい。また、コーティングの際に、例えば酸化チタン、三二酸化鉄等のような遮光剤を用いてもよい。
注射剤は、有効成分を分散剤(例、ポリソルベート80,ポリオキシエチレン硬化ヒマシ油60など,ポリエチレングリコール,カルボキシメチルセルロース,アルギン酸ナトリウムなど)、保存剤(例、メチルパラベン,プロピルパラベン,ベンジルアルコール,クロロブタノール,フェノールなど)、等張化剤(例、塩化ナトリウム,グリセリン,D−マンニトール,D−ソルビトール,ブドウ糖など)などと共に水性溶剤(例、蒸留水,生理的食塩水,リンゲル液等)あるいは油性溶剤(例、オリーブ油,ゴマ油,綿実油,トウモロコシ油などの植物油、プロピレングリコール等)などに溶解、懸濁あるいは乳化することにより製造される。この際、所望により溶解補助剤(例、サリチル酸ナトリウム,酢酸ナトリウム等)、安定剤(例、ヒト血清アルブミン等)、無痛化剤(例、ベンジルアルコール等)等の添加物を用いてもよい。注射液は、通常、適当なアンプルに充填される。
このようにして得られる製剤は安全で低毒性であるので、例えば、哺乳動物(例えば、ヒト、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。
本発明のDNAを上記予防・治療剤として使用する場合は、本発明のDNAを単独あるいはレトロウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクターなどの適当な発現ベクター中に挿入した後、常套手段に従って投与することもできる。また、本発明のDNAは、そのままで、あるいは摂取促進のための補助剤とともに、遺伝子銃やハイドロゲルカテーテルのようなカテーテルによって投与することもできる。
本発明の蛋白質(ペプチド)の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.1〜100mg、好ましくは約1.0〜50mg、より好ましくは約1.0〜20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば注射剤の形では、通常、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.01〜30mg程度、好ましくは約0.1〜20mg程度、より好ましくは約0.1〜10mg程度を投与するのが好都合である。投与対象がヒト以外の場合も、体重60kg当たりに換算した量を投与することができる。
本発明のDNAの投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に、例えば糖・脂質代謝異常患者(60kgとして)においては、一日につき約0.1〜100mg、好ましくは約1.0〜50mg、より好ましくは約1.0〜20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば注射剤の形では、通常、例えば糖・脂質代謝異常患者(60kgとして)においては、一日につき約0.01〜30mg程度、好ましくは約0.1〜20mg程度、より好ましくは約0.1〜10mg程度を投与するのが好都合である。投与対象がヒト以外の場合も、体重60kg当たりに換算した量を投与することができる。
(3)本発明の蛋白質の過剰発現に関連する疾患の予防・治療剤
本発明の蛋白質(ペプチド)に対する抗体は、本発明の蛋白質の関与するシグナル伝達機能、例えば、本発明の蛋白質を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca2+遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c−fosの活性化、pHの低下などを促進する活性または抑制する活性など)を不活性化(すなわち中和)することができる。一方、本発明の蛋白質もしくはその部分ペプチドのアンチセンス核酸(リボザイムやRNAi活性を有する二本鎖オリゴRNAを含む)は、本発明の蛋白質遺伝子の転写、転写産物のプロセッシングおよび/またはmRNAからの翻訳をブロックすることにより、本発明の蛋白質の発現を阻害することができる。従って、〔1〕本発明の抗体または〔2〕本発明のアンチセンス核酸を、本発明の蛋白質の過剰発現に関連する疾患の予防・治療剤などの医薬として使用することができる。
本発明の蛋白質は、高脂肪食負荷ストレス時に白色脂肪細胞で高発現し、さらに食事、インスリン抵抗性調節薬による刺激、肥満・糖尿病などの病態に応じて発現が変動し、その発現の変動が脂肪細胞の分化に影響することなどから、本発明の蛋白質の過剰発現に関連する疾患としては、脂肪細胞の分化および/または代謝機能(特に糖・脂質代謝)の異常(不全もしくは亢進)が関与する疾患(例えば、肥満症、糖尿病、耐糖能異常、動脈硬化、高血圧、高脂血症など)などが挙げられる。
本発明の抗体および本発明のアンチセンス核酸は、前記「本発明の蛋白質の機能不全に関連する疾患の予防・治療剤」と同様にして製剤化することができる。また、該アンチセンス核酸は、そのままで、遺伝子銃やハイドロゲルカテーテルのようなカテーテルによって投与することもできる。
本発明の抗体の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.1〜100mg、好ましくは約1.0〜50mg、より好ましくは約1.0〜20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば注射剤の形では、通常、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.01〜30mg程度、好ましくは約0.1〜20mg程度、より好ましくは約0.1〜10mg程度を投与するのが好都合である。投与対象がヒト以外の場合も、体重60kg当たりに換算した量を投与することができる。
本発明のアンチセンス核酸の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.1〜100mg、好ましくは約1.0〜50mg、より好ましくは約1.0〜20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば注射剤の形では、通常、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.01〜30mg程度、好ましくは約0.1〜20mg程度、より好ましくは約0.1〜10mg程度を投与するのが好都合である。投与対象がヒト以外の場合も、体重60kg当たりに換算した量を投与することができる。
(4)遺伝子診断剤
本発明の蛋白質をコードする塩基配列またはその一部を含有する核酸(以下、「本発明のセンス核酸」という)または本発明のアンチセンス核酸は、プローブとして使用することにより、哺乳動物(例えば、ヒト、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)における本発明の蛋白質をコードするDNAまたはmRNAの異常(遺伝子異常)を検出することができるので、例えば、該DNAまたはmRNAの損傷、突然変異あるいは発現低下や、該DNAまたはmRNAの増加あるいは発現過多などの遺伝子診断剤として有用である。
本発明のセンス核酸またはアンチセンス核酸を用いる上記の遺伝子診断は、例えば、自体公知のノーザンハイブリダイゼーションやPCR−SSCP法(ゲノミックス(Genomics),第5巻,874〜879頁(1989年)、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ユーエスエー(Proceedings of the National Academy of Sciences of the United States of America),第86巻,2766〜2770頁(1989年))などにより実施することができる。
例えば、ノーザンハイブリダイゼーションにより本発明の蛋白質の発現低下が検出された場合は、例えば、該蛋白質の機能不全に関連する疾患に罹患している、もしくは将来罹患する可能性が高いと診断することができる。また逆に、例えば、ノーザンハイブリダイゼーションにより本発明の蛋白質の発現過多が検出された場合は、例えば、該蛋白質の機能亢進に関連する疾患に罹患している、もしくは将来罹患する可能性が高いと診断することができる。
本発明の蛋白質は、高脂肪食負荷ストレス時に白色脂肪細胞で高発現し、さらに食事、インスリン抵抗性調節薬による刺激、肥満・糖尿病などの病態に応じて発現が変動し、その発現の変動が脂肪細胞の分化に影響することなどから、本発明のセンス核酸またはアンチセンス核酸は、脂肪細胞の分化および/または代謝機能(特に糖・脂質代謝)の異常(不全もしくは亢進)が関与する疾患(例えば、肥満症、糖尿病、耐糖能異常、動脈硬化、高血圧、高脂血症など)の診断に有用である。
(5)本発明の蛋白質をコードする遺伝子の発現量を変化させる化合物のスクリーニング方法
本発明のセンスまたはアンチセンス核酸は、プローブとして用いることにより、本発明の蛋白質をコードする遺伝子の発現量を変化させる化合物のスクリーニングに用いることができる。また、本発明のセンス核酸およびアンチセンス核酸を一対のプライマーとして用い、RT−PCRを行うことによっても、本発明の蛋白質をコードする遺伝子の発現量を変化させる化合物をスクリーニングすることができる。
すなわち、本発明は、例えば、(i)非ヒト哺乳動物の〔1〕血液、〔2〕特定の臓器、〔3〕臓器から単離した組織もしくは細胞、または(ii)形質転換体等に含まれる本発明の蛋白質(ペプチド)をコードするmRNA量を測定することによる、本発明の蛋白質をコードする遺伝子の発現量を変化させる化合物のスクリーニング方法を提供する。
本発明の蛋白質(ペプチド)をコードするmRNA量の測定は具体的には以下のようにして行なう。
(i)正常あるいは疾患モデル非ヒト哺乳動物(例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど、より具体的には、肥満マウス、糖尿病マウス、高血圧ラット、動脈硬化ウサギ、担癌マウスなど)に対して、薬剤(例えば、抗肥満薬、抗糖尿病薬、降圧薬、血管作用薬、抗癌剤など)あるいは物理的ストレス(例えば、浸水ストレス、電気ショック、明暗、低温など)などを与え、一定時間経過した後に、血液、あるいは特定の臓器(例えば、脳、肝臓、腎臓など)、または臓器から単離した組織(例えば、褐色または白色脂肪組織など)、あるいは細胞(脂肪細胞など)を得る。
得られた細胞に含まれる本発明の蛋白質をコードするmRNAは、例えば、通常の方法により細胞等からmRNAを抽出し、例えばTaqMan PCRなどの手法を用いることにより定量することができ、自体公知の手段によりノーザンブロットを行なうことにより解析することもできる。
(ii)本発明の蛋白質(ペプチド)を発現する形質転換体を前述の方法に従って作製し、該形質転換体に含まれる本発明の蛋白質(ペプチド)をコードするmRNAを同様にして定量、解析することができる。
本発明の蛋白質をコードする遺伝子の発現量を変化させる化合物のスクリーニングは、
(i)正常あるいは疾患モデル非ヒト哺乳動物に対して、薬剤あるいは物理的ストレスなどを与える一定時間前(30分前ないし24時間前、好ましくは30分前ないし12時間前、より好ましくは1時間前ないし6時間前)もしくは一定時間後(30分後ないし3日後、好ましくは1時間後ないし2日後、より好ましくは1時間後ないし24時間後)、または薬剤あるいは物理的ストレスと同時に被検化合物を投与し、投与後一定時間経過後(30分後ないし3日後、好ましくは1時間後ないし2日後、より好ましくは1時間後ないし24時間後)、細胞に含まれる本発明の蛋白質をコードするmRNA量を定量、解析することにより行なうことができ、
(ii)形質転換体を常法に従い培養する際に被検化合物を培地中に混合させ、一定時間培養後(1日後ないし7日後、好ましくは1日後ないし3日後、より好ましくは2日後ないし3日後)、該形質転換体に含まれる本発明の蛋白質(ペプチド)をコードするmRNA量を定量、解析することにより行なうことができる。
本発明の蛋白質をコードする遺伝子の発現量を変化させる化合物のスクリーニング用キットは、(a) 本発明のセンスおよび/またはアンチセンス核酸、好ましくは二本鎖オリゴDNAからなるプローブ、または(b) 本発明のセンス核酸および本発明のアンチセンス核酸からなるプライマーセットを構成として含むことを特徴とする。該プローブとしては、常法によりRI、蛍光または酵素等で標識されたものが使用される。
該スクリーニング用キットは、所望により、さらにRNA抽出用試薬および/またはツール(例:抽出バッファー、スピンカラム等)、PCRまたはノーザンハイブリダイゼーション用試薬および/またはツール(例:dNTPs、PCR反応バッファー、耐熱性DNAポリメラーゼ等)、本発明の蛋白質(ペプチド)を発現する形質転換体などを含んでいてもよい。
本発明のスクリーニング方法を用いて得られる化合物またはその塩は、本発明の蛋白質をコードする遺伝子の発現量を変化させる作用を有する化合物であり、具体的には、(イ)本発明の蛋白質の発現量を増加させることにより、本発明の蛋白質とそのレセプター(またはリガンド)との相互作用を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca2+遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c−fosの活性化、pHの低下などを促進する活性または抑制する活性など)を増強させる化合物、(ロ)本発明の蛋白質の発現量を減少させることにより、該細胞刺激活性を減弱させる化合物である。
該化合物としては、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。
該細胞刺激活性を増強させる化合物は、本発明の蛋白質の生理活性を増強するための安全で低毒性な医薬として有用である。
該細胞刺激活性を減弱させる化合物は、本発明の蛋白質の生理活性を減少させるための安全で低毒性な医薬として有用である。
上記スクリーニング方法を用いて得られる化合物またはその塩を医薬として使用する場合、前記「本発明の蛋白質の機能不全に関連する疾患の予防・治療剤」と同様にして製剤化することができる。
このようにして得られる製剤は安全で低毒性であるので、例えば、哺乳動物(例えば、ヒト、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。
該化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.1〜100mg、好ましくは約1.0〜50mg、より好ましくは約1.0〜20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば注射剤の形では、通常、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.01〜30mg程度、好ましくは約0.1〜20mg程度、より好ましくは約0.1〜10mg程度を投与するのが好都合である。投与対象がヒト以外の動物の場合も、体重60kg当たりに換算した量を投与することができる。
(6)本発明の蛋白質をコードする遺伝子の発現量を変化させる化合物を含有する各種疾患の予防・治療剤
本発明の蛋白質は、前述の通り、高脂肪食負荷ストレス時に白色脂肪細胞で高発現し、さらに食事、インスリン抵抗性調節薬による刺激、肥満・糖尿病などの病態に応じて発現が変動し、その発現の変動が脂肪細胞の分化に影響することなどから、脂肪細胞の分化および/または代謝機能の調節に重要な役割を果たしていると考えられる。従って、本発明の蛋白質をコードする遺伝子の発現量を変化させる化合物は、脂肪細胞の分化および/または代謝機能(特に糖・脂質代謝)の異常(不全もしくは亢進)が関与する疾患(例えば、肥満症、糖尿病、耐糖能異常、動脈硬化、高血圧、高脂血症など)の予防・治療剤として用いることができる。
該化合物を本発明の蛋白質の機能不全もしくは亢進に関連する疾患の予防・治療剤として使用する場合は、前記「本発明の蛋白質の機能不全に関連する疾患の予防・治療剤」と同様にして製剤化することができる。
このようにして得られる製剤は安全で低毒性であるので、例えば、哺乳動物(例えば、ヒト、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。
該化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.1〜100mg、好ましくは約1.0〜50mg、より好ましくは約1.0〜20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば注射剤の形では、通常、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.01〜30mg程度、好ましくは約0.1〜20mg程度、より好ましくは約0.1〜10mg程度を投与するのが好都合である。投与対象がヒト以外の動物の場合も、体重60kg当たりに換算した量を投与することができる。
(7)本発明の蛋白質に対して特異的親和性を有する化合物(リガンドまたはレセプター)の定量法
本発明の蛋白質(ペプチド)は、本発明の蛋白質に対するリガンド(またはレセプター)に対して結合性を有しているので、生体内における該リガンド(またはレセプター)濃度を感度良く定量することができる。
本発明のリガンド(またはレセプター)定量法は、例えば、競合法と組み合わせて実施することができる。すなわち、被検体を本発明の蛋白質(ペプチド)と接触させることによって被検体中のリガンド(またはレセプター)濃度を測定することができる。具体的には、例えば、以下の〔1〕または〔2〕などに記載の方法あるいはそれに準じる方法に従って実施することができる。
〔1〕入江寛編「ラジオイムノアッセイ」(講談社、昭和49年発行)
〔2〕入江寛編「続ラジオイムノアッセイ」(講談社、昭和54年発行)
(8)本発明の蛋白質とそれに対して特異的親和性を有する化合物(リガンドまたはレセプター)との結合性を変化させる化合物(アゴニスト、アンタゴニストなど)のスクリーニング方法
本発明の蛋白質(ペプチド)を用いるか、または本発明の組換え蛋白質(ペプチド)の発現系を構築し、該発現系を用いたアフィニティーアッセイ系を使用することによって、本発明の蛋白質とそのリガンド(またはレセプター)の結合性を変化させる化合物(例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物など)またはその塩を効率よくスクリーニングすることができる。
このような化合物には、(イ)レセプターを介して細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca2+遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c−fosの活性化、pHの低下などを促進する活性または抑制する活性など)を有する化合物(いわゆる、本発明の膜蛋白質もしくは本発明の分泌蛋白質のレセプターに対するアゴニスト)、(ロ)該細胞刺激活性を有しない化合物(いわゆる、本発明の膜蛋白質もしくは本発明の分泌蛋白質のレセプターに対するアンタゴニスト)、(ハ)本発明の蛋白質とそのリガンド(またはレセプター)との結合力を増強する化合物、あるいは(ニ)本発明の蛋白質とそのリガンド(またはレセプター)との結合力を減少させる化合物などが含まれる(なお、上記(イ)の化合物は、上記(1)で述べたリガンド決定方法によってスクリーニングすることが好ましい)。
すなわち、本発明は、(i)本発明の蛋白質(ペプチド)とそのリガンド(またはレセプター)とを接触させた場合と(ii)本発明の蛋白質(ペプチド)とそのリガンド(またはレセプター)および試験化合物とを接触させた場合との比較を行なうことを特徴とする、本発明の蛋白質とそのリガンド(またはレセプター)との結合性を変化させる化合物またはその塩のスクリーニング方法を提供する。
本発明のスクリーニング方法においては、(i)と(ii)の場合における、本発明の蛋白質に対するリガンド(またはレセプター)の結合量、細胞刺激活性などを測定して、比較することを特徴とする。
より具体的には、本発明は、
〔1〕標識したリガンド(またはレセプター)を、本発明の蛋白質(ペプチド)に接触させた場合と、標識したリガンド(またはレセプター)および試験化合物を本発明の蛋白質(ペプチド)に接触させた場合における、標識したリガンド(またはレセプター)の該蛋白質(ペプチド)に対する結合量を測定し、比較することを特徴とする本発明の蛋白質とそのリガンド(またはレセプター)との結合性を変化させる化合物またはその塩のスクリーニング方法、
〔2〕標識したリガンド(またはレセプター)を、本発明の蛋白質を産生する細胞またはその膜画分、あるいは細胞外液または細胞培養上清(この場合、例えば、上記の本発明の抗体を固定化した固相(細胞培養プレート等)を用いて本発明の蛋白質を固相化する)に接触させた場合と、標識したリガンド(またはレセプター)および試験化合物を本発明の蛋白質を産生する細胞またはその膜画分、あるいは細胞外液または細胞培養上清に接触させた場合における、標識したリガンド(またはレセプター)の該細胞または膜画分、あるいは細胞外液または細胞培養上清に対する結合量を測定し、比較することを特徴とする本発明の蛋白質とそのリガンド(またはレセプター)との結合性を変化させる化合物またはその塩のスクリーニング方法、
〔3〕標識したリガンド(またはレセプター)を、本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明の蛋白質(ペプチド)、または培養上清に分泌された本発明の蛋白質(ペプチド)(この場合、例えば、上記の本発明の抗体を固定化した固相(細胞培養プレート等)を用いて本発明の蛋白質(ペプチド)を固相化する)に接触させた場合と、標識したリガンド(またはレセプター)および試験化合物を本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明の蛋白質(ペプチド)、または培養上清に分泌された本発明の蛋白質(ペプチド)に接触させた場合における、標識したリガンド(またはレセプター)の該蛋白質(ペプチド)に対する結合量を測定し、比較することを特徴とする本発明の蛋白質とそのリガンド(またはレセプター)との結合性を変化させる化合物またはその塩のスクリーニング方法、
〔4〕本発明の蛋白質を活性化する化合物(例えば、本発明の膜蛋白質に対するリガンドなど)または本発明の蛋白質により活性化される化合物(例えば、本発明の分泌蛋白質に対するレセプターなど)を、本発明の蛋白質を細胞膜上に発現する細胞または本発明の蛋白質が分泌された培養上清に接触させた場合と、本発明の蛋白質を活性化する化合物または本発明の蛋白質により活性化される化合物および試験化合物を、本発明の蛋白質を細胞膜上に発現する細胞または本発明の蛋白質が分泌された培養上清に接触させた場合における、レセプターを介した細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca2+遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c−fosの活性化、pHの低下などを促進する活性または抑制する活性など)を測定し、比較することを特徴とする本発明の蛋白質とそのリガンド(またはレセプター)との結合性を変化させる化合物またはその塩のスクリーニング方法、および
〔5〕本発明の蛋白質を活性化する化合物(例えば、本発明の膜蛋白質に対するリガンドなど)または本発明の蛋白質により活性化される化合物(例えば、本発明の分泌蛋白質に対するレセプターなど)を、本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明の蛋白質(ペプチド)または本発明のDNAを含有する形質転換体を培養することによって培養上清中に分泌された本発明の蛋白質(ペプチド)に接触させた場合と、本発明の蛋白質を活性化する化合物または本発明の蛋白質により活性化される化合物および試験化合物を、本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した本発明の蛋白質(ペプチド)または本発明のDNAを含有する形質転換体を培養することによって培養上清中に分泌された本発明の蛋白質(ペプチド)に接触させた場合における、レセプターを介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca2+遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c−fosの活性化、pHの低下などを促進する活性または抑制する活性など)を測定し、比較することを特徴とする本発明の蛋白質とそのリガンド(またはレセプター)との結合性を変化させる化合物またはその塩のスクリーニング方法を提供する。
本発明のスクリーニング方法の具体的な説明を以下にする。
まず、本発明のスクリーニング方法に用いる本発明の蛋白質(ペプチド)としては、上記した本発明の蛋白質もしくはその部分ペプチドまたはその塩を含有するものであれば何れのものであってもよいが、本発明の蛋白質を産生する哺乳動物の臓器の細胞膜画分または細胞外液が好適である。しかし、特にヒト由来の臓器は入手が極めて困難なことから、スクリーニングに用いられるものとしては、組換え体を用いて大量発現させたヒト由来の本発明の蛋白質(ペプチド)などが適している。
本発明の蛋白質(ペプチド)を製造するには、前述の方法が用いられるが、本発明のDNAを哺乳細胞や昆虫細胞で発現させることにより行なうことが好ましい。目的とする蛋白質部分をコードするDNA断片にはcDNAが用いられるが、必ずしもこれに制約されるものではない。例えば、遺伝子断片や合成DNAを用いてもよい。本発明の蛋白質またはその部分ペプチドをコードするDNA断片を宿主動物(昆虫)細胞に導入し、それらを効率よく発現させるためには、該DNA断片を、SV40由来のプロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒトヒートショックプロモーター、サイトメガロウイルスプロモーター、SRαプロモーター、昆虫を宿主とするバキュロウイルスに属する核多角体病ウイルス(nuclear polyhedrosis virus;NPV)のポリヘドリンプロモーターなどの下流に組み込むのが好ましい。発現した蛋白質の量と質の検査はそれ自体公知の方法で行うことができる。例えば、文献〔Nambi,P.ら、ザ・ジャーナル・オブ・バイオロジカル・ケミストリー(J. Biol. Chem.),267巻,19555〜19559頁,1992年〕に記載の方法に従って行なうことができる。
したがって、本発明のスクリーニング方法において用いられる本発明の蛋白質(ペプチド)は、それ自体公知の方法に従って精製した本発明の蛋白質(ペプチド)であってもよいし、本発明の蛋白質(ペプチド)を産生する細胞またはその細胞膜画分、あるいは本発明の蛋白質(ペプチド)を分泌する細胞の培養上清の形態であってもよい。
上記スクリーニング方法において、本発明の蛋白質(ペプチド)を産生する細胞を用いる場合、該細胞をグルタルアルデヒド、ホルマリンなどで固定化してもよい。固定化方法はそれ自体公知の方法に従って行なうことができる。
本発明の蛋白質(ペプチド)を産生する細胞としては、本発明の蛋白質(ペプチド)を発現した宿主細胞をいうが、該宿主細胞としては、大腸菌、枯草菌、酵母、昆虫細胞、動物細胞などが用いられる。
前記細胞膜画分としては、細胞を破砕した後、それ自体公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破砕方法としては、Potter−Elvehjem型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやポリトロン(Kinematica社製)による破砕、超音波による破砕、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破砕などが挙げられる。細胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破砕液を低速(500rpm〜3,000rpm)で短時間(通常、約1〜10分)遠心し、上清をさらに高速(15,000rpm〜30,000rpm)で通常30分〜2時間遠心し、得られる沈澱を膜画分とする。該膜画分中には、発現した本発明の蛋白質(ペプチド)と細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。
本発明の蛋白質(ペプチド)を産生する細胞やその膜画分中の本発明の蛋白質(ペプチド)の量は、1細胞当たり10〜10分子であるのが好ましく、10〜10分子であるのがより好適である。なお、発現量が多いほど膜画分当たりのリガンド結合活性(比活性)が高くなり、高感度なスクリーニング系の構築が可能になるばかりでなく、同一ロットで大量の試料を測定できるようになる。
本発明の蛋白質とそのリガンドとの結合性を変化させる化合物をスクリーニングする上記の〔1〕〜〔3〕を実施するためには、例えば、適当な本発明の蛋白質(ペプチド)含有画分と、標識したリガンドが必要である。
本発明の蛋白質含有画分としては、天然型の本発明の蛋白質含有画分か、またはそれと同等の活性を有する組換え型の本発明の蛋白質含有画分などが望ましい。ここで、同等の活性とは、同等のリガンド結合活性、シグナル情報伝達作用などを示す。
標識したリガンドとしては、標識したリガンド、標識したリガンドアナログ化合物などが用いられる。例えば〔H〕、〔125I〕、〔14C〕、〔35S〕などで標識されたリガンドなどが用いられる。
具体的には、本発明の蛋白質とそのリガンドとの結合性を変化させる化合物のスクリーニングを行なうには、まず本発明の蛋白質(ペプチド)を産生する細胞またはその膜画分を、スクリーニングに適したバッファーに懸濁することにより本発明の蛋白質(ペプチド)標品を調製する。バッファーには、pH4〜10(望ましくはpH6〜8)のリン酸バッファー、トリス−塩酸バッファーなどの本発明の蛋白質とそのリガンドとの結合を阻害しないバッファーであればいずれでもよい。また、非特異的結合を低減させる目的で、CHAPS、Tween−80TM(花王−アトラス社)、ジギトニン、デオキシコレートなどの界面活性剤をバッファーに加えることもできる。さらに、プロテアーゼによるレセプターやリガンドの分解を抑える目的でPMSF、ロイペプチン、E−64(ペプチド研究所製)、ペプスタチンなどのプロテアーゼ阻害剤を添加することもできる。0.01〜10mlの該レセプター溶液に、一定量(5,000cpm〜50,0000cpm)の標識したリガンドを添加し、同時に10−4M〜10−10Mの試験化合物を共存させる。非特異的結合量(NSB)を知るために大過剰の未標識のリガンドを加えた反応チューブも用意する。反応は約0℃から50℃、望ましくは約4℃から37℃で、約20分から24時間、望ましくは約30分から3時間行う。反応後、ガラス繊維濾紙等で濾過し、適量の同バッファーで洗浄した後、ガラス繊維濾紙に残存する放射活性を液体シンチレーションカウンターまたはγ−カウンターで計測する。拮抗する物質がない場合のカウント(B)から非特異的結合量(NSB)を引いたカウント(B−NSB)を100%とした時、特異的結合量(B−NSB)が、例えば、50%以下になる試験化合物を拮抗阻害能力のある候補物質として選択することができる。
本発明の蛋白質とそのリガンドとの結合性を変化させる化合物をスクリーニングする上記の〔4〕〜〔5〕の方法を実施するためには、例えば、本発明の蛋白質を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c−fosの活性化、pHの低下などを促進する活性または抑制する活性など)を公知の方法または市販の測定用キットを用いて測定することができる。
具体的には、まず、本発明の蛋白質(ペプチド)を産生する細胞をマルチウェルプレート等に培養する。スクリーニングを行なうにあたっては前もって新鮮な培地あるいは細胞に毒性を示さない適当なバッファーに交換し、試験化合物などを添加して一定時間インキュベートした後、細胞を抽出あるいは上清液を回収して、生成した産物をそれぞれの方法に従って定量する。細胞刺激活性の指標とする物質(例えば、アラキドン酸など)の生成が、細胞が含有する分解酵素によって検定困難な場合は、該分解酵素に対する阻害剤を添加してアッセイを行なってもよい。また、cAMP産生抑制などの活性については、フォルスコリンなどで細胞の基礎的産生量を増大させておいた細胞に対する産生抑制作用として検出することができる。
細胞刺激活性を測定してスクリーニングを行なうには、本発明の蛋白質(ペプチド)を膜上に発現した適当な細胞が必要である。本発明の蛋白質(ペプチド)を発現した細胞としては、天然型の本発明の膜蛋白質を産生する細胞株、前述の本発明の組換え蛋白質(ペプチド)を発現した細胞株などが望ましい。
試験化合物としては、例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液などが用いられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。
本発明の蛋白質とそのリガンド(またはレセプター)との結合性を変化させる化合物またはその塩のスクリーニング方法について、本発明の蛋白質が膜蛋白質である場合を取り上げて具体的に説明したが、本発明の蛋白質が分泌蛋白質である場合も、当業者は、上記の手法を応用して、本発明の分泌蛋白質とそのレセプターの結合性を変化させる化合物を容易にスクリーニングすることができる。
本発明の蛋白質とそれに対して特異的親和性を有する化合物(リガンドまたはレセプター)の結合性を変化させる化合物またはその塩のスクリーニング用キットは、本発明の蛋白質(ペプチド)、本発明の蛋白質(ペプチド)を産生する細胞またはその膜画分、あるいは本発明の蛋白質(ペプチド)を分泌する細胞の培養上清などを含有するものである。
本発明のスクリーニング用キットの例としては、次のものが挙げられる。
1.スクリーニング用試薬
〔1〕測定用緩衝液および洗浄用緩衝液
Hanks' Balanced Salt Solution(ギブコ社製)に、0.05%のウシ血清アルブミン(シグマ社製)を加えたもの。
孔径0.45μmのフィルターで濾過滅菌し、4℃で保存するか、あるいは用時調製しても良い。
〔2〕本発明の蛋白質(ペプチド)標品
本発明の蛋白質(ペプチド)を発現させたCHO細胞を、12穴プレートに5×10個/穴で継代し、37℃、5%CO、95%airで2日間培養したもの(本発明の蛋白質(ペプチド)が分泌される場合、該プレートは該蛋白質に対する抗体でコーティングされている)。
〔3〕標識リガンド(レセプター)
市販の〔H〕、〔125I〕、〔14C〕、〔35S〕などで標識したリガンド(レセプター)
水溶液の状態のものを4℃あるいは−20℃にて保存し、用時に測定用緩衝液にて1μMに希釈する。
〔4〕リガンド(レセプター)標準液
リガンド(レセプター)を0.1%ウシ血清アルブミン(シグマ社製)を含むPBSで1mMとなるように溶解し、−20℃で保存する。
標識レセプターおよびレセプター標準液としては、レセプター蛋白質を適当な脂質組成からなるリポソーム膜に包埋させたプロテオリポソームを適当な分散媒(水、PBS等)中に懸濁し、4℃で保存したものを用いることもできる。
2.測定法
〔1〕12穴組織培養用プレートにて培養した本発明の蛋白質(ペプチド)発現CHO細胞を、測定用緩衝液1mlで2回洗浄した後(本発明の蛋白質(ペプチド)が分泌される場合は、細胞および培養上清を除去後プレートを測定用緩衝液で同様に洗浄した後)、490μlの測定用緩衝液を各穴に加える。
〔2〕10−3〜10−10Mの試験化合物溶液を5μl加えた後、標識リガンド(またはレセプター)を5μl加え、室温にて1時間反応させる。非特異的結合量を知るためには試験化合物の代わりに10−3Mのリガンド(またはレセプター)標準液を5μl加えておく。
〔3〕反応液を除去し、1mlの洗浄用緩衝液で3回洗浄する。細胞(またはプレート)に結合した標識リガンド(またはレセプター)を0.2N NaOH−1%SDSで溶解し、4mlの液体シンチレーターA(和光純薬製)と混合する。
〔4〕液体シンチレーションカウンター(ベックマン社製)を用いて放射活性を測定し、Percent Maximum Binding(PMB)を次の式〔数1〕で求める。
〔数1〕
PMB=[(B−NSB)/(B−NSB)]×100
PMB:Percent Maximum Binding
B :検体を加えた時の値
NSB:Non-specific Binding(非特異的結合量)
:最大結合量
上記スクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩は、本発明の蛋白質とそれに対して特異的親和性を有する化合物(リガンドまたはレセプター)との結合性を変化させる作用を有する化合物であり、具体的には、(イ)リガンド−レセプター相互作用を介して細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca2+遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c−fosの活性化、pHの低下などを促進する活性または抑制する活性など)を有する化合物(いわゆる、本発明の膜蛋白質または本発明の分泌蛋白質のレセプターに対するアゴニスト)、(ロ)該細胞刺激活性を有しない化合物(いわゆる、本発明の膜蛋白質または本発明の分泌蛋白質のレセプターに対するアンタゴニスト)、(ハ)本発明の蛋白質とそのリガンド(またはレセプター)との結合力を増強する化合物、あるいは(ニ)本発明の蛋白質とそのリガンド(またはレセプター)との結合力を減少させる化合物である。 該化合物としては、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。
本発明の膜蛋白質(もしくは本発明の分泌蛋白質のレセプター)に対するアゴニストは、本発明の膜蛋白質に対するリガンド(もしくはレセプターに対する本発明の分泌蛋白質)が有する生理活性と同様の作用を有しているので、該リガンド活性に応じて安全で低毒性な医薬として有用である。
本発明の膜蛋白質(もしくは本発明の分泌蛋白質のレセプター)に対するアンタゴニストは、本発明の膜蛋白質に対するリガンド(もしくはレセプターに対する本発明の分泌蛋白質)が有する生理活性を抑制することができるので、該リガンド活性を抑制する安全で低毒性な医薬として有用である。
本発明の膜蛋白質とそのリガンド(もしくは本発明の分泌蛋白質とそのレセプター)との結合力を増強する化合物は、本発明の膜蛋白質に対するリガンド(もしくはレセプターに対する本発明の分泌蛋白質)が有する生理活性を増強するための安全で低毒性な医薬として有用である。
本発明の膜蛋白質とそのリガンド(もしくは本発明の分泌蛋白質とそのレセプター)との結合力を減少させる化合物は、本発明の膜蛋白質に対するリガンド(もしくはレセプターに対する本発明の分泌蛋白質)が有する生理活性を減少させるための安全で低毒性な医薬として有用である。
上記スクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩を医薬として使用する場合、前記「本発明の蛋白質の機能不全に関連する疾患の予防・治療剤」と同様にして製剤化することができる。
このようにして得られる製剤は安全で低毒性であるので、例えば、哺乳動物(例えば、ヒト、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。
該化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に、例えば脂質代謝異常患者(体重60kgとして)においては、一日につき約0.1〜100mg、好ましくは約1.0〜50mg、より好ましくは約1.0〜20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば注射剤の形では、通常、例えば脂質代謝異常患者(体重60kgとして)においては、一日につき約0.01〜30mg程度、好ましくは約0.1〜20mg程度、より好ましくは約0.1〜10mg程度を投与するのが好都合である。投与対象がヒト以外の動物の場合も、体重60kg当たりに換算した量を投与することができる。
(9)本発明の蛋白質とそれに対して特異的親和性を有する化合物(リガンドまたはレセプター)との結合性を変化させる化合物(アゴニスト、アンタゴニスト)を含有する各種疾患の予防・治療剤
本発明の蛋白質は、前述の通り、高脂肪食負荷ストレス時に白色脂肪細胞で高発現し、さらに食事、インスリン抵抗性調節薬による刺激、肥満・糖尿病などの病態に応じて発現が変動し、その発現の変動が脂肪細胞の分化に影響することなどから、脂肪細胞の分化および/または代謝機能の調節に重要な役割を果たしていると考えられる。従って、本発明の蛋白質とそのリガンド(もしくはレセプター)との結合性を変化させる化合物(アゴニスト、アンタゴニスト)は、脂肪細胞の分化および/または代謝機能(特に糖・脂質代謝)の異常(不全もしくは亢進)が関与する疾患(例えば、肥満症、糖尿病、耐糖能異常、動脈硬化、高血圧、高脂血症など)の予防・治療剤として用いることができる。
該化合物を本発明の蛋白質の機能不全もしくは亢進に関連する疾患の予防および/または治療剤として使用する場合は、前記「本発明の蛋白質の機能不全に関連する疾患の予防・治療剤」と同様にして製剤化することができる。
このようにして得られる製剤は安全で低毒性であるので、例えば、哺乳動物(例えば、ヒト、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。
該化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.1〜100mg、好ましくは約1.0〜50mg、より好ましくは約1.0〜20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば注射剤の形では、通常、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.01〜30mg程度、好ましくは約0.1〜20mg程度、より好ましくは約0.1〜10mg程度を静脈注射により投与するのが好都合である。投与対象がヒト以外の動物の場合も、体重60kg当たりに換算した量を投与することができる。
(10)本発明の蛋白質(ペプチド)の定量
本発明の抗体は、本発明の蛋白質(ペプチド)を特異的に認識することができるので、被検液中の本発明の蛋白質(ペプチド)の定量、特にサンドイッチ免疫測定法による定量などに使用することができる。すなわち、本発明は、例えば、(i)本発明の抗体と、被検液および標識した本発明の蛋白質(ペプチド)とを競合的に反応させ、該抗体に結合した該標識化蛋白質(ペプチド)の割合を測定することを特徴とする被検液中の本発明の蛋白質(ペプチド)の定量法、
(ii)被検液と担体上に不溶化した本発明の抗体および標識化された本発明の抗体とを同時あるいは連続的に反応させた後、不溶化担体上の標識剤の活性を測定することを特徴とする被検液中の本発明の蛋白質(ペプチド)の定量法を提供する。
上記(ii)においては、不溶化抗体と標識化抗体とが互いに本発明の蛋白質(ペプチド)との結合を妨害しないような抗原認識部位を有することが好ましい(例えば、一方の抗体が本発明の蛋白質(ペプチド)のN端部を認識し、他方の抗体が本発明の蛋白質(ペプチド)のC端部に反応する等)。
本発明の蛋白質(ペプチド)に対するモノクローナル抗体(以下、本発明のモノクローナル抗体と称する場合がある)を用いて本発明の蛋白質(ペプチド)の測定を行なえるほか、組織染色等による検出を行なうこともできる。これらの目的には、抗体分子そのものを用いてもよく、また、抗体分子のF(ab')2 、Fab'、あるいはFab画分を用いてもよい。本発明の蛋白質(ペプチド)に対する抗体を用いる測定法は、特に制限されるべきものではなく、被測定液中の抗原量(例えば、本発明の蛋白質量)に対応した抗体、抗原もしくは抗体−抗原複合体の量を化学的または物理的手段により検出し、これを既知量の抗原を含む標準液を用いて作製した標準曲線より算出する測定法であれば、いずれの測定法を用いてもよい。例えば、ネフロメトリー、競合法、イムノメトリック法およびサンドイッチ法が好適に用いられるが、感度、特異性の点で、後述するサンドイッチ法を用いるのが特に好ましい。
標識物質を用いる測定法に用いられる標識剤としては、例えば、放射性同位元素、酵素、蛍光物質、発光物質などが用いられる。放射性同位元素としては、例えば、〔125I〕、〔131I〕、〔H〕、〔14C〕などが用いられる。上記酵素としては、安定で比活性の大きなものが好ましく、例えば、β−ガラクトシダーゼ、β−グルコシダーゼ、アルカリフォスファターゼ、パーオキシダーゼ、リンゴ酸脱水素酵素などが用いられる。蛍光物質としては、例えば、フルオレスカミン、フルオレッセンイソチオシアネートなどが用いられる。発光物質としては、例えば、ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニンなどが用いられる。さらに、抗体あるいは抗原と標識剤との結合にビオチン−アビジン系を用いることもできる。
抗原あるいは抗体の不溶化に当っては、物理吸着を用いてもよく、また通常、蛋白質あるいは酵素等を不溶化、固定化するのに用いられる化学結合を用いる方法でもよい。担体としては、例えば、アガロース、デキストラン、セルロースなどの不溶性多糖類、ポリスチレン、ポリアクリルアミド、シリコン等の合成樹脂、あるいはガラス等が用いられる。
サンドイッチ法においては不溶化した本発明のモノクローナル抗体に被検液を反応させ(1次反応)、さらに標識化した本発明のモノクローナル抗体を反応させ(2次反応)た後、不溶化担体上の標識剤の活性を測定することにより被検液中の本発明の蛋白質量を定量することができる。1次反応と2次反応は逆の順序に行なっても、また、同時に行なってもよいし時間をずらして行なってもよい。標識化剤および不溶化の方法は上記のそれらに準じることができる。
また、サンドイッチ法による免疫測定法において、固相用抗体あるいは標識用抗体に用いられる抗体は必ずしも1種類である必要はなく、測定感度を向上させる等の目的で2種類以上の抗体の混合物を用いてもよい。
本発明のサンドイッチ法による本発明の蛋白質(ペプチド)の測定法においては、1次反応と2次反応に用いられる本発明のモノクローナル抗体は本発明の蛋白質(ペプチド)の結合する部位が相異なる抗体が好ましく用いられる。即ち、1次反応および2次反応に用いられる抗体は、例えば、2次反応で用いられる抗体が、本発明の蛋白質(ペプチド)のC端部を認識する場合、1次反応で用いられる抗体は、好ましくはC端部以外、例えばN端部を認識する抗体が用いられる。
本発明のモノクローナル抗体をサンドイッチ法以外の測定システム、例えば、競合法、イムノメトリック法あるいはネフロメトリーなどに用いることができる。競合法では、被検液中の抗原と標識抗原とを抗体に対して競合的に反応させた後、未反応の標識抗原と(F)と抗体と結合した標識抗原(B)とを分離し(B/F分離)、B,Fいずれかの標識量を測定し、被検液中の抗原量を定量する。本反応法には、抗体として可溶性抗体を用い、B/F分離をポリエチレングリコール、上記抗体に対する第2抗体などを用いる液相法、および、第1抗体として固相化抗体を用いるか、あるいは、第1抗体は可溶性のものを用い第2抗体として固相化抗体を用いる固相化法とが用いられる。
イムノメトリック法では、被検液中の抗原と固相化抗原とを一定量の標識化抗体に対して競合反応させた後固相と液相を分離するか、あるいは、被検液中の抗原と過剰量の標識化抗体とを反応させ、次に固相化抗原を加え未反応の標識化抗体を固相に結合させたのち、固相と液相を分離する。次に、いずれかの相の標識量を測定し被検液中の抗原量を定量する。
また、ネフロメトリーでは、ゲル内あるいは溶液中で抗原抗体反応の結果、生じた不溶性の沈降物の量を測定する。被検液中の抗原量が僅かであり、少量の沈降物しか得られない場合にもレーザーの散乱を利用するレーザーネフロメトリーなどが好適に用いられる。
これら個々の免疫学的測定法を本発明の蛋白質(ペプチド)の定量に適用するにあたっては、特別の条件、操作等の設定は必要とされない。それぞれの方法における通常の条件、操作法に当業者の通常の技術的配慮を加えて本発明の蛋白質(ペプチド)の測定系を構築すればよい。これらの一般的な技術手段の詳細については、総説、成書などを参照することができる〔例えば、入江 寛編「ラジオイムノアッセイ」(講談社、昭和49年発行)、入江 寛編「続ラジオイムノアッセイ」(講談社、昭和54年発行)、石川栄治ら編「酵素免疫測定法」(医学書院、昭和53年発行)、石川栄治ら編「酵素免疫測定法」(第2版)(医学書院、昭和57年発行)、石川栄治ら編「酵素免疫測定法」(第3版)(医学書院、昭和62年発行)、「メソッズ・イン・エンジモノジー(Methods in ENZYMOLOGY)」 Vol. 70 (Immunochemical Techniques (Part A))、同書 Vol. 73 (Immunochemical Techniques (Part B))、同書 Vol. 74 (Immunochemical Techniques (Part C))、同書 Vol. 84 (Immunochemical Techniques (Part D: Selected Immunoassays))、同書 Vol. 92 (Immunochemical Techniques (Part E: Monoclonal Antibodies and General Immunoassay Methods))、同書 Vol. 121 (Immunochemical Techniques (Part I: Hybridoma Technology and Monoclonal Antibodies))(以上、アカデミックプレス社発行)など参照〕。
以上のように、本発明の抗体を用いることによって、本発明の蛋白質(ペプチド)を高感度に定量することができる。
さらに、本発明の抗体を用いて、生体内での本発明の蛋白質またはその塩を定量することによって、本発明の蛋白質の機能不全もしくは亢進に関連する各種疾患の診断をすることができる。本発明の蛋白質は、高脂肪食負荷ストレス時に白色脂肪細胞で高発現し、さらに食事、インスリン抵抗性調節薬による刺激、肥満・糖尿病などの病態に応じて発現が変動し、その発現の変動が脂肪細胞の分化に影響することなどから、本発明の蛋白質の機能不全もしくは亢進に関連する疾患としては、脂肪細胞の分化および/または代謝機能(特に糖・脂質代謝)の異常(不全もしくは亢進)が関与する疾患(例えば、肥満症、糖尿病、耐糖能異常、動脈硬化、高血圧、高脂血症など)などが挙げられる。
また、本発明の抗体は、体液や組織などの被検体中に存在する本発明の蛋白質またはその塩を特異的に検出するために使用することができる。また、本発明の蛋白質(ペプチド)を精製するために使用する抗体カラムの作製、精製時の各分画中の本発明の蛋白質(ペプチド)の検出、被検細胞内における本発明の蛋白質の挙動の分析などに使用することができる。
(11)細胞膜または細胞外における本発明の蛋白質の量を変化させる化合物のスクリーニング方法
本発明の抗体は、本発明の蛋白質(ペプチド)を特異的に認識することができるので、細胞膜または細胞外における本発明の蛋白質の量を変化させる化合物のスクリーニングに用いることができる。
すなわち本発明は、例えば、
(i)非ヒト哺乳動物の〔1〕血液、〔2〕特定の臓器、〔3〕臓器から単離した組織もしくは細胞等を破壊した後、細胞膜画分を単離し、細胞膜画分に含まれる本発明の蛋白質を定量することによる、細胞膜における本発明の膜蛋白質の量を変化させる化合物のスクリーニング方法(あるいは、非ヒト哺乳動物の血漿、尿、その他の体液等の細胞外液を分離し、それに含まれる本発明の蛋白質を定量することによる、細胞外における本発明の蛋白質の量を変化させる化合物のスクリーニング方法)、
(ii)本発明の蛋白質(ペプチド)を発現する形質転換体等を破壊した後、細胞膜画分を単離し、細胞膜画分に含まれる本発明の蛋白質(ペプチド)を定量することによる、細胞膜における本発明の蛋白質の量を変化させる化合物のスクリーニング方法(あるいは、本発明の蛋白質(ペプチド)を発現する形質転換体の培養上清を分離し、該培養上清に含まれる本発明の蛋白質(ペプチド)を定量することによる、細胞外における本発明の蛋白質の量を変化させる化合物のスクリーニング方法)、
(iii)非ヒト哺乳動物の〔1〕血液、〔2〕特定の臓器、〔3〕臓器から単離した組織もしくは細胞等を切片とした後、免疫染色法を用いることにより、細胞表層での本発明の蛋白質の染色度合いを定量化することにより、細胞膜上の本発明の蛋白質を確認することによる、細胞膜における本発明の蛋白質の量を変化させる化合物のスクリーニング方法、
(iv)本発明の蛋白質またはその部分ペプチドを発現する形質転換体等を切片とした後、免疫染色法を用いることにより、細胞表層での本発明の蛋白質(ペプチド)の染色度合いを定量化することにより、細胞膜上の本発明の蛋白質(ペプチド)を確認することによる、細胞膜における本発明の蛋白質(ペプチド)の量を変化させる化合物のスクリーニング方法を提供する。
細胞膜画分に含まれる本発明の蛋白質(ペプチド)の定量は具体的には以下のようにして行なう。
(i)正常あるいは疾患モデル非ヒト哺乳動物(例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど、より具体的には、肥満マウス、糖尿病マウス、高血圧ラット、動脈硬化ウサギ、担癌マウスなど)に対して、薬剤(例えば、抗肥満薬、抗糖尿病薬、降圧剤、血管作用薬、抗癌剤など)あるいは物理的ストレス(例えば、浸水ストレス、電気ショック、明暗、低温など)などを与え、一定時間経過した後に、血液、あるいは特定の臓器(例えば、肝臓、腎臓、膵臓、筋肉など)、組織(例えば、褐色または白色脂肪組織など)あるいは細胞(例えば、脂肪細胞、筋肉細胞など)を得る。得られた細胞等を、例えば、適当な緩衝液(例えば、トリス塩酸緩衝液、リン酸緩衝液、HEPES緩衝液など)等に懸濁し、界面活性剤(例えば、トリトンX100TM、ツイーン20TMなど)などを用いて該細胞等を破壊し、さらに遠心分離や濾過、カラム分画などの手法を用いて細胞膜画分を得る。
細胞膜画分とは、細胞を破砕した後、それ自体公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破砕方法としては、Potter−Elvehjem型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやポリトロン(Kinematica社製)のよる破砕、超音波による破砕、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破砕などが挙げられる。細胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破砕液を低速(500rpm〜3,000rpm)で短時間(通常、約1〜10分)遠心し、上清をさらに高速(15,000rpm〜30,000rpm)で通常30分〜2時間遠心し、得られる沈澱を膜画分とする。該膜画分中には、本発明の蛋白質(ペプチド)と細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。
細胞膜画分に含まれる本発明の蛋白質(ペプチド)は、例えば、本発明の抗体を用いたサンドイッチ免疫測定法、ウエスタンブロット解析などにより定量することができる。
かかるサンドイッチ免疫測定法は前述の方法と同様にして行なうことができ、ウエスタンブロットは自体公知の手段により行なうことができる。
(ii)本発明の蛋白質(ペプチド)を発現する形質転換体を前述の方法に従って作製し、細胞膜画分に含まれる本発明の蛋白質(ペプチド)を定量することができる。
細胞膜における本発明の蛋白質の量を変化させる化合物のスクリーニングは、(i)正常あるいは疾患モデル非ヒト哺乳動物に対して、薬剤あるいは物理的ストレスなどを与える一定時間前(30分前ないし24時間前、好ましくは30分前ないし12時間前、より好ましくは1時間前ないし6時間前)もしくは一定時間後(30分後ないし3日後、好ましくは1時間後ないし2日後、より好ましくは1時間後ないし24時間後)、または薬剤あるいは物理的ストレスと同時に被検化合物を投与し、投与後一定時間経過後(30分後ないし3日後、好ましくは1時間後ないし2日後、より好ましくは1時間後ないし24時間後)、細胞膜における本発明の蛋白質の量を定量することにより行なうことができ、
(ii)形質転換体を常法に従い培養する際に被検化合物を培地中に混合させ、一定時間培養後(1日後ないし7日後、好ましくは1日後ないし3日後、より好ましくは2日後ないし3日後)、細胞膜における本発明の蛋白質(ペプチド)の量を定量することにより行なうことができる。
細胞膜画分に含まれる本発明の蛋白質(ペプチド)の確認は、具体的には以下のようにして行なう。
(iii)正常あるいは疾患モデル非ヒト哺乳動物(例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど、より具体的には、肥満マウス、糖尿病マウス、高血圧ラット、動脈硬化ウサギ、担癌マウスなど)に対して、薬剤(例えば、抗肥満薬、抗糖尿病薬、降圧剤、血管作用薬、抗癌剤など)あるいは物理的ストレス(例えば、浸水ストレス、電気ショック、明暗、低温など)などを与え、一定時間経過した後に、血液、あるいは特定の臓器(例えば、肝臓、腎臓など)、組織(例えば、褐色または白色脂肪組織など)あるいは細胞(例えば、脂肪細胞など)を得る。得られた細胞等を、常法に従って組織切片とし、本発明の抗体を用いて免疫染色を行う。細胞表層での本発明の蛋白質の染色度合いを定量化することによって、細胞膜上の本発明の蛋白質を確認することにより、定量的または定性的に、細胞膜における本発明の蛋白質(ペプチド)の量を確認することができる。
(iv)本発明の蛋白質(ペプチド)を発現する形質転換体等を用いて同様の手段をとることにより確認することもできる。
細胞膜における本発明の蛋白質の量を変化させる化合物のスクリーニング用キットは、本発明の抗体を構成として含むことを特徴とする。本発明の抗体は、用いる免疫学的測定方法に応じて、上記(10)で述べたいずれかの形態で供することができる。例えば、サンドウィッチ法を用いる場合には、1次反応に用いる本発明の抗体は適当な不溶性担体(例:アガロース、デキストラン、セルロースなどの不溶性多糖類、ポリスチレン、ポリアクリルアミド、シリコン等の合成樹脂、あるいはガラス等)に固定化された(もしくはされ得る)状態で、2次反応に用いられる本発明の抗体は適当な標識剤[例:放射性同位元素(〔125I〕、〔131I〕、〔H〕、〔14C〕など)、酵素(β−ガラクトシダーゼ、β−グルコシダーゼ、アルカリフォスファターゼ、パーオキシダーゼ、リンゴ酸脱水素酵素など)、蛍光物質(フルオレスカミン、フルオレッセンイソチオシアネートなど)、発光物質(ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニンなど)等]で標識された(もしくはされ得る)状態で提供される。
該スクリーニング用キットは、所望により、さらに免疫学的測定に必要もしくは好適なブロッキング試薬、洗浄液などや、細胞膜画分の単離に必要もしくは好適な試薬類、本発明の蛋白質(ペプチド)を発現する形質転換体などを含んでいてもよい。
上記スクリーニング方法およびスクリーニング用キットについて、本発明の蛋白質が膜蛋白質である場合の、細胞膜における本発明の蛋白質の量を変化させる化合物のスクリーニングを取り上げて具体的に説明したが、当業者は、上記の手法を応用して、本発明の蛋白質が分泌蛋白質である場合の、細胞外における本発明の蛋白質の量を変化させる化合物のスクリーニングについても容易に実施し得ることはいうまでもない。
上記スクリーニング方法を用いて得られる化合物またはその塩は、細胞膜における本発明の膜蛋白質の量、あるいは細胞外における本発明の分泌蛋白質の量を変化させる作用を有する化合物であり、具体的には、(イ)細胞膜における本発明の膜蛋白質、あるいは細胞外における本発明の分泌蛋白質の量を増加させることにより、リガンド−レセプター相互作用を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca2+遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c−fosの活性化、pHの低下などを促進する活性または抑制する活性など)を増強させる化合物、(ロ)細胞膜における本発明の膜蛋白質、あるいは細胞外における本発明の分泌蛋白質の量を減少させることにより、該細胞刺激活性を減弱させる化合物である。
該化合物としては、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。
該細胞刺激活性を増強させる化合物は、本発明の蛋白質の生理活性を増強するための安全で低毒性な医薬として有用である。
該細胞刺激活性を減弱させる化合物は、本発明の蛋白質の生理活性を減少させるための安全で低毒性な医薬として有用である。
上記スクリーニング方法を用いて得られる化合物またはその塩を医薬として使用する場合、前記「本発明の蛋白質の機能不全に関連する疾患の予防・治療剤」と同様にして製剤化することができる。
このようにして得られる製剤は安全で低毒性であるので、例えば、哺乳動物(例えば、ヒト、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。
該化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.1〜100mg、好ましくは約1.0〜50mg、より好ましくは約1.0〜20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば注射剤の形では、通常、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.01〜30mg程度、好ましくは約0.1〜20mg程度、より好ましくは約0.1〜10mg程度を投与するのが好都合である。投与対象がヒト以外の動物の場合も、体重60kg当たりに換算した量を投与することができる。
(12)細胞膜あるいは細胞外における本発明の蛋白質の量を変化させる化合物を含有する各種疾患の予防・治療剤
本発明の蛋白質は、前述の通り、高脂肪食負荷ストレス時に白色脂肪細胞で高発現し、さらに食事、インスリン抵抗性調節薬による刺激、肥満・糖尿病などの病態に応じて発現が変動し、その発現の変動が脂肪細胞の分化に影響することなどから、脂肪細胞の分化および/または代謝機能の調節に重要な役割を果たしていると考えられる。従って、細胞膜あるいは細胞外における本発明の蛋白質の量を変化させる化合物は、脂肪細胞の分化および/または代謝機能(特に糖・脂質代謝)の異常(不全もしくは亢進)が関与する疾患(例えば、肥満症、糖尿病、耐糖能異常、動脈硬化、高血圧、高脂血症など)の予防・治療剤として用いることができる。
該化合物を本発明の蛋白質の機能不全もしくは亢進に関連する疾患の予防・治療剤として使用する場合は、前記「本発明の蛋白質の機能不全に関連する疾患の予防・治療剤」と同様にして製剤化することができる。
このようにして得られる製剤は安全で低毒性であるので、例えば、哺乳動物(例えば、ヒト、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。
該化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.1〜100mg、好ましくは約1.0〜50mg、より好ましくは約1.0〜20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば注射剤の形では、通常、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.01〜30mg程度、好ましくは約0.1〜20mg程度、より好ましくは約0.1〜10mg程度を投与するのが好都合である。投与対象がヒト以外の動物の場合も、体重60kg当たりに換算した量を投与することができる。
(13)本発明の蛋白質をコードするDNAを有する非ヒトトランスジェニック動物の作製
本発明は、外来性の本発明の蛋白質をコードするDNA(以下、本発明の外来性DNAと略記する)またはその変異DNA(本発明の外来性変異DNAと略記する場合がある)を有する非ヒト哺乳動物を提供する。
すなわち、本発明は、
〔1〕本発明の外来性DNAまたはその変異DNAを有する非ヒト哺乳動物、
〔2〕ゲッ歯動物である第〔1〕記載の動物、
〔3〕ゲッ歯動物がマウスまたはラットである第〔2〕記載の動物、および
〔4〕本発明の外来性DNAまたはその変異DNAを含有し、哺乳動物において発現しうる組換えベクターを提供するものである。
本発明の外来性DNAまたはその変異DNAを有する非ヒト哺乳動物(以下、本発明のDNA転移動物と略記する)は、未受精卵、受精卵、精子およびその始原細胞を含む胚芽細胞などに対して、好ましくは、非ヒト哺乳動物の発生における胚発生の段階(さらに好ましくは、単細胞または受精卵細胞の段階でかつ一般に8細胞期以前)に、リン酸カルシウム法、電気パルス法、リポフェクション法、凝集法、マイクロインジェクション法、パーティクルガン法、DEAE−デキストラン法などにより目的とするDNAを転移することによって作出することができる。また、該DNA転移方法により、体細胞、生体の臓器、組織細胞などに目的とする本発明の外来性DNAを転移し、細胞培養、組織培養などに利用することもでき、さらに、これら細胞を上述の胚芽細胞と自体公知の細胞融合法により融合させることにより本発明のDNA転移動物を作出することもできる。
非ヒト哺乳動物としては、例えば、ウシ、ブタ、ヒツジ、ヤギ、ウサギ、イヌ、ネコ、モルモット、ハムスター、マウス、ラットなどが用いられる。なかでも、病体動物モデル系の作成の面から個体発生および生物サイクルが比較的短く、また、繁殖が容易なゲッ歯動物、とりわけマウス(例えば、純系として、C57BL/6系統,DBA2系統など、交雑系として、B6C3F系統,BDF系統,B6D2F系統,BALB/c系統,ICR系統など)またはラット(例えば、Wistar,SDなど)などが好ましい。
哺乳動物において発現しうる組換えベクターにおける「哺乳動物」としては、上記の非ヒト哺乳動物の他にヒトなどがあげられる。
本発明の外来性DNAとは、非ヒト哺乳動物が本来有している本発明のDNAではなく、いったん哺乳動物から単離・抽出された本発明のDNAをいう。
本発明の変異DNAとしては、元の本発明のDNAの塩基配列に変異(例えば、突然変異など)が生じたもの、具体的には、塩基の付加、欠失、他の塩基への置換などが生じたDNAなどが用いられ、また、異常DNAも含まれる。
該異常DNAとしては、異常な本発明の蛋白質等を発現させるDNAを意味し、例えば、正常な本発明の蛋白質の機能を抑制する蛋白質等を発現させるDNAなどが用いられる。
本発明の外来性DNAは、対象とする動物と同種あるいは異種のどちらの哺乳動物由来のものであってもよい。本発明のDNAを対象動物に転移させるにあたっては、該DNAを動物細胞で発現させうるプロモーターの下流に結合したDNAコンストラクトとして用いるのが一般に有利である。例えば、本発明のヒトDNAを転移させる場合、これと相同性が高い本発明のDNAを有する各種哺乳動物(例えば、ウサギ、イヌ、ネコ、モルモット、ハムスター、ラット、マウスなど)由来のDNAを発現させうる各種プロモーターの下流に、本発明のヒトDNAを結合したDNAコンストラクト(例、ベクターなど)を対象哺乳動物の受精卵、例えば、マウス受精卵へマイクロインジェクションすることによって本発明のDNAを高発現するDNA転移哺乳動物を作出することができる。
本発明のDNAを担持させる発現ベクターとしては、大腸菌由来のプラスミド、枯草菌由来のプラスミド、酵母由来のプラスミド、λファージなどのバクテリオファージ、モロニー白血病ウィルスなどのレトロウィルス、ワクシニアウィルスまたはバキュロウィルスなどの動物ウイルスなどが用いられる。なかでも、大腸菌由来のプラスミド、枯草菌由来のプラスミドまたは酵母由来のプラスミドなどが好ましく用いられる。
上記のDNA発現調節を行なうプロモーターとしては、例えば、〔1〕ウイルス(例、シミアンウイルス、サイトメガロウイルス、モロニーマウス白血病ウイルス、JCウイルス、乳癌ウイルス、ポリオウイルスなど)に由来するDNAのプロモーター、〔2〕各種哺乳動物(ヒト、ウサギ、イヌ、ネコ、モルモット、ハムスター、ラット、マウスなど)由来のプロモーター、例えば、アルブミン、インスリンII、ウロプラキンII、エラスターゼ、エリスロポエチン、エンドセリン、筋クレアチンキナーゼ、グリア線維性酸性蛋白質、グルタチオンS−トランスフェラーゼ、血小板由来成長因子β、ケラチンK1,K10およびK14、コラーゲンI型およびII型、サイクリックAMP依存蛋白質キナーゼβIサブユニット、ジストロフィン、酒石酸抵抗性アルカリフォスファターゼ、心房ナトリウム利尿性因子、内皮レセプターチロシンキナーゼ(一般にTie2と略される)、ナトリウムカリウムアデノシン3リン酸化酵素(Na,K−ATPase)、ニューロフィラメント軽鎖、メタロチオネインIおよびIIA、メタロプロティナーゼ1組織インヒビター、MHCクラスI抗原(H−2L)、H−ras、レニン、ドーパミンβ−水酸化酵素、甲状腺ペルオキシダーゼ(TPO)、ペプチド鎖延長因子1α(EF−1α)、βアクチン、αおよびβミオシン重鎖、ミオシン軽鎖1および2、ミエリン基礎蛋白質、チログロブリン、Thy−1、免疫グロブリン、H鎖可変部(VNP)、血清アミロイドPコンポーネント、ミオグロビン、トロポニンC、平滑筋αアクチン、プレプロエンケファリンA、バソプレシンなどのプロモーターなどが用いられる。なかでも、全身で高発現することが可能なサイトメガロウイルスプロモーター、ヒトペプチド鎖延長因子1α(EF−1α)のプロモーター、ヒトおよびニワトリβアクチンプロモーターなどが好適である。
上記ベクターは、DNA転移哺乳動物において目的とするメッセンジャーRNAの転写を終結する配列(一般にターミネターと呼ばれる)を有していることが好ましく、例えば、ウイルス由来および各種哺乳動物由来の各DNAの配列を用いることができ、好ましくは、シミアンウイルスのSV40ターミネターなどが用いられる。
その他、目的とする外来性DNAをさらに高発現させる目的で各DNAのスプライシングシグナル、エンハンサー領域、真核DNAのイントロンの一部などをプロモーター領域の5'上流、プロモーター領域と翻訳領域間あるいは翻訳領域の3'下流 に連結することも目的により可能である。
正常な本発明の蛋白質等の翻訳領域は、各種哺乳動物(例えば、ヒト、ウサギ、イヌ、ネコ、モルモット、ハムスター、ラット、マウスなど)由来の肝臓、腎臓、甲状腺細胞、線維芽細胞由来DNAおよび市販の各種ゲノムDNAライブラリーよりゲノムDNAの全てあるいは一部として、または肝臓、腎臓、甲状腺細胞、線維芽細胞由来RNAより公知の方法により調製された相補DNAを原料として取得することが出来る。また、外来性の異常DNAは、上記の細胞または組織より得られた正常な本発明の蛋白質等の翻訳領域を点突然変異誘発法により変異させた翻訳領域を作製することによって得ることができる。
該翻訳領域は転移動物において発現しうるDNAコンストラクトとして、前記のプロモーターの下流(および所望により転写終結部位の上流)に連結させる通常のDNA工学的手法により作製することができる。
受精卵細胞段階における本発明の外来性DNAの転移は、対象哺乳動物の胚芽細胞および体細胞のすべてに存在するように確保される。DNA転移後の作出動物の胚芽細胞において、本発明の外来性DNAが存在することは、作出動物の後代がすべて、その胚芽細胞および体細胞のすべてに本発明の外来性DNAを保持することを意味する。本発明の外来性DNAを受け継いだこの種の動物の子孫はその胚芽細胞および体細胞のすべてに本発明の外来性DNAを有する。
本発明の外来性正常DNAを転移させた非ヒト哺乳動物は、交配により外来性DNAを安定に保持することを確認して、該DNA保有動物として通常の飼育環境で継代飼育することが出来る。
受精卵細胞段階における本発明の外来性DNAの転移は、対象哺乳動物の胚芽細胞および体細胞の全てに過剰に存在するように確保される。DNA転移後の作出動物の胚芽細胞において本発明の外来性DNAが過剰に存在することは、作出動物の子孫が全てその胚芽細胞および体細胞の全てに本発明の外来性DNAを過剰に有することを意味する。本発明の外来性DNAを受け継いだこの種の動物の子孫はその胚芽細胞および体細胞の全てに本発明の外来性DNAを過剰に有する。
導入DNAを相同染色体の両方に持つホモザイゴート動物を取得し、この雌雄の動物を交配することによりすべての子孫が該DNAを過剰に有するように繁殖継代することができる。
本発明の正常DNAを有する非ヒト哺乳動物は、本発明の正常DNAが高発現させられており、内在性の正常DNAの機能を増強することにより最終的に本発明の蛋白質の機能亢進症を発症することがあり、その病態モデル動物として利用することができる。例えば、本発明の正常DNA転移動物を用いて、本発明の蛋白質の機能亢進症や、該蛋白質が関連する疾患の病態機序の解明およびこれらの疾患の治療方法の検討を行なうことが可能である。
また、本発明の外来性正常DNAを転移させた哺乳動物は、遊離した本発明の蛋白質の増加症状を有することから、該蛋白質に関連する疾患に対する治療薬のスクリーニング試験にも利用可能である。
一方、本発明の外来性異常DNAを有する非ヒト哺乳動物は、交配により外来性DNAを安定に保持することを確認して該DNA保有動物として通常の飼育環境で継代飼育することが出来る。さらに、目的とする外来DNAを前述のプラスミドに組み込んで原科として用いることができる。プロモーターとのDNAコンストラク卜は、通常のDNA工学的手法によって作製することができる。受精卵細胞段階における本発明の異常DNAの転移は、対象哺乳動物の胚芽細胞および体細胞の全てに存在するように確保される。DNA転移後の作出動物の胚芽細胞において本発明の異常DNAが存在することは、作出動物の子孫が全てその胚芽細胞および体細胞の全てに本発明の異常DNAを有することを意味する。本発明の外来性DNAを受け継いだこの種の動物の子孫は、その胚芽細胞および体細胞の全てに本発明の異常DNAを有する。導入DNAを相同染色体の両方に持つホモザイゴート動物を取得し、この雌雄の動物を交配することによりすべての子孫が該DNAを有するように繁殖継代することができる。
本発明の異常DNAを有する非ヒト哺乳動物は、本発明の異常DNAが高発現させられており、内在性の正常DNAの機能を阻害することにより最終的に本発明の蛋白質の機能不活性型不応症となることがあり、その病態モデル動物として利用することができる。例えば、本発明の異常DNA転移動物を用いて、本発明の蛋白質の機能不活性型不応症の病態機序の解明およびこの疾患を治療方法の検討を行なうことが可能である。
また、具体的な利用可能性としては、本発明の異常DNA高発現動物は、本発明の蛋白質の機能不活性型不応症における本発明の異常蛋白質による正常蛋白質の機能阻害(dominant negative作用)を解明するモデルとなる。
また、本発明の外来異常DNAを転移させた哺乳動物は、遊離した本発明の異常蛋白質の増加症状を有することから、本発明の蛋白質の機能不活性型不応症に対する治療薬スクリーニング試験にも利用可能である。
また、上記2種類の本発明のDNA転移動物のその他の利用可能性として、例えば、
〔1〕組織培養のための細胞源としての使用、
〔2〕本発明のDNA転移動物の組織中のDNAもしくはRNAを直接分析するか、またはDNAにより発現された蛋白質を分析することによる、本発明の蛋白質により特異的に発現あるいは活性化する蛋白質等との関連性についての解析、
〔3〕DNAを有する組織の細胞を標準組織培養技術により培養し、これらを使用しての、一般に培養困難な組織からの細胞の機能の研究、
〔4〕上記〔3〕記載の細胞を用いることによる細胞の機能を高めるような薬剤のスクリーニング、および
〔5〕本発明の変異蛋白質の単離精製およびその抗体作製などが考えられる。
さらに、本発明のDNA転移動物を用いて、本発明の蛋白質の機能不活性型不応症などを含む、該蛋白質に関連する疾患の臨床症状を調べることができ、また、本発明の蛋白質に関連する疾患モデルの各臓器におけるより詳細な病理学的所見が得られ、新しい治療方法の開発、さらには、該疾患による二次的疾患の研究および治療に貢献することができる。
また、本発明のDNA転移動物から各臓器を取り出し、細切後、トリプシンなどの蛋白質分解酵素により、遊離したDNA転移細胞の取得、その培養またはその培養細胞の系統化を行なうことが可能である。さらに、本発明の蛋白質産生細胞の特定化、アポトーシス、分化あるいは増殖との関連性、またはそれらにおけるシグナル伝達機構を調べ、それらの異常を調べることなどができ、本発明の蛋白質およびその作用解明のための有効な研究材料となる。
さらに、本発明のDNA転移動物を用いて、本発明の蛋白質の機能不活性型不応症を含む、該蛋白質に関連する疾患の治療薬の開発を行なうために、上述の検査法および定量法などを用いて、有効で迅速な該疾患治療薬のスクリーニング法を提供することが可能となる。また、本発明のDNA転移動物または本発明の外来性DNA発現ベクターを用いて、本発明の蛋白質が関連する疾患のDNA治療法を検討、開発することが可能である。
(14)本発明の蛋白質をコードする遺伝子が不活性化されたノックアウト非ヒト動物の作製
本発明は、本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞および本発明のDNA発現不全非ヒト哺乳動物を提供する。
すなわち、本発明は、
〔1〕本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞、
〔2〕該DNAがレポーター遺伝子(例、大腸菌由来のβ−ガラクトシダーゼ遺伝子)を導入することにより不活性化された第〔1〕項記載の胚幹細胞、
〔3〕ネオマイシン耐性である第〔1〕項記載の胚幹細胞、
〔4〕ゲッ歯動物である第〔1〕項記載の胚幹細胞、
〔5〕ゲッ歯動物がマウスである第〔4〕項記載の胚幹細胞、
〔6〕本発明のDNAが不活性化された該DNA発現不全非ヒト哺乳動物、
〔7〕該DNAがレポーター遺伝子(例、大腸菌由来のβ−ガラクトシダーゼ遺伝子)を導入することにより不活性化され、該レポーター遺伝子が本発明のDNAに対するプロモーターの制御下で発現しうる第〔6〕項記載の非ヒト哺乳動物、
〔8〕非ヒト哺乳動物がゲッ歯動物である第〔6〕項記載の非ヒト哺乳動物、
〔9〕ゲッ歯動物がマウスである第〔8〕項記載の非ヒト哺乳動物、および
〔10〕第〔7〕項記載の動物に、試験化合物を投与し、レポーター遺伝子の発現を検出することを特徴とする本発明のDNAに対するプロモーター活性を促進または阻害する化合物またはその塩のスクリーニング方法を提供する。
本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞とは、該非ヒト哺乳動物が有する本発明のDNAに人為的に変異を加えることにより、DNAの発現能を抑制するか、もしくは該DNAがコードしている本発明の蛋白質の活性を実質的に喪失させることにより、DNAが実質的に本発明の蛋白質の発現能を有さない(以下、本発明のノックアウトDNAと称することがある)非ヒト哺乳動物の胚幹細胞(以下、ES細胞と略記する)をいう。
非ヒト哺乳動物としては、前記と同様のものが用いられる。
本発明のDNAに人為的に変異を加える方法としては、例えば、遺伝子工学的手法により該DNA配列の一部又は全部の削除、他DNAを挿入または置換させることによって行なうことができる。これらの変異により、例えば、コドンの読み取り枠をずらしたり、プロモーターあるいはエキソンの機能を破壊することにより本発明のノックアウトDNAを作製すればよい。
本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞(以下、本発明のDNA不活性化ES細胞または本発明のノックアウトES細胞と略記する)の具体例としては、例えば、目的とする非ヒト哺乳動物が有する本発明のDNAを単離し、そのエキソン部分にネオマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子を代表とする薬剤耐性遺伝子、あるいはlacZ(β−ガラクトシダーゼ遺伝子)、cat(クロラムフェニコールアセチルトランスフェラーゼ遺伝子)を代表とするレポーター遺伝子等を挿入することによりエキソンの機能を破壊するか、あるいはエキソン間のイントロン部分に遺伝子の転写を終結させるDNA配列(例えば、poly A付加シグナルなど)を挿入し、完全なメッセンジャーRNAを合成できなくすることによって、結果的に遺伝子を破壊するように構築したDNA配列を有するDNA鎖(以下、ターゲッティングベクターと略記する)を、例えば相同組換え法により該動物の染色体に導入し、得られたES細胞について本発明のDNA上あるいはその近傍のDNA配列をプローブとしたサザンハイブリダイゼーション解析あるいはターゲッティングベクター上のDNA配列とターゲッティングベクター作製に使用した本発明のDNA以外の近傍領域のDNA配列をプライマーとしたPCR法により解析し、本発明のノックアウトES細胞を選別することにより得ることができる。
また、相同組換え法等により本発明のDNAを不活化させる元のES細胞としては、例えば、前述のような既に樹立されたものを用いてもよく、また公知のEvansとKaufmanの方法に準じて新しく樹立したものでもよい。例えば、マウスのES細胞の場合、現在、一般的には129系のES細胞が使用されているが、免疫学的背景がはっきりしていないので、これに代わる純系で免疫学的に遺伝的背景が明らかなES細胞を取得するなどの目的で例えば、C57BL/6マウスやC57BL/6の採卵数の少なさをDBA/2との交雑により改善したBDFマウス(C57BL/6とDBA/2とのF)を用いて樹立したものなども良好に用いうる。BDFマウスは、採卵数が多く、かつ、卵が丈夫であるという利点に加えて、C57BL/6マウスを背景に持つので、これを用いて得られたES細胞は病態モデルマウスを作出したとき、C57BL/6マウスとバッククロスすることでその遺伝的背景をC57BL/6マウスに代えることが可能である点で有利に用い得る。
また、ES細胞を樹立する場合、一般には受精後3.5日目の胚盤胞を使用するが、これ以外に8細胞期胚を採卵し胚盤胞まで培養して用いることにより効率よく多数の初期胚を取得することができる。
また、雌雄いずれのES細胞を用いてもよいが、通常雄のES細胞の方が生殖系列キメラを作出するのに都合が良い。また、煩雑な培養の手間を削減するためにもできるだけ早く雌雄の判別を行なうことが望ましい。
ES細胞の雌雄の判定方法としては、例えば、PCR法によりY染色体上の性決定領域の遺伝子を増幅、検出する方法が、その1例としてあげることができる。この方法を使用すれば、従来、核型分析をするのに約10個の細胞数を要していたのに対して、1コロニー程度のES細胞数(約50個)で済むので、培養初期におけるES細胞の第一次セレクションを雌雄の判別で行なうことが可能であり、早期に雄細胞の選定を可能にしたことにより培養初期の手間は大幅に削減できる。
また、第二次セレクションとしては、例えば、G−バンディング法による染色体数の確認等により行うことができる。得られるES細胞の染色体数は正常数の100%が望ましいが、樹立の際の物理的操作等の関係上困難な場合は、ES細胞の遺伝子をノックアウトした後、正常細胞(例えば、マウスでは染色体数が2n=40である細胞)に再びクローニングすることが望ましい。
このようにして得られた胚幹細胞株は、通常その増殖性は大変良いが、個体発生できる能力を失いやすいので、注意深く継代培養することが必要である。例えば、STO繊維芽細胞のような適当なフィーダー細胞上でLIF(1−10000U/ml)存在下に炭酸ガス培養器内(好ましくは、5%炭酸ガス、95%空気または5%酸素、5%炭酸ガス、90%空気)で約37℃で培養するなどの方法で培養し、継代時には、例えば、トリプシン/EDTA溶液(通常0.001−0.5%トリプシン/0.1−5mM EDTA、好ましくは約0.1%トリプシン/1mM EDTA)処理により単細胞化し、新たに用意したフィーダー細胞上に播種する方法などがとられる。このような継代は、通常1−3日毎に行なうが、この際に細胞の観察を行い、形態的に異常な細胞が見受けられた場合はその培養細胞は放棄することが望まれる。
ES細胞は、適当な条件により、高密度に至るまで単層培養するか、または細胞集塊を形成するまで浮遊培養することにより、頭頂筋、内臓筋、心筋などの種々のタイプの細胞に分化させることが可能であり〔M. J. Evans及びM. H. Kaufman, ネイチャー(Nature)第292巻、154頁、1981年;G. R. Martin,プロシーディングス・オブ・ナショナル・アカデミー・オブ・サイエンシイズ・ユーエスエー(Proc. Natl. Acad. Sci. U.S.A.)第78巻、7634頁、1981年;T. C. Doetschman ら、ジャーナル・オブ・エンブリオロジー・アンド・エクスペリメンタル・モルフォロジー(J. Embryol. Exp. Morphol.)、第87巻、27頁、1985年〕、本発明のES細胞を分化させて得られる本発明のDNA発現不全細胞は、インビトロにおける本発明の蛋白質または該蛋白質の細胞生物学的検討において有用である。
本発明のDNA発現不全非ヒト哺乳動物は、該動物のmRNA量を公知方法を用いて測定して間接的にその発現量を比較することにより、正常動物と区別することが可能である。
該非ヒト哺乳動物としては、前記と同様のものが用いられる。
本発明のDNA発現不全非ヒト哺乳動物は、例えば、前述のようにして作製したターゲッティングベクターをマウス胚幹細胞またはマウス卵細胞に導入し、導入されたターゲッティングベクター中の本発明のDNAが不活性化されたDNA配列が遺伝子相同組換えにより、マウス胚幹細胞またはマウス卵細胞の染色体上の本発明のDNAと入れ換わる相同組換えをさせることにより、本発明のDNAをノックアウトさせることができる。哺乳動物における組換えの多くは非相同的であるため、相同組換えを起こした細胞をスクリーニングする手段として、例えば、本発明のDNAの内部にネオマイシン耐性遺伝子などの薬剤耐性遺伝子を挿入するとともに、本発明のDNAの近傍にチミジンキナーゼ(tk)遺伝子を含むターゲッティングベクターを構築して胚幹細胞または卵細胞に導入し、挿入された薬剤耐性遺伝子に対応する薬剤(例えば、ネオマイシン耐性遺伝子であればG418等)およびガンシクロビル存在下で生存する細胞を選択する方法が挙げられる。即ち、相同組換えにより本発明の挿入変異DNAが染色体上に組み込まれた場合、tk遺伝子は排除されるのでガンシクロビル耐性であるが、非相同組換えで組み込まれた場合はtk遺伝子も同時に組み込まれるためガンシクロビル感受性となる。また、tk遺伝子の代わりにジフテリア毒素遺伝子などを用いれば、ランダム挿入された細胞は該毒素の産生により死滅するので、単一の薬剤での選択が可能となる。
本発明のDNAがノックアウトされた細胞の最終的な確認は、本発明のDNA上またはその近傍のDNA配列をプローブとしたサザンハイブリダイゼーション解析またはターゲッティングベクター上のDNA配列と、ターゲッティングベクターに使用したマウス由来の本発明のDNA以外の近傍領域のDNA配列とをプライマーとしたPCR法による解析を用いて行なうことができる。
非ヒト哺乳動物胚幹細胞を用いた場合は、遺伝子相同組換えにより、本発明のDNAが不活性化された細胞株をクローニングし、その細胞を適当な時期、例えば、8細胞期の非ヒト哺乳動物胚または胚盤胞に注入し、作製したキメラ胚を偽妊娠させた該非ヒト哺乳動物の子宮に移植する。作出された動物は正常な本発明のDNA座をもつ細胞と人為的に変異した本発明のDNA座をもつ細胞との両者から構成されるキメラ動物である。
該キメラ動物の生殖細胞の一部が変異した本発明のDNA座をもつ場合、このようなキメラ個体と正常個体を交配することにより得られた個体群より、全ての組織が人為的に変異を加えた本発明のDNA座をもつ細胞で構成された個体を、例えば、コートカラーの判定等により選別することにより得られる。このようにして得られた個体は、通常ヘテロ発現不全個体であるので、当該ヘテロ発現不全個体同志を交配し、それらの産仔から本発明の蛋白質のホモ発現不全個体を得ることができる。
卵細胞を使用する場合は、例えば、卵細胞核内にマイクロインジェクション法でDNA溶液を注入することによりターゲッティングベクターを染色体内に導入したトランスジェニック非ヒト哺乳動物を得ることができ、これらのトランスジェニック非ヒト哺乳動物から、遺伝子相同組換えにより本発明のDNA座に変異のあるものを選択することにより得られる。
このようにして本発明のDNAがノックアウトされている個体は、交配により得られた動物個体も該DNAがノックアウトされていることを確認して通常の飼育環境で飼育継代を行なうことができる。
さらに、生殖系列の取得および保持についても常法に従えばよい。すなわち、該不活化DNAの保有する雌雄の動物を交配することにより、該不活化DNAを相同染色体の両方に持つホモザイゴート動物を取得しうる。得られたホモザイゴート動物は、母親動物に対して、正常個体1,ホモザイゴート複数になるような状態で飼育することにより効率的に得ることができる。ヘテロザイゴート動物の雌雄を交配することにより、該不活化DNAを有するホモザイゴートおよびヘテロザイゴート動物を繁殖継代する。
本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞は、本発明のDNA発現不全非ヒト哺乳動物を作出する上で、非常に有用である。
また、本発明のDNA発現不全非ヒト哺乳動物は、本発明の蛋白質により誘導され得る種々の生物活性を欠失するため、該蛋白質の生物活性の不活性化を原因とする疾患のモデルとなり得るので、これらの疾患の原因究明及び治療法の検討に有用である。
(14a)本発明のDNAの欠損や損傷などに起因する疾患に対して治療・予防効果を有する化合物のスクリーニング方法
本発明のDNA発現不全非ヒト哺乳動物は、本発明のDNAの欠損や損傷などに起因する疾患に対して治療・予防効果を有する化合物のスクリーニングに用いることができる。
すなわち、本発明は、本発明のDNA発現不全非ヒト哺乳動物に試験化合物を投与し、該動物の変化を観察・測定することを特徴とする、本発明のDNAの欠損や損傷などに起因する疾患に対して治療・予防効果を有する化合物またはその塩のスクリーニング方法を提供する。
該スクリーニング方法において用いられる本発明のDNA発現不全非ヒト哺乳動物としては、前記と同様のものがあげられる。
試験化合物としては、例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液、血漿などがあげられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。
具体的には、本発明のDNA発現不全非ヒト哺乳動物を、試験化合物で処理し、無処理の対照動物と比較し、該動物の各器官、組織、疾患の症状などの変化を指標として試験化合物の治療・予防効果を試験することができる。
試験動物を試験化合物で処理する方法としては、例えば、経口投与、静脈注射などが用いられ、試験動物の症状、試験化合物の性質などにあわせて適宜選択することができる。また、試験化合物の投与量は、投与方法、試験化合物の性質などにあわせて適宜選択することができる。
該スクリーニング方法において、試験動物に試験化合物を投与した場合、該試験動物の血糖値が約10%以上、好ましくは約30%以上、より好ましくは約50%以上低下した場合、該試験化合物を上記の疾患に対して治療・予防効果を有する化合物として選択することができる。
該スクリーニング方法を用いて得られる化合物は、上記した試験化合物から選ばれた化合物であり、本発明の蛋白質の欠損や損傷などによって引き起こされる疾患、例えば、脂肪細胞の分化および/または代謝機能の異常が関与する疾患(例:肥満症、糖尿病、耐糖能異常、動脈硬化、高血圧、高脂血症など)に対する安全で低毒性な治療・予防剤などの医薬として使用することができる。さらに、上記スクリーニングで得られた化合物から誘導される化合物も同様に用いることができる。
該スクリーニング方法で得られた化合物は塩を形成していてもよく、該化合物の塩としては、生理学的に許容される酸(例、無機酸、有機酸など)や塩基(例、アルカリ金属など)などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸など)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など)との塩などが用いられる。
該スクリーニング方法で得られた化合物またはその塩を含有する医薬は、前記「本発明の蛋白質の機能不全に関連する疾患の予防・治療剤」と同様にして製剤化することができる。
このようにして得られる製剤は、安全で低毒性であるので、例えば、哺乳動物(例えば、ヒト、ラット、マウス、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サルなど)に対して投与することができる。
該化合物またはその塩の投与量は、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えば、該化合物を経口投与する場合、一般的に、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.1〜100mg、好ましくは約1.0〜50mg、より好ましくは約1.0〜20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば注射剤の形では、通常、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.01〜30mg程度、好ましくは約0.1〜20mg程度、より好ましくは約0.1〜10mg程度を投与するのが好都合である。投与対象がヒト以外の動物の場合も、体重60kg当たりに換算した量を投与することができる。
(14b)本発明のDNAに対するプロモーターの活性を促進または阻害する化合物のスクリーニング方法
本発明は、本発明のDNA発現不全非ヒト哺乳動物に、試験化合物を投与し、レポーター遺伝子の発現を検出することを特徴とする本発明のDNAに対するプロモーターの活性を促進または阻害する化合物またはその塩のスクリーニング方法を提供する。
上記スクリーニング方法において、本発明のDNA発現不全非ヒト哺乳動物としては、前記した本発明のDNA発現不全非ヒト哺乳動物の中でも、本発明のDNAがレポーター遺伝子を導入することにより不活性化され、該レポーター遺伝子が本発明のDNAに対するプロモーターの制御下で発現しうるものが用いられる。
試験化合物としては、前記と同様のものがあげられる。
レポーター遺伝子としては、前記と同様のものが用いられ、β−ガラクトシダーゼ遺伝子(lacZ)、可溶性アルカリフォスファターゼ遺伝子またはルシフェラーゼ遺伝子などが好適である。
本発明のDNAをレポーター遺伝子で置換された本発明のDNA発現不全非ヒト哺乳動物では、レポーター遺伝子が本発明のDNAに対するプロモーターの支配下に存在するので、レポーター遺伝子がコードする物質の発現をトレースすることにより、プロモーターの活性を検出することができる。
例えば、本発明の蛋白質をコードするDNA領域の一部を大腸菌由来のβ−ガラクトシダーゼ遺伝子(lacZ)で置換している場合、本来、本発明の蛋白質の発現する組織で、該蛋白質の代わりにβ−ガラクトシダーゼが発現する。従って、例えば、5−ブロモ−4−クロロ−3−インドリル−β−ガラクトピラノシド(X−gal)のようなβ−ガラクトシダーゼの基質となる試薬を用いて染色することにより、簡便に本発明の蛋白質の動物生体内における発現状態を観察することができる。具体的には、本発明の蛋白質を欠損するマウスまたはその組織切片をグルタルアルデヒドなどで固定し、リン酸緩衝生理食塩液(PBS)で洗浄後、X−galを含む染色液で、室温または37℃付近で、約30分ないし1時間反応させた後、組織標本を1mM EDTA/PBS溶液で洗浄することによって、β−ガラクトシダーゼ反応を停止させ、呈色を観察すればよい。また、常法に従い、lacZをコードするmRNAを検出してもよい。
上記スクリーニング方法を用いて得られる化合物またはその塩は、上記した試験化合物から選ばれた化合物であり、本発明のDNAに対するプロモーター活性を促進または阻害する化合物である。
該スクリーニング方法で得られた化合物は塩を形成していてもよく、該化合物の塩としては、生理学的に許容される酸(例、無機酸など)や塩基(例、有機酸など)などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸など)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など)との塩などが用いられる。
本発明のDNAに対するプロモーター活性を促進する化合物またはその塩は、本発明の蛋白質の発現を促進し、該蛋白質の機能を促進することができるので、例えば、本発明の蛋白質の機能不全に関連する疾患などの予防・治療薬などの医薬として有用である。
本発明のDNAに対するプロモーター活性を阻害する化合物またはその塩は、本発明の蛋白質の発現を阻害し、該蛋白質の機能を阻害することができるので、例えば、該蛋白質の発現過多に関連する疾患などの予防・治療薬などの医薬として有用である。
本発明の蛋白質の機能不全もしくは発現過多に関連する疾患としては、例えば、脂肪細胞の分化および/または代謝機能の異常が関与する疾患(例えば、肥満症、糖尿病、耐糖能異常、動脈硬化、高血圧、高脂血症など)等が挙げられる。 さらに、上記スクリーニングで得られた化合物から誘導される化合物も同様に用いることができる。
該スクリーニング方法で得られた化合物またはその塩を含有する医薬は、前記した本発明の蛋白質とそのリガンド(またはレセプター)との結合性を変化させる化合物を含有する医薬と同様にして製造することができる。
このようにして得られる製剤は、安全で低毒性であるので、例えば、哺乳動物(例えば、ヒト、ラット、マウス、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サルなど)に対して投与することができる。
該化合物またはその塩の投与量は、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えば、本発明のDNAに対するプロモーター活性を促進または阻害する化合物を経口投与する場合、一般的に、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.1〜100mg、好ましくは約1.0〜50mg、より好ましくは約1.0〜20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば注射剤の形では、通常、例えば糖・脂質代謝異常患者(体重60kgとして)においては、一日につき約0.01〜30mg程度、好ましくは約0.1〜20mg程度、より好ましくは約0.1〜10mg程度を投与するのが好都合である。投与対象がヒト以外の動物の場合も、60kg当たりに換算した量を投与することができる。
このように、本発明のDNA発現不全非ヒト哺乳動物は、本発明のDNAに対するプロモーターの活性を促進または阻害する化合物またはその塩をスクリーニングする上で極めて有用であり、本発明のDNA発現不全に起因する各種疾患の原因究明または予防・治療薬の開発に大きく貢献することができる。
また、本発明の蛋白質のプロモーター領域を含有するDNAを使って、その下流に種々の蛋白質をコードする遺伝子を連結し、これを動物の卵細胞に注入していわゆるトランスジェニック動物(遺伝子移入動物)を作成すれば、特異的にその蛋白質を合成させ、その生体での作用を検討することも可能となる。さらに上記プロモーター部分に適当なレポーター遺伝子を結合させ、これが発現するような細胞株を樹立すれば、本発明の蛋白質そのものの体内での産生能力を特異的に促進もしくは抑制する作用を持つ低分子化合物の探索系として使用できる。
本明細書および図面において、塩基やアミノ酸などを略号で表示する場合、IUPAC−IUB Commission on Biochemical Nomenclature による略号あるいは当該分野における慣用略号に基づくものであり、その例を下記する。またアミノ酸に関し光学異性体があり得る場合は、特に明示しなければL体を示すものとする。
DNA :デオキシリボ核酸
cDNA :相補的デオキシリボ核酸
A :アデニン
T :チミン
G :グアニン
C :シトシン
RNA :リボ核酸
mRNA :メッセンジャーリボ核酸
dATP :デオキシアデノシン三リン酸
dTTP :デオキシチミジン三リン酸
dGTP :デオキシグアノシン三リン酸
dCTP :デオキシシチジン三リン酸
ATP :アデノシン三リン酸
EDTA :エチレンジアミン四酢酸
SDS :ドデシル硫酸ナトリウム
Gly :グリシン
Ala :アラニン
Val :バリン
Leu :ロイシン
Ile :イソロイシン
Ser :セリン
Thr :スレオニン
Cys :システイン
Met :メチオニン
Glu :グルタミン酸
Asp :アスパラギン酸
Lys :リジン
Arg :アルギニン
His :ヒスチジン
Phe :フェニルアラニン
Tyr :チロシン
Trp :トリプトファン
Pro :プロリン
Asn :アスパラギン
Gln :グルタミン
pGlu :ピログルタミン酸
Me :メチル基
Et :エチル基
Bu :ブチル基
Ph :フェニル基
TC :チアゾリジン−4(R)−カルボキサミド基
また、本明細書中で繁用される置換基、保護基および試薬を下記の記号で表記する。
Tos :p−トルエンスルフォニル
CHO :ホルミル
Bzl :ベンジル
ClBzl :2,6−ジクロロベンジル
Bom :ベンジルオキシメチル
Z :ベンジルオキシカルボニル
Cl−Z :2−クロロベンジルオキシカルボニル
Br−Z :2−ブロモベンジルオキシカルボニル
Boc :t−ブトキシカルボニル
DNP :ジニトロフェノール
Trt :トリチル
Bum :t−ブトキシメチル
Fmoc :N−9−フルオレニルメトキシカルボニル
HOBt :1−ヒドロキシベンズトリアゾール
HOOBt :3,4−ジヒドロ−3−ヒドロキシ−4−オキソ−
1,2,3−ベンゾトリアジン
HONB :1-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミド
DCC :N、N’−ジシクロヘキシルカルボジイミド
本明細書の配列表の配列番号は、以下の配列を示す。
〔配列番号:1〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST20-14(Long form)をコードするcDNAの塩基配列を示す。
〔配列番号:2〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST20-14(Long form)のアミノ酸配列を示す。
〔配列番号:3〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST20-14(Short form)をコードするcDNAの塩基配列を示す。
〔配列番号:4〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST20-14(Short form)のアミノ酸配列を示す。
〔配列番号:5〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST22-22(Long form)をコードするcDNAの塩基配列を示す。
〔配列番号:6〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST22-22(Long form)のアミノ酸配列を示す。
〔配列番号:7〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST22-22(Short form)をコードするcDNAの塩基配列を示す。
〔配列番号:8〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST22-22(Short form)のアミノ酸配列を示す。
〔配列番号:9〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST8-5をコードするcDNAの塩基配列を示す。
〔配列番号:10〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST8-5のアミノ酸配列を示す。
〔配列番号:11〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST19-15(Long form)をコードするcDNAの塩基配列を示す。
〔配列番号:12〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST19-15(Long form)のアミノ酸配列を示す。
〔配列番号:13〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST19-15(Short form)をコードするcDNAの塩基配列を示す。
〔配列番号:14〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST19-15(Short form)のアミノ酸配列を示す。
〔配列番号:15〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST13-11をコードするcDNAの塩基配列を示す。
〔配列番号:16〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST13-11のアミノ酸配列を示す。
〔配列番号:17〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST9-8をコードするcDNAの塩基配列を示す。
〔配列番号:18〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST9-8のアミノ酸配列を示す。
〔配列番号:19〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST21-3をコードするcDNAの塩基配列を示す。
〔配列番号:20〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST21-3のアミノ酸配列を示す。
〔配列番号:21〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST20-6をコードするcDNAの塩基配列を示す。
〔配列番号:22〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST20-6のアミノ酸配列を示す。
〔配列番号:23〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質cDNA断片mSst20-14(partial)の塩基配列を示す。
〔配列番号:24〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質cDNA断片mSst22-22(partial)の塩基配列を示す。
〔配列番号:25〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質cDNA断片mSst8-5(partial)の塩基配列を示す。
〔配列番号:26〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質cDNA断片mSst19-15(partial)の塩基配列を示す。
〔配列番号:27〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質cDNA断片mSst13-11(partial)の塩基配列を示す。
〔配列番号:28〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質cDNA断片mSst9-8(partial)の塩基配列を示す。
〔配列番号:29〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質cDNA断片mSst21-3(partial)の塩基配列を示す。
〔配列番号:30〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質cDNA断片mSst20-6(partial)の塩基配列を示す。
〔配列番号:31〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質cDNA断片を増幅するためのプライマーの塩基配列を示す。
〔配列番号:32〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質cDNA断片を増幅するためのプライマーの塩基配列を示す。
〔配列番号:33〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST20-14の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーの塩基配列を示す。
〔配列番号:34〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST20-14の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーの塩基配列を示す。
〔配列番号:35〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST22-22の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーの塩基配列を示す。
〔配列番号:36〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST22-22の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーの塩基配列を示す。
〔配列番号:37〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST8-5の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーの塩基配列を示す。
〔配列番号:38〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST8-5の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーの塩基配列を示す。
〔配列番号:39〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST19-15の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーの塩基配列を示す。
〔配列番号:40〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST19-15の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーの塩基配列を示す。
〔配列番号:41〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST13-11の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーの塩基配列を示す。
〔配列番号:42〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST13-11の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーの塩基配列を示す。
〔配列番号:43〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST9-8の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーの塩基配列を示す。
〔配列番号:44〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST9-8の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーの塩基配列を示す。
〔配列番号:45〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST21-3の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーの塩基配列を示す。
〔配列番号:46〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST21-3の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーの塩基配列を示す。
〔配列番号:47〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST20-6の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーの塩基配列を示す。
〔配列番号:48〕
マウス白色脂肪組織由来分泌もしくは膜蛋白質mSST20-6の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーの塩基配列を示す。
以下に実施例を示して、本発明をより詳細に説明するが、これらは本発明の範囲を限定するものではない。なお、大腸菌を用いての遺伝子操作法は、モレキュラー・クローニング(Molecular cloning; 上述)に記載されている方法に従った。
実施例1 マウス白色脂肪組織由来の分泌・膜蛋白質cDNAのスクリーニング マウスプロB細胞株Ba/F3(理研セルバンク;RCB0805)は、その生存・増殖にIL−3が必須である。該細胞は細胞膜上にトロンボポイエチン受容体(MPL)を発現しており、リガンドであるトロンボポイエチンの結合によりホモ二量体を形成し、細胞内に増殖シグナルが伝えられる。MPLは、膜貫通領域のSer498Asn変異によりリガンド非依存的な恒常的活性型(MPL)になり、Ba/F3がIL−3非存在下においてもその生存・増殖が維持され、しかも、MPLの活性には細胞外ドメインの大半は不要で、C末端の187アミノ酸を含めば細胞膜上に発現してホモ二量体を形成し得ることが見出されている(KojimaおよびKitamura,上述)。すなわち、細胞外領域を欠失させたMPLの5’側にcDNAを組み込めるようデザインされたレトロウイルスベクターを作製し、組み込んだcDNAがシグナルシークエンスを有していれば、cDNAにコードされた蛋白質とMPLの融合蛋白質がBa/F3の細胞膜上に発現し、該Ba/F3がIL−3非依存下で生存・増殖することになる。この原理に基づいて、Met〜Thr441を欠失させたMPLのコード領域(ΔMPL)を含むレトロウイルスベクター(pMX-SST;KojimaおよびKitamura,上述)のBstXIサイトに、高脂肪食負荷マウス白色脂肪組織由来cDNAを挿入してレトロウイルス発現ライブラリーを構築し、分泌・膜蛋白質cDNAのクローニングを行った。
まず、高脂肪食負荷マウス(C57Bl/6J,12週齢,オスに12日間30%高脂肪食を与えた)から内臓脂肪組織(腸間膜および副睾丸周囲の白色脂肪)を切除し、Quick Prep mRNA Purification Kit(Pharmacia)を用いて、添付のプロトコールに従ってpoly A(+) RNAを単離し、SuperScript Choice System(Gibco-BRL)を用いてランダムヘキサマーによりcDNAに変換した。得られたcDNAを、BstXIアダプター(Invitrogen)を用いてレトロウイルスベクターpMX-SSTのBstXIサイトに挿入し、MPLMの5'側に該cDNAをライゲーションさせた。得られたDNAをE. coli DH10B 株にエレクトロポレーション法を用いて導入し、増幅させた。常法に従ってプラスミドDNAを精製し、レトロウイルス作製用パッケージング細胞(Plat-E;Moritaら,Gene Ther., 7(12): 1063-1066, 2000;東京大学 医科学研究所 北村俊雄博士より入手)(2 x 106 細胞/dish)にLipofectamineTM試薬(Invitrogen)を用いて添付のプロトコールに従いトランスフェクションした。10%ウシ胎仔血清添加 DMEM 培地中で 24 時間培養後に、同新鮮培地に交換し24時間培養し培養上清を採取して感染性を有した高力価レトロウイルスストック(感染効率10-30%)を得た。このレトロウイルスストックで蛋白質発現用細胞(Ba/F3)を感染させ、IL-3添加 RPMI1640 培地中で 1 日間培養した後、96-wellプレート中に1 x 104/wellとなるように播き、IL−3無添加培地中で選択した。感染後に増殖性を保持したBa/F3を選択し、それらから常法によりゲノムDNAを抽出した。次いで、配列番号31および32に示されるオリゴヌクレオチドをプライマーとし、ゲノムDNAを鋳型としてPCRを行った(98℃、60秒の後、98℃、20秒および68℃、120秒を30サイクル)。増幅された断片をpENTR/D-topo(Invitrogen,登録商標)にサブクローニングした。各cDNAインサートの塩基配列を BigDye Terminator Cycle Sequencing FS Ready Kit(PE Biosystems)およびDNA自動シークエンサー(ABI Prism 377)を用いて決定したところ、8つの新規なcDNAクローン(Sst20-6、Sst22-22、Sst9-8、Sst13-11、Sst19-15、Sst20-14、Sst21-3およびSst8-5)が確認された。
尚、上記8種のcDNAクローンをそれぞれ挿入されたプラスミドpENTR/D−TOPO (20-6)、pENTR/D−TOPO (22-22)、pENTR/D−TOPO (9-8)、pENTR/D−TOPO (13-11)、pENTR/D−TOPO (19-15)、pENTR/D−TOPO (20-14)、pENTR/D−TOPO (21-3)およびpENTR/D−TOPO (8-5)で大腸菌コンピテントセルEscherichia coli Top10(Invitrogen)を形質転換し、形質転換体Escherichia coli Top10/pENTR/D-TOPO (20-6)、Escherichia coli Top10/pENTR/D-TOPO (22-22)、Escherichia coli Top10/pENTR/D-TOPO (9-8)、Escherichia coli Top10/pENTR/D-TOPO (13-11)、Escherichia coli Top10/pENTR/D-TOPO (19-15)、Escherichia coli Top10/pENTR/D-TOPO (20-14)、Escherichia coli Top10/pENTR/D-TOPO (21-3)およびEscherichia coli Top10/pENTR/D-TOPO (8-5)株を得た。これらの大腸菌株は、それぞれFERM BP-8106、FERM BP-8109、FERM BP-8105、FERM BP-8107、FERM BP-8108、FERM BP-8104、FERM BP-8102およびFERM BP-8110の受託番号を付され、平成14年7月2日付で独立行政法人 産業技術総合研究所 特許生物寄託センター(〒305-8566 茨城県つくば市東1-1-1 中央第6)に寄託されている。
実施例2 新規分泌・膜蛋白質遺伝子の発現解析
実施例1で得られた新規cDNAをプローブとして用い、種々の条件下でノーザンブロット解析によりこれらの遺伝子の発現の様子を調べた。
まず、白色脂肪組織における発現と、発現組織の特異性を解析した。その結果、Sst20-14は白色脂肪組織特異的な発現を示した。一方、Sst21-3, Sst13-11, Sst9-8, Sst19-15は褐色脂肪組織においても発現が確認された。
Sst13-11は、高脂肪-高スクロース負荷マウスにおいて、対照マウスと比較して発現量が上昇した。また、肥満モデルマウスob/obにおいても、対照のC57bl6/Jマウスと比較して発現量が上昇した。
Sst21-3は、糖尿病モデルマウスdb/dbにおいて、対照のC57bl6/Jマウスと比較して発現量が上昇した。また、白色脂肪に分化しうる3T3-L1細胞における発現を調べたところ、Sst21-3は未分化な前駆脂肪細胞でも発現していた。
Sst20-14は、得られたクローン断片中に、リポ蛋白質の脂質に結合しうるモチーフを有していた。
さらに、Sst20-14、Sst19-15、Sst13-11、Sst21-3は、絶食により発現量が低下し、絶食後再給餌により発現量が上昇(回復)した。
実施例3 完全長cDNAのクローニング
実施例1で得られた8つの新規分泌もしくは膜蛋白質のcDNA断片について、決定された各々の塩基配列を基に5’-RACE用遺伝子特異的プライマー(GSP1)および3'-RACE用遺伝子特異的プライマー(GSP2)(Sst20-14についてはそれぞれ配列番号33および34;Sst22-22についてはそれぞれ配列番号35および36;Sst8-5についてはそれぞれ配列番号37および38;Sst19-15についてはそれぞれ配列番号39および40;Sst13-11についてはそれぞれ配列番号41および42;Sst9-8についてはそれぞれ配列番号43および44;Sst21-3についてはそれぞれ配列番号45および46;Sst20-6についてはそれぞれ配列番号47および48)を設計し、SMARTTM RACE cDNA amplification kit(clontech)を用いて5'-RACEおよび3'-RACE反応を実施した。実験はkitの添付書に従って実施した。C57BL/6Jマウスから実施例1と同様にして全RNAを抽出した後、アダプタープライマーの附加と逆転写反応を行ってcDNAを作製した。このcDNAを鋳型としてPCRを以下の条件で行った(94℃ 5sec, 72℃ 3min=5cycle, 94℃ 5sec, 69℃ 10sec, 72℃ 3min=5cycle, 94℃ 5sec, 66℃ 10sec, 72℃ 3min=40cycle)。PCR産物を1% アガロースゲル電気泳動で分離し、得られたバンドをゲルから切り出して抽出した後、pCR4-TOPOまたはpENTR/D-TOPO(いずれもInvitrogen)中にTAクローニングした。得られたプラスミドのインサートDNAの配列を常法により決定したところ、いずれのクローンも完全なORFを含んでいた。また、Sst20-14、Sst22-22およびSst19-15については長さの異なるORFを含む2種類のクローンが得られた(ORFの長短によりそれぞれLong formおよShort formと命名した)。これら合計11種のcDNAクローンがそれぞれ挿入されたプラスミドpCR4-TOPO(SST20-14long form)、pCR4-TOPO(SST20-14short form)、pCR4-TOPO(SST22-22long form)、pCR4-TOPO(SST22-22short form)、pCR4-TOPO(SST8-5)、pCR4-TOPO(SST19-15long form)、pCR4-TOPO(SST19-15short form)、pCR4-TOPO(SST13-11)、pENTR/D-TOPO(SST9-8)、pCR4-TOPO(SST21-3)およびpCR4-TOPO(SST20-6)で大腸菌コンピテントセルEscherichia coli Top10(Invitrogen)を形質転換し、形質転換体(1) Escherichia coli Top10/pCR4-TOPO(SST20-14long form)、(2) Escherichia coli Top10/pCR4-TOPO(SST20-14short form)、(3) Escherichia coli Top10/pCR4-TOPO(SST22-22long form)、(4) Escherichia coli Top10/pCR4-TOPO(SST22-22short form)、(5) Escherichia coli Top10/pCR4-TOPO(SST8-5)、(6) Escherichia coli Top10/pCR4-TOPO(SST19-15long form)、(7) Escherichia coli Top10/pCR4-TOPO(SST19-15short form)、(8) Escherichia coli Top10/pCR4-TOPO(SST13-11)、(9) Escherichia coli Top10/pENTR/D-TOPO(SST9-8)、(10) Escherichia coli Top10/pCR4-TOPO(SST21-3)および(11) Escherichia coli Top10/pCR4-TOPO(SST20-6)株を得た。これらの大腸菌株は、それぞれFERM BP-8406、FERM BP-8407、FERM BP-8408、FERM BP-8409、FERM BP-8402、FERM BP-8404、FERM BP-8405、FERM BP-8403、FERM BP-8411、FERM BP-8413およびFERM BP-8412の受託番号を付され、(1)〜(8)については平成15(2003)年6月20日付で、(9)〜(11)については平成15(2003)年6月24日付で独立行政法人 産業技術総合研究所 特許生物寄託センター(〒305-8566 茨城県つくば市東1−1−1 中央第6)に寄託されている。
実施例4 前脂肪細胞株3T3-L1の成熟脂肪細胞への分化に対する作用解析
3T3-L1細胞を2x105cells/wellの細胞数で6-well plateに播種し、10%ウシ胎仔血清(Invitrogen)添加DMEM(invitrogen)培地中、37℃下で7日間培養後、培養液を吸引しPBS(Invitrogen)で2回洗浄後、OPTI-MEM(Invitrogen)を2ml/well添加した。OPTI-MEM(100μl)およびFuGENETM6(10μl、Roche)を混合し室温にて5分間静置したものに、発現プラスミドであるpCMV-Tag4A(Sigma)のEcoRI-HindIIIクローニングサイトにSST20-14(Long form) cDNAを挿入して作製した発現用コンストラクトpCMV-SST20-14を2μg添加し、室温にて45分間静置した。該発現コンストラクト含有溶液を上記の3T3-L1細胞に添加し、37℃で6時間培養した後、10%ウシ胎仔血清添加DMEM培地中、37℃下で40時間培養した。次いで、分化培地[250nM デキサメタゾン(Sigma)、0.5mM 1-メチル-3-イソブチルキサンチン(和光純薬)、10μg/ml インスリン(Sigma)、10%ウシ胎仔血清添加DMEM培地]に交換して72時間培養した。その後、10%ウシ胎仔血清添加DMEM培地中でさらに8日間培養した。培養終了後、培養液を吸引し、PBSで2回洗浄し、10%ホルマリン(和光純薬)を2ml加えて30分間静置した。蒸留水で2回洗浄後、oil red-O溶液を添加し10分間染色し、蒸留水で2回洗浄後、風乾し脂肪滴の蓄積を調べた。その結果、SST20-14を過剰発現させた3T3-L1細胞は、対照コントロール3T3-L1細胞に比較して、脂肪滴の蓄積が顕微鏡下による観察で定性的に半分以下に減少し、成熟脂肪細胞への分化に影響を与えた。
実施例5 新規分泌・膜蛋白質遺伝子のインスリン抵抗性惹起因子による発現解析
3T3-L1細胞を4x105cells/wellの細胞数で6-well plateに播種し、10%ウシ胎仔血清(Invitrogen)添加DMEM(Invitrogen)培地中、37℃下で5日間培養後、分化培地[250nM デキサメタゾン(Sigma)、0.5mM 1-メチル-3-イソブチルキサンチン(和光純薬)、10μg/ml インスリン(Sigma)、10%ウシ胎仔血清添加DMEM培地]に交換し、さらに24時間培養した。分化培地への交換の際、TNF-α(Genzyme Techne)をそれぞれ1nM、100pMおよび10pMの濃度で同時に添加した。培養終了後、PBS(Invitrogen)で洗浄した後、細胞を回収した。回収した細胞から総RNAをRNAeasy kit(Qiagen)を用いて、kit添付の手順書に従って採取した。採取した総RNAを用いて、SST20-14および内部標準として用いる36B4のmRNA発現量をTaqMan PCR(Applied Biosystems)を用いて定量した。その結果、添加したTNF-αの濃度に依存してSST20-14の発現量が変動し、TNF-αの1nMの24時間添加により、SST20-14の発現量は、コントロール(TNF-α無添加)に比較して約70%の発現低下が認められた。
実施例6 新規分泌・膜蛋白遺伝子のインスリン抵抗性改善薬による発現解析
3T3-L1細胞を4x105cells/wellの細胞数で6-well plateに播種し、10%ウシ胎仔血清(Invitrogen)添加DMEM(Invitrogen)培地中、37℃下で5日間培養後、分化培地[250nM デキサメタゾン(Sigma)、0.5mM 1-メチル-3-イソブチルキサンチン(和光純薬)、10μg/ml インスリン(Sigma)、10%ウシ胎仔血清添加DMEM培地]に交換した。分化培地への交換の際、インスリン抵抗性改善薬である塩酸ピオグリタゾン(10μM、武田薬品)を添加し、インスリン存在下で72時間培養した。培養終了後、PBS(Invitrogen)で洗浄した後、細胞を回収した。回収した細胞から総RNAをRNAeasy kit(Qiagen)を用いて、kit添付の手順書に従って採取した。採取した総RNAを用いて、SST8-5および内部標準として用いる36B4のmRNA発現量をTaqMan PCR(Applied Biosystems)を用いて定量した。その結果、塩酸ピオグリタゾンの添加によってSST8-5の発現量がコントロール(塩酸ピオグリタゾン無添加)と比較して約2.4倍に増加した。
〔配列番号:31〕
マウス白色脂肪細胞由来分泌もしくは膜蛋白質cDNA断片を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:32〕
マウス白色脂肪細胞由来分泌もしくは膜蛋白質cDNA断片を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:33〕
mSST20-14の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:34〕
mSST20-14の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:35〕
mSST22-22の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:36〕
mSST22-22の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:37〕
mSST8-5の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:38〕
mSST8-5の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:39〕
mSST19-15の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:40〕
mSST19-15の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:41〕
mSST13-11の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:42〕
mSST13-11の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:43〕
mSST9-8の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:44〕
mSST9-8の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:45〕
mSST21-3の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:46〕
mSST21-3の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:47〕
mSST20-6の全長をコードする塩基配列を同定するための5'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。
〔配列番号:48〕
mSST20-6の全長をコードする塩基配列を同定するための3'-RACE用遺伝子特異的プライマーとして機能すべく設計されたオリゴヌクレオチド。

Claims (57)

  1. 配列番号:6で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩。
  2. 請求項1記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド。
  3. 請求項2記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド。
  4. 請求項1記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体。
  5. 配列番号:8で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩。
  6. 請求項5記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド。
  7. 請求項6記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド。
  8. 請求項5記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体。
  9. 配列番号:10で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩。
  10. 請求項9記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド。
  11. 請求項10記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド。
  12. 請求項9記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体。
  13. 配列番号:12で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩。
  14. 請求項13記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド。
  15. 請求項14記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド。
  16. 請求項13記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体。
  17. 配列番号:14で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩。
  18. 請求項17記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド。
  19. 請求項18記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド。
  20. 請求項17記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体。
  21. 配列番号:16で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩。
  22. 請求項21記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド。
  23. 請求項22記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド。
  24. 請求項21記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体。
  25. 配列番号:18で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩。
  26. 請求項25記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド。
  27. 請求項26記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド。
  28. 請求項25記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体。
  29. 配列番号:20で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩。
  30. 請求項29記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド。
  31. 請求項30記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド。
  32. 請求項29記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体。
  33. 配列番号:22で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含む蛋白質もしくはその部分ペプチドまたはその塩。
  34. 請求項33記載の蛋白質もしくは部分ペプチドをコードする塩基配列を含むポリヌクレオチド。
  35. 請求項34記載のポリヌクレオチドもしくはプロセッシングの結果として該ポリヌクレオチドを生じる初期転写産物と相補的な塩基配列またはその一部を含むポリヌクレオチド。
  36. 請求項33記載の蛋白質もしくはその部分ペプチドまたはその塩に対する抗体。
  37. 請求項1、5、9、13、17、21、25、29または33記載の蛋白質もしくはその部分ペプチドまたはその塩を含有してなる医薬。
  38. 請求項2、6、10、14、18、22、26、30または34記載のポリヌクレオチドを含有してなる医薬。
  39. 請求項3、7、11、15、19、23、27、31または35記載のポリヌクレオチドを含有してなる医薬。
  40. 請求項4、8、12、16、20、24、28、32または36記載の抗体を含有してなる医薬。
  41. 脂肪細胞の分化および/または代謝機能の異常が関与する疾患の予防・治療剤である請求項37〜40のいずれかに記載の医薬。
  42. 請求項2、6、10、14、18、22、26、30もしくは34記載のポリヌクレオチドまたはその一部を含有してなる診断薬。
  43. 請求項3、7、11、15、19、23、27、31または35記載のポリヌクレオチドを含有してなる診断薬。
  44. 請求項4、8、12、16、20、24、28、32または36記載の抗体を含有してなる診断薬。
  45. 脂肪細胞の分化および/または代謝機能の異常が関与する疾患の診断用である請求項42〜44のいずれかに記載の診断薬。
  46. 請求項1、5、9、13、17、21、25、29または33記載の蛋白質もしくはその部分ペプチドまたはその塩を用いることを含む、該蛋白質またはその塩に対して特異的親和性を有する化合物またはその塩、あるいは該蛋白質またはその塩と該化合物またはその塩との結合性を変化させる化合物またはその塩のスクリーニング方法。
  47. 請求項1、5、9、13、17、21、25、29または33記載の蛋白質もしくはその部分ペプチドまたはその塩を含んでなる、該蛋白質またはその塩に対して特異的親和性を有する化合物またはその塩、あるいは該蛋白質またはその塩と該化合物またはその塩との結合性を変化させる化合物またはその塩のスクリーニング用キット。
  48. 請求項46記載の方法または請求項47記載のキットを用いて得られうる化合物またはその塩を含有してなる医薬。
  49. 脂肪細胞の分化および/または代謝機能の異常が関与する疾患の予防・治療剤である請求項48記載の医薬。
  50. 請求項2、6、10、14、18、22、26、30もしくは34記載のポリヌクレオチドまたはその一部を用いることを特徴とする、請求項1、5、9、13、17、21、25、29または33記載の蛋白質をコードする遺伝子の発現量を変化させる化合物またはその塩のスクリーニング方法。
  51. 請求項2、6、10、14、18、22、26、30もしくは34記載のポリヌクレオチドまたはその一部を含んでなる、請求項1、5、9、13、17、21、25、29または33記載の蛋白質をコードする遺伝子の発現量を変化させる化合物またはその塩のスクリーニング用キット。
  52. 請求項50記載の方法または請求項51記載のキットを用いて得られうる化合物またはその塩を含有してなる医薬。
  53. 脂肪細胞の分化および/または代謝機能の異常が関与する疾患の予防・治療剤である請求項52記載の医薬。
  54. 請求項4、8、12、16、20、24、28、32または36記載の抗体を用いることを特徴とする、細胞膜もしくは細胞外液における請求項1、5、9、13、17、21、25、29または33記載の蛋白質またはその塩の量を変化させる化合物またはその塩のスクリーニング方法。
  55. 請求項4、8、12、16、20、24、28、32または36記載の抗体を含んでなる、細胞膜もしくは細胞外液における請求項1、5、9、13、17、21、25、29または33記載の蛋白質またはその塩の量を変化させる化合物またはその塩のスクリーニング用キット。
  56. 請求項54記載の方法または請求項55記載のキットを用いて得られうる化合物またはその塩を含有してなる医薬。
  57. 脂肪細胞の分化および/または代謝機能の異常が関与する疾患の予防・治療剤である請求項56記載の医薬。
JP2007338577A 2002-07-10 2007-12-28 新規蛋白質およびその用途 Pending JP2008173122A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007338577A JP2008173122A (ja) 2002-07-10 2007-12-28 新規蛋白質およびその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002201856 2002-07-10
JP2007338577A JP2008173122A (ja) 2002-07-10 2007-12-28 新規蛋白質およびその用途

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003194658A Division JP4169651B2 (ja) 2002-07-10 2003-07-09 新規蛋白質およびその用途

Publications (1)

Publication Number Publication Date
JP2008173122A true JP2008173122A (ja) 2008-07-31

Family

ID=30112593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007338577A Pending JP2008173122A (ja) 2002-07-10 2007-12-28 新規蛋白質およびその用途

Country Status (5)

Country Link
US (2) US20060110384A1 (ja)
EP (1) EP1541677A4 (ja)
JP (1) JP2008173122A (ja)
AU (1) AU2003280992A1 (ja)
WO (1) WO2004007711A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2514058C (en) 2003-01-24 2014-05-13 Agensys, Inc. Nucleic acids and corresponding proteins entitled 254p1d6b useful in treatment and detection of cancer
US20110104666A1 (en) 2009-11-02 2011-05-05 Toshiya Matsubara Insulin resistance marker
EP3934751A1 (en) 2019-03-08 2022-01-12 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020137890A1 (en) * 1997-03-31 2002-09-26 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
ATE447583T1 (de) 1997-09-17 2009-11-15 Genentech Inc Polypeptide und dafür kodierende nukleinsäure
US20030040471A1 (en) * 1998-04-29 2003-02-27 Watson James D. Compositions isolated from skin cells and methods for their use
EP1220905A2 (en) * 1999-03-08 2002-07-10 Genentech Inc. Composition and methods for the treatment of immune related diseases
EP1194534A4 (en) * 1999-06-29 2004-03-24 Millennium Pharm Inc NOVEL GENES ENCODING PROTEINS THAT CAN BE USED IN DIAGNOSTIC, PREVENTIVE, THERAPEUTIC OR OTHER AREAS
WO2001053312A1 (en) * 1999-12-23 2001-07-26 Hyseq, Inc. Novel nucleic acids and polypeptides
US6380362B1 (en) * 1999-12-23 2002-04-30 Genesis Research & Development Corporation Ltd. Polynucleotides, polypeptides expressed by the polynucleotides and methods for their use
JP2003533975A (ja) * 2000-01-14 2003-11-18 インサイト・ゲノミックス・インコーポレイテッド 分泌性蛋白
AU2001243142A1 (en) * 2000-02-03 2001-08-14 Hyseq, Inc. Novel nucleic acids and polypeptides
AU2001238347A1 (en) * 2000-02-28 2001-09-12 Hyseq, Inc. Novel nucleic acids and polypeptides
AU2001250932A1 (en) * 2000-03-23 2001-10-03 Diadexus, Inc. Compositions and methods of diagnosing, monitoring, staging, imaging and treating prostate cancer
AU2001260847A1 (en) * 2000-05-24 2001-12-03 Genesis Research And Development Corporation Limited Compositions isolated from skin cells and methods for their use
US20020197679A1 (en) * 2000-06-20 2002-12-26 Tang Y. Tom Novel nucleic acids and polypeptides
US7442500B2 (en) * 2000-09-18 2008-10-28 Wisconsin Alumni Research Foundation Methods of diagnosing susceptibility to obesity

Also Published As

Publication number Publication date
EP1541677A1 (en) 2005-06-15
US7833972B2 (en) 2010-11-16
WO2004007711A1 (ja) 2004-01-22
US20090203608A1 (en) 2009-08-13
US20060110384A1 (en) 2006-05-25
EP1541677A4 (en) 2007-06-27
AU2003280992A1 (en) 2004-02-02

Similar Documents

Publication Publication Date Title
JP4685767B2 (ja) Gタンパク質共役型レセプタータンパク質の新規リガンドとその用途
JP5317318B2 (ja) 新規ポリペプチドおよびその用途
US7250272B2 (en) G protein-coupled receptor protein and DNA thereof
US7833972B2 (en) Proteins and use thereof
US20110104705A1 (en) Musclin receptor and use thereof
US7700361B2 (en) Secretory or membrane protein expressed in skeletal muscles
JP4169651B2 (ja) 新規蛋白質およびその用途
JP4559775B2 (ja) 新規蛋白質
JP4928260B2 (ja) 新規スクリーニング方法
JP4184875B2 (ja) 新規スクリーニング方法
JP4761812B2 (ja) マスクリン受容体およびその用途
JP4542810B2 (ja) 新規スクリーニング方法
JP4184697B2 (ja) スクリーニング方法
JP2004073182A (ja) インスリン抵抗性改善剤
JPWO2007119623A1 (ja) G蛋白質共役型受容体およびそのリガンドの新規用途
JP4488720B2 (ja) アポトーシス関連蛋白質およびその用途
JP4128030B2 (ja) 新規リガンドおよびそのdna
JP4004767B2 (ja) 新規g蛋白質共役型レセプター蛋白質およびそのdna
JP4533655B2 (ja) 新規スクリーニング方法
JP4404605B2 (ja) 新規なfprl1リガンドおよびその用途
JP4300008B2 (ja) 新規タンパク質およびそのdna
JP4676608B2 (ja) 新規タヒキニン様ポリペプチドおよびその用途
JP2004026692A (ja) Mepeの新規用途
JP2004198202A (ja) 新規スクリーニング方法
JP2004099490A (ja) 新規スクリーニング方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125