JP2008166448A - Cmp装置のウェハ温度制御方法及びウェハ温度制御機構 - Google Patents

Cmp装置のウェハ温度制御方法及びウェハ温度制御機構 Download PDF

Info

Publication number
JP2008166448A
JP2008166448A JP2006353474A JP2006353474A JP2008166448A JP 2008166448 A JP2008166448 A JP 2008166448A JP 2006353474 A JP2006353474 A JP 2006353474A JP 2006353474 A JP2006353474 A JP 2006353474A JP 2008166448 A JP2008166448 A JP 2008166448A
Authority
JP
Japan
Prior art keywords
wafer
temperature
back plate
cmp apparatus
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006353474A
Other languages
English (en)
Inventor
Toshiyuki Yokoyama
利幸 横山
Soji Yamada
創士 山田
Tsutomu Yamazaki
努 山崎
Takashi Fukui
孝 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2006353474A priority Critical patent/JP2008166448A/ja
Publication of JP2008166448A publication Critical patent/JP2008166448A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

【課題】ウェハ保持ヘッドの構造を複雑化することなく、ウェハの温度均一性を高めてウェハ面内の平坦性及び研磨レートを制御する。
【解決手段】加熱手段又は冷却手段により所定温度に調整されるバックプレート11をウェハ保持ヘッド3内に設けると共に、バックプレート11とウェハWとの間にエアが流動するエアフロー層14を形成する。このエアフロー層14を介してバックプレート11とウェハW裏面の間で熱移動することにより、ウェハWの温度を制御する。加熱手段又は冷却手段としては、所定温度に調整された気体、液体等の流体20を使用でき、流体20を連続して流動させる流体通路21をバックプレート11の内部に形成する。加熱手段又は冷却手段としてヒータ又はペルチェ素子等を使用できる。
【選択図】図2

Description

本発明はCMP装置のウェハ温度制御方法及びウェハ温度制御機構に関するものであり、特に、ウェハ保持ヘッドに保持されたウェハを回転中の研磨パッドに押し付けて研磨するCMP装置のウェハ温度制御方法及びウェハ温度制御機構に関するものである。
従来、此種CMP装置は、研磨パッドが貼り付けられたプラテン(研磨定盤)の上方にウェハ保持ヘッドが配設され、該ウェハ保持ヘッドの下部側にはウェハが着脱可能に保持される。
前記ウェハを研磨する際は、前記プラテン及びウェハ保持ヘッドをモータで夫々回転駆動すると共に、該研磨パッド上面にスラリーを供給しながら該研磨パッド上面にウェハを押し付けることにより、ウェハを化学的機械的に研磨している。
ここで、ウェハ研磨面の平坦性を確保するには、研磨パッドに対するウェハの押し付け力の調整と共に、研磨中におけるウェハ温度が大きな要因になる。そこで、ウェハの温度を制御するためには、ウェハ保持ヘッド内におけるウェハ裏面(裏面)側に加熱板又は放熱板を設けた温度制御機構、或いは、エアバック又は空洞を温度調整可能に設けた温度制御機構などが種々提案されている(例えば、特許文献1〜4参照)。
特開平09−29591号公報 特開2001−341064号公報 特開2005−268566号公報 特開2006−289506号公報
上記特許文献1及び2記載の従来技術のように、ウェハ保持ヘッド内に加熱板又は放熱板を設けた場合は、ウェハ保持ヘッドの構造が複雑になりコスト高になる。又、上記特許文献3及び4記載の従来技術のように、ウェハ保持ヘッド内にエアバック又は空洞を設けて温度制御した場合は、加熱若しくは冷却されるエアバック又は空洞に熱が蓄積されるため、ウェハ表面への熱の伝導が遅くなり、所望の温度プロファイルを得ることが困難になる。
その結果、ウェハ面内の温度が不均一になり、ウェハ研磨面の平坦性低下を招く。特に、ウェハの中心部は研磨熱が蓄積し易いため外周部よりも温度が高くなり、この温度差に伴い化学的な研磨速度が変化して、ウェハ面内の研磨レートにバラツキが生じるという問題があった。
そこで、簡単な構造でウェハ温度の均一性を確保でき、ウェハ面内の平坦性及び研磨レートを向上させるために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。
本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、回転するプラテン上に装着されている研磨パッド上にスラリーを供給しながら、ウェハ保持ヘッドに保持されたウェハを前記研磨パッドに押し付けて研磨するCMP装置において、ウェハ保持ヘッド内に設けたバックプレートを加熱又は冷却して所定温度に調整し、エアが流動するエアフロー層を介して前記バックプレートとウェハ裏面の間で熱移動させることにより、該ウェハの温度を制御するCMP装置のウェハ温度制御方法を提供する。
この方法によれば、ウェハ研磨中、上記バックプレートは所定温度になるように加熱又は冷却される。そして、エアが流動するエアフロー層を介して、前記バックプレートとウェハ裏面の間で熱移動が発生する。例えば、バックプレートがウェハよりも高温であれば、バックプレートの熱がウェハ裏面に移動し、逆に、バックプレートがウェハよりも低温であれば、ウェハ裏面の熱がバックプレートに移動する。これにより、ウェハ裏面全域において一様な温度制御が実施される。
請求項2記載の発明は、回転するプラテン上に装着されている研磨パッド上にスラリーを供給しながら、ウェハ保持ヘッドに保持されたウェハを前記研磨パッドに押し付けて研磨するCMP装置において、前記ウェハ保持ヘッド内に設けられているバックプレートを加熱手段又は冷却手段により所定温度に調整可能に設けると共に、該バックプレートとウェハとの間に形成されているエアフロー層を介して前記バックプレートとウェハ裏面の間で熱移動させることにより、該ウェハの温度を制御するように構成して成るCMP装置のウェハ温度制御機構を提供する。
この構成によれば、ウェハ研磨中、上記バックプレートは加熱手段又は冷却手段により所定温度に加熱又は冷却される。そして、エアフロー層を介してバックプレートとウェハ裏面の間で熱が移動する。例えば、バックプレートがウェハよりも高温であれば、バックプレートの熱がウェハ裏面に移動し、逆に、バックプレートがウェハよりも低温であれば、ウェハ裏面の熱がバックプレートに移動する。これにより、ウェハ裏面全域において一様な温度制御が実施される。
請求項3記載の発明は、上記加熱手段又は冷却手段が所定温度に調整された気体、液体等の流体であり、該流体を連続して流動させる流体通路が上記バックプレートに形成されて成る請求項2記載のCMP装置のウェハ温度制御機構を提供する。
この構成によれば、ウェハの研磨中、バックプレート内部に形成した流体通路には気体、液体等の流体が連続して流動する。この流体は所定温度に調整されているため、バックプレートに対して加熱手段又は冷却手段として機能する。従って、バックプレートの温度は流体の調整温度に応じて正確に制御される。
請求項4記載の発明は、上記加熱手段又は冷却手段がヒータ又はチラー若しくはペルチェ素子であり、該ヒータ又はチラー若しくはペルチェ素子は上記バックプレートに設けられている請求項2記載のCMP装置のウェハ温度制御機構を提供する。
この構成によれば、ウェハの研磨中、上記バックプレートはヒータ又はチラー若しくはペルチェ素子により直接加熱又は冷却される。従って、バックプレートの温度はヒータ又はチラー若しくはペルチェ素子による加熱作用又は冷却作用によって迅速に制御される。
請求項5の発明は、 回転するプラテン上に装着されている研磨パッド上にスラリーを供給しながら、ウェハ保持ヘッドに保持されたウェハを前記研磨パッドに押し付けて研磨するCMP装置において、前記ウェハ保持ヘッド内に設けたバックプレートを分割加熱又は分割冷却して所定温度に調整し、エアが流動するエアフロー層を介して前記バックプレートとウェハ裏面の間で熱移動させることにより、該ウェハの温度を制御するCMP装置のウェハ温度制御方法を提供する。
この方法によれば、ウェハ研磨中、上記バックプレートは所定温度になるように分割加熱又は分割冷却される。そして、エアが流動するエアフロー層を介して、前記バックプレートとウェハ裏面の間で熱移動が発生する。例えば、バックプレートがウェハよりも高温であれば、バックプレートの熱がウェハ裏面に移動し、逆に、バックプレートがウェハよりも低温であれば、ウェハ裏面の熱がバックプレートに移動する。これにより、ウェハ裏面全域において一様な温度制御が実施される。
また、前記パックプレートは所定温度になるように分割加熱又は分割冷却される。これにより、ウェハ裏面において積極的な温度制御が実施される。
請求項6の発明は、 回転するプラテン上に装着されている研磨パッド上にスラリーを供給しながら、ウェハ保持ヘッドに保持されたウェハを前記研磨パッドに押し付けて研磨するCMP装置において、前記ウェハ保持ヘッド内に設けられているバックプレートを分割加熱手段又は分割冷却手段により所定温度に調整可能に設けると共に、該バックプレートとウェハとの間に形成されているエアフロー層を介して前記バックプレートとウェハ裏面の間で熱移動させることにより、該ウェハの温度を制御するように構成して成るCMP装置のウェハ温度制御機構を提供する。
この構成によれば、ウェハ研磨中、上記バックプレートは分割加熱手段又は分割冷却手段により所定温度に加熱又は冷却される。そして、エアフロー層を介してバックプレートとウェハ裏面の間で熱が移動する。例えば、バックプレートがウェハよりも高温であれば、バックプレートの熱がウェハ裏面に移動し、逆に、バックプレートがウェハよりも低温であれば、ウェハ裏面の熱がバックプレートに移動する。これにより、ウェハ裏面全域において一様な温度制御が実施される。
また、前記パックプレートは分割加熱手段又は分割冷却手段により所定温度に加熱又は冷却される。。これにより、ウェハ裏面において積極的な温度制御が実施される。

請求項7の発明は、上記分割加熱手段又は分割冷却手段が所定温度に調整された気体、液体等の流体であって、該流体を連続して流動させる流体通路が上記バックプレートに形成されて成る請求項6記載のCMP装置のウェハ温度制御機構を提供する。
この構成によれば、ウェハの研磨中、バックプレート内部に形成した流体通路には気体、液体等の流体が連続して流動する。この流体は所定温度に調整されているため、バックプレートに対して加熱手段又は冷却手段として機能する。従って、バックプレートの温度は流体の調整温度に応じて正確に制御される。
請求項8の発明は、上記分割加熱手段又は分割冷却手段がヒータ又はチラー若しくはペルチェ素子であって、該ヒータ又はチラー若しくはペルチェ素子が上記バックプレートに設けられていることを特徴とする請求項6記載のCMP装置のウェハ温度制御機構を提供する。
この構成によれば、ウェハの研磨中、上記バックプレートはヒータ又はチラー若しくはペルチェ素子により直接加熱又は冷却される。従って、バックプレートの温度はヒータ又はチラー若しくはペルチェ素子による加熱作用又は冷却作用によって迅速に制御される。
請求項9の発明は、上記バックプレートの温度が温度センサにより検出され、該温度センサによる検出値に基づいて前記バックプレートの温度を制御するように構成して成る請求項2,3,4,6,7又は8記載のCMP装置のウェハ温度制御機構を提供する。
この構成によれば、ウェハ研磨中、バックプレートの温度は温度センサにて検出された値に基づいて制御される。これにより、ウェハ面内の温度は研磨環境等に応じて適切に制御管理される。
請求項10の発明は、上記温度センサは複数設けられ、且つ、該温度センサは上記ウェハの径方向に所定間隔を有して配置されている請求項9記載のCMP装置のウェハ温度制御機構を提供する。
この構成によれば、上記複数の温度センサは上記ウェハの径方向に所定間隔を有して配置されているので、エアフロート層におけるウェハ径方向の複数地点の温度、即ち、ウェハの中心部と外周部の温度差が検出される。
したがって、エアフロー層におけるウェハ径方向の複数地点の検出値に基づいて、エアフロート層に流入するエアの温度、流量又は流速を調整することにより、ウェハの温度が常に最適状態に制御管理される。
請求項1記載の発明は、ウェハ裏面全域において一様な温度に制御できるので、ウェハ面内の温度均一性が高くなる。従って、ウェハ研磨面の平坦性が向上すると共に、ウェハ研磨面の研磨レートも従来に比べて改善でき、ウェハの歩留り改善に大いに寄与することができる。
請求項2記載の発明は、ウェハ裏面全域において一様な温度に制御できるので、ウェハ面内の温度均一性が高くなる。従って、ウェハ研磨面の平坦性が向上すると共に、ウェハ研磨面の研磨レートも従来に比べて改善でき、ウェハの歩留り改善に大いに寄与することができる。
又、ウェハ保持ヘッド内にエアバック又は空洞を設ける必要がないため、従来に比べて構造が簡素化するメリットを有する。更に、エアフロー層を流れるエアにより、ウェハ裏面全域に対して直接加熱作用又は冷却作用を行うので、熱効率が従来に比べて向上し、熱エネルギー費(ランニングコスト)を低減させることができる。
請求項3記載の発明は、バックプレートの温度は流体の調整温度に応じて正確に制御できるので、請求項2記載の発明の効果に加えて、ウェハ面内の温度均一性を一層精度良くコントロールすることができる。
請求項4記載の発明は、バックプレートの温度はヒータ又はチラー若しくはペルチェ素子により迅速に制御できるので、請求項2記載の発明の効果に加えて、ウェハ面内の温度均一性を一層迅速にコントロールすることができる。
請求項5の発明は、ウェハ裏面において積極的に所定温度に制御できるので、ウェハ面内の温度均一性が高くなる。又は、所定の温度差をつけることができる。従って、ウェハ研磨面の平坦性が向上すると共に、ウェハ研磨面の研磨レートも従来に比べて改善でき、ウェハの歩留まり改善に大いに寄与することができる。
請求項6の発明は、ウェハ裏面において積極的に所定温度に制御できるので、ウェハ面内の温度均一性が高くなる。又は、所定の温度差をつけることができる。従って、ウェハ研磨面の平坦性が向上すると共に、ウェハ研磨面の研磨レートも従来に比べて改善でき、ウェハの歩留まり改善に大いに寄与することができる。
又、エアフロー層を流れるエアにより、ウェハ裏面全体に対して直接加熱作用又は冷却作用を行うので、熱効率が従来に比べて向上し、熱エネルギー費(ランニングコスト)を低減させることができる。更に、分割加熱又は分割冷却している部分と、該分割加熱又は分割冷却していない部分の温度差を、従来に比べて温度勾配が緩やかになるように制御することができる。
請求項7の発明は、バックプレートの温度は流体の調整温度に応じて正確に制御できるので、請求項6の発明の効果に加えて、ウェハ面内の温度を精度良くコントロールすることができる。
請求項8の発明は、バックプレートの温度はヒータ又はチラー若しくはペルチェ素子により迅速に制御できるので、請求項6の発明の効果に加えて、ウェハ面内の温度を一層迅速にコントロールすることができる。
請求項9の発明は、上記バックプレートの温度を、温度センサによる検出値に基づいて随時調整することにより、研磨中にウェハ面内の温度を研磨環境等に応じて正確に管理できるので、請求項2,3,4,6,7又は8記載の発明の効果に加えて、ウェハ研磨面の平坦性及び研磨レートを一層向上させることができる。
請求項10の発明は、バックプレートの径方向(ウェハの径方向と同方向)の複数地点の温度の検出、値に基づいて、バックプレートの温度を随時調整することにより、ウェハ面内の温度を常に適切に制御管理できるので、請求項9記載の発明の効果に加えて、ウェハの半径方向における温度プロファイルを最適状態に容易に変更・調整することができる。
本発明は、ウェハ保持ヘッドの構造を複雑化することなく、ウェハの温度均一性を高めてウェハ面内の平坦性及び研磨レートを向上させるという目的を、回転するプラテン上に装着されている研磨パッド上にスラリーを供給しながら、ウェハ保持ヘッドに保持されたウェハを前記研磨パッドに押し付けて研磨するCMP装置において、前記ウェハ保持ヘッド内に設けられているバックプレートを加熱手段又は冷却手段により所定温度に調整可能に設けると共に、該バックプレートとウェハとの間に形成されているエアフロー層を介して前記バックプレートとウェハ裏面の間で熱移動させることにより、該ウェハの温度を制御するように構成したことにより達成した。
以下、本発明の好適な実施例を図1乃至図5に従って説明する。本実施例は、回転駆動されるプラテンに貼り付けられた研磨パッド上にスラリーを供給しながら、該研磨パッドにウェハを押し付けて研磨するCMP装置のウェハ温度制御機構に適用したものであって、ウェハ温度制御機構はウェハを保持するウェハ保持ヘッドの内部に設けられている。
図1はCMP装置の全体構成を示す斜視図、図2はウェハ保持ヘッドの内部構造の一例を示す縦断面図、図3はウェハ温度制御機構の流体流路を示す回路構成図、図4はウェハ保持ヘッドの内部構造の他の例を示す縦断面図、図5はウェハ温度制御機構の他の例を示す回路構成図である。
図1に示すように、CMP装置1は、プラテン(研磨定盤)2及びウェハ保持ヘッド3等によって構成されている。前記プラテン2は円盤状に形成され、該プラテン2の上部には研磨パッド4が貼り付けられている。
又、プラテン2の下部にはスピンドル5が連結され、該スピンドル5の下端部にはモータ6が連結されている。従って、モータ6によってスピンドル5を回転駆動することにより、前記プラテン2は図1の矢印A方向に回転する。更に、前記研磨パッド4の上方には、該研磨パッド4上面にスラリー(研磨剤)Sを供給するための供給ノズル7が設けられている。
前記ウェハ保持ヘッド3は、図示しない昇降装置によって昇降可能に設けられている。又、該ウェハ保持ヘッド3の下面側にはウェハWが着脱可能に保持されるように構成されている。
更に、ウェハ保持ヘッド3の上部には回転軸8が連結され、該回転軸8の上端部には図示しないモータが連結されている。従って、該モータによって回転軸8を回転駆動することにより、ウェハ保持ヘッド3は図1の矢印B方向に回転する。
上記CMP装置1によりウェハを研磨する際は、前記プラテン2及びウェハ保持ヘッド3をモータで夫々回転駆動すると共に、該研磨パッド4上面にスラリーSを供給しながら、該研磨パッド4上面にウェハWを押し付けることにより、該ウェハW下面に対して化学的機械的な研磨が実施される。
本発明では、研磨中のウェハWは温度制御機構により温度制御して研磨される。即ち、バックプレートを加熱又は冷却して所定温度に調整し、エアが流動するエアフロー層を介してバックプレートとウェハ裏面の間で熱が移動することにより、ウェハWの温度を制御している。
本実施例に係る温度制御機構は、ウェハ保持ヘッド3内におけるウェハW裏面の上方に設けられている。ウェハ保持ヘッド3の具体的構成は、図2に示すように、ヘッド本体10、バックプレート11、リテーナ12及びメンブレン(保護シート)13などから構成され、メンブレン13とバックプレート11との間にはエアフロート層14が形成されている。尚、図2中のエアフロート層14及びメンブレン13等については、説明の都合上誇張して図示されている。
ヘッド本体10の内側には円板形のバックプレート11が配置され、該バックプレート11はアルミニウム等の高い熱伝導率を有する金属より成る。このバックプレート11には複数のエア噴出孔15が形成され、エア噴出孔15はエアライン16を介して1次エア(図示せず)に接続されている。又、エアライン16の途中には、図示しないバキュームポンプ及び給気ポンプが切り替え運転可能に設置されている。
更に、バックプレート11の下側には円形のメンブレン13が配置され、該メンブレン13の外周部はリング状のリテーナ12下部に固定されている。又、メンブレン13は所要の可撓性を有する材料、例えばゴム材によりシート状に形成されている。
前記メンブレン13はエアフロート層14で形成されたエア圧をウェハWに伝達し、且つ、エアフロート層14とウェハW裏面の間において熱を伝える役目をなす。尚、リテーナ12の下面開口部はウェハWよりも若干大径に形成され、ウェハWの径方向への動きを規制している。
更に又、メンブレン13には複数の真空吸着用のエア孔17が形成される。バキュームポンプによりエアフロート層14内のエアを吸引して負圧を発生させることで、ウェハWをメンブレン13に吸着保持し、該ウェハWをプラテン2に装着されている研磨パッド4上に移載する。然る後、該ウェハWを研磨する際は、給気ポンプによりエアフロート層14内に所定圧のエアを供給して所定圧が発生させることで、ウェハWを研磨パッド4に所定圧力で押し付けて研磨する。尚、エアフロート層14内に供給された加圧エアは、リテーナ12に形成されている間隙18から自然に排出されて、エアフロート層14内のエア圧が自然に調整される。
本実施例では、バックプレート11を加熱又は冷却して所定温度に調整することで、ウェハW裏面側のエアフロー層14の温度を制御する。これにより、エアフロー層14とウェハW裏面全域の間で熱移動(熱伝導)が生じて、ウェハWが加熱又は冷却されることによって、ウェハW裏面側の温度分布のバラツキが最小に抑制される。
該エアの温度調整は、エアフロート層14の上側に設けたバックプレート11を加熱又は冷却して行う。その際、所定温度に調整された流体(気体又は液体)、ヒータ又はチラー若しくはペルチェ素子などを加熱手段又は冷却手段として利用して、バックプレート11を加熱又は冷却することができる。
図示例は、加熱手段又は冷却手段として流体(気体又は液体)20を使用した構成例である。上記バックプレート11の内部には、該流体20を連続して流動させる流体通路21が形成され、該流体通路21を流体20が絶えず流動することで、バックプレート11の下面全域を効率良く加熱又は冷却できる。
図3に示すように、流体通路21は流体ライン19を介して流体タンク22に接続され、流体ライン19の途中には流体温度調整器23及び流体流量調整器24が設けられている。流体温度調整器23及び流体流量調整器24により、流体20の温度及び流量を任意に調整できるように構成されている。
又、バックプレート11の径方向における複数箇所、例えばバックプレート11下面の中央部、中間部、外周部(エア噴出口近傍部)に図示しない温度センサを分散して設け、該温度センサによる検出温度を図3に示す制御装置25に送信し、該制御装置25に接続されたモニター26にてリアルタイムで検出温度を表示して監視できるように構成されている。
更に、制御装置25は前記検出温度に基づいて、流体ライン19の途中に設けた流体温度調整器23又は流体流量調整器24の設定値を変更して、流体20の温度又は流量を最適値に調整する。加熱手段又は冷却手段としてヒータ又はチラー若しくはペルチェ素子などを利用した場合は、該ヒータ又はチラー若しくはペルチェ素子などの出力を適宜調整する。
本実施例に係る他の温度制御機構は、ウェハ保持ヘッド3内におけるウェハW裏面の上方に設けられている。ウェハ保持ヘッド3の具体的構成は、図4に示すように、ヘッド本体10、バックプレート11,リテーナ12及びメンブレン(保護シート)13などから構成され、メンブレン13とバックプレート11との間にはエアフロー層14が形成されている。尚、図2中のエアフロー層14及びメンブレン13等については、説明の都合上誇張して図示されている。
又、本実施例では、バックプレート11を分割加熱又は分割冷却して所定温度に調整することで、ウェハW裏面側のエアフロー層14の温度を制御する。これにより、エアフロー層14とウェハW裏面全体の間で熱移動(熱伝導)が生じて、ウェハWが加熱又は冷却されることによって、ウェハW裏面側の温度分布のバラツキが最小に抑制される。
該エアの温度調整は、エアフロー層14の上側に設けたバックプレート11を、分割加熱又は分割冷却して行う。その際、所定温度に調整された流体(気体又は液体)、ヒータ又はチラー若しくはペルチェ素子などを分割加熱手段又は分割冷却手段として利用して、バックプレート11を分割加熱又は分割冷却することができる。
図示例では、分割加熱手段又は分割冷却手段として、ヒータ又はチラー若しくはペルチェ素子27を使用した構成例である。上記バックプレート11の内部には、ヒータ又はチラー若しくはペルチェ素子27がバックプレート半径方向に所定の間隔を有して配置されることで、バックプレート11の下面を分割加熱又は分割冷却できる。
図5に示すように、ヒータ又はチラー若しくはペルチェ素子27のコントローラー28と、ヒータ又はチラー若しくはペルチェ素子27は互いに接続されている。更に、バックプレート11にヒータ又はチラー若しくはペルチェ素子27が分割して配置されており、ヒータ又はチラー若しくはペルチェ素子27のコントローラー28により、ヒータ又はチラー若しくはペルチェ素子27の温度を任意に調整できるように構成されている。
又、バックプレート11の径方向における複数個所、例えば、バックプレート11下面の中央部、中間部、外周部(エア噴出口近傍部)に図示しない温度センサを分散して設け、該温度センサによる検出温度を図5に示す制御装置25に送信し、該制御装置25に接続されたモニター26にてリアルタイムで検出温度を表示して監視できるように構成されている。
更に、制御装置25は前記検出温度に基づいて、ヒータ又はチラー若しくはペルチェ素子27のコントローラー28はヒータ又はチラー若しくはペルチェ素子27の設定値を変更することで、ヒータ又はチラー若しくはペルチェ素子27の温度を最適値に調整する。
斯くして、バックプレート11の温度を最適値に管理することで、エアフロート層14を流れるエアAの温度を研磨中に随時制御できる。このエアAの温度は10℃〜45℃の範囲に設定するのが好ましい。又、エアAの流量は0.1リッタ〜100リッタの範囲に調整することができる。
ウェハW裏面側には、エアフロート層14を連続して流れるエアAが存在し、該エアAはバックプレート11により加熱又は冷却されるため、ウェハW裏面全域に対して常に均等な熱移動が発生する。従って、エアフロート層14をエアAが常に流動することで、ウェハWの熱を奪ったり、或いは、ウェハWに熱を与えることができる。
又、ウェハWが分割加熱又は分割冷却されても、ウェハW裏面側にはエアフロート層14を連続して流れるエアAが存在し、エアフロート層14をエアAが常に流動することで、分割加熱又は分割冷却している部分と、該分割加熱又は分割冷却していない部分との温度の差を小さくすることが出来る。
要するに、エアフロート層14を連続的に流れるエアAとウェハWとの間で生じる熱移動により、ウェハWに対して積極的な温度制御が実行される。これにより、ウェハW面内の温度均一性を効果的に高めるとともに、ウェハWの歩留り向上に寄与することができる。
さらに、ウェハWの研磨状態をリアルタイムでモニター26により監視することにより、ウェハWに要求された条件や研磨環境に応じて、適切な温度分布を制御装置25により常に維持管理できる。
以上説明したように、ウェハW研磨中、バックプレート11は温度調整された流体(気体又は液体)20により所定温度になるように加熱又は冷却される。そして、エアAが流動するエアフロー層14及びメンブレン13を介して、バックプレート11とウェハW裏面の間で熱移動が起こる。例えば、バックプレート11がウェハWよりも高温であれば、バックプレート11の熱がウェハW裏面に移動してウェハWを加温する。逆に、バックプレート11がウェハWよりも低温であれば、ウェハW裏面の熱がバックプレート11に移動してウェハWを冷却する。
従って、ウェハW裏面全域において一様に温度制御できるので、ウェハW面内の温度均一性が高くなる。斯くして、ウェハW研磨面の平坦性が向上すると共に、ウェハW研磨面の研磨レートも改善でき、ウェハWの歩留り改善に大いに寄与できる。
又、ウェハ保持ヘッド3内に大きなエアバック又は複数の空洞を設ける必要がないため、従来に比べて構造が簡素化する。更に、エアフロー層14を流れるエアAにより、ウェハW表面に対する加熱又は冷却が直接行われるので、熱効率が大幅に向上し熱エネルギー費の低減化が図られる。
更に、ウェハWの研磨中、バックプレート11の流体通路21には流体20が連続して流動する。この流体20は所定温度に調整されているため、バックプレート11の温度は流体20の温度に応じて正確に制御される。従って、ウェハW面内の温度均一性を一層精度良くコントロールすることができる。
又、ウェハWの研磨中、バックプレート11をヒータ又はチラー若しくはペルチェ素子27により直接加熱又は冷却した場合は、バックプレート11の温度を迅速に制御できるため、ウェハW面内の温度均一性を一層速やかに制御できる。
本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。
本発明の一実施例を示し、CMP装置の全体構成を示す斜視図。 一実施例に係るウェハ保持ヘッドの内部構造の一例を示す縦断面図。 一実施例に係るウェハ温度制御機構の制御系の一例を示す回路構成図。 一実施例に係るウェハ保持ヘッドの内部構造の他の例を示す縦断面図。 一実施例に係るウェハ温度制御機構の制御系の他の例を示す回路構成図。
符号の説明
1 CMP装置
3 ウェハ保持ヘッド
4 研磨パッド
11 バックプレート
13 メンブレン(保護シート)
14 エアフロート層
19 流体ライン
20 流体(気体又は液体)
21 流体通路
23 流体温度調整器
24 流体流量調整器
25 制御装置
27 ヒータ又はチラー若しくはペルチェ素子
28 ヒータ又はチラー若しくはペルチェ素子のコントローラー

Claims (10)

  1. 回転するプラテン上に装着されている研磨パッド上にスラリーを供給しながら、ウェハ保持ヘッドに保持されたウェハを前記研磨パッドに押し付けて研磨するCMP装置において、
    ウェハ保持ヘッド内に設けたバックプレートを加熱又は冷却して所定温度に調整し、エアが流動するエアフロー層を介して前記バックプレートとウェハ裏面の間で熱移動させることにより、該ウェハの温度を制御することを特徴とするCMP装置のウェハ温度制御方法。
  2. 回転するプラテン上に装着されている研磨パッド上にスラリーを供給しながら、ウェハ保持ヘッドに保持されたウェハを前記研磨パッドに押し付けて研磨するCMP装置において、
    前記ウェハ保持ヘッド内に設けられているバックプレートを加熱手段又は冷却手段により所定温度に調整可能に設けると共に、該バックプレートとウェハとの間に形成されているエアフロー層を介して前記バックプレートとウェハ裏面の間で熱移動させることにより、該ウェハの温度を制御するように構成したことを特徴とするCMP装置のウェハ温度制御機構。
  3. 上記加熱手段又は冷却手段が所定温度に調整された気体、液体等の流体であって、該流体を連続して流動させる流体通路が上記バックプレートに形成されていることを特徴とする請求項2記載のCMP装置のウェハ温度制御機構。
  4. 上記加熱手段又は冷却手段がヒータ又はチラー若しくはペルチェ素子であって、該ヒータ又はチラー若しくはペルチェ素子が上記バックプレートに設けられていることを特徴とする請求項2記載のCMP装置のウェハ温度制御機構。
  5. 回転するプラテン上に装着されている研磨パッド上にスラリーを供給しながら、ウェハ保持ヘッドに保持されたウェハを前記研磨パッドに押し付けて研磨するCMP装置において、
    前記ウェハ保持ヘッド内に設けたバックプレートを分割加熱又は分割冷却して所定温度に調整し、エアが流動するエアフロー層を介して前記バックプレートとウェハ裏面の間で熱移動させることにより、該ウェハの温度を制御することを特徴とするCMP装置のウェハ温度制御方法。
  6. 回転するプラテン上に装着されている研磨パッド上にスラリーを供給しながら、ウェハ保持ヘッドに保持されたウェハを前記研磨パッドに押し付けて研磨するCMP装置において、
    前記ウェハ保持ヘッド内に設けられているバックプレートを分割加熱手段又は分割冷却手段により所定温度に調整可能に設けると共に、該バックプレートとウェハとの間に形成されているエアフロー層を介して前記バックプレートとウェハ裏面の間で熱移動させることにより、該ウェハの温度を制御するように構成したことを特徴とするCMP装置のウェハ温度制御機構。
  7. 上記分割加熱手段又は分割冷却手段が所定温度に調整された気体、液体等の流体であって、該流体を連続して流動させる流体通路が上記バックプレートに形成されていることを特徴とする請求項6記載のCMP装置のウェハ温度制御機構。
  8. 上記分割加熱手段又は分割冷却手段がヒータ又はチラー若しくはペルチェ素子であって、該ヒータ又はチラー若しくはペルチェ素子が上記バックプレートに設けられていることを特徴とする請求項6記載のCMP装置のウェハ温度制御機構。
  9. 上記バックプレートの温度が温度センサにより検出され、該温度センサによる検出値に基づいて前記バックプレートの温度を制御するように構成したことを特徴とする請求項2,3,4,6,7又は8記載のCMP装置のウェハ温度制御機構。
  10. 上記温度センサは複数設けられ、且つ、該温度センサは上記ウェハの径方向に所定間隔を有して配置されていることを特徴とする請求項9記載のCMP装置のウェハ温度制御機構。
JP2006353474A 2006-12-27 2006-12-27 Cmp装置のウェハ温度制御方法及びウェハ温度制御機構 Pending JP2008166448A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006353474A JP2008166448A (ja) 2006-12-27 2006-12-27 Cmp装置のウェハ温度制御方法及びウェハ温度制御機構

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353474A JP2008166448A (ja) 2006-12-27 2006-12-27 Cmp装置のウェハ温度制御方法及びウェハ温度制御機構

Publications (1)

Publication Number Publication Date
JP2008166448A true JP2008166448A (ja) 2008-07-17

Family

ID=39695538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353474A Pending JP2008166448A (ja) 2006-12-27 2006-12-27 Cmp装置のウェハ温度制御方法及びウェハ温度制御機構

Country Status (1)

Country Link
JP (1) JP2008166448A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177533A (ja) * 2007-01-16 2008-07-31 Taiwan Semiconductor Manufacturing Co Ltd 温度制御研磨ヘッドを有する化学機械研磨システム
CN102343546A (zh) * 2011-10-10 2012-02-08 沈阳理工大学 烧结聚晶金刚石冷板冷却高速研磨方法
US8575030B2 (en) 2010-08-04 2013-11-05 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177533A (ja) * 2007-01-16 2008-07-31 Taiwan Semiconductor Manufacturing Co Ltd 温度制御研磨ヘッドを有する化学機械研磨システム
JP4709818B2 (ja) * 2007-01-16 2011-06-29 台湾積體電路製造股▲ふん▼有限公司 温度制御研磨ヘッドを有する化学機械研磨システム
US8575030B2 (en) 2010-08-04 2013-11-05 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method
CN102343546A (zh) * 2011-10-10 2012-02-08 沈阳理工大学 烧结聚晶金刚石冷板冷却高速研磨方法

Similar Documents

Publication Publication Date Title
US20210229235A1 (en) Substrate polishing apparatus, substrate polishing method, and apparatus for regulating temperature of polishing surface of polishing pad used in polishing apparatus
KR101722555B1 (ko) 화학 기계적 연마장치 및 방법
US6000997A (en) Temperature regulation in a CMP process
US8591286B2 (en) Apparatus and method for temperature control during polishing
JP2011136406A5 (ja)
JP2021502904A (ja) 化学機械研磨の温度制御
US20050208880A1 (en) Substrate holding apparatus
JP2005526383A (ja) 研磨パッドを加熱するための方法及び装置
JP2010183037A (ja) 半導体製造装置
KR20170073292A (ko) 화학 기계적 연마장치 및 그 제어방법
TWI796715B (zh) 化學機械研磨系統和用於溫度及漿體流動速率控制的電腦程式產品
JP2008166448A (ja) Cmp装置のウェハ温度制御方法及びウェハ温度制御機構
US11919123B2 (en) Apparatus and method for CMP temperature control
JP2008263120A (ja) ウエハ研磨装置
JP2008166447A (ja) Cmp装置のウェハ温度制御方法及びウェハ温度制御機構
JP2015104769A (ja) 研磨テーブルおよび研磨装置
US11904430B2 (en) Temperature control in chemical mechanical polish
JP2008166446A (ja) Cmp装置のウェハ温度制御方法及びウェハ温度制御機構
JP4051116B2 (ja) ウェーハの研磨装置
JP2008036784A (ja) 研磨方法および研磨装置
US20190287866A1 (en) Chemical mechanical polishing apparatus containing hydraulic multi-chamber bladder and method of using thereof
JP2002231672A (ja) ウェーハ研磨方法およびその装置
JPH11347935A (ja) 研磨装置
JP2001198801A (ja) 研磨装置および研磨方法
JP2005005317A (ja) 半導体ウェーハの研磨方法およびその研磨装置