JP2008166064A - 放電灯点灯回路 - Google Patents

放電灯点灯回路 Download PDF

Info

Publication number
JP2008166064A
JP2008166064A JP2006352776A JP2006352776A JP2008166064A JP 2008166064 A JP2008166064 A JP 2008166064A JP 2006352776 A JP2006352776 A JP 2006352776A JP 2006352776 A JP2006352776 A JP 2006352776A JP 2008166064 A JP2008166064 A JP 2008166064A
Authority
JP
Japan
Prior art keywords
circuit
signal
voltage
discharge lamp
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006352776A
Other languages
English (en)
Inventor
Tomoyuki Ichikawa
知幸 市川
Takao Muramatsu
隆雄 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP2006352776A priority Critical patent/JP2008166064A/ja
Priority to US11/962,199 priority patent/US7777429B2/en
Priority to DE102007062767A priority patent/DE102007062767A1/de
Publication of JP2008166064A publication Critical patent/JP2008166064A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2885Static converters especially adapted therefor; Control thereof
    • H05B41/2887Static converters especially adapted therefor; Control thereof characterised by a controllable bridge in the final stage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】直列共振回路内に電流検出用のトランスや抵抗を必要とせず、また、放電灯が無点灯状態やアーク放電前であっても直列共振回路の電流の位相を精度よく検出できる放電灯点灯回路を提供する。
【解決手段】放電灯点灯回路1は、交流電圧Voutを出力するインバータ回路3と、インバータ回路3の出力端3a,3b間に直列接続された直列共振回路4と、インバータ回路3の駆動周波数を制御する制御部10とを備える。制御部10は、直列共振回路4を流れる電流Iの位相を検出する第1の信号生成部14、及び交流電圧Voutの位相を検出する第2の信号生成部15を有し、これらの位相差に基づいて制御信号Scを生成する。第1の信号生成部14は、直列共振回路4上の検出点4aの電圧から電流Iの位相を検出し、出力端3aと検出点4aとの間にはコンデンサ8のみが接続されている。
【選択図】図1

Description

本発明は、放電灯点灯回路に関するものである。
車両の前照灯などに用いられるメタルハライドランプ等の放電灯を点灯させるためには、電力を安定的に供給するための点灯回路(バラスト)が必要となる。例えば、特許文献1に開示された放電灯点灯回路は、直列共振回路を含む直流−交流変換回路を備えており、この直流−交流変換回路から放電灯へ交流電力が供給される。そして、供給電力の大きさは、直列共振回路を駆動するブリッジドライバの駆動周波数を変化させることにより制御される。
特開2005−63823
直列共振回路の駆動周波数を変化させる際に、直列共振回路の電圧と電流との位相差に基づいて駆動周波数を制御する場合がある。例えば、ブリッジドライバの駆動周波数を直列共振回路の共振周波数に一致させて直列共振回路の最大電力を放電灯に供給したい場合、直列共振回路の電圧と電流との位相差がゼロに近づくように駆動周波数を制御するとよい。
このような場合、直列共振回路の電圧の位相、および電流の位相をそれぞれ検出する必要がある。電流の位相を検出する方式としては、例えば、特許文献1に記載の回路のように直列共振回路内に電流検出用のトランスを挿入し、該トランスの二次側から電流を検出する方式がある。しかし、直列共振回路の共振周波数が例えば2MHzといった高周波である場合、この方式では電流検出用のトランスの鉄損が大きくなってしまう。且つ、部品点数増加により、サイズアップ、コストアップを招く事となる。
更に、直列共振回路の電流の位相を検出する別の方式として、直列共振回路内に電流検出用の抵抗を挿入し、該抵抗における両端電圧の波形から電流の位相を検出する方式が考えられる。しかし、放電灯点灯回路においては、直列共振回路を流れる電流の大きさは数百mA〜100A程度の間で大きく変化する。従って、電流量が小さい場合の検出精度を確保する為に電流検出用の抵抗の値を大きくすると大電流時の電力損失が過大となってしまい、逆に、電流量が大きい場合の電力損失を低減する為に電流検出用の抵抗の値を小さくすると小電流時の検出精度を確保できない。
また、上記の二方式が有する問題点を解決できる方式として、直列共振回路の交流電力を放電灯に伝えるためのトランスの二次側(すなわち放電灯が接続される側)において電流検出用の抵抗を放電灯と直列に接続し、該抵抗の両端電圧から放電灯を流れる電流(ランプ電流)を検出し、その位相を直列共振回路の電流の位相とみなして利用する方式が考えられる。しかし、この方式では、(1)放電灯が点灯していない間は検出不能となってしまう、(2)放電灯点灯直後はランプ電流が極めて小さいので、放電灯がグロー放電からアーク放電へ移行する間も検出不能となり、この間は駆動周波数を制御できない、(3)直列共振回路の電流の位相とランプ電流の位相とは厳密には一致しておらず、双方の位相の差が駆動周波数の制御に影響を及ぼす場合がある、といった問題点がある。
本発明は、上記した問題点を鑑みてなされたものであり、直列共振回路内に電流検出用のトランスや抵抗を必要とせず、また、放電灯が無点灯状態やアーク放電前であっても直列共振回路の電流の位相を精度よく検出できる放電灯点灯回路を提供することを目的とする。
上記した課題を解決するために、本発明による放電灯点灯回路は、放電灯を点灯させるための交流電力を該放電灯へ供給する放電灯点灯回路であって、二つの出力端を有し、該二つの出力端間に交流電圧を出力するインバータ回路と、インバータ回路の二つの出力端間に直列接続されたインダクタ及びトランスの少なくとも一方並びにコンデンサを含み、放電灯に交流電力を供給する直列共振回路と、インバータ回路を駆動する駆動部と、インバータ回路の駆動周波数を制御するための制御信号を駆動部へ提供する制御部とを備え、制御部が、直列共振回路を流れる電流の位相を示す第1の信号を生成する第1の信号生成部、及びインバータ回路から出力される交流電圧の位相を示す第2の信号を生成する第2の信号生成部を有し、第1の信号と第2の信号との位相差に基づいて制御信号を生成し、第1の信号生成部が、直列共振回路上の検出点の電圧に基づいて第1の信号を生成し、二つの出力端のうち何れか一方の出力端と検出点との間に、インダクタ、トランス、及びコンデンサのうち一つが接続されていることを特徴とする。
上記した放電灯点灯回路においては、インバータ回路の駆動周波数を制御する制御部が、直列共振回路を流れる電流の位相を検出するための第1の信号生成部と、インバータ回路から出力される交流電圧の位相を検出するための第2の信号生成部とを有している。そして、制御部は、直列共振回路を流れる電流と交流電圧との位相差に基づいて駆動周波数の制御を行う。これにより、例えば直列共振回路の電圧と電流との位相差がゼロに近づくように駆動周波数を制御し、インバータ回路の駆動周波数を直列共振回路の共振周波数に一致させて直列共振回路の最大電力を放電灯に供給することが可能となる。
更に、上記した放電灯点灯回路においては、インバータ回路の二つの出力端のうち何れか一方の出力端と第1の信号生成部の検出点との間に、インダクタ、トランス、及びコンデンサのうち一つが接続されている。ここで、インバータ回路のプラス側の出力端の電圧をVaとし、この出力端との間にインダクタ、トランス、及びコンデンサのうち一つの部品を挟んだ位置の電圧をVbとすると、電圧Vaと電圧Vbとの関係は、次の(1)式となる。但し、(1)式においてZはインダクタ、トランス、またはコンデンサのインピーダンスであり、Iは直列共振回路を流れる電流である。
Figure 2008166064

また、インバータ回路のマイナス側の出力端の電圧をVcとし、この出力端との間にインダクタ、トランス、及びコンデンサのうち一つの部品を挟んだ位置の電圧をVdとすると、電圧Vcと電圧Vdとの関係は、次の(2)式となる。
Figure 2008166064

(1)式において、電位Vaはインバータ回路のプラス側出力であって電源電圧又は接地電位の何れかである。また、(2)式において、電位Vcはインバータ回路のマイナス側出力であって接地電位である。従って、(1)式より、電流Iの値を電圧Vbの値から求めることができる。或いは、(2)式より、電流Iの値を電圧Vdの値から求めることができる。換言すれば、直列共振回路上の検出点の電圧Vb(またはVd)を検出することによって、電流の位相を知ることができる。
すなわち、上記した放電灯点灯回路によれば、直列共振回路上の検出点の電位を参照することにより電流の位相を求めるので、直列共振回路内に電流検出用のトランスや抵抗を必要とせず、また、放電灯が無点灯状態やアーク放電前であっても直列共振回路の電流の位相を精度よく検出できる。
また、放電灯点灯回路は、検出点と一方の出力端との間にコンデンサが接続されていることを特徴としてもよい。一般的に、インバータ回路はトランジスタによって構成され、また、このトランジスタとしては表面実装タイプの小型のものが多く用いられる。そして、コンデンサもまた、インダクタやトランスと比較して比較的小型の表面実装タイプのものを用いることができる。従って、第1の信号生成部の検出点とインバータ回路の一方の出力端との間にインダクタやトランスではなくコンデンサを配置することによって、直列共振回路の電流経路を短くでき、直列共振回路の高周波特性を安定させることができる。また、小型のトランジスタ及びコンデンサを互いに近づけて配置することができ、配線基板上のスペースを効率よく使用できる。
また、放電灯点灯回路は、第1の信号生成部が、検出点の電圧を微分する微分回路と、微分回路の出力信号をディジタル信号に変換する変換回路とを有することを特徴としてもよい。或いは、放電灯点灯回路は、第1の信号生成部が、検出点の電圧を積分する積分回路と、積分回路の出力信号をディジタル信号に変換する変換回路とを有することを特徴としてもよい。
本発明に係る放電灯点灯回路においては、インバータ回路の出力端と第1の信号生成部の検出点との間に、インダクタ、トランス、及びコンデンサのうち一つが接続されているが、例えばアーク放電前の状態では放電灯のインピーダンスが大きいので直列共振回路の電流Iが大きくなり、このような状態では検出点の電圧Vb(Vd)の位相は電流Iより約90°進む(または遅れる)。或いは、直列共振回路の電圧と電流との位相差がゼロに近づくように駆動周波数を制御し、インバータ回路の駆動周波数を直列共振回路の共振周波数に一致させた場合においても、電圧Vb(Vd)の位相は電流Iより約90°進む(または遅れる)。例えばこれらのような場合に、検出点の電圧を微分(または積分)すれば、微分後(または積分後)の電圧と電流Iとの位相差は約0°または約180°となる。従って、ディジタル信号に変換した後の電圧Va及び電流Iの位相差の処理を容易にできる。
また、放電灯点灯回路は、第1の信号生成部が、検出点の電圧に対し積分及び微分の一方を行う第1の回路と、第1の回路の出力信号に対し積分及び微分の他方を行う第2の回路と、第2の回路の出力信号をディジタル信号に変換する変換回路とを有することを特徴としてもよい。
検出点の電圧を微分回路により微分する場合、微分回路は入力信号の直流分をカットするので検出点の電圧のゼロクロスを検出する際の精度は高いが、高周波域ほどゲインが大きいので検出点の電圧が高周波ノイズを含むとこのノイズ成分を通過しやすく、誤検出を招くおそれがある。他方、検出点の電圧を積分回路により積分する場合、積分回路は入力信号が高周波ノイズを含む際にこのノイズ成分をカットするのでS/N比を向上できるが、必要な位相遅れを実現する為にはゲインが低下し過ぎて信号を検出できないおそれがある。従って、積分回路及び微分回路を各々適切なカットオフ周波数に設定して両者を組み合わせることにより、検出点の電圧のゼロクロスを検出する際の精度を高めつつ、S/N比を向上させることができる。
本発明による放電灯点灯回路によれば、直列共振回路内に電流検出用のトランスや抵抗を必要とせず、また、放電灯が無点灯状態やアーク放電前であっても直列共振回路の電流の位相を精度よく検出できる。
以下、添付図面を参照しながら本発明による放電灯点灯回路の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
図1は、本発明による放電灯点灯回路の一実施形態の構成を示すブロック図である。図1に示す放電灯点灯回路1は、放電灯Lを点灯させるための交流電力を放電灯Lへ供給する回路であって、直流電源Bからの直流電圧VBを交流電圧に変換して放電灯Lに供給する。放電灯点灯回路1は、主に車輌用の、特に前照灯などの灯具に用いられる。なお、放電灯Lとしては、例えば水銀フリーのメタルハライドランプが好適に用いられるが、他の構造をもつ放電灯であってもよい。
放電灯点灯回路1は、電力供給部2、制御部10、及びV−F変換部24を備える。電力供給部2は、直流電源Bから電源供給を受けて交流電力を放電灯Lに供給する。制御部10は、放電灯Lへの供給電力の大きさを制御する。V−F変換部24は、制御部10から出力されたアナログ信号である制御信号Scを電圧−周波数変換(V−F変換)して制御信号Scを生成する。
電力供給部2は、制御部10からの制御信号Scに基づく大きさの電力を放電灯Lへ供給する。電力供給部2は、点灯操作のためのスイッチ20を介して直流電源B(バッテリーなど)に接続されており、直流電源Bから直流電圧VBを受けて交流変換及び昇圧を行う。本実施形態の電力供給部2は、直流電圧VBを矩形波の交流電圧に変換するハーフブリッジインバータ回路(以下、単にインバータ回路という)3と、インバータ回路3の後段に設けられた直列共振回路4と、点灯開始時に放電灯Lに高圧パルスを印加して点灯を促す起動部5と、インバータ回路3を駆動する駆動部であるブリッジドライバ6とを有する。
インバータ回路3は、二つの出力端3a,3bを有しており、出力端3aと出力端3bとの間に矩形波の交流電圧を出力する。インバータ回路3は、スイッチング素子である2つのトランジスタ31及び32が直列に接続されて構成されている。具体的には、トランジスタ31の一方の電流端子(ドレイン端子)は直流電源Bのプラス側端子に接続されており、トランジスタ31の他方の電流端子(ソース端子)はトランジスタ32の一方の電流端子(ドレイン端子)に接続されており、トランジスタ31の制御端子(ゲート端子)はブリッジドライバ6に接続されている。また、トランジスタ32の他方の電流端子(ソース端子)は接地電位線GND(すなわち直流電源Bのマイナス側端子)に接続されており、トランジスタ32の制御端子(ゲート端子)はブリッジドライバ6に接続されている。そして、出力端3aはトランジスタ31のソース端子(トランジスタ32のドレイン端子)に設定されており、出力端3bはトランジスタ32のソース端子に設定されている。ブリッジドライバ6は、互いに逆相となる駆動信号Sdrv、Sdrvをトランジスタ31、32のゲート端子へ供給することにより、トランジスタ31,32を交互に導通させる。なお、トランジスタ31,32としては、例えば図1に示すようにNチャネルMOSFETが好適に用いられるが、他のFETやバイポーラトランジスタでもよい。
直列共振回路4は、トランス7、コンデンサ8、及びインダクタ9を有する。トランス7は、放電灯Lへ高圧パルスを印加し、また、電力を伝えると共に該電力を昇圧するために設けられる。また、トランス7、コンデンサ8、及びインダクタ9は、直列共振回路を構成している。すなわち、コンデンサ8と、インダクタ9と、トランス7の一次巻線7aとが、この順で互いに直列に接続されている。そして、その直列回路のコンデンサ8側の一端はインバータ回路3の一方の出力端3aに接続されており、一次巻線7a側の一端はインバータ回路3の他方の出力端3bに接続されている。この構成においては、トランス7の一次巻線7aのリーケージ(漏れ)インダクタンス、及びインダクタ9のインダクタンスからなる合成リアクタンスと、コンデンサ8の容量とによって共振周波数が決定される。なお、一次巻線7a及びコンデンサ8のみによって直列共振回路を構成し、インダクタ9を省略してもよい。また、一次巻線7aのインダクタンスをインダクタ9と較べて極めて小さく設定し、共振周波数が、インダクタ9とコンデンサ8の容量とによってほぼ決定されるようにしてもよい。
インバータ回路3及び直列共振回路4においては、コンデンサ8及び誘導性要素(インダクタンス成分やインダクタ)による直列共振現象を利用し、トランジスタ31,32の駆動周波数をこの直列共振周波数以上の値に規定して該トランジスタ31,32を交互にオン/オフさせ、トランス7の一次巻線7aに交流電力を生じさせる。この交流電力は、トランス7の二次巻線7bへ昇圧されて伝達され、二次巻線7bに接続された放電灯Lへ供給される。なお、トランジスタ31,32を駆動するブリッジドライバ6は、トランジスタ31,32が共に導通状態とならないように相反的に各トランジスタ31,32を駆動する。
この直列共振回路4の点灯前における直列共振周波数fa、および点灯後における直列共振周波数fbは、それぞれ以下の式(3)、(4)によって表される。但し、式中においてCはコンデンサ8の容量であり、Lrはインダクタ9のインダクタンスであり、Lp1は点灯前における一次巻線7aのインダクタンスであり、Lp2は点灯後における一次巻線7aのインダクタンスである。
Figure 2008166064

Figure 2008166064

一般的にLp1>Lp2であることから、点灯前における直列共振周波数faは点灯後における直列共振周波数fbよりも小さくなる。
また、直列共振回路4のインピーダンスは、ブリッジドライバ6によるトランジスタ31,32の駆動周波数によって変化する。従って、放電灯Lに供給される交流電力の大きさを、該駆動周波数を変化させることにより制御できる。すなわち、放電灯Lに供給される電力の大きさは、駆動周波数が直列共振周波数と等しいときに最大値となり、駆動周波数が直列共振周波数よりも大きくなる(または小さくなる)に従って減少する。但し、駆動周波数が直列共振周波数よりも小さい場合、スイッチング損失が大きくなり電力効率が低下する。従って、ブリッジドライバ6の駆動周波数は、直列共振周波数よりも大きい領域においてその大きさが制御される。なお、直列共振周波数よりも小さい周波数領域を容量性領域と呼び、直列共振周波数よりも大きい周波数領域を誘導性領域と呼ぶ。本実施形態においては、ブリッジドライバ6の駆動周波数は、ブリッジドライバ6に接続されたV−F変換部24からの制御信号Sc(周波数変調されたパルス列を含む信号)のパルス周波数に従って制御される。
起動部5は、放電灯Lに起動用の高圧パルスを印加するための回路であり、起動部5からトリガー電圧及び電流がトランス7に印加されると、トランス7の二次巻線7bにおいて生成される交流電圧に高圧パルスが畳重される。起動部5は、高圧パルスを生成するための電力を蓄える起動用コンデンサ(容量素子)51と、スパークギャップやガスアレスタ等の自己降伏型スイッチング素子52とを有する。起動用コンデンサ51の一端は整流素子(ダイオード)53及び抵抗素子54を介してトランス7の補助巻線7cの一端に接続されており、起動部5への入力電圧が提供される。補助巻線7c及び起動用コンデンサ51それぞれの他端は、共にインバータ回路3の出力端3b(すなわち接地電位線GND)に接続されている。なお、起動部5への入力電圧については、例えば、トランス7の二次巻線7bから得てもよく、或いはインダクタ9と共にトランスを構成する補助巻線を設けて該補助巻線から得てもよい。
自己降伏型スイッチング素子52の一端は起動用コンデンサ51の一端と接続されており、自己降伏型スイッチング素子52の他端は一次巻線7aの途中に接続されている。起動部5においては、起動用コンデンサ51の両端電圧が自己降伏型スイッチング素子52の放電開始電圧に達すると、自己降伏型スイッチング素子52が瞬間的に導通状態となることによってトリガー電圧及び電流が出力される。
制御部10は、ブリッジドライバ6の駆動周波数(すなわち放電灯Lへの供給電力の大きさ)を制御する。制御部10は、入力端10a〜10d、及び出力端10eを有する。入力端10aは、放電灯Lのランプ電圧VLの振幅を示す信号(以下、ランプ電圧相当信号という)VS1を入力するために、ピークホールド回路21を介して二次巻線7bの中間タップに接続されている。ランプ電圧相当信号VS1は、ランプ電圧VLのピーク値の例えば0.35倍に設定される。入力端10bは、放電灯Lのランプ電流ILを検出するために設けられた抵抗素子25の一端に、ピークホールド回路22及びバッファ23を介して接続されている。抵抗素子25の一端は、更に放電灯点灯回路1の出力端子を介して放電灯Lの一方の電極に接続され、抵抗素子25の他端は、インバータ回路3の出力端3b(接地電位線GND)に接続されている。そして、バッファ23からは、ランプ電流ILの振幅を示す信号(以下、ランプ電流相当信号という)IS1が出力される。
入力端10cは、直列共振回路4上の検出点4aと接続されている。入力端10cには、直列共振回路4の電流の位相を検出するための信号IS2として、検出点4aの電位が入力される。本実施形態において、検出点4aはコンデンサ8とインダクタ9との間に設定されている。すなわち、直列共振回路4を構成するコンデンサ8、インダクタ9、及びトランス7の一次巻線7aのうちコンデンサ8のみが、インバータ回路3の出力端3aと検出点4aとの間に接続されている。
入力端10dは、インバータ回路3の出力端3aに接続されている。入力端10dには、インバータ回路3から出力される交流電圧の位相を検出するために、インバータ回路3の出力電圧Voutが信号VS2として入力される。なお、入力端10dは、図に破線で示すように、例えばブリッジドライバ6とトランジスタ32(または31)のゲート端子との接続点に接続されてもよい。この場合、入力端10dには駆動信号Sdrv(Sdrv)が入力される。入力端10dは、インバータ回路3から出力される交流電圧の位相を検出可能な箇所であれば、何れの箇所に接続されてもよい。
V−F変換部24は、アナログ信号である制御信号Scを制御部10の出力端10eから入力し、この制御信号ScをV−F変換して制御信号Scを生成する。本実施形態のV−F変換部24は、入力電圧(すなわち制御信号Scの電圧)が低いほど制御信号Scのパルス周波数が高くなるように構成されている。
次に、本実施形態の制御部10の内部構成について説明する。図2は、制御部10の内部構成の一例を示すブロック図である。図2に示すように、制御部10は、制御信号S1を生成する周波数追従制御部11と、制御信号S2を生成する電力制御部12と、これらの制御信号S1及びS2のいずれかを選択して出力端10eへ出力する選択部13と、信号IS2を波形成形して周波数追従制御部11へ提供する第1の信号生成部14と、信号VS2を波形成形して周波数追従制御部11へ提供する第2の信号生成部15とを有する。
周波数追従制御部11は、直列共振回路4の電圧と電流との位相差をゼロに近づける制御信号S1を生成する。周波数追従制御部11は、入力端11a,11b、及び出力端11cを有する。入力端11aには、制御部10の入力端10cを介して信号IS2が入力される。入力端11bには、制御部10の入力端10dを介して信号VS2が入力される。周波数追従制御部11は、信号IS2に基づいて検知される直列共振回路の電流の位相と、信号VS2に基づいて検知されるインバータ回路3の出力電圧Voutの位相との差がゼロに近づくように制御信号S1を生成し、該制御信号S1を選択部13へ出力する。
電力制御部12は、放電灯Lの点灯前においては、放電灯Lに供給されるべき無負荷時出力電圧(OCV)の大きさが所定値に近づくように制御信号S2を生成する。また、電力制御部12は、放電灯Lの点灯後においては、放電灯Lに供給されるべき電力の大きさが所定の時間関数に従って定常値に近づくように制御信号S2を生成する。
例えば、電力制御部12は、放電灯Lの点灯後、所定の時間関数に従って、まず供給電力の大きさが初期値(例えば75W)となるように、そして、或る時刻以降、供給電力の大きさが初期値から定常値(例えば35W)へ徐々に近づくように、制御信号S2を生成する。
本実施形態の電力制御部12は、図2に示すように、電力演算部121と、誤差増幅器122とを有する。電力演算部121は、制御部10の入力端10aを介してランプ電圧相当信号VS1を入力する入力端121aと、制御部10の入力端10bを介してランプ電流相当信号IS1を入力する入力端121bとを有する。そして、電力演算部121は、放電灯Lの点灯前においては、OCVの大きさを示すランプ電圧相当信号VS1が所定値に近づくように出力電圧V1を生成し、放電灯Lの点灯後においては、ランプ電圧相当信号VS1及びランプ電流相当信号IS1に基づいて、供給電力の大きさが上記所定の時間関数に従って定常値に近づくように出力電圧V1を生成する。出力電圧V1は、電力演算部121の出力端121cから抵抗123を介して誤差増幅器122の反転入力端子へ入力される。なお、誤差増幅器122の非反転入力端子は、所定の基準電圧V2を生成する電圧源124に接続されている。誤差増幅器122からの出力電圧は、制御信号S2として選択部13へ提供される。
選択部13は、例えばスイッチ131により構成される。スイッチ131は、起動部5により放電灯Lに高圧パルスが印加される前には、電力制御部12の出力端12aと制御部10の出力端10eとを接続する。また、スイッチ131は、放電灯Lに高圧パルスが印加されてから数ミリ秒の間、周波数追従制御部11の出力端11cと制御部10の出力端10eとを接続する。また、スイッチ131は、高圧パルスの印加から数ミリ秒が経過した後には、電力制御部12の出力端12aと制御部10の出力端10eとを再び接続する。従って、放電灯Lに高圧パルスが印加される前は制御部10から制御信号S2が出力され、放電灯Lに高圧パルスが印加された直後の数ミリ秒間は制御信号S1が出力され、その後には再び制御信号S2が出力されることとなる。制御部10は、こうして選択された制御信号S1またはS2を制御信号ScとしてV−F変換部24(図1参照)へ出力する。
第1の信号生成部14は、信号IS2を波形成形してディジタル化し、信号S3を生成する。この信号S3は、本実施形態における第1の信号であり、直列共振回路4を流れる電流の位相を示す。第1の信号生成部14は、入力端14a及び出力端14bを有する。入力端14aには、制御部10の入力端10cを介して信号IS2が入力される。第1の信号生成部14は、信号IS2(すなわち図1の検出点4aにおける電圧波形)に基づいて信号S3を生成し、該信号S3を出力端14bから周波数追従制御部11へ出力する。
第2の信号生成部15は、信号VS2を波形成形してディジタル化し、信号S4を生成する。この信号S4は、本実施形態における第2の信号であり、インバータ回路3から出力される電圧(交流電圧)Voutの位相を示す。第2の信号生成部15は、入力端15a及び出力端15bを有する。入力端15aには、制御部10の入力端10dを介して信号VS2が入力される。第2の信号生成部15は、信号VS2(すなわち交流電圧Vout)に基づいて信号S4を生成し、該信号S4を出力端15bから周波数追従制御部11へ出力する。
ここで、周波数追従制御部11、第1の信号生成部14、及び第2の信号生成部15の機能について、更に詳細に説明する。図3は、直列共振回路4が誘導性領域で動作する場合における、(a)トランジスタ31,32のオン/オフ状態、(b)信号VS2(交流電圧Vout)の波形、(c)信号S4の波形、(d)直列共振回路4の電流波形、(e)信号IS2の波形(すなわち検出点4aでの電圧波形)、(f)信号S3の波形、のそれぞれの時間的変化を例示したグラフであり、それらの位相関係を表している。図3(b)及び図3(d)に示すように、誘導性領域では直列共振回路の電流の位相が電圧の位相よりも遅れる。
また、図4は、直列共振回路4が容量性領域で動作する場合における、(a)トランジスタ31,32のオン/オフ状態、(b)信号VS2の波形、(c)信号S4の波形、(d)直列共振回路4の電流波形、(e)信号IS2の波形、(f)信号S3の波形、のそれぞれの時間的変化を例示したグラフであり、それらの位相関係を表している。図4(b)及び図4(d)に示すように、容量性領域では直列共振回路の電流の位相が電圧の位相よりも進む。
また、本実施形態ではインバータ回路3の出力端3aと検出点4aとの間にコンデンサ8を挟んでいるので、図3(e)及び図4(e)に示す検出点4aの電圧(すなわち信号IS2)の位相は、それぞれ図3(d)及び図4(d)に示す直列共振回路4の電流の位相に対し約90°進む。その理由は次の通りである。検出点4aの電圧をVIS2とすると、電圧Voutと電圧VIS2との関係は、次の(5)式となる。但し、(5)式においてZcはコンデンサ8のインピーダンスであり、Cはコンデンサ8の容量であり、Iは直列共振回路4を流れる電流である。
Figure 2008166064

(5)式において、電圧Voutはインバータ回路3の出力であって、電源電圧VB又は接地電位の何れかである。電圧Voutが接地電位のとき、電圧VIS2
Figure 2008166064

となり、電圧VIS2の位相は電流Iに対して90°進む。また、電圧Voutが電源電圧VBのとき、電圧VIS2
Figure 2008166064

となり、電圧VIS2の位相は電流Iに対して次の(8)式に示す角度だけ進む。
Figure 2008166064

従って、ブリッジドライバ6からインバータ回路3へ出力される駆動信号Sdrv,Sdrvのデューティ比が50%である場合、一周期に亘ると、電圧VIS2の位相は電流Iに対して
Figure 2008166064

だけ進むこととなる。
放電灯点灯回路1の場合、放電灯Lの点灯直後にアーク放電への移行を促す間は、放電灯Lの抵抗値が大きいのでトランス7の一次巻線7aのインピーダンスが大きくなり、電流Iが大きくなる。従って、(8)式に示すθはほぼ90°となり、(9)式に示すΘは約90°となる。また、後に説明するように、本実施形態の周波数追従制御部11は直列共振回路4が共振周波数付近で動作するようにブリッジドライバ6を制御するので、(7)式及び(8)式においてI/ωCはVBに対し十分に大きな値となる。従って、(8)式に示すθはほぼ90°となり、(9)式に示すΘは約90°となる。以上の理由から、図3(e)及び図4(e)に示す検出点4aの電圧VIS2の位相は、それぞれ図3(d)及び図4(d)に示す直列共振回路4の電流Iの位相に対し約90°進むのである。
なお、放電灯Lの抵抗値が大きい(一次巻線7aのインピーダンスが大きい)場合に電流Iが大きくなる理由は、次のように説明できる。図5は、直列共振回路4の共振部分のみを等価的に表現した回路図である。図5において、Cはコンデンサ8の容量、Lrはインダクタ9のインダクタンス、Lpはトランス7の一次巻線7aのインダクタンス、Lsは二次巻線7bのインダクタンス、RLは放電灯Lの抵抗値、Nはトランス7の一次巻線7aと二次巻線7bとの巻数比、kはトランス7の結合係数、ILはランプ電流、Iは一次巻線7aを流れる励磁電流である。この等価回路においては、IとILとの和が全体の共振電流であり、これらの関係は次の(10)式で表される。
Figure 2008166064

この(10)式は、放電灯Lの抵抗値RLが高いと電流Iが増加することを表している。
このように、信号IS2の位相は直列共振回路4の電流Iの位相に対し約90°進むので、第1の信号生成部14は、信号IS2の位相を更に90°進めた後にディジタル化を行い、直列共振回路4の電流Iとの位相差が180°の信号を生成し、その信号を反転することで、電流Iとの位相差が0°の信号S3(図3(f)及び図4(f)参照)を生成する。
周波数追従制御部11は、直列共振回路4の動作状態が誘導性領域及び容量性領域の何れであるか(すなわち、インバータ回路3の出力波形に対して直列共振回路4の電流波形の位相が遅れているか、或いは進んでいるか)を、次のようにして判断できる。すなわち、図3に示すように、信号S4がHレベルに立ち上がる際に信号S3がLレベルであれば、直列共振回路4の動作状態を誘導性領域と判断できる。更に、信号S4がHレベルである半周期T1において信号S3がLレベルである区間T3が長いほど、誘導性領域に深く入っていると判断できる。或いは、信号S4がLレベルに下がる際に信号S3がHレベルであっても、直列共振回路4の動作状態を誘導性領域と判断できる。更に、信号S4がLレベルである半周期T2において信号S3がHレベルである区間T4が長いほど、誘導性領域に深く入っていると判断できる。
また、図4に示すように、信号S4がHレベルに立ち上がる際に信号S3がHレベルであれば、直列共振回路4の動作状態を容量性領域と判断できる。更に、信号S4がHレベルである半周期T1において信号S3がLレベルである区間T5が長いほど、容量性領域に深く入っていると判断できる。或いは、信号S4がLレベルに下がる際に信号S3がLレベルであっても、直列共振回路4の動作状態を容量性領域と判断できる。更に、信号S4がLレベルである半周期T2において信号S3がHレベルである区間T6が長いほど、容量性領域に深く入っていると判断できる。
周波数追従制御部11は、直列共振回路4の動作状態が誘導性領域であると判断した場合に、制御信号S1の電圧値を高め、ブリッジドライバ6の駆動周波数を低下させることによって、インバータ回路3の出力電圧Voutと直列共振回路4の電流Iとの位相差をゼロに近づける。また、周波数追従制御部11は、直列共振回路4の動作状態が容量性領域であると判断した場合には、制御信号S1の電圧値を低下させ、ブリッジドライバ6の駆動周波数を高めることによって、インバータ回路3の出力電圧Voutと直列共振回路4の電流Iとの位相差をゼロに近づける。このように、周波数追従制御部11は、インバータ回路3の出力電圧Voutと直列共振回路4の電流Iとの位相差がゼロに近づくように制御信号S1を生成することにより、ブリッジドライバ6の駆動周波数を直列共振周波数に追従させる。なお、周波数追従制御部11の構成及び動作の詳細については後述する。
続いて、放電灯点灯回路1の動作について図6〜図8を参照しながら説明する。図6は、(a)ブリッジドライバ6の駆動周波数、(b)起動用コンデンサ51の電圧、及び(c)ランプ電圧VLの遷移をそれぞれ示すグラフである。また、図7は、(a)制御信号Sc及び(b)供給電力の推移をそれぞれ示すグラフである。なお、図6(d)及び図7(c)は、制御部10における制御モードの変遷を示している。図8は、直列共振回路4の駆動周波数と供給電力(またはOCV)の大きさとの関係を示すグラフである。
まず、放電灯点灯回路1に電源が投入されると(時刻t)、図6(a)に示すように、駆動周波数が最大値まで立ち上がる。このとき、制御部10においては、電力制御部12からの制御信号S2が制御信号Scとして選択され、出力される。駆動周波数は制御信号Scによって制御され、時刻tに所定値fへ収束する(OCV制御モード)。そして、点灯前における直列共振回路4の駆動周波数と供給電力との関係は図8に示すグラフG1となっており、駆動周波数fに対応する動作点P1に応じた所定のOCVが放電灯Lに印加される。また、この間、起動部5の起動用コンデンサ51への充電が開始される。
続いて、起動用コンデンサ51の両端電圧が所定値に達し、自己降伏型スイッチング素子52がONすると(図6(b)の時刻t)、図6(c)に示すように、起動部5によって放電灯Lに高圧パルスPが印加される。このとき、放電灯Lの電極間が放電を開始して導通状態となり、ランプ電圧VLは低下する。制御部10では、スイッチ131が切り替わり、周波数追従制御部11が制御信号S1を出力し始める。制御信号S1は、制御信号Scとして制御部10から出力される。また、放電灯Lの電極間が導通状態となることで、図8に示す直列共振回路4の駆動周波数と供給電力との関係はグラフG2へ移行する。
すなわち、放電灯Lの放電開始による導通状態によって、直列共振回路4の共振周波数は周波数fより高くなり、その後、図8に示すように低い周波数から連続的に高い周波数fへ移行する。換言すれば、点灯後の駆動周波数と供給電力との相関グラフG2は、低周波数側から連続的に高周波数側のグラフG3へ移動する。周波数追従制御部11は、この共振周波数の変化に駆動周波数を追従させるように制御信号S1を出力する。従って、動作点は、周波数fに対応するP1から、高周波数側へ移行する直列共振周波数に追従しつつ周波数fに対応するP3へ移行する(周波数追従制御モード)。
そして、放電灯Lに高圧パルスが印加されてから所定時間(数ミリ秒)が経過したのち(時刻t)、制御部10のスイッチ131が再び切り替わり、電力制御部12から出力された制御信号S2が制御信号Scとして再び出力される(電力制御モード)。そして、これ以後は、電力制御部12によって、放電灯Lへの供給電力の大きさが定常値に近づくように制御信号Scが生成され、図8に示すように、動作点は誘導性領域内の定常点P4で安定する。
以下、本実施形態の周波数追従制御部11、第1の信号生成部14、及び第2の信号生成部15の具体的な構成例及びその動作について説明する。
図9(a)は、周波数追従制御部11、第1の信号生成部14、及び第2の信号生成部15の内部構成の一例を示すブロック図である。図9(a)に示すように、本実施形態の周波数追従制御部11は、位相差検出部111及び信号変換部112を含んで構成されている。また、第1の信号生成部14は、微分回路141及びコンパレータ142を含んで構成されている。また、第2の信号生成部15は、波形成形回路151を含んで構成されている。
微分回路141の入力端141aは第1の信号生成部14の入力端14aを介して制御部10の入力端10c(図2参照)に接続されており、入力端141aには信号IS2が入力される。微分回路141の出力端141bはコンパレータ142の一方の入力端142aに接続されており、微分回路141は、信号IS2を微分した信号Sd1をコンパレータ142へ出力する。なお、微分回路141は、例えば図9(b)に示すような回路構成によって実現される。図9(b)に示す微分回路141は、コンデンサ141c及び抵抗素子141dを有する。コンデンサ141cの一端は入力端141aに接続されており、他端は出力端141bに接続されている。また、コンデンサ141cの他端は抵抗141dを介して接地電位に接続されている。
コンパレータ142は、本実施形態における変換回路であり、微分回路141の出力信号Sd1をディジタル信号に変換する。コンパレータ142の他方の入力端142bには、所定の閾値電圧V3が入力される。コンパレータ142は、一方の入力端142aに入力された信号Sd1が閾値電圧V3より大きい場合にはHレベルを出力し、信号Sd1が閾値電圧V3より小さい場合にはLレベルを出力する。コンパレータ142の出力端142cは、否定回路(インバータ)143、及び第1の信号生成部14の出力端14bを介して周波数追従制御部11の入力端11aに接続されており、否定回路143の出力は信号S3として周波数追従制御部11へ提供される。
波形成形回路151は、信号VS2を矩形状に波形成形してディジタル化するための回路である。波形成形回路151の入力端151aは第2の信号生成部15の入力端15aを介して制御部10の入力端10d(図2参照)に接続されており、入力端151aには信号VS2が入力される。波形成形回路151の出力端151bは第2の信号生成部15の出力端15bを介して周波数追従制御部11の入力端11bに接続されており、波形成形回路151は、信号VS2を波形成形した信号S4を周波数追従制御部11へ出力する。なお、このような波形成形回路151は、例えばクランプ回路及びコンパレータによって好適に実現される。
位相差検出部111の入力端111a及び111bのそれぞれには、前述したように信号S3及びS4が入力される。位相差検出部111は、信号S3の位相が信号S4の位相より遅れている場合には、その位相差(すなわち、図3に示した区間T3,T4の幅)に応じたパルス幅を有する誘導性検出信号S5を生成する。また、位相差検出部111は、信号S3の位相が信号S4の位相より進んでいる場合には、その位相差(すなわち、図4に示した区間T5,T6の幅)に応じたパルス幅を有する容量性検出信号S6を生成する。なお、誘導性検出信号S5は直列共振回路4の動作状態が誘導性領域にあることを示し、容量性検出信号S6は直列共振回路4の動作状態が容量性領域にあることを示す。誘導性検出信号S5は、位相差検出部111の出力端111cから信号変換部112の入力端112aへ出力され、容量性検出信号S6は、位相差検出部111の出力端111dから信号変換部112の入力端112bへ出力される。
信号変換部112は、誘導性検出信号S5及び容量性検出信号S6に基づいて、制御信号S1を生成する。信号変換部112は、誘導性検出信号S5が或るパルス幅でもって入力される場合には制御信号S1の電圧値を高め、また、容量性検出信号S6が或るパルス幅でもって入力される場合には制御信号S1の電圧値を低下させる。信号変換部112の出力端112cは周波数追従制御部11の出力端11cを介して選択部13(図2)に接続されており、制御信号S1は選択部13へ出力される。
以上に説明した本実施形態の放電灯点灯回路1による効果について説明する。放電灯点灯回路1においては、インバータ回路3の駆動周波数を制御する制御部10が、直列共振回路4を流れる電流Iの位相を検出するための第1の信号生成部14と、インバータ回路3からの出力電圧(交流電圧)Voutの位相を検出するための第2の信号生成部15とを有している。そして、制御部10は、直列共振回路4を流れる電流Iと電圧Voutとの位相差に基づいて駆動周波数の制御を行う。これにより、上述した周波数追従制御モード(電圧Voutと電流Iとの位相差がゼロに近づくように駆動周波数を制御し、インバータ回路3の駆動周波数を直列共振回路4の共振周波数に一致させて直列共振回路4の最大電力を放電灯Lに供給する)を好適に動作させることができる。
更に、本実施形態の放電灯点灯回路1においては、第1の信号生成部14に接続された検出点4aとインバータ回路3の出力端3aとの間に、インダクタ9、トランス7、及びコンデンサ8のうちコンデンサ8のみが接続されている。ここで、図10は、一般的な放電灯点灯回路の構成を模式的に示す図である。図10において、直流電源41、ブリッジドライバ42、インバータ回路40(トランジスタ43及び44)の構成は、本実施形態の直流電源B、ブリッジドライバ6、インバータ回路3(トランジスタ31及び32)の構成と同様である。また、ブロック45,46,及び47は、それぞれインダクタ、トランス、及びコンデンサのいずれかであり、インバータ回路40の出力端40aと出力端40bとの間にこの順で直列に接続されている。ブロック45,46,及び47のインピーダンスは、それぞれZ1,Z2,及びZ3とする。
インバータ回路の出力端40aの電圧をVaとし、この出力端40aとの間にブロック45を挟んだ位置の電圧をVbとすると、電圧Vaと電圧Vbとの関係は、次の(11)式となる。但し、(11)式においてIはブロック45,46,及び47を流れる電流である。
Figure 2008166064

(11)式において、電位Vaはインバータ回路40の出力であって電源電圧又は接地電位の何れかである。従って、(11)式より、電流Iの値を電圧Vbの値から求めることができる。換言すれば、直列共振回路上の電圧Vbを検出することによって、電流Iの位相を知ることができる。
本実施形態の放電灯点灯回路1においては、ブロック45の位置にコンデンサ8が配置されている。従って、電圧Vbすなわち直列共振回路4上の検出点4aの電圧信号IS2を参照することによって、図3(f)、図4(f)に示したように電流Iの位相を求めることが可能となる。このように、本実施形態の放電灯点灯回路1によれば、直列共振回路4内に電流検出用のトランスや抵抗を必要とせず、また、放電灯Lが無点灯状態やアーク放電前であっても直列共振回路4の電流Iの位相を精度よく検出できる。
なお、ブロック45の位置に配置される回路要素は、コンデンサ以外の他の要素(インダクタ又はトランスの一次巻線)であってもよい。これらのうちいずれか一つの回路要素がブロック45の位置に配置されることによって、直列共振回路4の電流Iの位相を好適に検出できる。
また、第1の信号生成部14が接続される検出点は、本実施形態の検出点4aに限らず、インダクタ9とトランス7の一次巻線7aとの間であってもよい。図10において、インバータ回路の出力端40bの電圧Vcは0(接地電位)なので、この出力端40bとの間にブロック47を挟んだ位置の電圧をVdとすると、電圧Vdは次の(12)式となる。
Figure 2008166064

(12)式より、電流Iの値を電圧Vdの値から求めることができる。換言すれば、直列共振回路上の電圧Vdを検出することによって、電流Iの位相を知ることができる。つまり、本実施形態においては、ブロック47の位置にトランス7の一次巻線7aが配置されているので、電圧Vdすなわちインダクタ9とトランス7の一次巻線7aとの間の電圧を参照することによっても、直列共振回路4の電流Iの位相を好適に検出できる。なお、この場合、ブロック47の位置に配置される回路要素は、トランス以外の他の要素(コンデンサ又はインダクタ)であってもよい。
なお、本実施形態のように、インバータ回路3の出力端3a(または3b)と検出点(本実施形態では4a)との間に配置される構成要素は、コンデンサであることが好ましい。一般的に、インバータ回路はトランジスタによって構成され、また、このトランジスタとしては表面実装タイプの小型のものが多く用いられる。そして、コンデンサもまた、インダクタやトランスと比較して比較的小型の表面実装タイプのものを用いることができる。従って、第1の信号生成部14が接続される検出点4aとインバータ回路3の出力端3aとの間にインダクタやトランスではなくコンデンサを配置することによって、直列共振回路4の電流経路を短くでき、直列共振回路4の高周波特性を安定させることができる。また、小型のトランジスタ31,32及びコンデンサ8を互いに近づけて配置することができ、配線基板上のスペースを効率よく使用できる。
また、図9に示したように、第1の信号生成部14は、検出点4aの電圧信号IS2を微分する微分回路141と、微分回路141の出力信号Sd1をディジタル信号に変換する変換回路(コンパレータ142)とを有することが好ましい。本実施形態に係る放電灯点灯回路1においては、インバータ回路3の出力端3aと検出点4aとの間にコンデンサ8が接続されているので、検出点4aの電圧信号IS2の位相は電流Iより約90°進む。或いは、電圧Voutと電流Iとの位相差がゼロに近づくように駆動周波数を制御し、インバータ回路3の駆動周波数を直列共振回路4の共振周波数に一致させた場合においても、電圧信号IS2の位相は電流Iより約90°進む。これらのような場合に、検出点4aの電圧信号IS2を微分すれば、微分後の電圧信号IS2と電流Iとの位相差は約180°、すなわち微分後の電圧信号IS2は電流Iに対して反転した波形となる。従って、否定回路143等の簡易な回路で位相差を約0°にできるので(図3(f)、図4(f))、ディジタル信号に変換した後の電圧信号IS2及び電流Iの位相差の処理を容易にできる。
(第1の変形例)
図11(a)は、上記実施形態の第1変形例を示す図であり、周波数追従制御部11、第1の信号生成部16、及び第2の信号生成部15の内部構成の一例を示すブロック図である。これらのうち、周波数追従制御部11及び第2の信号生成部15の構成については、上記実施形態と同様なので詳細な説明を省略する。
本変形例に係る第1の信号生成部16は、積分回路161及びコンパレータ162を含んで構成されている。積分回路161の入力端161aには、第1の信号生成部16の入力端16aを介して信号IS2が入力される。積分回路161の出力端161bはコンパレータ162の一方の入力端162aに接続されており、積分回路161は、信号IS2を積分した信号Si1をコンパレータ162へ出力する。なお、積分回路161は、例えば図11(b)に示すような回路構成によって実現される。図11(b)に示す積分回路161は、抵抗素子161c及びコンデンサ161dを有する。抵抗素子161cの一端は入力端161aに接続されており、他端は出力端161bに接続されている。また、抵抗素子161cの他端はコンデンサ161dを介して接地電位に接続されている。
コンパレータ162は、本変形例における変換回路であり、積分回路161の出力信号Si1をディジタル信号に変換する。コンパレータ162の他方の入力端162bには、所定の閾値電圧V3が入力される。コンパレータ162は、一方の入力端162aに入力された信号Si1が閾値電圧V3より大きい場合には信号S3としてHレベルを出力し、信号Si1が閾値電圧V3より小さい場合には信号S3としてLレベルを出力する。コンパレータ162の出力端162cは第1の信号生成部16の出力端16bを介して周波数追従制御部11の入力端11aに接続されており、信号S3は周波数追従制御部11へ提供される。
本変形例においては、第1の信号生成部16が、検出点4aの電圧信号IS2を積分する積分回路161と、積分回路161の出力信号Si1をディジタル信号S3に変換する変換回路(コンパレータ162)とを有している。上述したように、検出点4aの電圧信号IS2の位相は電流Iより約90°進むが、本変形例のように検出点4aの電圧信号IS2を積分すれば、積分後の電圧信号IS2と電流Iとの位相差は約0°となる。従って、本変形例においても、ディジタル信号に変換した後の電圧信号IS2及び電流Iの位相差の処理を容易にできる。
(第2の変形例)
図12(a)は、上記実施形態の第2変形例を示す図であり、周波数追従制御部11、第1の信号生成部17、及び第2の信号生成部15の内部構成の一例を示すブロック図である。これらのうち、周波数追従制御部11及び第2の信号生成部15の構成については、上記実施形態と同様である。
本変形例に係る第1の信号生成部17は、積分回路171、微分回路172、及びコンパレータ173を含んで構成されている。積分回路171は、信号IS2に対し積分を行う第1の回路である。積分回路171の入力端171aには、第1の信号生成部17の入力端17aを介して信号IS2が入力される。積分回路171の出力端171bは微分回路172の入力端172aに接続されており、積分回路171は、信号IS2を積分した信号Si2を微分回路172へ出力する。微分回路172は、積分回路171の出力信号Si2に対し微分を行う第2の回路である。微分回路172の出力端172bはコンパレータ173の一方の入力端173aに接続されており、微分回路172は、信号Si2を微分した信号Sd2をコンパレータ173へ出力する。なお、積分回路171及び微分回路172は、例えば図12(b)に示すような回路構成によって実現される。図12(b)に示す積分回路171は、抵抗素子171c及びコンデンサ171dを有する。これらの接続関係は、第1変形例の積分回路161(図11(b)参照)と同様である。また、微分回路172は、コンデンサ172c及び抵抗素子172dを有する。これらの接続関係は、上記実施形態の微分回路141(図9(b)参照)と同様である。なお、微分回路172の出力端172bは、ダイオード174によってクランプされている。
コンパレータ173は、本変形例における変換回路であり、微分回路172の出力信号Sd2をディジタル信号に変換する。コンパレータ173の他方の入力端173bには、所定の閾値電圧V3が入力される。コンパレータ173は、一方の入力端173aに入力された信号Sd2が閾値電圧V3より大きい場合には信号S3としてHレベルを出力し、信号Sd2が閾値電圧V3より小さい場合には信号S3としてLレベルを出力する。コンパレータ173の出力端173cは第1の信号生成部17の出力端17bを介して周波数追従制御部11の入力端11aに接続されており、信号S3は周波数追従制御部11へ提供される。
上記実施形態のように信号IS2を微分回路141により微分する場合、微分回路は入力信号の直流分をカットするので信号IS2のゼロクロスを検出する際の精度は高いが、高周波域ほどゲインが大きいので信号IS2が高周波ノイズを含むとこのノイズ成分を通過しやすく、誤検出を招くおそれがある。他方、第1変形例のように信号IS2を積分回路161により積分する場合、積分回路は入力信号が高周波ノイズを含む際にこのノイズ成分をカットするので信号IS2のS/N比を向上できるが、必要な位相遅れを実現する為にはゲインが低下し過ぎて信号を検出できないおそれがある。従って、本変形例のように、積分回路171及び微分回路172を各々適切なカットオフ周波数に設定して両者を組み合わせることにより、信号IS2のゼロクロスを検出する際の精度を高めつつ、S/N比を向上させることができる。なお、本変形例の別の形態として、微分回路が積分回路の前段に配置されてもよい。この場合、微分回路は、信号IS2に対して微分を行う第1の回路となり、積分回路は、微分回路の出力信号に対し積分を行う第2の回路となる。
(第3の変形例)
図13は、上記実施形態の第3変形例として、放電灯点灯回路1aの構成を示す図である。本変形例と上記実施形態との相違点は、コンデンサ及びインダクタの配置である。すなわち、本変形例に係る放電灯点灯回路1aにおいては、直列共振回路48のインダクタ9、コンデンサ8、及びトランス7の一次巻線7aが、この順で互いに直列に接続されている。そして、その直列回路のインダクタ9側の一端はインバータ回路3の一方の出力端3aに接続されており、一次巻線7a側の一端はインバータ回路3の他方の出力端3bに接続されている。
また、信号IS2を参照するための検出点48aはインダクタ9とコンデンサ8との間に設定されている。換言すれば、検出点48aとインバータ回路3の出力端3aとの間に、インダクタ9、トランス7、及びコンデンサ8のうちインダクタ9のみが接続されている。
本変形例は、図10に示した模式図においてブロック45の位置にインダクタ9を配置し、電圧Vbを参照して電流Iの位相を検出する例である。本変形例のように、ブロック45の位置に配置される回路要素はインダクタでもよい。或いは、図示しないがトランスの一次巻線でもよい。これらのうちいずれか一つの回路要素がブロック45の位置に配置されることによって、直列共振回路48の電流Iの位相を好適に検出できる。
(第4の変形例)
図14は、上記実施形態の第4変形例として、放電灯点灯回路1bの構成を示す図である。本変形例と上記実施形態との相違点は、コンデンサの配置、及び検出点の位置である。すなわち、本変形例に係る放電灯点灯回路1bにおいては、直列共振回路49のインダクタ9、トランス7の一次巻線7a、及びコンデンサ8が、この順で互いに直列に接続されている。そして、その直列回路のインダクタ9側の一端はインバータ回路3の一方の出力端3aに接続されており、コンデンサ8側の一端はインバータ回路3の他方の出力端3bに接続されている。更に、信号IS2を参照するための検出点49aが一次巻線7aとコンデンサ8との間に設定されている。換言すれば、検出点49aとインバータ回路3の出力端3bとの間に、インダクタ9、トランス7、及びコンデンサ8のうちコンデンサ8のみが接続されている。
本変形例は、図10に示した模式図においてブロック47の位置にコンデンサ8を配置し、電圧Vdを参照して電流Iの位相を検出する例である。なお、ブロック47の位置に配置される回路要素はインダクタでもよく、トランスの一次巻線でもよい。これらのうちいずれか一つの回路要素がブロック47の位置に配置され、電圧Vd(すなわち検出点49aの電圧)を参照することによって、直列共振回路49の電流Iの位相を好適に検出できる。
本発明による放電灯点灯回路の一実施形態の構成を示すブロック図である。 制御部の内部構成の一例を示すブロック図である。 直列共振回路が誘導性領域で動作する場合における、(a)トランジスタのオン/オフ状態、(b)信号VS2(交流電圧Vout)の波形、(c)信号S4の波形、(d)直列共振回路の電流波形、(e)信号IS2の波形(すなわち検出点での電圧波形)、(f)信号S3の波形、のそれぞれの時間的変化を例示したグラフであり、それらの位相関係を表している。 直列共振回路が容量性領域で動作する場合における、(a)トランジスタのオン/オフ状態、(b)信号VS2(交流電圧Vout)の波形、(c)信号S4の波形、(d)直列共振回路の電流波形、(e)信号IS2の波形(すなわち検出点での電圧波形)、(f)信号S3の波形、のそれぞれの時間的変化を例示したグラフであり、それらの位相関係を表している。 直列共振回路の共振部分のみを等価的に表現した回路図である。 (a)ブリッジドライバの駆動周波数、(b)起動用コンデンサの電圧、及び(c)ランプ電圧の遷移をそれぞれ示すグラフである。 (a)制御信号及び(b)供給電力の推移をそれぞれ示すグラフである。 直列共振回路の駆動周波数と供給電力との関係の遷移を示すグラフである。 (a)周波数追従制御部、第1の信号生成部、及び第2の信号生成部の内部構成の一例を示すブロック図である。(b)微分回路の回路構成の一例を示す図である。 一般的な放電灯点灯回路の構成を模式的に示す図である。 (a)第1変形例を示す図であり、周波数追従制御部、第1の信号生成部、及び第2の信号生成部の内部構成の一例を示すブロック図である。(b)積分回路の回路構成の一例を示す図である。 (a)第2変形例を示す図であり、周波数追従制御部、第1の信号生成部、及び第2の信号生成部の内部構成の一例を示すブロック図である。(b)積分回路及び微分回路の回路構成の一例を示す図である。 第3変形例の構成を示す図である。 第4変形例の構成を示す図である。
符号の説明
1,1a,1b…放電灯点灯回路、2…電力供給部、3…インバータ回路、3a,3b…出力端、4…直列共振回路、4a…検出点、5…起動部、6…ブリッジドライバ、7…トランス、7a…一次巻線、7b…二次巻線、7c…補助巻線、8…コンデンサ、9…インダクタ、10…制御部、11…周波数追従制御部、12…電力制御部、13…選択部、14,16,17…第1の信号生成部、15…第2の信号生成部、21,22…ピークホールド回路、23…バッファ、24…変換部、25…抵抗素子、31,32…トランジスタ、51…起動用コンデンサ、52…自己降伏型スイッチング素子、IL…ランプ電流、L…放電灯。

Claims (5)

  1. 放電灯を点灯させるための交流電力を該放電灯へ供給する放電灯点灯回路であって、
    二つの出力端を有し、該二つの出力端間に交流電圧を出力するインバータ回路と、
    前記インバータ回路の前記二つの出力端間に直列接続された、インダクタ及びトランスの少なくとも一方並びにコンデンサを含み、前記放電灯に前記交流電力を供給する直列共振回路と、
    前記インバータ回路を駆動する駆動部と、
    前記インバータ回路の駆動周波数を制御するための制御信号を前記駆動部へ提供する制御部と
    を備え、
    前記制御部が、前記直列共振回路を流れる電流の位相を示す第1の信号を生成する第1の信号生成部、及び前記インバータ回路から出力される前記交流電圧の位相を示す第2の信号を生成する第2の信号生成部を有し、前記第1の信号と前記第2の信号との位相差に基づいて前記制御信号を生成し、
    前記第1の信号生成部が、前記直列共振回路上の検出点の電圧に基づいて前記第1の信号を生成し、
    前記二つの出力端のうち何れか一方の出力端と前記検出点との間に、前記インダクタ、前記トランス、及び前記コンデンサのうち一つが接続されていることを特徴とする、放電灯点灯回路。
  2. 前記検出点と前記一方の出力端との間に前記コンデンサが接続されていることを特徴とする、請求項1に記載の放電灯点灯回路。
  3. 前記第1の信号生成部が、
    前記検出点の電圧を微分する微分回路と、
    前記微分回路の出力信号をディジタル信号に変換する変換回路と
    を有することを特徴とする、請求項1または2に記載の放電灯点灯回路。
  4. 前記第1の信号生成部が、
    前記検出点の電圧を積分する積分回路と、
    前記積分回路の出力信号をディジタル信号に変換する変換回路と
    を有することを特徴とする、請求項1または2に記載の放電灯点灯回路。
  5. 前記第1の信号生成部が、
    前記検出点の電圧に対し積分及び微分の一方を行う第1の回路と、
    前記第1の回路の出力信号に対し積分及び微分の他方を行う第2の回路と、
    前記第2の回路の出力信号をディジタル信号に変換する変換回路と
    を有することを特徴とする、請求項1または2に記載の放電灯点灯回路。
JP2006352776A 2006-12-27 2006-12-27 放電灯点灯回路 Pending JP2008166064A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006352776A JP2008166064A (ja) 2006-12-27 2006-12-27 放電灯点灯回路
US11/962,199 US7777429B2 (en) 2006-12-27 2007-12-21 Discharge lamp lighting circuit
DE102007062767A DE102007062767A1 (de) 2006-12-27 2007-12-27 Entladungslampen-Beleuchtungsschaltung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006352776A JP2008166064A (ja) 2006-12-27 2006-12-27 放電灯点灯回路

Publications (1)

Publication Number Publication Date
JP2008166064A true JP2008166064A (ja) 2008-07-17

Family

ID=39477878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352776A Pending JP2008166064A (ja) 2006-12-27 2006-12-27 放電灯点灯回路

Country Status (3)

Country Link
US (1) US7777429B2 (ja)
JP (1) JP2008166064A (ja)
DE (1) DE102007062767A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080587A1 (en) * 2008-12-18 2010-07-15 Robertson Transformer Co. Variable load line gas curve intercept method to optimize system efficiency
JP5585098B2 (ja) * 2009-03-06 2014-09-10 日産自動車株式会社 非接触電力供給装置及び方法
US20110049997A1 (en) * 2009-09-03 2011-03-03 Tdk Corporation Wireless power feeder and wireless power transmission system
CN103547050B (zh) * 2012-07-16 2015-11-25 台达电子工业股份有限公司 点灯系统与点灯方法
JP6262557B2 (ja) * 2014-02-12 2018-01-17 株式会社小糸製作所 車両用灯具およびその駆動装置、その制御方法
JP6462637B2 (ja) * 2016-08-10 2019-01-30 株式会社東芝 沿面放電素子駆動装置および沿面放電素子駆動方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063823A (ja) 2003-08-13 2005-03-10 Koito Mfg Co Ltd 放電灯点灯回路
WO2005051052A1 (en) * 2003-11-21 2005-06-02 Matsushita Electric Works Ltd. Discharge lamp ballast with detection of abnormal discharge outside the arc tube

Also Published As

Publication number Publication date
US20080157692A1 (en) 2008-07-03
US7777429B2 (en) 2010-08-17
DE102007062767A1 (de) 2008-07-10

Similar Documents

Publication Publication Date Title
KR100771063B1 (ko) 방전등 점등 회로
JPH06176881A (ja) 安定器回路
JP2008166064A (ja) 放電灯点灯回路
US7564200B2 (en) Discharge lamp lighting circuit with frequency control in accordance with phase difference
JP2008053110A (ja) 放電灯点灯回路
US7564199B2 (en) Discharge lamp lighting circuit
JP2005513756A (ja) 電子回路、及び高圧ランプの動作方法
US7145293B2 (en) Electronic ballast having resonance excitation for generating a transfer voltage
JP2001006890A (ja) 放電灯点灯回路
JP4144526B2 (ja) 放電灯点灯装置、照明装置、プロジェクタ
JP4179173B2 (ja) 放電灯点灯装置、照明装置、プロジェクタ
JP2003257689A (ja) 高圧放電灯の点灯方法およびそれを用いた電子機器
JP3769993B2 (ja) 放電灯点灯装置
WO2005099317A1 (ja) 放電灯点灯装置
KR20070114640A (ko) 방전등 점등 회로
JP2948600B2 (ja) インバータ装置
JP6558018B2 (ja) 放電灯駆動装置、光源装置、プロジェクター、および放電灯駆動方法
TW200835391A (en) Circuit arrangement and method for the ignition of a high voltage discharge lamp
JP2007087821A (ja) 高圧放電ランプ点灯装置及び照明装置
JP5657180B2 (ja) 少なくとも1つの高圧放電ランプを動作させるための回路装置及びその方法
JP4543646B2 (ja) 高圧放電ランプ点灯装置および照明装置
JP3820902B2 (ja) 放電灯点灯装置
JP2003109788A (ja) 高圧放電灯点灯装置
EP2192821A2 (en) Discharge lamp lighting device and illumination fixture
JP2002015889A (ja) 高圧放電灯点灯装置