JP2008163439A - Copper alloy material and method for producing the same, and electrode member of welding equipment - Google Patents

Copper alloy material and method for producing the same, and electrode member of welding equipment Download PDF

Info

Publication number
JP2008163439A
JP2008163439A JP2007000373A JP2007000373A JP2008163439A JP 2008163439 A JP2008163439 A JP 2008163439A JP 2007000373 A JP2007000373 A JP 2007000373A JP 2007000373 A JP2007000373 A JP 2007000373A JP 2008163439 A JP2008163439 A JP 2008163439A
Authority
JP
Japan
Prior art keywords
hot
copper alloy
alloy material
mass
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007000373A
Other languages
Japanese (ja)
Other versions
JP4930993B2 (en
Inventor
Tetsuya Ando
哲也 安藤
Masaki Kumagai
正樹 熊谷
Ichitami Sahashi
一民 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2007000373A priority Critical patent/JP4930993B2/en
Publication of JP2008163439A publication Critical patent/JP2008163439A/en
Application granted granted Critical
Publication of JP4930993B2 publication Critical patent/JP4930993B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy material having high strength and high conductivity. <P>SOLUTION: The copper alloy material is obtained through: a casting step where an ingot having a composition comprising, by mass, 1.5 to 3.0% Ni, 0.3 to 1.5% Si and 0.01 to 0.3% Zr, and the balance Cu with inevitable impurities, wherein the ratio of the Ni content to the Si content is 2 to 5; a hot working step where the ingot is subjected to hot extrusion or hot forging at a hot working temperature satisfying the hot working temperature(°C)≥870+the Ni content (mass%)×10 to thereby obtain a hot worked material; a rapid cooling step where the hot worked material is cooled to ≤300°C at a cooling rate of ≥100°C/s to thereby obtain a rapidly cooled material; and an aging step where the rapidly cooled material is heated at a temperature lower than the hot working temperature, and is subjected to aging to thereby obtain a copper alloy material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高強度であり且つ高導電性である銅合金材料に関する。以下、高強度であり且つ高導電性である銅合金材料を、高強度且つ高導電性の銅合金材料とも記載する。   The present invention relates to a copper alloy material having high strength and high conductivity. Hereinafter, a copper alloy material having high strength and high conductivity is also referred to as a copper alloy material having high strength and high conductivity.

例えば、溶接機器の電極部材に使用される銅合金材料には、高強度であり且つ高伝導性であることが要求される。   For example, copper alloy materials used for electrode members of welding equipment are required to have high strength and high conductivity.

この要求を満たす銅合金材料としては、JIS Z 3234に規定されている銅合金材料が挙げられる。これらのうち、特に、JIS Z 3234のクラス3(以下、単にクラス3とも記載する。)に適合する銅合金材料、すなわち、引張強さが690MPa以上且つ導電率が45%IACS以上である銅合金材料としては、析出硬化元素としてBeを添加したCu−Be系銅合金材料が挙げられるが、このCu−Be系銅合金材料以外には、クラス3に適合する有力な材料がない。   An example of a copper alloy material that satisfies this requirement is a copper alloy material defined in JIS Z 3234. Among these, in particular, a copper alloy material conforming to JIS Z 3234 class 3 (hereinafter also simply referred to as class 3), that is, a copper alloy having a tensile strength of 690 MPa or more and a conductivity of 45% IACS or more. Examples of the material include a Cu—Be based copper alloy material to which Be is added as a precipitation hardening element, but there is no influential material suitable for class 3 other than this Cu—Be based copper alloy material.

ところが、添加元素であるBeは、環境に対して有害な元素である。そして、近年の環境保護の高まりから、有害物質の使用を規制する動きがあり、Beが規制対象となる可能性がある。そこで、Beを含有しない高強度且つ高導電性の銅合金材料の開発が望まれている。   However, the additive element Be is an element harmful to the environment. And with the recent increase in environmental protection, there is a movement to regulate the use of harmful substances, and Be may be subject to regulation. Therefore, development of a high-strength and high-conductivity copper alloy material that does not contain Be is desired.

Cu−Be系銅合金材料以外の高強度且つ高導電性の銅合金材料としては、Cu−Ni−Si系銅合金材料が知られているが、Ni及びSi成分のみの調整で、Cu−Be系銅合金材料と同等の強度及び導電性を得ることは困難であった。   Cu-Ni-Si-based copper alloy materials are known as high-strength and high-conductivity copper alloy materials other than Cu-Be-based copper alloy materials. However, by adjusting only Ni and Si components, Cu-Be It was difficult to obtain the same strength and conductivity as the copper alloy material.

そこで、Cu−Ni−Si系銅合金材料の改良としては、Ni及びSiに加えて、他の元素を添加することが考えられる。例えば、特許文献1の特開平2−166249号公報では、Cu−Ni−Si系銅合金に、Cr、Mg、Zr及びCoが添加されたCu−Ni−Si系銅合金が開示されている。   Therefore, as an improvement of the Cu—Ni—Si based copper alloy material, it is conceivable to add other elements in addition to Ni and Si. For example, JP-A-2-166249 of Patent Document 1 discloses a Cu—Ni—Si based copper alloy in which Cr, Mg, Zr and Co are added to a Cu—Ni—Si based copper alloy.

また、他のCu−Ni−Si系銅合金材料の改良としては、冷間加工後の焼鈍により生成する再結晶粒(静的再結晶粒)を微細化することが考えられる。   Further, as an improvement of other Cu—Ni—Si based copper alloy materials, it is conceivable to refine the recrystallized grains (static recrystallized grains) generated by annealing after cold working.

また、他のCu−Ni−Si系銅合金材料の改良としては、熱間加工又は冷間加工中に生成する再結晶粒(動的再結晶粒)を微細化することが考えられる。例えば、特許文献2の特開2002−356728号公報には、最終冷間圧延により動的連続再結晶を生じさせる銅及び銅合金の製造方法であって、上記最終冷間圧延における加工度:加工度=ln(T0/T1;T0は圧延前の板厚、T1は圧延後の板厚)が、加工度≧3なる圧延加工を施すことを特徴とする銅及び銅合金の製造方法が開示されている。   Further, as an improvement of other Cu—Ni—Si based copper alloy materials, it is conceivable to refine the recrystallized grains (dynamic recrystallized grains) generated during hot working or cold working. For example, Japanese Patent Application Laid-Open No. 2002-356728 of Patent Document 2 discloses a method for producing copper and a copper alloy that causes dynamic continuous recrystallization by final cold rolling, and the degree of processing in the final cold rolling: processing Disclosed is a method for producing copper and copper alloys, characterized in that a rolling process is performed with a degree = ln (T0 / T1; T0 is a plate thickness before rolling, and T1 is a plate thickness after rolling) with a working degree ≧ 3. ing.

特開平2−166249号公報(特許請求の範囲)JP-A-2-166249 (Claims) 特開2002−356728号公報(請求項1及び請求項2)JP 2002-356728 A (Claims 1 and 2)

ところが、特許文献1では、添加元素による強度上昇寄与が、NiSiの析出による寄与と比較して小さいため、添加元素の調整では、高強度及び高導電性の要求を両立することはできない。 However, in Patent Document 1, the strength increase contribution due to the additive element is small compared to the contribution due to precipitation of Ni 2 Si. Therefore, the adjustment of the additive element cannot satisfy both requirements of high strength and high conductivity.

また、Cu−Ni−Si系銅合金材料のような析出硬化型合金では、析出硬化元素が完全に固溶する温度に保持した後、強制冷却して、過飽和固溶体を得るための溶体化処理が必要となるが、Cu−Ni−Si系銅合金材料では、母材の再結晶温度と、NiSiの析出温度がほぼ一致するため、溶体化処理での加熱温度を、再結晶温度以上としなければならず、微細化させた結晶粒の粗大化が避けられない。そのため、静的再結晶粒を微細化することによるCu−Ni−Si系銅合金材料の改良は、有効な方法ではない。 Further, in a precipitation hardening type alloy such as a Cu—Ni—Si based copper alloy material, a solution treatment for obtaining a supersaturated solid solution is performed by forcibly cooling after maintaining a temperature at which the precipitation hardening element is completely dissolved. it is necessary, in the Cu-Ni-Si-based copper alloy material, the recrystallization temperature of the base material, the precipitation temperature of the Ni 2 Si is substantially coincident, the heating temperature in the solution treatment, the recrystallization temperature or higher In other words, coarsening of the refined crystal grains is inevitable. Therefore, the improvement of the Cu—Ni—Si based copper alloy material by refining the static recrystallized grains is not an effective method.

また、特許文献2では、冷間加工の際に加工度を高くすることにより、動的再結晶を生じさせて、結晶粒を微細にしているが、このような手法を用いることができるのは、冷間圧延を行なうことができる板材、すなわち、加工度を高く且つ均一にすることができる板材に限られる。   In Patent Document 2, dynamic recrystallization is caused by increasing the degree of processing during cold working to make crystal grains fine. However, such a method can be used. The plate material can be cold-rolled, that is, the plate material that can be made uniform with high workability.

ところが、特定の形状に銅の鋳塊を熱間押出することにより成形される形材は、熱間押出後の製造工程で、特許文献2のような加工度が高い冷間加工を行なうことはできないので、該形材の製造では、冷間加工により結晶粒を微細化することが困難である。また、該形材は、厚みが一定ではない複雑な形状に銅の鋳塊を熱間押出して製造されるため、結晶粒の粒径分布が材料全体に亘って不均一となり易い。これらのことから、加工度の高い冷間加工により結晶粒を微細化するという手法で、高強度且つ高導電性の銅合金材料からなる形材を得ることは困難であった。   However, a shape formed by hot extruding a copper ingot into a specific shape is subjected to cold working with a high degree of work as in Patent Document 2 in the manufacturing process after hot extrusion. Therefore, it is difficult to refine crystal grains by cold working in manufacturing the shape. In addition, since the shape material is manufactured by hot extruding a copper ingot into a complicated shape with a non-constant thickness, the particle size distribution of crystal grains tends to be non-uniform throughout the material. For these reasons, it has been difficult to obtain a shape made of a high-strength and high-conductivity copper alloy material by a technique of refining crystal grains by cold working with a high workability.

また、管材又は棒材の製造では、熱間加工の後に、抽伸加工等の冷間加工を行うこともできるが、板材ほど高い加工度の冷間加工を行うことができないので、加工度の高い冷間加工により結晶粒を微細化するという手法で、高強度且つ高導電性の銅合金材料からなる管材又は棒材を得ることは困難であった。   In addition, in the manufacture of pipes or rods, cold working such as drawing can be performed after hot working, but the degree of work is high because cold working with a higher working degree cannot be performed as a plate material. It has been difficult to obtain a pipe or bar made of a high-strength and high-conductivity copper alloy material by a technique of refining crystal grains by cold working.

また、鍛造材の製造では、熱間加工の後に、加工度の高い冷間鍛造を行うことはできる。しかし、板材では、材料の厚みが均一であるため、冷間圧延で、材料全体の加工度を均一にすることができるので、結晶粒の粒径分布が材料全体に亘って均一なものを製造することができるが、鍛造材では、厚みが不均一であるため、材料全体の加工度を均一にすることは困難なので、結晶粒の粒径分布が材料全体に亘って均一なものを得ることはできない。そのため、鍛造材を、冷間鍛造するという手法で、高強度且つ高伝導性の銅合金材料からなる鍛造材を得ることは困難であった。   In the production of forged materials, cold forging with a high workability can be performed after hot working. However, since the thickness of the plate material is uniform, the degree of processing of the entire material can be made uniform by cold rolling, so that the grain size distribution of the crystal grains is uniform throughout the material. However, since the thickness of the forged material is not uniform, it is difficult to make the workability of the entire material uniform, so that the crystal grain size distribution is uniform throughout the material. I can't. Therefore, it has been difficult to obtain a forging material made of a copper alloy material having high strength and high conductivity by means of cold forging the forging material.

従って、本発明の課題は、高強度且つ高導電性の銅合金材料を提供することにある。特に、高強度且つ高導電性の銅合金材料からなる板材以外の材料、例えば、高強度且つ高導電性の銅合金材料からなる形材、管材、棒材及び鍛造材を提供することにある。   Accordingly, an object of the present invention is to provide a copper alloy material having high strength and high conductivity. In particular, it is to provide a material other than a plate material made of a high-strength and high-conductivity copper alloy material, for example, a shape member, a pipe material, a bar material, and a forging material made of a high-strength and high-conductivity copper alloy material.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、銅合金材料の添加元素及びその添加量を調整し、且つ熱間加工工程及びそれに続く急冷処理工程の条件を、選択することにより、加工度が高い冷間加工を行わなくとも、均一で微細な結晶粒の銅合金材料を得られ、このようにして得られた銅合金材料は、高強度且つ高導電性であることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-described problems in the prior art, the present inventors have adjusted the additive elements of the copper alloy material and the amount of the additive, and the conditions of the hot working process and the subsequent quenching process. By selecting the above, it is possible to obtain a copper alloy material having uniform and fine crystal grains without performing cold working with a high degree of processing. The copper alloy material thus obtained has high strength and high conductivity. As a result, the present invention has been completed.

すなわち、本発明(1)は、Niを1.5〜3.0質量%、Siを0.3〜1.5質量%、Zrを0.01〜0.3質量%含有し、残部Cu及び不可避不純物からなり、Siの含有量に対するNiの含有量の比が2〜5である鋳塊を得る鋳造工程と、
該鋳塊を、下記式(1):
熱間加工温度(℃)≧870+Niの含有量(質量%)×10 (1)
を満たす熱間加工温度で熱間押出又は熱間鍛造し、熱間加工材を得る熱間加工工程と、
該熱間加工材を、100℃/秒以上の冷却速度で、300℃以下に冷却し、急冷処理材を得る急冷処理工程と、
該急冷処理材を、該熱間加工温度より低い温度で加熱して、時効処理することにより、銅合金材料を得る時効処理工程と、
を行い得られることを特徴とする銅合金材料を提供するものである。
That is, the present invention (1) contains 1.5 to 3.0% by mass of Ni, 0.3 to 1.5% by mass of Si, 0.01 to 0.3% by mass of Zr, and the balance Cu and A casting process comprising inevitable impurities and obtaining an ingot having a ratio of Ni content to Si content of 2 to 5,
The ingot is expressed by the following formula (1):
Hot working temperature (° C.) ≧ 870 + Ni content (mass%) × 10 (1)
A hot working step for obtaining a hot work material by hot extruding or hot forging at a hot working temperature satisfying
A rapid cooling treatment step of cooling the hot-worked material at a cooling rate of 100 ° C./second or more to 300 ° C. or less to obtain a rapidly treated material;
An aging treatment step of obtaining a copper alloy material by heating the quenching treatment material at a temperature lower than the hot working temperature and aging treatment;
The present invention provides a copper alloy material characterized in that

また、本発明(2)は、Niを1.5〜3.0質量%、Siを0.3〜1.5質量%、Zrを0.01〜0.3質量%含有し、残部Cu及び不可避不純物からなり、Siの含有量に対するNiの含有量の比が2〜5である鋳塊を得る鋳造工程と、
該鋳塊を、下記式(1):
熱間加工温度(℃)≧870+Niの含有量(質量%)×10 (1)
を満たす熱間加工温度で熱間押出又は熱間鍛造し、熱間加工材を得る熱間加工工程と、
該熱間加工材を、100℃/秒以上の冷却速度で、300℃以下に冷却し、急冷処理材を得る急冷処理工程と、
該急冷処理材を1回以上冷間加工し、冷間加工材を得る冷間加工工程と、
該冷間加工材を、該熱間加工温度より低い温度で加熱して、時効処理することにより、銅合金材料を得る時効処理工程と、
を行い得られることを特徴とする銅合金材料を提供するものである。
Moreover, this invention (2) contains 1.5-3.0 mass% of Ni, 0.3-1.5 mass% of Si, 0.01-0.3 mass% of Zr, and balance Cu and A casting process comprising inevitable impurities and obtaining an ingot having a ratio of Ni content to Si content of 2 to 5,
The ingot is expressed by the following formula (1):
Hot working temperature (° C.) ≧ 870 + Ni content (mass%) × 10 (1)
A hot working step for obtaining a hot work material by hot extruding or hot forging at a hot working temperature satisfying
A rapid cooling treatment step of cooling the hot-worked material at a cooling rate of 100 ° C./second or more to 300 ° C. or less to obtain a rapidly treated material;
Cold working the cold treated material at least once to obtain a cold worked material; and
An aging treatment step of obtaining a copper alloy material by heating the cold-worked material at a temperature lower than the hot working temperature and aging treatment;
The present invention provides a copper alloy material characterized in that

また、本発明(3)は、Niを1.5〜3.0質量%、Siを0.3〜1.5質量%、Zrを0.01〜0.3質量%含有し、残部Cu及び不可避不純物からなり、Siの含有量に対するNiの含有量の比が2〜5である鋳塊を得る鋳造工程と、
該鋳塊を、下記式(1):
熱間加工温度(℃)≧870+Niの含有量(質量%)×10 (1)
を満たす熱間加工温度で熱間押出又は熱間鍛造し、熱間加工材を得る熱間加工工程と、
該熱間加工材を、100℃/秒以上の冷却速度で、300℃以下に冷却し、急冷処理材を得る急冷処理工程と、
該急冷処理材を、該熱間加工温度より低い温度で加熱して、時効処理を行なうことにより、銅合金材料を得る時効処理工程と、
を有することを特徴とする銅合金材料の製造方法を提供するものである。
Moreover, this invention (3) contains 1.5-3.0 mass% of Ni, 0.3-1.5 mass% of Si, 0.01-0.3 mass% of Zr, and the balance Cu and A casting process comprising inevitable impurities and obtaining an ingot having a ratio of Ni content to Si content of 2 to 5,
The ingot is expressed by the following formula (1):
Hot working temperature (° C.) ≧ 870 + Ni content (mass%) × 10 (1)
A hot working step for obtaining a hot work material by hot extruding or hot forging at a hot working temperature satisfying
A rapid cooling treatment step of cooling the hot-worked material at a cooling rate of 100 ° C./second or more to 300 ° C. or less to obtain a rapidly treated material;
An aging treatment step of obtaining a copper alloy material by heating the quenching treatment material at a temperature lower than the hot working temperature and performing an aging treatment;
A method for producing a copper alloy material is provided.

また、本発明(4)は、Niを1.5〜3.0質量%、Siを0.3〜1.5質量%、Zrを0.01〜0.3質量%含有し、残部Cu及び不可避不純物からなり、Siの含有量に対するNiの含有量の比が2〜5である鋳塊を得る鋳造工程と、
該鋳塊を、下記式(1):
熱間加工温度(℃)≧870+Niの含有量(質量%)×10 (1)
を満たす熱間加工温度で熱間押出又は熱間鍛造し、熱間加工材を得る熱間加工工程と、
該熱間加工材を、100℃/秒以上の冷却速度で、300℃以下に冷却し、急冷処理材を得る急冷処理工程と、
該急冷処理材を1回以上冷間加工し、冷間加工材を得る冷間加工工程と、
該冷間加工材を、該熱間加工温度より低い温度で加熱して、時効処理することにより、銅合金材料を得る時効処理工程と、
を有することを特徴とする銅合金材料の製造方法を提供するものである。
Moreover, this invention (4) contains 1.5-3.0 mass% of Ni, 0.3-1.5 mass% of Si, 0.01-0.3 mass% of Zr, and the balance Cu and A casting process comprising inevitable impurities and obtaining an ingot having a ratio of Ni content to Si content of 2 to 5,
The ingot is expressed by the following formula (1):
Hot working temperature (° C.) ≧ 870 + Ni content (mass%) × 10 (1)
A hot working step for obtaining a hot work material by hot extruding or hot forging at a hot working temperature satisfying
A rapid cooling treatment step of cooling the hot-worked material at a cooling rate of 100 ° C./second or more to 300 ° C. or less to obtain a rapidly treated material;
Cold working the cold treated material at least once to obtain a cold worked material; and
An aging treatment step of obtaining a copper alloy material by heating the cold-worked material at a temperature lower than the hot working temperature and aging treatment;
A method for producing a copper alloy material is provided.

また、本発明(5)は、前記本発明(1)又は(2)いずれか記載の銅合金材料からなることを特徴とする溶接機器の電極部材を提供するものである。   Moreover, this invention (5) provides the electrode member of the welding equipment characterized by consisting of the copper alloy material as described in either said invention (1) or (2).

本発明によれば、高強度且つ高導電性の銅合金材料を提供することができる。特に、高強度且つ高導電性の銅合金材料からなる板材以外の材料、例えば、高強度且つ高導電性の銅合金材料からなる形材、管材、棒材及び鍛造材を提供することができる。   According to the present invention, a copper alloy material having high strength and high conductivity can be provided. In particular, it is possible to provide materials other than a plate material made of a high-strength and high-conductivity copper alloy material, for example, shapes, pipes, rods and forgings made of a high-strength and high-conductivity copper alloy material.

本発明の第一の形態の銅合金材料は、Niを1.5〜3.0質量%、Siを0.3〜1.5質量%、Zrを0.01〜0.3質量%含有し、残部Cu及び不可避不純物からなり、Siの含有量に対するNiの含有量の比が2〜5である鋳塊を得る鋳造工程と、
該鋳塊を、下記式(1):
熱間加工温度(℃)≧870+Niの含有量(質量%)×10 (1)
を満たす熱間加工温度で熱間押出又は熱間鍛造し、熱間加工材を得る熱間加工工程と、
該熱間加工材を、100℃/秒以上の冷却速度で、300℃以下に冷却し、急冷処理材を得る急冷処理工程と、
該急冷処理材を、該熱間加工温度より低い温度で加熱して、時効処理することにより、銅合金材料を得る時効処理工程と、
を行い得られる銅合金材料である。
The copper alloy material of the first embodiment of the present invention contains 1.5 to 3.0 mass% of Ni, 0.3 to 1.5 mass% of Si, and 0.01 to 0.3 mass% of Zr. A casting process comprising a balance Cu and unavoidable impurities, and obtaining an ingot having a ratio of Ni content to Si content of 2 to 5,
The ingot is expressed by the following formula (1):
Hot working temperature (° C.) ≧ 870 + Ni content (mass%) × 10 (1)
A hot working step for obtaining a hot work material by hot extruding or hot forging at a hot working temperature satisfying
A rapid cooling treatment step of cooling the hot-worked material at a cooling rate of 100 ° C./second or more to 300 ° C. or less to obtain a rapidly treated material;
An aging treatment step of obtaining a copper alloy material by heating the quenching treatment material at a temperature lower than the hot working temperature and aging treatment;
It is a copper alloy material obtained by performing the above.

本発明の第一の形態の銅合金材料に係る該鋳造工程は、Ni、Si及びZrを含有し、残部がCu及び不可避不純物からなる鋳塊を得る工程である。   The casting step according to the copper alloy material of the first aspect of the present invention is a step of obtaining an ingot containing Ni, Si and Zr, with the balance being Cu and inevitable impurities.

該鋳塊は、Ni、Si及びZrを含有しており、該鋳塊中、Niの含有量は、1.5〜3.0質量%、好ましくは1.7〜2.8質量%であり、Siの含有量は、0.3〜1.5質量%、好ましくは0.4〜1.2質量%であり、Zrの含有量は、0.01〜0.3質量%、好ましくは0.05〜0.25質量%である。該鋳塊中のNi、Si及びZrの含有量が、いずれも上記範囲内にあることにより、銅合金材料の強度が高くなる。特に、該鋳塊中のNi、Si及びZrの含有量を、上記範囲とすることにより、クラス3の規格に適合する銅合金材料を提供することができる。一方、該鋳塊中のNi、Si及びZrの含有量のいずれかが、上記範囲より少ないと、銅合金材料の強度が低くなり、クラス3の規格を満足する強度が得られない。また、特に、該鋳塊中のZrの含有量が、上記範囲より少ないと、銅合金材料の強度が低くなることに加え、軟化特性温度が低くなる。例えば、クラス3の規格は、銅合金材料を加熱した時に、加熱前の硬さに対する加熱後の硬さの比(加熱後の硬さ/加熱後の硬さ)が0.85となる温度(クラス3の軟化特性温度)が、465℃以上であることであり、該鋳塊中のZrの含有量が、上記範囲より少ないと、クラス3の規格に要求される特性を満足することができない。また、該鋳塊中のNi、Si及びZrの含有量のいずれかが、上記範囲を超えると、導電性が不足し、クラス3の規格を満足する導電率が得られない。また、特に、該鋳塊中のZrの含有量が、上記範囲を超えると、銅合金材料の導電性の不足に加えて、銅合金材料の延性が低くなる。   The ingot contains Ni, Si, and Zr, and the content of Ni in the ingot is 1.5 to 3.0% by mass, preferably 1.7 to 2.8% by mass. The Si content is 0.3 to 1.5 mass%, preferably 0.4 to 1.2 mass%, and the Zr content is 0.01 to 0.3 mass%, preferably 0. 0.05 to 0.25% by mass. When the contents of Ni, Si, and Zr in the ingot are all within the above range, the strength of the copper alloy material is increased. In particular, by setting the contents of Ni, Si, and Zr in the ingot to be in the above ranges, a copper alloy material that meets Class 3 standards can be provided. On the other hand, if any of the contents of Ni, Si and Zr in the ingot is less than the above range, the strength of the copper alloy material is lowered, and the strength satisfying the class 3 standard cannot be obtained. In particular, when the Zr content in the ingot is less than the above range, the strength of the copper alloy material is lowered, and the softening characteristic temperature is lowered. For example, the standard of class 3 is that when a copper alloy material is heated, the ratio of the hardness after heating to the hardness before heating (hardness after heating / hardness after heating) is 0.85 ( Class 3 softening characteristic temperature) is 465 ° C. or higher, and if the Zr content in the ingot is less than the above range, the characteristics required for class 3 standards cannot be satisfied. . Further, if any of the contents of Ni, Si and Zr in the ingot exceeds the above range, the conductivity is insufficient and the conductivity satisfying the class 3 standard cannot be obtained. In particular, when the Zr content in the ingot exceeds the above range, the ductility of the copper alloy material becomes low in addition to the lack of conductivity of the copper alloy material.

該鋳塊中のSiの含有量に対するNiの含有量の比(Ni含有量/Si含有量)は、2〜5、好ましくは2.5〜4.5である。該鋳塊中のSiの含有量に対するNiの含有量の比が、上記範囲にあることにより、銅合金材料の導電性が高くなる。一方、該鋳塊中のSiの含有量に対するNiの含有量の比が、上記範囲外であると、過剰のNi又はSiの影響で、銅合金材料の導電性が低くなる。   The ratio of the Ni content to the Si content in the ingot (Ni content / Si content) is 2 to 5, preferably 2.5 to 4.5. When the ratio of the Ni content to the Si content in the ingot is in the above range, the conductivity of the copper alloy material is increased. On the other hand, if the ratio of the Ni content to the Si content in the ingot is outside the above range, the conductivity of the copper alloy material becomes low due to the influence of excess Ni or Si.

該鋳塊は、Ni、Si及びZrの他に、Biを含有することができる。本発明の第一の形態の銅合金材料は、形材、管材、棒材又は鍛造材等に加工された後、二次加工として、切削加工や孔明け加工が施される場合があり、この場合、該鋳塊が、Biを含有することにより、銅合金材料の切削性が高くなる点で好ましい。なお、該鋳塊中のBiの含有量が、1.0質量%を超えると、熱間加工又は冷間加工の際に、割れが発生し易くなるので、該鋳塊中のBiの含有量は、0.1〜1.0質量%であることが特に好ましい。   The ingot can contain Bi in addition to Ni, Si and Zr. The copper alloy material of the first aspect of the present invention may be subjected to cutting or drilling as a secondary process after being processed into a shape, tube, bar or forged material. In this case, the ingot is preferable in that it contains Bi so that the machinability of the copper alloy material is improved. If the Bi content in the ingot exceeds 1.0% by mass, cracking is likely to occur during hot working or cold working, so the Bi content in the ingot. Is particularly preferably 0.1 to 1.0% by mass.

そして、該鋳塊は、Ni、Si及びZrと、必要に応じて含有されるBiと、残部Cu及び不可避不純物とからなる。   And this ingot consists of Ni, Si, and Zr, Bi contained as needed, remainder Cu and inevitable impurities.

該鋳造工程により該鋳塊を得る方法としては、特に制限されないが、例えば、銅の地金及び本発明の第一の形態の銅合金材料の含有元素の地金又は該含有元素と銅の合金を、該銅合金材料中の含有量が、所定の含有量となるように配合して、成分調整を行い、次いで、高周波溶解炉等を用いて、該鋳塊を鋳造することにより行なわれる。   The method for obtaining the ingot by the casting process is not particularly limited, and for example, a copper ingot and an element ingot of the element contained in the copper alloy material of the first aspect of the present invention or an alloy of the element and copper are included. Are mixed so that the content in the copper alloy material becomes a predetermined content, the components are adjusted, and then the ingot is cast using a high-frequency melting furnace or the like.

該鋳造工程では、Zrは活性な金属なので、溶解時の酸化ロスが多くなるため、成分調整においては、Zrの溶解時の酸化ロスを考慮した配合が必要である。   In the casting process, since Zr is an active metal, an oxidation loss at the time of dissolution increases, and therefore, in the component adjustment, a blending that takes into consideration the oxidation loss at the time of dissolution of Zr is necessary.

本発明の第一の形態の銅合金材料に係る該熱間加工工程は、該鋳造工程を行い得られた該鋳塊を、熱間押出又は熱間鍛造し、最終製品と同じ形状又は最終製品に近い形状に加工し、熱間加工材を得る工程である。   In the hot working step according to the copper alloy material of the first aspect of the present invention, the ingot obtained by performing the casting step is hot extruded or hot forged, and has the same shape as the final product or the final product. It is the process of processing to the shape close | similar to and obtaining a hot work material.

該熱間加工工程では、該鋳塊を、下記式(1):
熱間加工温度(℃)≧870+Niの含有量(質量%)×10 (1)
を満たす熱間加工温度で、熱間押出又は熱間鍛造する。また、該熱間加工工程における該熱間加工温度は、「870+Niの含有量(質量%)×10」(℃)以上となる温度であり且つ材料が溶融することのない温度であればよく、「870+Niの含有量(質量%)×10」(℃)以上970℃以下であることが好ましく、「890+Niの含有量(質量%)×10」(℃)以上960℃以下であることが特に好ましい。なお、上記式(1)中、Niの含有量とは、該鋳塊中のNiの含有量を指す。
In the hot working step, the ingot is expressed by the following formula (1):
Hot working temperature (° C.) ≧ 870 + Ni content (mass%) × 10 (1)
Hot extrusion or hot forging at a hot working temperature satisfying Further, the hot working temperature in the hot working step may be a temperature that is not less than “870 + Ni content (mass%) × 10” (° C.) and does not melt the material, It is preferably “870 + Ni content (mass%) × 10” (° C.) or more and 970 ° C. or less, particularly preferably “890 + Ni content (mass%) × 10” (° C.) or more and 960 ° C. or less. . In the above formula (1), the Ni content refers to the Ni content in the ingot.

該熱間加工工程で、該鋳塊を熱間押出又は熱間鍛造する方法は、特に制限されず、銅合金材料の加工において、通常用いられる熱間押出又は熱間鍛造を採用することができる。   In the hot working step, the method of hot extruding or hot forging the ingot is not particularly limited, and hot extrusion or hot forging that is usually used can be employed in the processing of the copper alloy material. .

本発明の第一の形態の銅合金材料に係る該急冷処理工程は、該熱間加工工程を行い得られる該熱間加工材を、100℃/秒以上の冷却速度で、300℃以下に冷却し、急冷処理材を得る工程である。上記の冷却速度を達成するために、該急冷処理工程では、該熱間加工材を、水槽に投入する等により、該熱間加工材を、水冷することが好ましい。その際、熱容量を考慮して、適切な容積の水槽を使用したり、冷却水を適正に補給したりすることにより、冷却速度を制御することができる。該熱間加工材を水槽に投入して急冷する場合、該熱間加工材の温度が該熱間加工温度から下がっていくに従い、その冷却速度は小さくなるので、この場合は、300℃における冷却速度を100℃/秒以上に制御することが必要である。なお、該急冷処理材の温度が300℃未満になると、冷却速度の影響は極軽微になるので、冷却速度の制御を行なわなくてもよい。   In the rapid cooling treatment step according to the copper alloy material of the first aspect of the present invention, the hot work material obtained by performing the hot work step is cooled to 300 ° C. or less at a cooling rate of 100 ° C./second or more. And a step of obtaining a rapid cooling material. In order to achieve the above cooling rate, in the rapid cooling treatment step, the hot work material is preferably water-cooled by, for example, putting the hot work material into a water tank. At that time, in consideration of the heat capacity, the cooling rate can be controlled by using a water tank having an appropriate volume or by appropriately supplying cooling water. When the hot-worked material is put into a water tank and rapidly cooled, the cooling rate decreases as the temperature of the hot-worked material decreases from the hot-working temperature. In this case, cooling at 300 ° C. It is necessary to control the speed to 100 ° C./second or more. In addition, since the influence of a cooling rate will become very slight when the temperature of this rapid cooling processing material will be less than 300 degreeC, it is not necessary to control a cooling rate.

なお、該急冷処理工程では、該熱間加工工程を行なった後速やかに、得られた該熱間加工材を急冷することが好ましいが、つまり、該熱間加工工程直後の該熱間加工材の温度から、該熱間加工材の急冷を行なうことが好ましいが、製造ラインの都合等で、該熱間加工材が該熱間加工工程から該急冷処理工程に移動する間に、本発明の効果を損なわない範囲で、該熱間加工材の温度が下がってもよい。   In the rapid cooling treatment step, it is preferable to rapidly cool the obtained hot worked material immediately after the hot working step, that is, the hot worked material immediately after the hot working step. It is preferable to perform the rapid cooling of the hot-worked material from the temperature of the temperature of the present invention while the hot-worked material moves from the hot working step to the rapid cooling treatment step due to the convenience of the production line. The temperature of the hot-worked material may be lowered as long as the effect is not impaired.

該急冷処理工程を行なうことにより、該急冷処理材が得られるが、該急冷処理材は、結晶粒が微細であり且つ均一であり、加えて、析出硬化元素が過飽和に固溶した過飽和固溶体である。   The quenching treatment material is obtained by performing the quenching treatment step. The quenching treatment material is a supersaturated solid solution in which crystal grains are fine and uniform, and in addition, a precipitation hardening element is supersaturated. is there.

本発明の第一の形態の銅合金材料では、「870+Niの含有量(質量%)×10」(℃)以上の熱間加工温度で、該熱間加工工程を行い、且つ100℃/秒以上となる冷却速度で、300℃以下に冷却する該急冷処理工程を行なうことにより、該急冷処理材中の結晶粒を、微細且つ均一にすることができ、その結果、銅合金材料中の結晶粒を、微細且つ均一にすることができる。   In the copper alloy material of the first aspect of the present invention, the hot working step is performed at a hot working temperature of “870 + Ni content (mass%) × 10” (° C.) or higher, and 100 ° C./second or higher. By carrying out the quenching treatment step of cooling to 300 ° C. or less at a cooling rate of the following, the crystal grains in the quenching treatment material can be made fine and uniform, and as a result, the crystal grains in the copper alloy material Can be made fine and uniform.

該熱間加工工程は、析出硬化元素、すなわち、Ni、Si及びZrを完全に固溶させる処理、一般に、溶体化処理と呼ばれる処理を兼ねる。よって、該熱間加工工程における該熱間加工温度が、「870+Niの含有量(質量%)×10」(℃)未満だと、Ni又はSiが十分に固溶せず、固溶しなかったNi又はSiが、粗大晶出物として、銅合金材料中に存在するため、Ni及びSiによる銅合金材料の強度上昇の寄与が少なくなり、銅合金材料の強度が低くなる。   The hot working step also serves as a treatment for completely dissolving the precipitation hardening elements, that is, Ni, Si and Zr, generally called a solution treatment. Therefore, when the hot working temperature in the hot working step is less than “870 + Ni content (mass%) × 10” (° C.), Ni or Si did not sufficiently dissolve and did not dissolve. Since Ni or Si is present in the copper alloy material as coarse crystals, the contribution of the strength increase of the copper alloy material due to Ni and Si is reduced, and the strength of the copper alloy material is reduced.

また、該急冷処理工程における冷却速度が、100℃/秒未満だと、Ni、Si又はZrが固溶せず、粗大な析出物として析出してしまい、後の該時効処理工程での析出硬化に寄与する微細な析出物が不足することによって、十分な強度上昇効果が得られなくなる。   Further, when the cooling rate in the rapid cooling treatment step is less than 100 ° C./second, Ni, Si or Zr does not dissolve, but precipitates as a coarse precipitate, and precipitation hardening in the later aging treatment step Due to the lack of fine precipitates that contribute to the above, a sufficient strength increasing effect cannot be obtained.

また、該急冷処理工程において、冷却速度の制御を行なう該急冷処理材の温度の下限が、300℃より高いと、Ni、Si又はZrが固溶せず、粗大な析出物として析出してしまい、後の該時効処理工程での析出硬化に寄与する微細な析出物が不足することによって、十分な強度上昇効果が得られなくなる。   Further, in the quenching process, when the lower limit of the temperature of the quenching material for controlling the cooling rate is higher than 300 ° C., Ni, Si or Zr does not dissolve, and precipitates as coarse precipitates. If the fine precipitates that contribute to precipitation hardening in the subsequent aging treatment step are insufficient, a sufficient strength increasing effect cannot be obtained.

本発明の第一の形態の銅合金材料に係る該時効処理工程は、該急冷処理工程を行い得られた該急冷処理材を、該熱間加工温度より低い温度で加熱して、時効処理することにより、銅合金材料を得る工程である。   In the aging treatment step according to the copper alloy material of the first aspect of the present invention, the quenching treatment material obtained by performing the quenching treatment step is heated at a temperature lower than the hot working temperature to perform an aging treatment. This is a step of obtaining a copper alloy material.

該時効処理工程では、該急冷処理材を加熱するが、該急冷処理材を加熱する際の加熱温度は、該熱間加工温度より低い温度であり、一般的に300〜700℃である。該急冷処理材を加熱する際の加熱温度が、該熱間加工温度を超えると、該急冷処理工程を行なった効果が相殺されてしまい、析出硬化元素による強度上昇効果が十分に得られなくなる。また、該急冷処理材を加熱する際の加熱時間は、適宜選択されるが、好ましくは10分以上、特に好ましくは30分〜10時間である。   In the aging treatment step, the quenching material is heated, and the heating temperature when heating the quenching material is lower than the hot working temperature, and is generally 300 to 700 ° C. If the heating temperature at the time of heating the quenching material exceeds the hot working temperature, the effect of performing the quenching process is offset, and the effect of increasing the strength by the precipitation hardening element cannot be obtained sufficiently. The heating time for heating the quenching material is appropriately selected, but is preferably 10 minutes or more, particularly preferably 30 minutes to 10 hours.

該時効処理工程で、該急冷処理材を時効処理することにより、析出硬化元素であるNi、Si及びZrが析出する。   In the aging treatment step, the quenching material is subjected to an aging treatment to precipitate precipitation hardening elements Ni, Si, and Zr.

本発明の第二の形態の銅合金材料は、Niを1.5〜3.0質量%、Siを0.3〜1.5質量%、Zrを0.01〜0.3質量%含有し、残部Cu及び不可避不純物からなり、Siの含有量に対するNiの含有量の比が2〜5である鋳塊を得る鋳造工程と、
該鋳塊を、下記式(1):
熱間加工温度(℃)≧870+Niの含有量(質量%)×10 (1)
を満たす熱間加工温度で熱間押出又は熱間鍛造し、熱間加工材を得る熱間加工工程と、
該熱間加工材を、100℃/秒以上の冷却速度で、300℃以下に冷却し、急冷処理材を得る急冷処理工程と、
該急冷処理材を1回以上冷間加工し、冷間加工材を得る冷間加工工程と、
該冷間加工材を、該熱間加工温度より低い温度で加熱して、時効処理することにより、銅合金材料を得る時効処理工程と、
を行い得られる銅合金材料である。
The copper alloy material of the second embodiment of the present invention contains 1.5 to 3.0 mass% of Ni, 0.3 to 1.5 mass% of Si, and 0.01 to 0.3 mass% of Zr. A casting process comprising a balance Cu and unavoidable impurities, and obtaining an ingot having a ratio of Ni content to Si content of 2 to 5,
The ingot is expressed by the following formula (1):
Hot working temperature (° C.) ≧ 870 + Ni content (mass%) × 10 (1)
A hot working step for obtaining a hot work material by hot extruding or hot forging at a hot working temperature satisfying
A rapid cooling treatment step of cooling the hot-worked material at a cooling rate of 100 ° C./second or more to 300 ° C. or less to obtain a rapidly treated material;
Cold working the cold treated material at least once to obtain a cold worked material; and
An aging treatment step of obtaining a copper alloy material by heating the cold-worked material at a temperature lower than the hot working temperature and aging treatment;
It is a copper alloy material obtained by performing the above.

つまり、本発明の第二の形態の銅合金材料は、本発明の第一の形態の銅合金材料に係る該急冷処理工程と該時効処理工程との間に、更に、冷間加工工程を有する。   In other words, the copper alloy material according to the second aspect of the present invention further includes a cold working step between the rapid cooling treatment step and the aging treatment step according to the copper alloy material according to the first aspect of the present invention. .

従って、本発明の第二の形態の銅合金材料に係る鋳造工程及び急冷処理工程は、本発明の第一の形態の銅合金材料に係る鋳造工程及び急冷処理工程と同様である。   Therefore, the casting process and the rapid cooling process according to the copper alloy material of the second aspect of the present invention are the same as the casting process and the rapid cooling process according to the copper alloy material of the first aspect of the present invention.

また、本発明の第二の形態の銅合金材料に係る時効処理工程は、本発明の第一の形態の銅合金材料に係る急冷処理工程を行ない得られる急冷処理材に代えて、本発明の第二の形態の銅合金材料に係る冷間加工工程を行い得られる冷間加工材とする以外は、本発明の第一の形態の銅合金材料に係る時効処理工程と同様である。   Moreover, the aging treatment process according to the copper alloy material of the second aspect of the present invention is replaced with the quenching treatment material obtained by performing the quenching treatment process according to the copper alloy material of the first aspect of the present invention. It is the same as the aging treatment process according to the copper alloy material of the first embodiment of the present invention, except that the cold work material obtained by performing the cold working process according to the copper alloy material of the second embodiment.

そこで、以下では、本発明の第二の形態の銅合金材料と本発明の第一の形態の銅合金材料との相違点について説明する。   Therefore, hereinafter, differences between the copper alloy material of the second embodiment of the present invention and the copper alloy material of the first embodiment of the present invention will be described.

該冷間加工工程は、該急冷処理工程を行ない得られる該急冷処理材を冷間加工し、該冷間加工材を得る工程である。該冷間加工としては、例えば、冷間抽伸加工、冷間曲げ加工、冷間鍛造加工等が挙げられる。   The cold working process is a process of cold working the quenching material obtained by performing the quenching process to obtain the cold working material. Examples of the cold working include cold drawing, cold bending, and cold forging.

該冷間加工工程において、該急冷処理材を冷間加工する方法としては、特に制限されず、銅合金材料の加工において、通常用いられる冷間加工を採用することができる。   In the cold working step, the method of cold working the rapid-quenched material is not particularly limited, and cold working that is normally used in the machining of a copper alloy material can be employed.

また、該冷間加工工程において、該急冷処理材を冷間加工する回数は、1回であっても、複数回であってもよい。該冷間加工工程において、複数回の冷間加工を行う場合、冷間加工と冷間加工の間に、焼鈍処理を行なうのが通常である。   In the cold working step, the number of times that the rapid cooling material is cold worked may be one time or a plurality of times. In the cold working step, when a plurality of cold workings are performed, it is usual to perform an annealing process between the cold workings.

該冷間加工工程では、該急冷処理材中の析出硬化元素の析出量が多過ぎると、冷間加工工程での加工性が著しく低くなり、冷間で加工できなくなる。そして、本発明の第二の形態の銅合金材料においては、該急冷処理工程のおける冷却速度が、100℃/秒より遅いと、該急冷処理材中に析出する析出硬化元素の量が多くなり過ぎるので、該冷間加工工程における加工性が著しく低くなる。   In the cold working step, if the amount of the precipitation hardening element in the quenched material is too large, the workability in the cold working step is remarkably lowered, and the cold working cannot be performed. In the copper alloy material according to the second aspect of the present invention, when the cooling rate in the rapid cooling treatment process is slower than 100 ° C./second, the amount of precipitation hardening elements precipitated in the rapid cooling material increases. Therefore, the workability in the cold working process is remarkably lowered.

そして、本発明の第二の形態の銅合金材料では、該冷間加工工程に次いで、該冷間加工工程を行い得られる該冷間加工材を用いて、該時効処理工程を行なう。   And in the copper alloy material of the 2nd form of this invention, following this cold work process, this aging treatment process is performed using this cold work material obtained by performing this cold work process.

なお、本発明の第一の形態の銅合金材料及び本発明の第二の形態の銅合金材料では、該時効処理工程を行なった後、必要に応じて、曲げ加工等の二次加工を行うことができる。   In addition, in the copper alloy material according to the first aspect of the present invention and the copper alloy material according to the second aspect of the present invention, after the aging treatment step, secondary processing such as bending is performed as necessary. be able to.

本発明の第一の形態の銅合金材料及び本発明の第二の形態の銅合金材料に係る該時効処理工程を行い得られる銅合金材料は、Ni、Si及びZrを含有しており、Niの含有量は、1.5〜3.0質量%、好ましくは1.7〜2.8質量%であり、Siの含有量は、0.3〜1.5質量%、好ましくは0.4〜1.2質量%であり、Zrの含有量は、0.01〜0.3質量%、好ましくは0.05〜0.25質量%である。また、本発明の第一の形態の銅合金材料及び本発明の第二の形態の銅合金材料に係る該時効処理工程を行い得られる銅合金材料中の結晶粒の平均粒径は、5μm以下である。   The copper alloy material obtained by performing the aging treatment step according to the copper alloy material of the first aspect of the present invention and the copper alloy material of the second aspect of the present invention contains Ni, Si and Zr, Ni The content of Si is 1.5 to 3.0% by mass, preferably 1.7 to 2.8% by mass, and the Si content is 0.3 to 1.5% by mass, preferably 0.4. The content of Zr is 0.01 to 0.3% by mass, preferably 0.05 to 0.25% by mass. The average grain size of the crystal grains in the copper alloy material obtained by performing the aging treatment step according to the copper alloy material of the first aspect of the present invention and the copper alloy material of the second aspect of the present invention is 5 μm or less. It is.

このように、本発明の第一の形態の銅合金材料及び本発明の第二の形態の銅合金材料係る該時効処理工程を行い得られる銅合金材料、すなわち、本発明の第一の形態の銅合金材料及び本発明の第二の形態の銅合金材料中の結晶粒は、粒径が5μm以下と微細であり且つ均一である。そのため、本発明の第一の形態の銅合金材料及び本発明の第二の形態の銅合金材料は、強度が高く且つ導電率が高い。   Thus, the copper alloy material according to the first aspect of the present invention and the copper alloy material according to the second aspect of the present invention, the copper alloy material obtained by performing the aging treatment step, that is, the first aspect of the present invention. The crystal grains in the copper alloy material and the copper alloy material of the second aspect of the present invention have a fine and uniform grain size of 5 μm or less. Therefore, the copper alloy material of the first aspect of the present invention and the copper alloy material of the second aspect of the present invention have high strength and high electrical conductivity.

本発明の第一の形態の銅合金材料及び本発明の第二の形態の銅合金材料は、特定の形状に、該鋳塊を熱間押出して成形される形材や、管材、棒材、鍛造材等に用いられる。つまり、本発明の第一の形態の銅合金材料及び本発明の第二の形態の銅合金材料は、形材、管材、棒材又は鍛造材用銅合金材料である。   The copper alloy material of the first form of the present invention and the copper alloy material of the second form of the present invention are shaped into a specific shape by hot extrusion of the ingot, a tube, a bar, Used for forging. That is, the copper alloy material according to the first aspect of the present invention and the copper alloy material according to the second aspect of the present invention are copper alloy materials for shapes, pipes, rods, or forgings.

本発明の第一の形態の銅合金材料の製造方法は、 Niを1.5〜3.0質量%、Siを0.3〜1.5質量%、Zrを0.01〜0.3質量%含有し、残部Cu及び不可避不純物からなり、Siの含有量に対するNiの含有量の比が2〜5である鋳塊を得る鋳造工程と、
該鋳塊を、下記式(1):
熱間加工温度(℃)≧870+Niの含有量(質量%)×10 (1)
を満たす熱間加工温度で熱間押出又は熱間鍛造し、熱間加工材を得る熱間加工工程と、
該熱間加工材を、100℃/秒以上の冷却速度で、300℃以下に冷却し、急冷処理材を得る急冷処理工程と、
該急冷処理材を、該熱間加工温度より低い温度で加熱して、時効処理することにより、銅合金材料を得る時効処理工程と、
を有する銅合金材料の製造方法である。
The manufacturing method of the copper alloy material of the first aspect of the present invention is as follows: Ni is 1.5 to 3.0% by mass, Si is 0.3 to 1.5% by mass, and Zr is 0.01 to 0.3% by mass. A casting step of obtaining an ingot comprising the remaining Cu and the inevitable impurities, the ratio of the Ni content to the Si content being 2 to 5,
The ingot is expressed by the following formula (1):
Hot working temperature (° C.) ≧ 870 + Ni content (mass%) × 10 (1)
A hot working step for obtaining a hot work material by hot extruding or hot forging at a hot working temperature satisfying
A rapid cooling treatment step of cooling the hot-worked material at a cooling rate of 100 ° C./second or more to 300 ° C. or less to obtain a rapidly treated material;
An aging treatment step of obtaining a copper alloy material by heating the quenching treatment material at a temperature lower than the hot working temperature and aging treatment;
It is a manufacturing method of the copper alloy material which has this.

また、本発明の第二の形態の銅合金材料の製造方法は、Niを1.5〜3.0質量%、Siを0.3〜1.5質量%、Zrを0.01〜0.3質量%含有し、残部Cu及び不可避不純物からなり、Siの含有量に対するNiの含有量の比が2〜5である鋳塊を得る鋳造工程と、
該鋳塊を、下記式(1):
熱間加工温度(℃)≧870+Niの含有量(質量%)×10 (1)
を満たす熱間加工温度で熱間押出又は熱間鍛造し、熱間加工材を得る熱間加工工程と、
該熱間加工材を、100℃/秒以上の冷却速度で、300℃以下に冷却し、急冷処理材を得る急冷処理工程と、
該急冷処理材を1回以上冷間加工し、冷間加工材を得る冷間加工工程と、
該冷間加工材を、該熱間加工温度より低い温度で加熱して、時効処理することにより、銅合金材料を得る時効処理工程と、
を有する銅合金材料の製造方法である。
Moreover, the manufacturing method of the copper alloy material of the 2nd form of this invention is 1.5-3.0 mass% of Ni, 0.3-1.5 mass% of Si, and 0.01-0. A casting step containing 3% by mass, consisting of the balance Cu and inevitable impurities, and obtaining an ingot having a ratio of Ni content to Si content of 2 to 5,
The ingot is expressed by the following formula (1):
Hot working temperature (° C.) ≧ 870 + Ni content (mass%) × 10 (1)
A hot working step for obtaining a hot work material by hot extruding or hot forging at a hot working temperature satisfying
A rapid cooling treatment step of cooling the hot-worked material at a cooling rate of 100 ° C./second or more to 300 ° C. or less to obtain a rapidly treated material;
Cold working the cold treated material at least once to obtain a cold worked material; and
An aging treatment step of obtaining a copper alloy material by heating the cold-worked material at a temperature lower than the hot working temperature and aging treatment;
It is a manufacturing method of the copper alloy material which has this.

本発明の第一の形態の銅合金材料の製造方法に係る鋳造工程、熱間加工工程、急冷処理工程及び時効処理工程は、本発明の第一の形態の銅合金材料に係る鋳造工程、熱間加工工程、急冷処理工程及び時効処理工程と同様であり、該時効処理工程の後に、必要に応じて、曲げ加工等の二次加工を行うことができる点も同様である。また、本発明の第二の形態の銅合金材料の製造方法に係る鋳造工程、熱間加工工程、急冷処理工程、冷間加工工程及び時効処理工程は、本発明の第二の形態の銅合金材料に係る鋳造工程、熱間加工工程、急冷処理工程、冷間加工工程及び時効処理工程と同様であり、該時効処理工程の後に、必要に応じて、曲げ加工等の二次加工を行うことができる点も同様である。   The casting process, the hot working process, the rapid cooling process and the aging process according to the method for producing the copper alloy material of the first aspect of the present invention are the casting process, the heat according to the copper alloy material of the first aspect of the present invention. This is the same as the inter-working process, the rapid cooling process, and the aging treatment process, and the same is that after the aging treatment process, secondary processing such as bending can be performed as necessary. Further, the casting process, hot working process, quenching process, cold working process and aging treatment process according to the method for producing the copper alloy material of the second aspect of the present invention are the copper alloy of the second aspect of the present invention. It is the same as the casting process, hot working process, rapid cooling process, cold working process, and aging treatment process related to the material. After the aging treatment process, secondary processing such as bending is performed as necessary. The same is true for the point that

本発明の第一の形態の銅合金材料及び本発明の第二の形態の銅合金材料は、JIS Z 3234のクラス3の規格に適合する強度及び導電性を有しているので、Cu−Be系銅合金材料に代わる銅合金材料として用いることができる。   Since the copper alloy material according to the first aspect of the present invention and the copper alloy material according to the second aspect of the present invention have strength and conductivity conforming to the class 3 standard of JIS Z 3234, Cu-Be It can be used as a copper alloy material that replaces the copper alloy material.

例えば、本発明の第一の形態の銅合金材料及び本発明の第二の形態の銅合金材料は、従来、溶接機器の電極部材等として用いられていたCu−Be系銅合金材料に代わる銅合金材料として、好適に用いられる。   For example, the copper alloy material according to the first aspect of the present invention and the copper alloy material according to the second aspect of the present invention are copper instead of Cu-Be based copper alloy materials conventionally used as electrode members for welding equipment. It is preferably used as an alloy material.

すなわち、本発明の溶接機器の電極部材は、本発明の第一の形態の銅合金材料又は本発明の第二の形態の銅合金材料からなる。   That is, the electrode member of the welding equipment of the present invention is made of the copper alloy material of the first aspect of the present invention or the copper alloy material of the second aspect of the present invention.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

(実施例1〜5、比較例1〜8)
Cu、Ni、Si、Zr及びBiの地金を用いて、表1に示す成分に配合し、高周波溶解炉を用いてφ100mmの鋳塊を製造後、φ90mmに皮剥きし、表1(実施例1〜5)又は表3(比較例1〜8)に示す熱間加工温度で熱間押出を行い、φ20mm棒の熱間加工材Aを得た。熱間押出の押出機の出口側に、冷却用の水槽を用意し、熱間押出後直ちに、該熱間加工材Aを、該水槽に誘導し、急冷して、該急冷処理材Bを得た。この急冷の際の300℃における冷却速度を、表1(実施例1〜5)又は表3(比較例1〜8)に示す。なお、冷却速度は、同一温度に加熱した同一寸法のダミーに熱電対を埋め込んで測定した。
次いで、該急冷処理材Bを、冷間で、引抜加工し、冷間加工材Cを得た。得られた該冷間加工材Cについて、曲げ加工試験(評価1)を行った。その結果を表2(実施例1〜5)又は表4(比較例1〜8)に示す。
次いで、曲げ加工試験後の該冷間加工材Cを、500℃で2時間加熱して時効処理を行い、銅合金材料Dを得た。得られた該銅合金材料Dについて、引張試験、硬さの測定(評価2)、軟化特性温度の測定(評価3)、並びに導電率の測定(評価4)を行なった。その結果を表2(実施例1〜5)又は表4(比較例1〜8)に示す。また、該銅合金材料Dの結晶粒の平均粒径の測定を行った。その結果を表2(実施例1〜5)又は表4(比較例1〜8)に示す。
(Examples 1-5, Comparative Examples 1-8)
Using ingots of Cu, Ni, Si, Zr and Bi, blended with the components shown in Table 1, and after producing a φ100 mm ingot using a high frequency melting furnace, stripping to φ90 mm, Table 1 (Examples) 1-5) or hot extrusion at the hot working temperatures shown in Table 3 (Comparative Examples 1-8) to obtain a hot-worked material A of φ20 mm rod. A water tank for cooling is prepared on the outlet side of the extruder for hot extrusion, and immediately after the hot extrusion, the hot processed material A is guided to the water tank and rapidly cooled to obtain the quenched material B. It was. Table 1 (Examples 1 to 5) or Table 3 (Comparative Examples 1 to 8) show the cooling rate at 300 ° C. during the rapid cooling. The cooling rate was measured by embedding a thermocouple in a dummy of the same size heated to the same temperature.
Next, the quenched material B was cold-drawn to obtain a cold-worked material C. The obtained cold-worked material C was subjected to a bending test (Evaluation 1). The results are shown in Table 2 (Examples 1 to 5) or Table 4 (Comparative Examples 1 to 8).
Next, the cold-worked material C after the bending test was heated at 500 ° C. for 2 hours to perform an aging treatment, and a copper alloy material D was obtained. The obtained copper alloy material D was subjected to a tensile test, hardness measurement (evaluation 2), softening characteristic temperature measurement (evaluation 3), and conductivity measurement (evaluation 4). The results are shown in Table 2 (Examples 1 to 5) or Table 4 (Comparative Examples 1 to 8). Further, the average grain size of the crystal grains of the copper alloy material D was measured. The results are shown in Table 2 (Examples 1 to 5) or Table 4 (Comparative Examples 1 to 8).

(評価試験方法)
(1)曲げ加工試験(評価1)
該冷間加工材Cを、冷間で90度曲げを行い、曲げ部分の表面状態を観察した。曲げ加工後の表面に、割れ及びシワが発生しなかった場合を「○」とし、割れ又はシワが発生した場合を「×」とした。
(2)引張試験、硬さの測定及び延性試験(評価2)
該銅合金材料Dの引張試験を、JIS Z 2241に準拠して行なった。また、該銅合金材料Dのビッカース硬さ測定を、JIS Z 2244に準拠して行った。
クラス3の規格値は、「引張強さ:690MPa以上、伸び:9%以上、ビッカース硬さ:200以上」であるので、該クラス3の規格値を満足したものを「○」とし、満足しなかったものを「×」とした。
(3)軟化特性温度の測定(評価3)
該銅合金材料Dを、475℃の塩浴炉内に投入し、投入前後でビッカース硬さの測定を行った。塩浴炉内に投入前の該銅合金材料Dのビッカース硬さに対する投入後の該銅合金材料Dのビッカース硬さの比(投入後の硬さ/投入前の硬さ)が、0.85以上のものを「○」とし、0.85未満のものを「×」とした。
(4)導電率の測定(評価4)
導電率を、断面にて、シグマテスターにより測定した。
クラス3の規格値は、「導電率:45%IACS以上」であるので、該クラス3の規格値を満足したものを「○」とし、満足しなかったものを「×」とした。
(5)銅合金材料中の結晶粒の平均粒径の測定
該銅合金材料D中の結晶粒の平均粒径の測定は、JIS H 0501に準拠する、切断法にて行なった。
平均粒径が5μm以下であった場合を「○」とし、5μmを超えた場合を「×」とした。
(Evaluation test method)
(1) Bending test (Evaluation 1)
The cold-worked material C was bent 90 degrees in the cold, and the surface state of the bent portion was observed. The case where cracks and wrinkles did not occur on the surface after bending was indicated as “◯”, and the case where cracks or wrinkles occurred was indicated as “x”.
(2) Tensile test, hardness measurement and ductility test (Evaluation 2)
A tensile test of the copper alloy material D was performed according to JIS Z 2241. Moreover, the Vickers hardness measurement of this copper alloy material D was performed based on JISZ2244.
The standard value of class 3 is “tensile strength: 690 MPa or more, elongation: 9% or more, Vickers hardness: 200 or more”. What did not exist was set as "x".
(3) Measurement of softening characteristic temperature (Evaluation 3)
The copper alloy material D was placed in a salt bath furnace at 475 ° C., and the Vickers hardness was measured before and after the addition. The ratio of the Vickers hardness of the copper alloy material D after charging to the Vickers hardness of the copper alloy material D before charging into the salt bath furnace (hardness after charging / hardness before charging) is 0.85. The above were marked with “◯” and those less than 0.85 were marked with “x”.
(4) Conductivity measurement (Evaluation 4)
The conductivity was measured with a sigma tester on the cross section.
Since the standard value of class 3 is “conductivity: 45% IACS or more”, the standard value satisfying the class 3 is “◯”, and the standard value is not “x”.
(5) Measurement of average grain size of crystal grains in copper alloy material The average grain size of crystal grains in the copper alloy material D was measured by a cutting method based on JIS H 0501.
The case where the average particle size was 5 μm or less was “◯”, and the case where the average particle size was more than 5 μm was “x”.

Figure 2008163439
Figure 2008163439

Figure 2008163439
Figure 2008163439

Figure 2008163439
Figure 2008163439

Figure 2008163439
Figure 2008163439

・比較例1は、Si含有量が少なかったため、十分な強度が得られず、また、Ni/Si比が高かったため、過剰のNiにより、導電率が低くなり、クラス3で要求される特性評価2及び4に不合格であった。
・比較例2は、Ni含有量が多かったため、導電率が低く、クラス3で要求される特性評価4に不合格であった。
・比較例3は、熱間押出後の急冷での冷却速度が遅かったために、結晶粒の粗大化及び粗大NiSiの析出が生じてしまい、その結果、強度が低くなった。そのため、特性評価1及びクラス3で要求される特性評価2に不合格であった。
・比較例4は、Ni/Si比が低かったため、過剰のSiにより、導電率が低くなり、クラス3で要求される特性評価4に不合格であった。
・比較例5は、Zr含有量が少なかったため、軟化特性温度が低くなり、また、強度が低くなり、クラス3で要求される特性評価2及び3に不合格であった。
・比較例6は、熱間押出温度が低かったために、析出硬化元素が十分に固溶せず、そのために、強度が低くなった。そのため、クラス3で要求される特性評価1及び2に不合格であった。
・比較例7は、Zr含有量が多かったために、粗大な析出物が生成してしまい、その結果、延性が低下した。そのため、クラス3で要求される特性評価2に不合格であった。
・比較例8は、Ni含有量が少なかったため、強度が低く、クラス3で要求される特性評価2に不合格であった。
In Comparative Example 1, since the Si content was small, sufficient strength was not obtained, and since the Ni / Si ratio was high, the conductivity was lowered due to excessive Ni, and the characteristic evaluation required for class 3 2 and 4 were rejected.
In Comparative Example 2, since the Ni content was large, the electrical conductivity was low, and the characteristic evaluation 4 required for Class 3 was not acceptable.
In Comparative Example 3, since the cooling rate in the rapid cooling after hot extrusion was slow, the crystal grains were coarsened and coarse Ni 2 Si was precipitated, and as a result, the strength was low. Therefore, it failed in the characteristic evaluation 1 and the characteristic evaluation 2 requested | required by the class 3.
In Comparative Example 4, since the Ni / Si ratio was low, the conductivity was lowered due to excessive Si, and the characteristic evaluation 4 required for class 3 was not satisfied.
In Comparative Example 5, since the Zr content was small, the softening characteristic temperature was low, the strength was low, and the characteristic evaluations 2 and 3 required for class 3 were not acceptable.
In Comparative Example 6, since the hot extrusion temperature was low, the precipitation hardening element was not sufficiently dissolved, and thus the strength was low. Therefore, it failed the characteristic evaluations 1 and 2 required in class 3.
In Comparative Example 7, since the Zr content was large, coarse precipitates were generated, and as a result, ductility was lowered. Therefore, it failed the characteristic evaluation 2 required in class 3.
In Comparative Example 8, since the Ni content was small, the strength was low, and the characteristic evaluation 2 required for class 3 was not acceptable.

本発明によれば、環境に有害なBeを含有させなくても、高強度且つ高導電性の銅合金材料を提供できる。   According to the present invention, a high-strength and high-conductivity copper alloy material can be provided without including Be harmful to the environment.

Claims (5)

Niを1.5〜3.0質量%、Siを0.3〜1.5質量%、Zrを0.01〜0.3質量%含有し、残部Cu及び不可避不純物からなり、Siの含有量に対するNiの含有量の比が2〜5である鋳塊を得る鋳造工程と、
該鋳塊を、下記式(1):
熱間加工温度(℃)≧870+Niの含有量(質量%)×10 (1)
を満たす熱間加工温度で熱間押出又は熱間鍛造し、熱間加工材を得る熱間加工工程と、
該熱間加工材を、100℃/秒以上の冷却速度で、300℃以下に冷却し、急冷処理材を得る急冷処理工程と、
該急冷処理材を、該熱間加工温度より低い温度で加熱して、時効処理することにより、銅合金材料を得る時効処理工程と、
を行い得られることを特徴とする銅合金材料。
Contains 1.5 to 3.0% by mass of Ni, 0.3 to 1.5% by mass of Si, 0.01 to 0.3% by mass of Zr, consists of the remainder Cu and inevitable impurities, and contains Si. A casting step of obtaining an ingot having a Ni content ratio of 2 to 5;
The ingot is expressed by the following formula (1):
Hot working temperature (° C.) ≧ 870 + Ni content (mass%) × 10 (1)
A hot working step for obtaining a hot work material by hot extruding or hot forging at a hot working temperature satisfying
A rapid cooling treatment step of cooling the hot-worked material at a cooling rate of 100 ° C./second or more to 300 ° C. or less to obtain a rapidly treated material;
An aging treatment step of obtaining a copper alloy material by heating the quenching treatment material at a temperature lower than the hot working temperature and aging treatment;
A copper alloy material obtained by performing
Niを1.5〜3.0質量%、Siを0.3〜1.5質量%、Zrを0.01〜0.3質量%含有し、残部Cu及び不可避不純物からなり、Siの含有量に対するNiの含有量の比が2〜5である鋳塊を得る鋳造工程と、
該鋳塊を、下記式(1):
熱間加工温度(℃)≧870+Niの含有量(質量%)×10 (1)
を満たす熱間加工温度で熱間押出又は熱間鍛造し、熱間加工材を得る熱間加工工程と、
該熱間加工材を、100℃/秒以上の冷却速度で、300℃以下に冷却し、急冷処理材を得る急冷処理工程と、
該急冷処理材を1回以上冷間加工し、冷間加工材を得る冷間加工工程と、
該冷間加工材を、該熱間加工温度より低い温度で加熱して、時効処理することにより、銅合金材料を得る時効処理工程と、
を行い得られることを特徴とする銅合金材料。
Contains 1.5 to 3.0% by mass of Ni, 0.3 to 1.5% by mass of Si, 0.01 to 0.3% by mass of Zr, consists of the remainder Cu and inevitable impurities, and contains Si. A casting step of obtaining an ingot having a Ni content ratio of 2 to 5;
The ingot is expressed by the following formula (1):
Hot working temperature (° C.) ≧ 870 + Ni content (mass%) × 10 (1)
A hot working step for obtaining a hot work material by hot extruding or hot forging at a hot working temperature satisfying
A rapid cooling treatment step of cooling the hot-worked material at a cooling rate of 100 ° C./second or more to 300 ° C. or less to obtain a rapidly treated material;
Cold working the cold treated material at least once to obtain a cold worked material; and
An aging treatment step of obtaining a copper alloy material by heating the cold-worked material at a temperature lower than the hot working temperature and aging treatment;
A copper alloy material obtained by performing
Niを1.5〜3.0質量%、Siを0.3〜1.5質量%、Zrを0.01〜0.3質量%含有し、残部Cu及び不可避不純物からなり、Siの含有量に対するNiの含有量の比が2〜5である鋳塊を得る鋳造工程と、
該鋳塊を、下記式(1):
熱間加工温度(℃)≧870+Niの含有量(質量%)×10 (1)
を満たす熱間加工温度で熱間押出又は熱間鍛造し、熱間加工材を得る熱間加工工程と、
該熱間加工材を、100℃/秒以上の冷却速度で、300℃以下に冷却し、急冷処理材を得る急冷処理工程と、
該急冷処理材を、該熱間加工温度より低い温度で加熱して、時効処理することにより、銅合金材料を得る時効処理工程と、
を有することを特徴とする銅合金材料の製造方法。
Contains 1.5 to 3.0% by mass of Ni, 0.3 to 1.5% by mass of Si, 0.01 to 0.3% by mass of Zr, consists of the remainder Cu and inevitable impurities, and contains Si. A casting step of obtaining an ingot having a Ni content ratio of 2 to 5;
The ingot is expressed by the following formula (1):
Hot working temperature (° C.) ≧ 870 + Ni content (mass%) × 10 (1)
A hot working step for obtaining a hot work material by hot extruding or hot forging at a hot working temperature satisfying
A rapid cooling treatment step of cooling the hot-worked material at a cooling rate of 100 ° C./second or more to 300 ° C. or less to obtain a rapidly treated material;
An aging treatment step of obtaining a copper alloy material by heating the quenching treatment material at a temperature lower than the hot working temperature and aging treatment;
The manufacturing method of the copper alloy material characterized by having.
Niを1.5〜3.0質量%、Siを0.3〜1.5質量%、Zrを0.01〜0.3質量%含有し、残部Cu及び不可避不純物からなり、Siの含有量に対するNiの含有量の比が2〜5である鋳塊を得る鋳造工程と、
該鋳塊を、下記式(1):
熱間加工温度(℃)≧870+Niの含有量(質量%)×10 (1)
を満たす熱間加工温度で熱間押出又は熱間鍛造し、熱間加工材を得る熱間加工工程と、
該熱間加工材を、100℃/秒以上の冷却速度で、300℃以下に冷却し、急冷処理材を得る急冷処理工程と、
該急冷処理材を1回以上冷間加工し、冷間加工材を得る冷間加工工程と、
該冷間加工材を、該熱間加工温度より低い温度で加熱して、時効処理することにより、銅合金材料を得る時効処理工程と、
を有することを特徴とする銅合金材料の製造方法。
Contains 1.5 to 3.0% by mass of Ni, 0.3 to 1.5% by mass of Si, 0.01 to 0.3% by mass of Zr, consists of the remainder Cu and inevitable impurities, and contains Si. A casting step of obtaining an ingot having a Ni content ratio of 2 to 5;
The ingot is expressed by the following formula (1):
Hot working temperature (° C.) ≧ 870 + Ni content (mass%) × 10 (1)
A hot working step for obtaining a hot work material by hot extruding or hot forging at a hot working temperature satisfying
A rapid cooling treatment step of cooling the hot-worked material at a cooling rate of 100 ° C./second or more to 300 ° C. or less to obtain a rapidly treated material;
Cold working the cold treated material at least once to obtain a cold worked material; and
An aging treatment step of obtaining a copper alloy material by heating the cold-worked material at a temperature lower than the hot working temperature and aging treatment;
The manufacturing method of the copper alloy material characterized by having.
請求項1又は2いずれか1項記載の銅合金材料からなることを特徴とする溶接機器の電極部材。   An electrode member for welding equipment, comprising the copper alloy material according to claim 1.
JP2007000373A 2007-01-05 2007-01-05 Copper alloy material, method for producing the same, and electrode member for welding equipment Expired - Fee Related JP4930993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007000373A JP4930993B2 (en) 2007-01-05 2007-01-05 Copper alloy material, method for producing the same, and electrode member for welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007000373A JP4930993B2 (en) 2007-01-05 2007-01-05 Copper alloy material, method for producing the same, and electrode member for welding equipment

Publications (2)

Publication Number Publication Date
JP2008163439A true JP2008163439A (en) 2008-07-17
JP4930993B2 JP4930993B2 (en) 2012-05-16

Family

ID=39693286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000373A Expired - Fee Related JP4930993B2 (en) 2007-01-05 2007-01-05 Copper alloy material, method for producing the same, and electrode member for welding equipment

Country Status (1)

Country Link
JP (1) JP4930993B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051565A (en) * 2011-01-21 2011-05-11 中南大学 Beraloy deformation strengthening and ageing strengthening process method
CN112708837A (en) * 2021-01-28 2021-04-27 株洲艾美新材料有限公司 Heat treatment process of high-beryllium copper alloy
CN113210451A (en) * 2021-05-06 2021-08-06 陕西斯瑞新材料股份有限公司 Rotor conducting bar and preparation method and application thereof
CN115029581A (en) * 2022-06-10 2022-09-09 中铁建电气化局集团轨道交通器材有限公司 Silicon bronze forging and non-internal stress integrated forging and heat treatment method thereof
CN115612888A (en) * 2022-09-26 2023-01-17 陕西科技大学 Thermal shock resistant copper alloy material for rocket engine and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241131A (en) * 1986-11-20 1988-10-06 Nippon Mining Co Ltd Copper alloy for sliding material
JPH01319642A (en) * 1988-06-14 1989-12-25 Km Kabelmetall Ag Method for utilizing ageing curable coppoer alloy
JPH02166249A (en) * 1988-12-20 1990-06-26 Kobe Steel Ltd Electrode material for resistance welding
JPH0813067A (en) * 1994-06-28 1996-01-16 Hitachi Ltd Metal mold material for shell core
JP2001207229A (en) * 2000-01-27 2001-07-31 Nippon Mining & Metals Co Ltd Copper alloy for electronic material
JP2002097534A (en) * 2000-09-22 2002-04-02 Nippon Mining & Metals Co Ltd Copper alloy foil for high frequency circuit
JP2006265731A (en) * 2005-02-28 2006-10-05 Furukawa Electric Co Ltd:The Copper alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241131A (en) * 1986-11-20 1988-10-06 Nippon Mining Co Ltd Copper alloy for sliding material
JPH01319642A (en) * 1988-06-14 1989-12-25 Km Kabelmetall Ag Method for utilizing ageing curable coppoer alloy
JPH02166249A (en) * 1988-12-20 1990-06-26 Kobe Steel Ltd Electrode material for resistance welding
JPH0813067A (en) * 1994-06-28 1996-01-16 Hitachi Ltd Metal mold material for shell core
JP2001207229A (en) * 2000-01-27 2001-07-31 Nippon Mining & Metals Co Ltd Copper alloy for electronic material
JP2002097534A (en) * 2000-09-22 2002-04-02 Nippon Mining & Metals Co Ltd Copper alloy foil for high frequency circuit
JP2006265731A (en) * 2005-02-28 2006-10-05 Furukawa Electric Co Ltd:The Copper alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051565A (en) * 2011-01-21 2011-05-11 中南大学 Beraloy deformation strengthening and ageing strengthening process method
CN112708837A (en) * 2021-01-28 2021-04-27 株洲艾美新材料有限公司 Heat treatment process of high-beryllium copper alloy
CN112708837B (en) * 2021-01-28 2022-01-14 株洲艾美新材料有限公司 Heat treatment process of high-beryllium copper alloy
CN113210451A (en) * 2021-05-06 2021-08-06 陕西斯瑞新材料股份有限公司 Rotor conducting bar and preparation method and application thereof
CN115029581A (en) * 2022-06-10 2022-09-09 中铁建电气化局集团轨道交通器材有限公司 Silicon bronze forging and non-internal stress integrated forging and heat treatment method thereof
CN115612888A (en) * 2022-09-26 2023-01-17 陕西科技大学 Thermal shock resistant copper alloy material for rocket engine and preparation method thereof

Also Published As

Publication number Publication date
JP4930993B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5431233B2 (en) Aluminum alloy forging and method for producing the same
JP4303313B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5657311B2 (en) Copper alloy sheet and manufacturing method thereof
JP2009242890A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2016156059A (en) Aluminum alloy foil excellent in elongation property and method for producing aluminum foil
JP2008069421A (en) Magnesium alloy for wrought product, sheet material for press forming made of the alloy, and its production method
JP4930993B2 (en) Copper alloy material, method for producing the same, and electrode member for welding equipment
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2012046774A (en) Cu-Co-Si-BASED ALLOY FOR ELECTRONIC MATERIAL
CN100482834C (en) Easily-workable magnesium alloy and method for preparing same
JP2006274415A (en) Aluminum alloy forging for high strength structural member
JP2012057242A (en) Method of manufacturing copper-based alloy with high strength, high conductivity and high heat resistance, and copper-based alloy with high strength, high conductivity and high heat resistance
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
JP3861712B2 (en) Cu-based alloy and method for producing high-strength and high-thermal conductivity forging using the same
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP6821290B2 (en) Cu-Ni-Co-Si alloy for electronic components
KR20020008710A (en) Cu-ni-sn-al, si, sr, ti, b alloys for high strength wire or plate and its manufacturing method
JP2007136467A (en) Cast ingot of copper alloy, method for producing cast ingot of copper alloy, method for producing copper alloy strip and production device for cast ingot of copper alloy
CN114277280B (en) Precipitation strengthening type tin brass alloy and preparation method thereof
JP5062829B2 (en) Brass material and method for producing brass material
TWI612143B (en) Precipitation-hardened nickel-based alloy and method of producing the same
JP2017155334A (en) Aluminum alloy sheet for hot molding and manufacturing method therefor
JP6345016B2 (en) Aluminum alloy plate for hot forming and manufacturing method thereof
JP5544591B2 (en) Copper alloy tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120208

R150 Certificate of patent or registration of utility model

Ref document number: 4930993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees