JPH0813067A - Metal mold material for shell core - Google Patents

Metal mold material for shell core

Info

Publication number
JPH0813067A
JPH0813067A JP14612994A JP14612994A JPH0813067A JP H0813067 A JPH0813067 A JP H0813067A JP 14612994 A JP14612994 A JP 14612994A JP 14612994 A JP14612994 A JP 14612994A JP H0813067 A JPH0813067 A JP H0813067A
Authority
JP
Japan
Prior art keywords
weight
shell core
alloy
thermal conductivity
metal mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14612994A
Other languages
Japanese (ja)
Inventor
Masaru Sakakura
勝 坂倉
Masayoshi Kainuma
正吉 海沼
Shigenobu Mori
誉延 森
Noboru Baba
馬場  昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14612994A priority Critical patent/JPH0813067A/en
Publication of JPH0813067A publication Critical patent/JPH0813067A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide a metal mold material for shell core, well balanced among thermal conductivity, electric discharge processability, and weldability. CONSTITUTION:The metal mold for shell core, having a composition consisting of, by weight, 0.3-1.0% silicon, 1.2-4.0% nickel, 0.1-0.4% zirconium, and the balance essentially copper, is prepared. By this method, the shell core molding cycle can be shortened, and the effect of improving productivity can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シェル中子を成形する
際に使用するシェル中子用金型材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shell core mold material used in molding a shell core.

【0002】[0002]

【従来の技術】シェル中子を成形する金型材料として
は、一般に鉄系の材料が用いられている。しかし、鉄系
の材料は熱伝導率が小さくシェル中子を成形する成形サ
イクルを短縮し生産性を向上させる為に、熱伝導率の高
い材料が望まれており、熱伝導率の高い材料が特開昭6
1−279649号公報等に提案されている。
2. Description of the Related Art Iron-based materials are generally used as a mold material for molding a shell core. However, iron-based materials have low thermal conductivity, and in order to shorten the molding cycle for molding the shell core and improve productivity, materials with high thermal conductivity are desired, and materials with high thermal conductivity are desired. JP-A-6
It is proposed in Japanese Patent Publication No. 1-279649.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術の鉄系の
材料は、熱伝導率が小さく金型の昇温・冷却に時間がか
かりシェル中子を成形する成形サイクルを短縮する上に
障害となる。また、金型が熱変形し分割面に砂ばりが発
生しやすく手直しが必要となることも多い。従って、鉄
系の材料より熱伝導率が高く、硬度に起因する耐摩耗性
が鉄系の材料例えばFCD45と同等で、金型加工時要
求される放電加工性に優れ、金型のモデルチエンジ、上
記の手直しのための肉盛り溶接が可能であることが望ま
れている。
The above-mentioned iron-based materials of the prior art have a small thermal conductivity, and it takes time to heat and cool the mold, which is an obstacle to shortening the molding cycle for molding the shell core. Become. In addition, the mold is likely to be thermally deformed and sand burrs are likely to be generated on the dividing surface, which often requires rework. Therefore, the thermal conductivity is higher than that of the iron-based material, the wear resistance due to hardness is the same as that of the iron-based material, for example, FCD45, the electrical discharge machinability required in the die machining is excellent, and the model change of the die It is desired that overlay welding for the above-mentioned repair can be performed.

【0004】上記特開昭61−279649号公報に提
案されている銅系の材料は、合金成分としてジルコニウ
ムを含んでおり、上記公報に記載されたジルコニウムの
添加量0.01〜3.0重量%の範囲では、放電加工性、
溶接性に関して鉄系の材料より著しく低い。
The copper-based material proposed in JP-A-61-279649 contains zirconium as an alloy component, and the addition amount of zirconium described in the above-mentioned publication is 0.01 to 3.0 weight. In the range of%, EDM,
Significantly lower weldability than ferrous materials.

【0005】一方、最近の銅系の材料は、合金成分とし
てアルミニウムを含んでおり、アルミニウムの添加量が
10〜13重量%の範囲では、耐摩耗性は鉄系の材料に
匹敵するものの、熱伝導率は鉄系の材料より若干優れて
いる程度でしかない。
On the other hand, recent copper-based materials contain aluminum as an alloy component, and when the amount of aluminum added is in the range of 10 to 13% by weight, the wear resistance is comparable to that of iron-based materials, but the heat resistance is high. The conductivity is only slightly better than iron-based materials.

【0006】このように従来技術は、熱伝導性、放電加
工性、溶接性のバランス良いとはいえず、シェル中子用
金型材料としては問題がある。
As described above, the prior art cannot be said to have a good balance of thermal conductivity, electric discharge machinability and weldability, and has a problem as a mold material for a shell core.

【0007】本発明の目的は、熱伝導性、放電加工性、
溶接性についてバランスのとれたシェル中子用金型材料
を提供することにある。
The objects of the present invention are thermal conductivity, electric discharge machinability,
It is intended to provide a mold material for a shell core having a good weldability.

【0008】[0008]

【課題を解決するための手段】上記目的は、シリコンを
0.3〜1.0重量%、ニッケルを1.2〜4.0重量%、
ジルコニウムを0.1〜0.4重量%含有し、残部が実質
的に銅から成ることにより達成される。
Means for Solving the Problems The above-mentioned objects are as follows: 0.3 to 1.0% by weight of silicon, 1.2 to 4.0% by weight of nickel,
Achieved by containing 0.1 to 0.4% by weight of zirconium, the balance consisting essentially of copper.

【0009】上記目的は、シリコンを0.3〜1.0重量
%、ニッケルを1.2〜4.0重量%、ジルコニウムを
0.1〜0.4重量%、アルミニウムを0.3重量%以下
含有し、残部が実質的に銅から成ることにより達成され
る。
The above objects are as follows: 0.3 to 1.0% by weight of silicon, 1.2 to 4.0% by weight of nickel, 0.1 to 0.4% by weight of zirconium, and 0.3% by weight of aluminum. It is achieved by containing the following and making the balance substantially copper.

【0010】[0010]

【作用】従来の銅系の材料は高い熱伝導率を有するが、
放電加工性、溶接性が悪い。
[Function] Conventional copper-based materials have high thermal conductivity,
EDM and weldability are poor.

【0011】しかし、上記構成の合金は、ニッケル、シ
リコンがNi2Siなどの金属間化合物を析出すること
により、熱伝導性をあまり低下させず放電加工性、溶接
性を改善させ耐摩耗性を高めている。
However, in the alloy having the above-mentioned structure, nickel and silicon precipitate intermetallic compounds such as Ni 2 Si to improve the electrical discharge machinability and weldability without lowering the thermal conductivity so much and to improve wear resistance. I am raising.

【0012】これらの特性改善に対してはニッケルとシ
リコンの配合比を重量%で約4対1とするのが最も効果
的であるが、アルミニウムを加えることにより強化する
ので、シリコン/ニッケル比を0.225〜0.245
とするのが好ましい。
To improve these characteristics, it is most effective to set the compounding ratio of nickel and silicon to about 4: 1 by weight, but since it is strengthened by adding aluminum, the silicon / nickel ratio is increased. 0.225 to 0.245
Is preferred.

【0013】ニッケル量は耐摩耗性と熱伝導性の点から
1.2重量%は必要であり、添加量と共にこれらの特性
は向上するが、多量の添加は熱間加工性及び溶接性を阻
害するのみならず一定量を越える、熱伝導性の向上が認
められなくなることから、その上限は4.0重量%であ
る。特に2.0〜3.5重量%が好ましい。
The amount of nickel is required to be 1.2% by weight from the viewpoint of wear resistance and thermal conductivity, and these properties improve with the addition amount, but addition of a large amount impairs hot workability and weldability. However, the upper limit is 4.0% by weight, because the improvement of the thermal conductivity beyond a certain amount is not recognized. In particular, 2.0 to 3.5% by weight is preferable.

【0014】シリコンは前述のように、耐摩耗性、熱伝
導性を高めるために必須の元素であり、ニッケルの約4
分の1が適切であることから0.3重量%から1.0重量
%とした。特に0.45〜0.85重量%が好ましい。
As described above, silicon is an essential element for improving wear resistance and thermal conductivity, and is about 4 times as much as nickel.
Since one-third is appropriate, it was set to 0.3 to 1.0% by weight. Particularly, 0.45 to 0.85% by weight is preferable.

【0015】ジルコニウム量は耐摩耗性の点から0.1
重量%は必要であり、また一定量を越えると熱伝導性を
阻害することから、その上限は0.4重量%である。特
に0.15〜0.35重量%が好ましい。
The amount of zirconium is 0.1 from the viewpoint of wear resistance.
The upper limit is 0.4% by weight because the weight% is necessary, and if it exceeds a certain amount, the thermal conductivity is impaired. In particular, 0.15 to 0.35% by weight is preferable.

【0016】アルミニウム量は耐摩耗性を高めるが、一
定量を越えると熱伝導性を阻害することから、その上限
は0.3重量%である。特に0.01〜0.25重量%
が好ましい。
The amount of aluminum enhances the wear resistance, but if it exceeds a certain amount, it impairs the thermal conductivity, so its upper limit is 0.3% by weight. 0.01 to 0.25% by weight
Is preferred.

【0017】本発明材は鋳造しただけのもの、鋳造後熱
間加工したもの、それぞれに900〜950℃で容体化
処理後に430〜500℃で時効処理したものの何れも
使用できる。
The material of the present invention may be either one that is cast, one that is hot-worked after casting, and one that has been subjected to a heat treatment at 900 to 950 ° C and then an aging treatment at 430 to 500 ° C.

【0018】[0018]

【実施例】以下、本発明の実施例を図により説明する。Embodiments of the present invention will be described below with reference to the drawings.

【0019】表1に本実施例の合金組成例と機械的特性
及び熱伝導度を示す。
Table 1 shows an example of alloy composition, mechanical properties and thermal conductivity of this example.

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示す本発明合金のNo.1のシリコ
ン/ニッケル比は0.242、No.2のシリコン/ニ
ッケル比は0.232、No.3のシリコン/ニッケル
比は〜0.236である。
The alloys of the present invention shown in Table 1 have No. The silicon / nickel ratio of No. 1 is 0.242, No. 1 No. 2 has a silicon / nickel ratio of 0.232. The silicon / nickel ratio for 3 is ~ 0.236.

【0022】次に本実施例の合金製造方法を説明する。Next, the alloy manufacturing method of this embodiment will be described.

【0023】溶解手順は、表1に示す合金No.3を例に
とると、まず銅を溶解後ニッケル、シリコンを添加し、
その後、脱スラグ、溶湯中に窒素ガスを吹き込みバブリ
ングによる脱ガスを行い、最後にジルコニウムを添加し
均一溶湯にし、あらかじめ形成した砂型に鋳込み凝固さ
せた。鋳込み温度は1200℃であり、溶解炉はエレマ
炉、ルツボは黒鉛を用いた。鋳塊の大きさは直径50m
m×長さ200mmで重量は約3kgであった。
Taking the alloy No. 3 shown in Table 1 as an example of the melting procedure, first, copper is melted and then nickel and silicon are added,
Then, nitrogen gas was blown into the molten metal for bubbling to perform degassing, and finally zirconium was added to form a uniform molten metal, which was cast into a sand mold formed in advance and solidified. The casting temperature was 1200 ° C., the melting furnace was an Elema furnace, and the crucible was graphite. The size of the ingot is 50m in diameter
m × length 200 mm and weight was about 3 kg.

【0024】本実施例の合金は、基本的には銅−ジルコ
ニウム合金にNi2Si金属間化合物が均一微細に分散
したものである。これは、シェル中子用金型材料に要求
される熱伝導性に対しても0.393cal/sec・cm℃と満
足すべき値を示す。また、シェル焼成温度350℃付近
では分散した硬度の高いNi2Si金属間化合物が鉄系
の材料FCD45とほぼ同等の耐摩耗性を有する働きを
する。
The alloy of this embodiment is basically a copper-zirconium alloy in which Ni 2 Si intermetallic compound is dispersed uniformly and finely. This shows a satisfactory value of 0.393 cal / sec · cm ° C. even with respect to the thermal conductivity required for the shell core mold material. Further, at a shell firing temperature of around 350 ° C., the dispersed Ni 2 Si intermetallic compound having high hardness functions to have wear resistance almost equal to that of the iron-based material FCD45.

【0025】次に本実施例の評価方法を説明する。Next, the evaluation method of this embodiment will be described.

【0026】耐摩耗性 上記の製造方法で得られた鋳塊より試験片を採取し耐サ
ンド摩耗性を評価した。評価方法は、水に5重量%の珪
砂(神宮砂6号)を混合させた溶液に、試験片を10m
/secの速度で回転させた場合の減量を摩耗率で評価
した。
Abrasion resistance A test piece was sampled from the ingot obtained by the above-mentioned manufacturing method, and sand abrasion resistance was evaluated. The evaluation method was as follows: a test piece was added to a solution prepared by mixing 5% by weight of silica sand (Jingu sand No. 6) with water,
Abrasion rate was used to evaluate the weight loss when rotating at a speed of / sec.

【0027】図1は本発明の実施例の合金と従来の合金
との耐摩耗性を比較した図表である。表1の合金No.2
で表される本実施例の材料は従来のFC25、ジルコニ
ウム銅よりも摩耗率が少なく耐サンド摩耗性が優れてい
る。
FIG. 1 is a table comparing the wear resistance of the alloy of the example of the present invention and the conventional alloy. Alloy No. 2 in Table 1
The material of this example represented by the formula (1) has a smaller wear rate than conventional FC25 and zirconium copper, and is excellent in sand wear resistance.

【0028】放電加工性 銅電極を用いて各種銅合金及びS45Cを放電加工した
ときの性能比較を行った。
Electrical Discharge Machining Performance comparison was performed when various copper alloys and S45C were subjected to electrical discharge machining using a copper electrode.

【0029】図2は本発明の実施例の合金と従来の合金
との放電加工性を比較した図表である。
FIG. 2 is a chart comparing the electric discharge machinability of the alloy of the example of the present invention and the conventional alloy.

【0030】本図は放電加工性のうち表1の合金No.2
の加工速度を比較したものである。
This figure shows the alloy No. 2 of Table 1 in the electric discharge machinability.
It is a comparison of the processing speed of.

【0031】図3は本発明の実施例の合金と従来の合金
との放電加工性を比較した図表である。
FIG. 3 is a table comparing the electric discharge machinability of the alloy of the example of the present invention and the conventional alloy.

【0032】本図は放電加工性のうち表1の合金No.2
を加工する際の電極消耗率を比較したものである。
This figure shows the alloy No. 2 of Table 1 in the electric discharge machinability.
It is a comparison of the electrode wear rate when processing the.

【0033】表1の合金No.2で表される本実施例の材
料は、従来のジルコニウムー銅合金に比較して電極消耗
率、加工速度とも改善されている。
The material of this example, which is represented by alloy No. 2 in Table 1, has improved electrode wear rate and processing speed as compared with the conventional zirconium-copper alloy.

【0034】寿命及び生産性 厚さ150mm、幅250mm、長さ450mmのシェ
ル中子用金型を製造し、現在までに8,000ショット
使用しており、今後鉄系材料並みのショット数が予測さ
れる。またショットタイムも従来の2.4分が1.5分に
短縮され生産性が向上する。
Life and Productivity A mold for a shell core having a thickness of 150 mm, a width of 250 mm and a length of 450 mm is manufactured, and 8,000 shots have been used so far. To be done. In addition, the shot time is shortened from 2.4 minutes to 1.5 minutes, improving productivity.

【0035】[0035]

【発明の効果】本発明によれば、ジルコニウムー銅合金
にNi2Siなどの金属間化合物を析出させることによ
り、熱伝導性、放電加工性、溶接性についてバランスが
とれ、シェル中子成形サイクルが短縮され生産性が向上
する効果が得られる。
According to the present invention, by precipitating an intermetallic compound such as Ni 2 Si on a zirconium-copper alloy, heat conductivity, electric discharge machinability and weldability are balanced, and a shell core forming cycle is achieved. The effect of shortening and improving productivity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の合金と従来の合金との耐摩耗
性を比較した図表である。
FIG. 1 is a chart comparing the wear resistance of an alloy of an example of the present invention and a conventional alloy.

【図2】本発明の実施例の合金と従来の合金との放電加
工性を比較した図表である。
FIG. 2 is a chart comparing the electric discharge machinability of the alloy of the example of the present invention and the conventional alloy.

【図3】本発明の実施例の合金と従来の合金との放電加
工性を比較した図表である。
FIG. 3 is a chart comparing the electric discharge machinability of the alloy of the example of the present invention and the conventional alloy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬場 昇 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noboru Baba 7-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリコンを0.3〜1.0重量%、ニッケ
ルを1.2〜4.0重量%、ジルコニウムを0.1〜0.4
重量%含有し、残部が実質的に銅から成ることを特徴と
するシェル中子用金型材。
1. 0.3 to 1.0% by weight of silicon, 1.2 to 4.0% by weight of nickel, and 0.1 to 0.4% of zirconium.
A mold material for a shell core, characterized in that it is contained by weight, and the balance is substantially composed of copper.
【請求項2】 シリコンを0.3〜1.0重量%、ニッケ
ルを1.2〜4.0重量%、ジルコニウムを0.1〜0.4
重量%、アルミニウムを0.3重量%以下含有し、残部
が実質的に銅から成ることを特徴とするシェル中子用金
型材。
2. Silicon in an amount of 0.3 to 1.0% by weight, nickel in an amount of 1.2 to 4.0% by weight, and zirconium in an amount of 0.1 to 0.4% by weight.
A metal mold material for a shell core, characterized in that the content of aluminum is 0.3% by weight or less and the balance is substantially copper.
JP14612994A 1994-06-28 1994-06-28 Metal mold material for shell core Pending JPH0813067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14612994A JPH0813067A (en) 1994-06-28 1994-06-28 Metal mold material for shell core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14612994A JPH0813067A (en) 1994-06-28 1994-06-28 Metal mold material for shell core

Publications (1)

Publication Number Publication Date
JPH0813067A true JPH0813067A (en) 1996-01-16

Family

ID=15400805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14612994A Pending JPH0813067A (en) 1994-06-28 1994-06-28 Metal mold material for shell core

Country Status (1)

Country Link
JP (1) JPH0813067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163439A (en) * 2007-01-05 2008-07-17 Sumitomo Light Metal Ind Ltd Copper alloy material and method for producing the same, and electrode member of welding equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163439A (en) * 2007-01-05 2008-07-17 Sumitomo Light Metal Ind Ltd Copper alloy material and method for producing the same, and electrode member of welding equipment

Similar Documents

Publication Publication Date Title
EP1777307B1 (en) Sn-CONTAINING COPPER ALLOY AND METHOD FOR PRODUCTION THEREOF
KR102597784B1 (en) A aluminum alloy and for die casting and method for manufacturing the same, die casting method
CN107829000B (en) Die-casting aluminum alloy material and preparation method thereof
CN102943193A (en) Grain refinement machining process of hard aluminium alloy cast ingot
CN107881378B (en) Aluminum alloy composition, aluminum alloy element, communication product and preparation method of aluminum alloy element
JPH0754079A (en) Copper alloy commonly having conductivity and strength
JP2005113259A (en) Cu ALLOY AND MANUFACTURING METHOD THEREFOR
JPH1112674A (en) Aluminum alloy for internal combustion engine piston, and piston made of aluminum alloy
JPS591653A (en) Copper alloy for fin of radiator
CA2408361C (en) Copper alloy comprising zinc, tin and iron for electrical connection and a process for preparing the alloy
JP4253100B2 (en) Low thermal expansion alloy with excellent machinability and manufacturing method thereof
JPH0813067A (en) Metal mold material for shell core
JPH02122040A (en) Creep-resistat zn-a1 base cast alloy
JPH09263867A (en) Aluminum alloy for casting
JP4158337B2 (en) Method for producing chromium-zirconium-based copper alloy for continuous casting mold
KR100519556B1 (en) Brass alloys which maintain a golden color and manufacturing method thereof
JP3066459B2 (en) Cast mold material for shell core and method of manufacturing the same
JPS6241302B2 (en)
JPH07113133B2 (en) Cu alloy for continuous casting mold
JPS58212839A (en) Cu alloy for continuous casting mold
JP4239792B2 (en) Aluminum alloy for casting with high electrical resistivity
KR102633119B1 (en) Aluminum-copper Composite and Manufacturing Method of the Same
JP5779749B2 (en) Cast iron material manufacturing method, cast iron material and die casting machine sleeve
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JPH0285330A (en) Copper alloy having good press bendability and its manufacture