JP5062829B2 - Brass material and method for producing brass material - Google Patents

Brass material and method for producing brass material Download PDF

Info

Publication number
JP5062829B2
JP5062829B2 JP2007246751A JP2007246751A JP5062829B2 JP 5062829 B2 JP5062829 B2 JP 5062829B2 JP 2007246751 A JP2007246751 A JP 2007246751A JP 2007246751 A JP2007246751 A JP 2007246751A JP 5062829 B2 JP5062829 B2 JP 5062829B2
Authority
JP
Japan
Prior art keywords
phase
mass
hot
brass
brass material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007246751A
Other languages
Japanese (ja)
Other versions
JP2009074156A (en
Inventor
哲也 安藤
主税 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAN-ETSU METALS Co.,Ltd.
Original Assignee
SAN-ETSU METALS Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAN-ETSU METALS Co.,Ltd. filed Critical SAN-ETSU METALS Co.,Ltd.
Priority to JP2007246751A priority Critical patent/JP5062829B2/en
Publication of JP2009074156A publication Critical patent/JP2009074156A/en
Application granted granted Critical
Publication of JP5062829B2 publication Critical patent/JP5062829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Forging (AREA)

Description

本発明は、耐脱亜鉛腐食性、加工性及び切削性に優れた黄銅材料及び黄銅鍛造材並びにその製造方法に関する。   The present invention relates to a brass material and a brass forged material excellent in dezincification corrosion resistance, workability and machinability, and a method for producing the same.

従来、Cu−Zn合金にPbを添加した黄銅は、鋳造性、熱間及び冷間加工性、機械加工性に優れているため、水栓金具、バルブ部品などとして使用されているが、腐食性の水質環境下あるいは温水の下で使用すると、亜鉛が選択的に溶出する脱亜鉛腐食を起こすという問題があった。   Conventionally, brass in which Pb is added to a Cu-Zn alloy is excellent in castability, hot and cold workability, and machinability. When used in a water quality environment or hot water, there has been a problem of dezincification corrosion in which zinc is selectively eluted.

Cu含有量の高いα黄銅においては、As、P、Sbなどを添加することにより脱亜鉛腐食を防止すること、すなわち、耐脱亜鉛腐食性を高くすることができるが、α黄銅は、理論上67.5%以上のCuを含有し、α+β黄銅に比較して溶解温度が高く、且つ熱間加工時の変形抵抗が大きい。そのため、α黄銅を熱間加工するには、熱間加工温度を高くしなければならず、従ってエネルギーコストが高くなるという問題があった。また、α黄銅は、機械加工時に切削屑が長くつながる傾向があるため、自動旋盤加工に適さないという難点もあった。   In α brass having a high Cu content, dezincification corrosion can be prevented by adding As, P, Sb, etc., that is, anti-zinc corrosion resistance can be increased. It contains 67.5% or more of Cu, has a higher melting temperature than that of α + β brass, and has a large deformation resistance during hot working. Therefore, in order to hot-work α brass, the hot working temperature has to be increased, and there is a problem that the energy cost is increased. In addition, α brass has a disadvantage that it is not suitable for automatic lathe processing because cutting waste tends to be connected for a long time during machining.

一方、ある一定量のCu(54.5〜67.5%Cu)を含有するα+β黄銅は、α相中にβ相を均一に分散させることにより、機械加工時の切削屑が細かく分断され、また熱間加工時の変形抵抗も著しく低減されるが、α黄銅において耐脱亜鉛腐食性の向上に効果のあるAs、P、Sbを添加しても、β相の脱亜鉛腐食を抑制することができない。   On the other hand, α + β brass containing a certain amount of Cu (54.5 to 67.5% Cu) is a finely divided cutting waste during machining by uniformly dispersing the β phase in the α phase, In addition, deformation resistance during hot working is significantly reduced, but the addition of As, P, and Sb, which is effective in improving dezincification corrosion resistance in α brass, suppresses β phase dezincification corrosion. I can't.

そこで、α+β黄銅のうち、61〜67.5%のCuを含むものは、適当な熱処理を施すことにより、α黄銅に変態させることができることに着目し、まずα+β黄銅にAs、P、Sbを添加し、次いで、熱処理によりα黄銅に変態させることによって、耐脱亜鉛腐食性を高める手法が提案されている。しかしながら、マトリックス組織中のβ相の割合が多い場合には、β相が長手方向に連続して連なっているため、α組織に変態させるための熱処理に長時間を要するという問題があった。   Accordingly, among α + β brasses, those containing 61 to 67.5% Cu can be transformed into α brass by performing an appropriate heat treatment. First, As, P, and Sb are added to α + β brass. A method has been proposed for increasing the resistance to dezincification corrosion by adding and then transforming into α brass by heat treatment. However, when the ratio of the β phase in the matrix structure is large, the β phase is continuously connected in the longitudinal direction, so that there is a problem that it takes a long time for the heat treatment to transform into the α structure.

このような問題を改善し、耐脱亜鉛腐食性と快削性をそなえ、熱間加工も容易な黄銅として、例えば、特開2001−294956号公報(特許文献1)には、Cu:60.0〜63.0%、Pb:2.0〜3.7%、P:0.02〜0.07%、Sn:0.20〜0.50%、Fe:0.10〜0.20%を含有し、残部Znおよび不可避不純物からなる組成を有し、組織制御されたα+β黄銅材料が開示されている。   As a brass which improves such problems, has anti-dezincing corrosion resistance and free-cutting properties, and is easy to hot work, for example, Japanese Patent Laid-Open No. 2001-294958 (Patent Document 1) discloses Cu: 60. 0 to 63.0%, Pb: 2.0 to 3.7%, P: 0.02 to 0.07%, Sn: 0.20 to 0.50%, Fe: 0.10 to 0.20% An α + β brass material having a composition composed of the balance Zn and inevitable impurities and having a controlled structure is disclosed.

特許文献1には、従来からの耐脱亜鉛腐食性の指標であったISO法に対しては、特許文献1に開示されている黄銅材料が有効であることが示されており、該黄銅材料は、耐脱亜鉛腐食性黄銅として一定の性能を示すものではある。しかし、近年、日本の実環境を模擬する耐脱亜鉛腐食性の指標として適用される日本伸銅協会法(以下、JBMA法と記載する。)においては、より厳しい脱亜鉛腐食性が求められるようになってきており、引用文献1に開示されている黄銅材料であっても、十分な耐脱亜鉛腐食性能を発揮しないことが明らかとなってきた。   Patent Document 1 shows that the brass material disclosed in Patent Document 1 is effective for the ISO method that has been a conventional index of anti-dezincing corrosion resistance. Shows a certain performance as a dezincing corrosion-resistant brass. However, in recent years, the Japan Copper and Brass Association method (hereinafter referred to as the JBMA method), which is applied as an index of dezincification corrosion resistance that simulates the real environment in Japan, requires more severe dezincification corrosion properties. It has become clear that even the brass material disclosed in the cited document 1 does not exhibit sufficient dezincification corrosion resistance.

特開2001−294956号公報(特許請求の範囲)Japanese Patent Laid-Open No. 2001-294956 (Claims)

従って、本発明の課題は、このような、より厳しい指標に対して、十分な耐脱亜鉛腐食性能を発揮しつつ、且つ加工性及び切削性も優れている黄銅材料を提供することにある。   Therefore, the subject of this invention is providing the brass material which is excellent in workability and machinability, while exhibiting sufficient dezincification corrosion-resistant performance with respect to such a more severe parameter | index.

本発明者らは、上記従来技術における課題を解決すべく、黄銅材料の組成及び組織の組み合わせ、及びその製造条件について、鋭意研究を重ねた結果、黄銅材料の組成及び組織を、特定の範囲とすることにより、耐脱亜鉛腐食性能、加工性及び切削性に優れた黄銅材料が得られることを見出し、本発明を完成させた。   In order to solve the above-described problems in the prior art, the present inventors have conducted intensive research on the combination of brass material composition and structure, and the manufacturing conditions thereof, and as a result, the composition and structure of the brass material have a specific range. As a result, it was found that a brass material excellent in dezincification corrosion resistance, workability and machinability was obtained, and the present invention was completed.

すなわち、本発明(1)は、Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有し、
且つα相とβ相の2相からなり、β相がα相で分断されている組織を有し、α相の結晶粒径が25μm以下であり、β相の結晶粒径が15μm以下であり、β相に対するα相の相対比率が90%以上であること、
を特徴とする黄銅材料を提供するものである。
That is, the present invention (1) includes Cu: 60.0 to 63.0 mass%, Pb: 0.9 to 3.7 mass%, P: 0.08 to 0.13 mass%, Sn: 0.10 -0.50 mass%, Fe: 0.10-0.50 mass% is contained, it has a composition which consists of remainder Zn and an unavoidable impurity,
In addition, the structure is composed of two phases of α phase and β phase, the β phase is divided by the α phase, the crystal grain size of the α phase is 25 μm or less, and the crystal grain size of the β phase is 15 μm or less. , The relative ratio of α phase to β phase is 90% or more,
The brass material characterized by this is provided.

また、本発明(2)は、Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有する黄銅材であるビレットを、700℃以下の温度で熱間押出し、熱間押出材を得る熱間押出工程と、
該熱間押出材、又は該熱間押出材を冷間加工して得られる冷間加工材を、350〜650℃の温度で熱処理する熱処理工程と、
を有することを特徴とする黄銅材料の製造方法を提供するものである。
Moreover, this invention (2) is Cu: 60.0-63.0 mass%, Pb: 0.9-3.7 mass%, P: 0.08-0.13 mass%, Sn: 0.10 -Billet which is a brass material containing 0.50% by mass, Fe: 0.10-0.50% by mass and having the balance Zn and unavoidable impurities at a temperature of 700 ° C or less, A hot extrusion process to obtain an inter-extruded material;
A heat treatment step of heat-treating the hot-extruded material or the cold-worked material obtained by cold-working the hot-extruded material at a temperature of 350 to 650 ° C;
The manufacturing method of the brass material characterized by having is provided.

また、本発明(3)は、Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有する黄銅材であるビレットを、700℃以下の温度で熱間押出し、熱間押出材を得る熱間押出工程と、
該熱間押出材を、10℃/秒以下の冷却速度で徐冷する冷却工程と、
を有することを特徴とする黄銅材料の製造方法を提供するものである。
Moreover, this invention (3) is Cu: 60.0-63.0 mass%, Pb: 0.9-3.7 mass%, P: 0.08-0.13 mass%, Sn: 0.10 -Billet which is a brass material containing 0.50% by mass, Fe: 0.10-0.50% by mass and having the balance Zn and unavoidable impurities at a temperature of 700 ° C or less, A hot extrusion process to obtain an inter-extruded material;
A cooling step of gradually cooling the hot extruded material at a cooling rate of 10 ° C./second or less;
The manufacturing method of the brass material characterized by having is provided.

また、本発明(4)は、Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有する黄銅材である被鍛造材を、熱間鍛造し、熱間鍛造材を得る熱間鍛造工程と、
該熱間鍛造材を350〜650℃の温度で熱処理する熱処理工程と、
を有することを特徴とする黄銅材料の製造方法を提供するものである。
Moreover, this invention (4) is Cu: 60.0-63.0 mass%, Pb: 0.9-3.7 mass%, P: 0.08-0.13 mass%, Sn: 0.10 ~ 0.50 mass%, Fe: 0.10 to 0.50 mass%, hot forging a to-be-forged material which is a brass material having a composition consisting of the balance Zn and inevitable impurities, and hot forging A hot forging process to obtain,
A heat treatment step of heat treating the hot forged material at a temperature of 350 to 650 ° C .;
The manufacturing method of the brass material characterized by having is provided.

また、本発明(5)は、Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有する黄銅材である被鍛造材を、熱間鍛造し、熱間鍛造材を得る熱間鍛造工程と、
該熱間鍛造材を10℃/秒以下の冷却速度で徐冷する冷却工程と、
を有することを特徴とする黄銅材料の製造方法を提供するものである。
Moreover, this invention (5) is Cu: 60.0-63.0 mass%, Pb: 0.9-3.7 mass%, P: 0.08-0.13 mass%, Sn: 0.10 ~ 0.50 mass%, Fe: 0.10 to 0.50 mass%, hot forging a to-be-forged material which is a brass material having a composition consisting of the balance Zn and inevitable impurities, and hot forging A hot forging process to obtain,
A cooling step of gradually cooling the hot forged material at a cooling rate of 10 ° C./second or less;
The manufacturing method of the brass material characterized by having is provided.

本発明の黄銅材料によれば、JBMA法のような厳しい指標に対しても耐脱亜鉛腐食性能を発揮できるという、優れた耐脱亜鉛腐食性を有しつつ、且つ加工性及び切削性も優れている黄銅材料を提供することができる。また、本発明の黄銅材料の製造方法によれば、優れた耐脱亜鉛腐食性、加工性及び切削性を備えた黄銅材料を、比較的容易に製造することができる。   According to the brass material of the present invention, it has excellent dezincification corrosion resistance that it can exhibit dezincification corrosion resistance even against severe indexes such as the JBMA method, and has excellent workability and machinability. Brass material can be provided. Moreover, according to the method for producing a brass material of the present invention, a brass material having excellent dezincification corrosion resistance, workability and machinability can be produced relatively easily.

本発明の黄銅材料は、Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有し、
且つα相とβ相の2相からなり、β相がα相で分断されている組織を有し、α相の結晶粒径が25μm以下であり、β相の結晶粒径が15μm以下であり、β相に対するα相の相対比率が90%以上であること、
を特徴とする黄銅材料である。
The brass material of the present invention has Cu: 60.0 to 63.0 mass%, Pb: 0.9 to 3.7 mass%, P: 0.08 to 0.13 mass%, Sn: 0.10 to 0 .50% by mass, Fe: 0.10 to 0.50% by mass, and having a composition consisting of the balance Zn and inevitable impurities,
In addition, the structure is composed of two phases of α phase and β phase, the β phase is divided by the α phase, the crystal grain size of the α phase is 25 μm or less, and the crystal grain size of the β phase is 15 μm or less. , The relative ratio of α phase to β phase is 90% or more,
A brass material characterized by

本発明の黄銅材料は、Cuの含有量が60.0〜63.0質量%であるCu−Zn合金であり、添加元素として、Pbを0.9〜3.7質量%、Pを0.08〜0.13質量%、Snを0.10〜0.50質量%、Feを:0.10〜0.50質量%含有する。   The brass material of the present invention is a Cu-Zn alloy having a Cu content of 60.0 to 63.0 mass%, Pb is 0.9 to 3.7 mass%, and P is 0.00. It contains 08 to 0.13 mass%, Sn is 0.10 to 0.50 mass%, and Fe is 0.10 to 0.50 mass%.

Cuは、Znより高価であるから、その含有量を出来るだけ低減させることが望ましく、その他の含有成分の影響を考慮し、いずれの温度範囲においてもα相とβ相の2相からなるマトリックスが形成されるように、本発明の黄銅材料中のCuの含有量を63.0質量%以下とする。また、耐脱亜鉛腐食性及び切削性を向上させるためには、熱間加工(熱間押出又は熱間鍛造)の後の熱処理又は徐冷によりβ相を微細に分断させる必要がある。そのためには、該熱間加工後の状態で、β相に対するα相の相対比率を50%以上にすることが好ましいが、Cu含有量が60質量%未満では、その後の冷却条件、熱処理条件を工夫しても、β相を微細に分断させ、且つβ相に対するα相の相対比率を90%以上とすることが困難である。よって、本発明の黄銅材料中のCuの含有量を60.0質量%以上とする。   Since Cu is more expensive than Zn, it is desirable to reduce its content as much as possible. In consideration of the influence of other components, a matrix composed of two phases of α phase and β phase is present in any temperature range. As formed, the content of Cu in the brass material of the present invention is 63.0% by mass or less. Moreover, in order to improve the dezincification corrosion resistance and the machinability, it is necessary to finely divide the β phase by heat treatment or slow cooling after hot working (hot extrusion or hot forging). For that purpose, in the state after the hot working, it is preferable to set the relative ratio of the α phase to the β phase to 50% or more. However, if the Cu content is less than 60% by mass, the subsequent cooling conditions and heat treatment conditions are set. Even if it is devised, it is difficult to finely divide the β phase and make the relative ratio of the α phase to the β phase 90% or more. Therefore, the content of Cu in the brass material of the present invention is set to 60.0% by mass or more.

Pbは、黄銅材料のマトリックス中に固溶せず分散粒子として存在し、銅の切削性を向上させるために添加される元素である。本発明の黄銅材料中のPbの含有量は、0.9〜3.7質量%である。該Pbの含有量が、0.9質量%未満だと、Pbによる十分な切削性向上効果が得られず、また、3.7質量%を超えると、機械的性質が低くなり、脆化を生じる傾向がある。   Pb is an element that does not dissolve in the matrix of the brass material but exists as dispersed particles and is added to improve the machinability of copper. Content of Pb in the brass material of this invention is 0.9-3.7 mass%. If the Pb content is less than 0.9% by mass, a sufficient machinability improving effect due to Pb cannot be obtained. If the Pb content exceeds 3.7% by mass, the mechanical properties become low and embrittlement occurs. Tend to occur.

Pは、黄銅材料の耐脱亜鉛腐食性を向上させるために添加される元素であり、Pの添加により、特に、α相の耐脱亜鉛腐食性を向上させることができる。JBMA法のような厳しい指標に対して、十分な耐脱亜鉛腐食性を得るためには、本発明の黄銅材料中のPの含有量は、0.08〜0.13質量%であることが必要である。黄銅材料中のPの含有量が0.02質量%以上であれば、一定の耐脱亜鉛腐食性を示すが、JBMA法のような厳しい指標を満足するためには、Pの含有量は0.08質量%以上であることが必要である。一方、黄銅材料中のPの含有量が多過ぎると、材料の機械的性質が低くなったり、脆化し冷間加工性を阻害する。これはPの一部が、硬くて脆いCu3 P相として存在するためである。そのため、本発明の黄銅材料中のPの含有量の上限は、0.13質量%である必要がある。また、Pは、鋳塊の結晶粒を微細化する元素としても機能する。   P is an element added to improve the dezincification corrosion resistance of the brass material, and the addition of P can particularly improve the dezincification corrosion resistance of the α phase. In order to obtain sufficient dezincification corrosion resistance against a strict index such as the JBMA method, the P content in the brass material of the present invention is 0.08 to 0.13 mass%. is necessary. If the P content in the brass material is 0.02% by mass or more, it exhibits a certain dezincification corrosion resistance. However, in order to satisfy a strict index like the JBMA method, the P content is 0. 0.08% by mass or more is necessary. On the other hand, when there is too much content of P in a brass material, the mechanical property of material will become low or it will become brittle and will inhibit cold workability. This is because a part of P exists as a hard and brittle Cu3P phase. Therefore, the upper limit of the content of P in the brass material of the present invention needs to be 0.13% by mass. Moreover, P functions also as an element which refines | miniaturizes the crystal grain of an ingot.

Snは、α相及びβ相の耐脱亜鉛腐食性を向上させるために添加される元素であり、Snの添加により、α相の脱亜鉛腐食を抑制するだけでなく、β相の脱亜鉛腐食を抑制することができる。本発明の黄銅材料中のSnの含有量は、0.20〜0.50質量%の範囲である。該Snの含有量が、0.20質量%未満だと、Snの添加効果が小さく、また、0.50質量%を超えると、熱処理又は徐冷を行ってもβ相の連なりが分断されないことがあり、また、熱処理条件によっては硬くて脆いγ相が析出する場合がある。   Sn is an element added in order to improve the dezincification corrosion resistance of the α phase and the β phase. The addition of Sn not only suppresses the dezincification corrosion of the α phase, but also eliminates the dezincification corrosion of the β phase. Can be suppressed. The content of Sn in the brass material of the present invention is in the range of 0.20 to 0.50 mass%. If the Sn content is less than 0.20% by mass, the effect of adding Sn is small, and if it exceeds 0.50% by mass, the continuous β phase is not broken even if heat treatment or annealing is performed. Depending on the heat treatment conditions, a hard and brittle γ phase may precipitate.

Feは、機械的性質を安定化させるために添加される元素であり、Feの添加により、α相の粗大化を抑制して機械的性質を安定化させることができる。本発明の黄銅材料中のFeの含有量は、0.10〜0.50質量%の範囲である。該Feの含有量が、0.10質量%未満だと、Feの添加効果が十分でなく、また、0.50質量%を超えると、通常のα+β黄銅の加工温度より高い温度に長時間保持しないと固溶せず、Feが部分的に結晶粒の成長を妨害し、結晶粒径が大小混粒となり易く、機械的性質のばらつきの原因となる。Feが固溶せず残留した場合には抽伸破断の原因となる。   Fe is an element added to stabilize the mechanical properties. By adding Fe, the mechanical properties can be stabilized by suppressing the coarsening of the α phase. Content of Fe in the brass material of this invention is the range of 0.10-0.50 mass%. If the Fe content is less than 0.10% by mass, the effect of adding Fe is not sufficient, and if it exceeds 0.50% by mass, it is maintained at a temperature higher than the processing temperature of normal α + β brass for a long time. Otherwise, the solid solution does not dissolve, Fe partially obstructs the growth of crystal grains, the crystal grain size tends to be large and small mixed grains, and causes variation in mechanical properties. If Fe remains without being dissolved, it causes a drawing fracture.

本発明の黄銅材料では、Cu、Pb、P、Sn及びFe以外の残部は、Zn及び不可避不純物である。本発明の黄銅材料には、通常、快削黄銅に不可避不純物として含まれる、例えば、0.005%以下のSi、0.03%以下のAl、0.03%以下のMnなどが含有されていても、本発明の効果に影響を与えることはない。   In the brass material of the present invention, the balance other than Cu, Pb, P, Sn and Fe is Zn and inevitable impurities. The brass material of the present invention usually contains, as an inevitable impurity in free-cutting brass, for example, 0.005% or less of Si, 0.03% or less of Al, 0.03% or less of Mn, or the like. However, the effect of the present invention is not affected.

Biは、銅合金中に固溶しない等、Pbと似た性質を有し、Pbと同様に、黄銅材料の切削性を向上させる元素として機能するため、本発明の黄銅材料では、PbをBiに置き換えることも可能であり、その場合、本発明の黄銅材料中のBiの含有量は、0.9〜3.7質量%である。   Bi has properties similar to Pb, such as not dissolving in the copper alloy, and functions similarly to Pb as an element that improves the machinability of the brass material. Therefore, in the brass material of the present invention, Pb is Bi. In this case, the Bi content in the brass material of the present invention is 0.9 to 3.7% by mass.

本発明の黄銅材料の組織は、(i)黄銅材料のマトリックスがα相とβ相の2相からなり、(ii)β相がα相で分断されている組織を有し、(iii)α相の結晶粒径が25μm以下であり、(iv)β相の結晶粒径が15μm以下であり、(v)β相に対するα相の相対比率(%)が90%以上である。なお、本発明において、β相に対するα相の相対比率A(%)は、JIS H 0501に規定されている切断法により断面観察を行い、下記式:
A(%)={α相の面積/(α相の面積+β相の面積)}×100
で求められる値である。
The structure of the brass material of the present invention has a structure in which (i) the matrix of the brass material is composed of two phases of an α phase and a β phase, (ii) the β phase is divided by the α phase, and (iii) α The crystal grain size of the phase is 25 μm or less, (iv) the crystal grain size of the β phase is 15 μm or less, and (v) the relative ratio (%) of the α phase to the β phase is 90% or more. In the present invention, the relative ratio A (%) of the α phase to the β phase is obtained by observing a cross section by a cutting method defined in JIS H 0501, and the following formula:
A (%) = {area of α phase / (area of α phase + area of β phase)} × 100
This is the value obtained by.

本発明の黄銅材料は、β相がα相で分断されている組織を有すること、すなわち、β相が、P及びSnの添加によって耐脱亜鉛腐食性が向上したα相で包み込まれるような組織形態とすることにより、脱亜鉛腐食が進行し難くなるので、耐脱亜鉛腐食性が高くなる。なお、本発明において、β相がα相で分断されているとは、黄銅材料中の各β相が、α相で囲まれているようにして存在しており、β相が隣合い粒子群を形成していたとしても、そのβ相粒子群の最大長さが、15μm以下であることを指す。   The brass material of the present invention has a structure in which the β phase is divided by the α phase, that is, the structure in which the β phase is enveloped by the α phase whose dezincification corrosion resistance is improved by the addition of P and Sn. By adopting the form, the dezincification corrosion becomes difficult to proceed, so that the dezincification corrosion resistance becomes high. In the present invention, the β phase is divided by the α phase means that each β phase in the brass material is surrounded by the α phase, and the β phase is adjacent to the particle group. The maximum length of the β-phase particle group is 15 μm or less.

本発明の黄銅材料は、更に、α相の結晶粒径が25μm以下であり、β相の結晶粒径が15μm以下であり、且つβ相に対するα相の相対比率が90%以上である。   The brass material of the present invention further has an α phase crystal grain size of 25 μm or less, a β phase crystal grain size of 15 μm or less, and a relative ratio of the α phase to the β phase of 90% or more.

本発明の黄銅材料は、上記組織を有すること、すなわち、黄銅材料の組織が上記(i)〜(v)を満たす必要があり、組織が上記(i)〜(v)を満たすことにより、JBMA脱亜鉛試験において、「基準である最大侵食深さ(全面腐食深さに脱亜鉛腐食深さを加えた深さ)が100μm以下であること」を満足することができる。一方、黄銅材料のα相の結晶粒径が25μmを超えると、最大侵食深さのうち、全面腐食深さが深くなり、最大侵食深さが100μmを超える。また、黄銅材料のβ相の結晶粒径が15μmを超えると、最大侵食深さのうち、脱亜鉛腐食深さが深くなり、最大侵食深さが100μmを超える。また、β相に対するα相の相対比率が90%未満だと、β相の結晶粒径が15μmを超える場合と同様、最大侵食深さのうち、全面腐食深さが深くなり、最大侵食深さが100μmを超える。   The brass material of the present invention has the above structure, that is, the structure of the brass material needs to satisfy the above (i) to (v), and the structure satisfies the above (i) to (v). In the dezincing test, it can be satisfied that “the maximum erosion depth (the depth obtained by adding the dezincing corrosion depth to the entire surface corrosion depth) is 100 μm or less”. On the other hand, when the crystal grain size of the α phase of the brass material exceeds 25 μm, the overall corrosion depth of the maximum erosion depth becomes deep, and the maximum erosion depth exceeds 100 μm. Moreover, when the crystal grain diameter of the β phase of the brass material exceeds 15 μm, the dezincification corrosion depth becomes deep in the maximum erosion depth, and the maximum erosion depth exceeds 100 μm. In addition, when the relative ratio of the α phase to the β phase is less than 90%, as in the case where the crystal grain size of the β phase exceeds 15 μm, the overall corrosion depth of the maximum erosion depth becomes deep, and the maximum erosion depth. Exceeds 100 μm.

本発明の黄銅材料を製造する方法としては、特に制限されないが、以下にその形態例を示す。本発明の黄銅材料の製造方法の第一の形態例(以下、本発明の黄銅材料の製造方法(1)とも記載する。)では、先ず、Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有する黄銅材であるビレットを、700℃以下の温度で、熱間押出し、熱間押出材を得る熱間押出工程(1)を行う。   Although it does not restrict | limit especially as a method of manufacturing the brass material of this invention, The form example is shown below. In the first embodiment of the method for producing the brass material of the present invention (hereinafter also referred to as the method for producing the brass material of the present invention (1)), first, Cu: 60.0 to 63.0 mass%, Pb : 0.9 to 3.7% by mass, P: 0.08 to 0.13% by mass, Sn: 0.10 to 0.50% by mass, Fe: 0.10 to 0.50% by mass, A billet, which is a brass material having a composition composed of the remaining Zn and inevitable impurities, is hot-extruded at a temperature of 700 ° C. or lower to perform a hot extrusion step (1) to obtain a hot-extruded material.

該熱間押出工程(1)に係る該ビレットは、上記の組成を有する合金を造塊して得られる黄銅材である。該造塊の方法としては、特に制限されない。   The billet according to the hot extrusion step (1) is a brass material obtained by agglomerating an alloy having the above composition. The ingot-making method is not particularly limited.

該熱間押出工程(1)では、700℃以下で熱間押出しを行うことにより、共晶融解を抑止することが可能となるだけでなく、押出段階で、連続したβ相の量を少なくすることが可能である。そして、押出中に発生する加工発熱により、結果的に共晶温度714℃を超えることが懸念されるため、該熱間押出工程(1)では、680℃以下の温度で熱間押出を行うことが望ましい。   In the hot extrusion step (1), not only eutectic melting can be suppressed by performing hot extrusion at 700 ° C. or lower, but also the amount of continuous β phase is reduced in the extrusion stage. It is possible. And since it is feared that the eutectic temperature exceeds 714 ° C as a result of processing heat generated during extrusion, in the hot extrusion step (1), hot extrusion is performed at a temperature of 680 ° C or lower. Is desirable.

該熱間押出工程(1)に係る該ビレットは、Cuの含有量が低く、常にα相、β相の2相からなるので、押出加工は容易であり、押出直後の組織は、α+β相からなり、β相は連続した状態で存在している。   Since the billet according to the hot extrusion step (1) has a low Cu content and is always composed of two phases of α phase and β phase, the extrusion process is easy, and the structure immediately after extrusion is from the α + β phase. Therefore, the β phase exists in a continuous state.

後述する熱処理工程(1)を行なった後の黄銅材料が、α相の結晶粒径が25μm以下であり、且つβ相の結晶粒径が15μm以下であることを達成するためには、該熱間押出工程(1)を行い得られる該熱間押出材の結晶粒径を、できるだけ小さくすることが望ましいが、これには、該熱間押出工程(1)に係る該ビレットの結晶粒度、押出温度、押出比(ビレット断面積(押出前)/熱間押出材断面積(押出後))などの条件が影響を与える。そして、該ビレットの結晶粒度は、該ビレットのP含有量の影響を受け易く、該ビレットのP含有量が0.08〜0.13質量%であると、該ビレットの結晶粒度を微細化し易くなる。また、該ビレットの結晶粒微細化が十分であると低い温度での押出が可能であり、更にこれに加え高い押出比とすることによって、該熱間押出材の結晶粒径を効果的に微細化することができる。   In order to achieve that the brass material after the heat treatment step (1) described later has an α phase crystal grain size of 25 μm or less and a β phase crystal grain size of 15 μm or less, It is desirable to make the crystal grain size of the hot extrudate obtained by performing the hot extrusion step (1) as small as possible. For this, the crystal grain size of the billet according to the hot extrusion step (1), the extrusion Conditions such as temperature and extrusion ratio (billet cross-sectional area (before extrusion) / hot extruded material cross-sectional area (after extrusion)) influence. And the crystal grain size of the billet is easily affected by the P content of the billet, and when the P content of the billet is 0.08 to 0.13% by mass, the billet crystal grain size is easily refined. Become. Further, if the billet is sufficiently refined, it can be extruded at a low temperature. In addition to this, by setting a high extrusion ratio, the grain size of the hot extruded material can be effectively reduced. Can be

なお、該熱間押出工程(1)では、押出比が大きいことは、結晶粒の微細化に有効であるが、大き過ぎると押出加工が難しくなる。押出温度を上げることで、押出比が大きい場合の押出加工の困難性を回避することができるが、押出温度が高過ぎると、結晶粒が大きくなり過ぎるので、該熱間押出工程(1)では、押出比及び押出温度が適度にバランスした条件であることが望まれる。そして、該熱間押出工程(1)は、押出温度が700℃以下であり、且つ鋳塊の結晶粒の微細化が、0.08〜0.13質量%のPを含有する鋳塊中で行われているという条件にあり、この条件では、押出比は250〜500であることが望ましい。   In the hot extrusion step (1), a large extrusion ratio is effective for refining crystal grains, but if it is too large, extrusion processing becomes difficult. By raising the extrusion temperature, the difficulty of extrusion when the extrusion ratio is large can be avoided, but if the extrusion temperature is too high, the crystal grains become too large, so in the hot extrusion step (1) It is desirable that the extrusion ratio and the extrusion temperature are appropriately balanced. And in this hot extrusion process (1), extrusion temperature is 700 degrees C or less, and refinement | miniaturization of the crystal grain of an ingot contains 0.08-0.13 mass% P in an ingot. In this condition, the extrusion ratio is preferably 250 to 500.

本発明の黄銅材料の製造方法(1)では、次いで、該熱間押出材、又は該熱間押出材を冷間加工して得られる冷間加工材を、350〜650℃の温度で熱処理する熱処理工程(1)を行う。該熱処理工程(1)を行うことにより、Cu−Zn状態図に基づく金相学上の原理に従って、β相の一部がα相に変化して、組織中のα相の存在比率が増大し、その結果、残留したβ相はα相によって分断されα相に包み込まれたような形態となり、α相の結晶粒径が25μm以下、β相の結晶粒径が15μm以下、β相に対するα相の相対比率が90%となる。   In the method (1) for producing a brass material of the present invention, the hot extruded material or the cold worked material obtained by cold working the hot extruded material is then heat-treated at a temperature of 350 to 650 ° C. A heat treatment step (1) is performed. By performing the heat treatment step (1), according to the principle of gold phase based on the Cu-Zn phase diagram, a part of β phase is changed to α phase, and the abundance ratio of α phase in the structure is increased. As a result, the remaining β-phase is divided by the α-phase and encapsulated in the α-phase, the α-phase crystal grain size is 25 μm or less, the β-phase crystal grain size is 15 μm or less, and the α-phase relative to the β-phase The ratio is 90%.

該熱処理工程(1)において、熱処理温度が、350℃未満だと、β相の分断効果が十分に得られず、また、650℃を越えると、α相からβ相への変態が生じ、β相が増えて連続相となり、耐脱亜鉛腐食性が低くなる。   In the heat treatment step (1), if the heat treatment temperature is less than 350 ° C., a sufficient effect of dividing the β phase cannot be obtained, and if it exceeds 650 ° C., transformation from the α phase to the β phase occurs. The phase increases to become a continuous phase, and the dezincification corrosion resistance is lowered.

本発明の黄銅材料の製造方法(1)では、該熱処理工程(1)を行った後、熱処理された材料に、更に、抽伸加工、矯正仕上げ加工などを施すことができる。   In the brass material manufacturing method (1) of the present invention, after the heat treatment step (1), the heat-treated material can be further subjected to a drawing process, a straightening finishing process, and the like.

すなわち、本発明の黄銅材料の製造方法(1)は、Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有する黄銅材である該ビレットを、700℃以下の温度で、熱間押出し、該熱間押出材を得る熱間押出工程(1)と、
該熱間押出材、又は該熱間押出材を冷間加工して得られる冷間加工材を、350〜650℃の温度で熱処理する熱処理工程(1)と、
を有する黄銅材料の製造方法である。
That is, the manufacturing method (1) of the brass material of the present invention includes Cu: 60.0 to 63.0 mass%, Pb: 0.9 to 3.7 mass%, and P: 0.08 to 0.13 mass%. Sn: 0.10 to 0.50% by mass, Fe: 0.10 to 0.50% by mass, and the billet that is a brass material having a composition consisting of the balance Zn and inevitable impurities, A hot extrusion step (1) to obtain a hot extrudate by hot extrusion at a temperature;
A heat treatment step (1) for heat-treating the hot-extruded material or a cold-worked material obtained by cold-working the hot-extruded material at a temperature of 350 to 650 ° C;
It is a manufacturing method of the brass material which has this.

本発明の黄銅材料の製造方法の第二の形態例(以下、本発明の黄銅材料の製造方法(2)とも記載する。)では、先ず、熱間押出工程(2)を行い、熱間押出材を得る。該熱間押出工程(2)は、本発明の黄銅材料の製造方法(1)に係る該熱間押出工程(1)と同様であり、押出比についても同様である。   In the second embodiment of the method for producing a brass material according to the present invention (hereinafter also referred to as the method for producing a brass material according to the present invention (2)), first, a hot extrusion step (2) is performed to perform hot extrusion. Get the material. The hot extrusion step (2) is the same as the hot extrusion step (1) according to the method (1) for producing the brass material of the present invention, and the extrusion ratio is also the same.

本発明の黄銅材料の製造方法(2)では、次いで、該熱間押出材を10℃/秒以下の冷却速度で徐冷する冷却工程(2)を行う。   In the method (2) for producing a brass material of the present invention, a cooling step (2) is then performed in which the hot extruded material is gradually cooled at a cooling rate of 10 ° C./second or less.

該冷却工程(2)では、700℃以下で熱間押出した該熱間押出材を、10℃/秒以下の冷却速度で徐冷することにより、Cu−Zn状態図に基づく金相学上の原理に従って、β相の一部がα相に変化して、組織中のα相の存在比率が増大し、その結果、残留したβ相はα相によって分断されα相に包み込まれたような形態となり、α相の結晶粒径が25μm以下、β相の結晶粒径が15μm以下、β相に対するα相の相対比率が90%となる。   In the cooling step (2), the hot-extruded material hot-extruded at 700 ° C. or less is gradually cooled at a cooling rate of 10 ° C./second or less, thereby following the principle of metal phase based on the Cu—Zn phase diagram. , A part of the β phase is changed to α phase, the abundance ratio of α phase in the tissue is increased, and as a result, the remaining β phase is divided by the α phase and encapsulated in the α phase, The crystal grain size of the α phase is 25 μm or less, the crystal grain size of the β phase is 15 μm or less, and the relative ratio of the α phase to the β phase is 90%.

一方、該冷却工程(2)において、冷却速度が10℃/秒を超えると、650℃を超える高温領域では、β相からβ+α相への変態が生じるため、拡散距離が短範囲で足りるから問題ないが、650℃以下の温度領域では、β相からα相への変態が生じるため、長範囲の拡散が必要となり、冷却速度に拡散速度が追随し切れず、β相の分断が不十分となり、耐脱亜鉛腐食性が低くなる。   On the other hand, in the cooling step (2), if the cooling rate exceeds 10 ° C./second, the transformation from the β phase to the β + α phase occurs in a high temperature region exceeding 650 ° C., so that the diffusion distance is sufficient in a short range. However, in the temperature range of 650 ° C. or lower, transformation from β phase to α phase occurs, so long range diffusion is required, the diffusion rate cannot follow the cooling rate, and the β phase is not sufficiently divided. Dezincing corrosion resistance is reduced.

本発明の黄銅材料の製造方法(2)では、該冷却工程(2)を行った後、熱処理された材料に、更に、抽伸加工、矯正仕上げ加工などを施すことができる。   In the brass material manufacturing method (2) of the present invention, after the cooling step (2), the heat-treated material can be further subjected to a drawing process, a straightening finishing process, and the like.

すなわち、本発明の黄銅材料の製造方法(2)は、Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有する黄銅材である該ビレットを、700℃以下の温度で、熱間押出し、該熱間押出材を得る熱間押出工程(2)と、
該熱間押出材を、10℃/秒以下の冷却速度で徐冷する冷却工程(2)と、
を有する黄銅材料の製造方法である。
That is, the manufacturing method (2) of the brass material of the present invention includes Cu: 60.0 to 63.0 mass%, Pb: 0.9 to 3.7 mass%, P: 0.08 to 0.13 mass%. Sn: 0.10 to 0.50% by mass, Fe: 0.10 to 0.50% by mass, and the billet that is a brass material having a composition consisting of the balance Zn and inevitable impurities, A hot extrusion step (2) to obtain a hot extrudate by hot extrusion at a temperature;
A cooling step (2) of gradually cooling the hot extruded material at a cooling rate of 10 ° C./second or less;
It is a manufacturing method of the brass material which has this.

本発明の黄銅材料の製造方法の第三の形態例(以下、本発明の黄銅材料の製造方法(3)とも記載する。)では、先ず、Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有する黄銅材である被鍛造材を、熱間鍛造し、熱間鍛造材を得る熱間鍛造工程(3)を行う。   In the third embodiment of the method for producing the brass material of the present invention (hereinafter also referred to as the method for producing the brass material of the present invention (3)), first, Cu: 60.0 to 63.0 mass%, Pb : 0.9 to 3.7% by mass, P: 0.08 to 0.13% by mass, Sn: 0.10 to 0.50% by mass, Fe: 0.10 to 0.50% by mass, The hot forging process (3) which hot-forges the to-be-forged material which is a brass material which has a composition which consists of remainder Zn and an unavoidable impurity, and obtains a hot forging material is performed.

該熱間鍛造工程(3)に係る該被鍛造材としては、上記の組成を有する合金を造塊し、次いで、熱間押出した黄銅材や、熱間押出後引抜加工された黄銅材等が挙げられる。該被鍛造材は、α相とβ相の混合組織であるため、熱間加工性に優れ、熱間鍛造に供すること、特に金型鍛造に供することに適している。該金型鍛造とすることにより、共晶温度よりも高い温度での熱間鍛造が可能となる。   Examples of the material to be forged according to the hot forging step (3) include a brass material obtained by agglomerating an alloy having the above-described composition and then hot-extruded or a brass material subjected to a drawing process after hot extrusion. Can be mentioned. Since the material to be forged is a mixed structure of α phase and β phase, it is excellent in hot workability and is suitable for use in hot forging, particularly for die forging. By using the die forging, hot forging at a temperature higher than the eutectic temperature is possible.

該熱間鍛造工程(3)において、鍛造温度は、鍛造時の塑性流動性や、鍛造後組織の耐食性への影響を考慮すると、600〜850℃が好適である。   In the hot forging step (3), the forging temperature is preferably 600 to 850 ° C. in consideration of the plastic fluidity during forging and the corrosion resistance of the structure after forging.

本発明の黄銅材料の製造方法(3)では、次いで、該熱間鍛造材を、350〜650℃の温度で熱処理する熱処理工程(3)を行う。該熱処理工程(3)を行うことにより、Cu−Zn状態図に基づく金相学上の原理に従って、β相の一部がα相に変化して、組織中のα相の存在比率が増大し、その結果、残留したβ相はα相によって分断されα相に包み込まれたような形態となり、α相の結晶粒径が25μm以下、β相の結晶粒径が15μm以下、β相に対するα相の相対比率が90%となる。   Next, in the manufacturing method (3) of the brass material of the present invention, a heat treatment step (3) is performed in which the hot forged material is heat-treated at a temperature of 350 to 650 ° C. By performing the heat treatment step (3), according to the principle of gold phase based on the Cu-Zn phase diagram, a part of the β phase is changed to the α phase, and the abundance ratio of the α phase in the tissue is increased. As a result, the remaining β-phase is divided by the α-phase and encapsulated in the α-phase, the α-phase crystal grain size is 25 μm or less, the β-phase crystal grain size is 15 μm or less, and the α-phase relative to the β-phase The ratio is 90%.

該熱処理工程(3)において、熱処理温度が、350℃未満だと、β相の分断効果が十分に得られず、また、650℃を越えると、α相からβ相への変態が生じ、β相が増えて連続相となり、耐脱亜鉛耐食性が低くなる。   In the heat treatment step (3), if the heat treatment temperature is less than 350 ° C., a sufficient effect of dividing the β phase cannot be obtained, and if it exceeds 650 ° C., transformation from the α phase to the β phase occurs. The phase increases to become a continuous phase, and the resistance to dezincification and corrosion decreases.

本発明の黄銅材料の製造方法(3)では、該熱処理工程(3)を行った後、熱処理された材料に、更に、抽伸加工、矯正仕上げ加工などを施すことができる。   In the brass material manufacturing method (3) of the present invention, after the heat treatment step (3), the heat-treated material can be further subjected to drawing, straightening finishing, and the like.

すなわち、本発明の黄銅材料の製造方法(3)は、Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有する該被鍛造材を、熱間鍛造し、該熱間鍛造材を得る熱間鍛造工程(3)と、
該熱間鍛造材を、350〜650℃の温度で熱処理する熱処理工程(3)と、
を有する黄銅材料の製造方法である。
That is, the production method (3) of the brass material of the present invention includes Cu: 60.0 to 63.0 mass%, Pb: 0.9 to 3.7 mass%, P: 0.08 to 0.13 mass%. Sn: 0.10 to 0.50% by mass, Fe: 0.10 to 0.50% by mass, the forged material having a composition consisting of the balance Zn and inevitable impurities, hot forged, A hot forging step (3) for obtaining a hot forged material;
A heat treatment step (3) for heat treating the hot forged material at a temperature of 350 to 650 ° C .;
It is a manufacturing method of the brass material which has this.

本発明の黄銅材料の製造方法の第四の形態例(以下、本発明の黄銅材料の製造方法(4)とも記載する。)では、先ず、熱間鍛造工程(4)を行い、熱間鍛造材を得る。該熱間鍛造工程(4)は、本発明の黄銅材料の製造方法(3)に係る該熱間鍛造工程(3)と同様である。   In the fourth embodiment of the method for producing a brass material according to the present invention (hereinafter also referred to as the method for producing a brass material according to the present invention (4)), first, a hot forging step (4) is performed to perform hot forging. Get the material. The hot forging step (4) is the same as the hot forging step (3) according to the method (3) for producing a brass material of the present invention.

本発明の黄銅材料の製造方法(4)では、次いで、該熱間鍛造材を、10℃/秒以下の冷却速度で徐冷する冷却工程(4)を行う。   In the brass material manufacturing method (4) of the present invention, a cooling step (4) is then performed in which the hot forged material is gradually cooled at a cooling rate of 10 ° C./second or less.

該冷却工程(4)では、600〜850℃で熱間鍛造した該熱間鍛造材を、10℃/秒以下の冷却速度で徐冷することにより、Cu−Zn状態図に基づく金相学上の原理に従って、β相の一部がα相に変化して、組織中のα相の存在比率が増大し、その結果、残留したβ相はα相によって分断されα相に包み込まれたような形態となり、α相の結晶粒径が25μm以下、β相の結晶粒径が15μm以下、β相に対するα相の相対比率が90%となる。   In the cooling step (4), the hot forging material hot forged at 600 to 850 ° C. is gradually cooled at a cooling rate of 10 ° C./second or less, whereby the gold phase principle based on the Cu—Zn phase diagram is obtained. As a result, a part of the β phase is changed to the α phase, and the abundance ratio of the α phase in the tissue is increased, and as a result, the remaining β phase is divided by the α phase and encapsulated in the α phase. The crystal grain size of the α phase is 25 μm or less, the crystal grain size of the β phase is 15 μm or less, and the relative ratio of the α phase to the β phase is 90%.

一方、該冷却工程(4)において、冷却速度が10℃/秒を超えると、650℃を超える高温領域では、β相からβ+α相への変態が生じるため、拡散距離が短範囲で足りるから問題ないが、650℃以下の温度領域では、β相からα相への変態が生じるため、長範囲の拡散が必要となり、冷却速度に拡散速度が追随し切れず、β相の分断が不十分となり、耐脱亜鉛腐食性が低くなる。   On the other hand, in the cooling step (4), if the cooling rate exceeds 10 ° C./second, the transformation from the β phase to the β + α phase occurs in a high temperature region exceeding 650 ° C., so that the diffusion distance is sufficient in a short range. However, in the temperature range of 650 ° C. or lower, transformation from β phase to α phase occurs, so long range diffusion is required, the diffusion rate cannot follow the cooling rate, and the β phase is not sufficiently divided. Dezincing corrosion resistance is reduced.

本発明の黄銅材料の製造方法(4)では、該冷却工程(4)を行った後、熱処理された材料に、更に、抽伸加工、矯正仕上げ加工などを施すことができる。   In the brass material manufacturing method (4) of the present invention, after the cooling step (4), the heat-treated material can be further subjected to a drawing process, a straightening finishing process, and the like.

本発明の黄銅材料の製造方法(3)及び本発明の黄銅材料の製造方法(4)は、特に、熱間鍛造工程の前工程である押出工程にて、十分な押出比がとれず、押出材におけるα相、β相の結晶粒が十分に微細化されない場合等において、該熱間鍛造工程(3)又は該熱間鍛造工程(4)を採用することにより、α相、β相の結晶粒の微細化が十分に図れるため、本発明の黄銅材料の製造に有効である。   The production method (3) of the brass material of the present invention and the production method (4) of the brass material of the present invention are not particularly effective in the extrusion process, which is a pre-process of the hot forging process. When the α phase and β phase crystal grains in the material are not sufficiently refined, etc., by adopting the hot forging step (3) or the hot forging step (4), the α phase and β phase crystals Since the grain can be sufficiently refined, it is effective for producing the brass material of the present invention.

本発明の黄銅材料、及び本発明の黄銅材料の製造方法により得られた黄銅材料は、水栓金具や、炭酸ガス冷媒給湯機の継手等に、好適に用いられる。   The brass material obtained by the brass material of the present invention and the brass material production method of the present invention is suitably used for a faucet fitting, a joint of a carbon dioxide refrigerant water heater, or the like.

以下、本発明の実施例を比較例と対比して説明するとともに、それに基づいてその効果を実証する。なお、これらの実施例は、本発明の好ましい一実施態様を説明するためのものであって、これにより本発明が制限されるものではない。   Examples of the present invention will be described below in comparison with comparative examples, and the effects will be demonstrated based on the examples. These examples are for explaining a preferred embodiment of the present invention, and the present invention is not limited thereby.

<実施例1及び比較例1・・・合金成分の比較>
(実施例1)
切りくず等の再生原料を主原料とし、これに新地金を混合して添加元素の濃度を調整し、表1に示す組成の合金を溶解、鋳造し、直径294mmのビレットに造塊した。
得られた鋳塊を、640℃の温度で直径18mmの棒材に押出加工した後、断面減少率10%で抽伸加工し、次いで、480℃、2時間の条件で熱処理し、さらに断面減少率20%で抽伸した後、矯正仕上げ加工した。なお、電気炉を使用して所定温度に所定時間保持した後、徐冷することにより熱処理を行った。押出比は約270であった。
矯正仕上げ加工後、No.1〜11の試験材を得た。
<Example 1 and Comparative Example 1 ... Comparison of alloy components>
Example 1
A recycled raw material such as chips was used as a main raw material, and new ingots were mixed therein to adjust the concentration of the additive element. An alloy having the composition shown in Table 1 was melted and cast, and agglomerated into a billet having a diameter of 294 mm.
The obtained ingot was extruded into a bar with a diameter of 18 mm at a temperature of 640 ° C., then drawn at a cross-section reduction rate of 10%, then heat-treated at 480 ° C. for 2 hours, and further the cross-section reduction rate After drawing at 20%, it was straightened and finished. In addition, it heat-processed by hold | maintaining to predetermined temperature for a predetermined time using an electric furnace, and then cooling slowly. The extrusion ratio was about 270.
After straightening finishing, No. Test materials 1 to 11 were obtained.

Figure 0005062829
1)表中、Znの組成の「R」は、残部がZnであることを指す。
Figure 0005062829
1) In the table, “R” in the composition of Zn indicates that the balance is Zn.

(比較例1)
実施例1と同様に、切りくず等の再生原料を主原料とし、これに新地金を混合して添加元素の濃度を調整し、表2に示す組成の合金を溶解、鋳造し、直径294mmのビレットに造塊した。
得られた鋳塊を、640℃の温度で直径18mmの棒材に押出加工した後、断面減少率10%で抽伸加工し、次いで、480℃、2時間の条件で熱処理し、さらに断面減少率20%で抽伸した後、矯正仕上げ加工した。なお、電気炉を使用して所定温度に所定時間保持した後、徐冷することにより熱処理を行った。押出比は約270であった。
矯正仕上げ加工後、No.12〜21の試験材を得た。
(Comparative Example 1)
As in Example 1, a recycled raw material such as chips is used as a main raw material, and new ingots are mixed therein to adjust the concentration of additive elements. An alloy having the composition shown in Table 2 is melted and cast, and has a diameter of 294 mm. Agglomerated into billets.
The obtained ingot was extruded into a bar with a diameter of 18 mm at a temperature of 640 ° C., then drawn at a cross-section reduction rate of 10%, then heat-treated at 480 ° C. for 2 hours, and further the cross-section reduction rate After drawing at 20%, it was straightened and finished. In addition, it heat-processed by hold | maintaining to predetermined temperature for a predetermined time using an electric furnace, and then cooling slowly. The extrusion ratio was about 270.
After straightening finishing, No. 12 to 21 test materials were obtained.

Figure 0005062829
1)表中、Znの組成の「R」は、残部がZnであることを指す。
Figure 0005062829
1) In the table, “R” in the composition of Zn indicates that the balance is Zn.

矯正仕上げ加工後の試験材について、下記の方法により組織観察し、また、加工性、耐脱亜鉛腐食性、切削性を評価した。評価結果を、実施例1について表3、比較例1について表4に示す。   About the test material after the orthodontic finish processing, the structure was observed by the following method, and the workability, anti-dezincing corrosion resistance, and machinability were evaluated. The evaluation results are shown in Table 3 for Example 1 and Table 4 for Comparative Example 1.

(1)組織観察
矯正仕上げ加工後の試験材の縦断面を顕微鏡で観察し、β相が連続状か分断状かを確認した。表3及び表4において、βcはβ相が連続状のものを示し、βdはβ相が分断状のものを示す。なお、断面観察において、β相が隣合い粒子群を形成していたとしても、そのβ相粒子群の最大長さが、15μm以下である場合を「分断状」と、そうでない場合を「連続状」とした。
また、JIS H 0501に規定された切断法により、α相粒径及びβ相粒径並びにβ相に対するα相の相対比率A(%)を測定した。
A(%)={α相の面積/(α相の面積+β相の面積)}×100
(1) Microstructure observation The longitudinal section of the test material after correction finishing was observed with a microscope to confirm whether the β phase was continuous or fragmented. In Tables 3 and 4, βc indicates that the β phase is continuous, and βd indicates that the β phase is divided. In the cross-sectional observation, even if the β phase forms adjacent particle groups, the case where the maximum length of the β phase particle groups is 15 μm or less is referred to as “divided”, and the case where the maximum length is not “continuous” State.
Further, the α phase particle size, the β phase particle size, and the relative ratio A (%) of the α phase to the β phase were measured by the cutting method defined in JIS H 0501.
A (%) = {area of α phase / (area of α phase + area of β phase)} × 100

(2)加工性
押出加工及び抽伸加工中に、破断あるいは割れが生じたものを不合格(×)、欠陥を生じることなく加工できたものを合格(○)とした。
(2) Workability During extrusion and drawing, those that were broken or cracked were rejected (x), and those that could be processed without causing defects were rated as acceptable (◯).

(3)耐脱亜鉛腐食性の評価
耐脱亜鉛腐食性を、JBMA−T303法により評価した。その手順は下記のとおりであるが、試験標準に範囲として規定されている条件を、一部固定して行った。
曝露試験面は棒の加工方向に直角な断面として、暴露面積は150mmとした。エポキシ系樹脂に埋込んだ後、試験片に接着固定したビニール被覆銅線を、アクリル系保護管を通して樹脂側面から取り出し、曝露試験面を研磨、水洗した(以下、電極試料と記載する。)。
1000mLの水に重炭酸ナトリウム0.40g及び塩化ナトリウム29.22gを溶解して試験液とし、60±2℃に調整した恒温水槽内に試験液1000mLを入れ、混合ガスCO+O+N(10:20:70)を通して飽和させた(pH6.5〜7.5)。なお、試験中は飽和状態を維持するため、混合ガスを連続注入した。試験槽中に白金電極と電極試料をセットし、定電流発生装置に連結し、電流密度1.0mA/cmで24時間電流を印加した。試験終了後、暴露面に対し垂直な断面の観察を行い、最大侵食深さの測定を行った。なお、最大侵食深さとは、全面溶解深さと脱亜鉛深さとの合計深さをいう。
脱亜鉛腐食深さ100μm以下(すなわち、実用上、脱亜鉛腐食の問題が生じない深さ)のものを合格(○)、脱亜鉛腐食深さが100μmを超えるものを不合格(×)とした。
(3) Evaluation of dezincification corrosion resistance The dezincification corrosion resistance was evaluated by the JBMA-T303 method. The procedure is as follows, but the conditions specified as ranges in the test standard were partially fixed.
The exposure test surface was a cross section perpendicular to the processing direction of the rod, and the exposure area was 150 mm 2 . After being embedded in the epoxy resin, the vinyl-coated copper wire adhered and fixed to the test piece was taken out from the resin side surface through an acrylic protective tube, and the exposed test surface was polished and washed with water (hereinafter referred to as an electrode sample).
Dissolve 0.40 g of sodium bicarbonate and 29.22 g of sodium chloride in 1000 mL of water to make a test solution, put 1000 mL of the test solution in a constant temperature water bath adjusted to 60 ± 2 ° C., and mix gas CO 2 + O 2 + N 2 ( 10:20:70) and saturated (pH 6.5-7.5). During the test, a mixed gas was continuously injected to maintain a saturated state. A platinum electrode and an electrode sample were set in a test tank, connected to a constant current generator, and a current was applied at a current density of 1.0 mA / cm 2 for 24 hours. After the test was completed, the cross section perpendicular to the exposed surface was observed and the maximum erosion depth was measured. The maximum erosion depth refers to the total depth of the entire surface dissolution depth and the dezincing depth.
Dezincification corrosion depth of 100 μm or less (that is, the depth at which practically no problem of dezincification corrosion occurs) is accepted (◯), and the dezincification corrosion depth exceeds 100 μm is rejected (x). .

(4)切削性
一定の条件で切削加工を行い、切粉が細かく分断して切削性が優れていたものを合格(○)、切屑が連続したものを不合格(×)とした。
(4) Machinability Cutting was performed under certain conditions, and the chips that were finely cut and excellent in machinability were evaluated as acceptable (◯), and the chips that were continuous were rejected (x).

Figure 0005062829
Figure 0005062829

Figure 0005062829
Figure 0005062829

表3にみられるように、実施例1の試験材No.1〜11はいずれも、β相がα相で分断された組織形態を示し、熱間加工性及び冷間加工性は良好であり、優れた切削性、耐脱亜鉛腐食性を示した。   As seen in Table 3, the test material No. 1-11 showed the structure | tissue form in which (beta) phase was divided | segmented by (alpha) phase, hot workability and cold workability were favorable, and showed the outstanding machinability and dezincification corrosion resistance.

一方、表4に示すように、比較例1の試験材No.12はCu含有量が低いため、高温長時間の熱処理を行ってもβ相が分断されず脱亜鉛腐食性が改善されない。また、β相存在率が高いため冷間加工性が劣り、抽伸加工で破断が生じた。
試験材No.13はCu量が多いため、β相存在率が低く熱間加工時の変形抵抗が高くなり、押し詰まりが生じた。700℃まで温度を上昇させても押出しすることはできなかった。
試験材No.14はPb含有量が低いため、切削屑が螺旋状に連なり十分な切削性が得られなかった。
試験材No.15はPb量が多いため、熱間加工時にPbの溶融に起因して割れが生じ、割れを抑制するためには押出速度を低下させなければならなかった。また、Pbを起点として抽伸時に破断が生じた。
試験材No.16は、Pの含有量が少ないため、100μmを越える深さの脱亜鉛腐食が生じた。
試験材No.17はP量が多いため、熱間押出し時に共晶割れが発生し、以後の試験に供することができなかった。
試験材No.18はSn含有量が低いため、β相の脱亜鉛腐食を抑制する効果が不十分となり100μmを越える深さの脱亜鉛腐食が生じた。
試験材No.19はSn量が多いため、γ相が析出しγ相を起点として抽伸時に破断が生じた。
試験材No.20はFe含有量が低いため、高温の熱処理においてα相の粗大化が生じ、抽伸加工時の延性不足に起因して割れが生じた。また粒界腐食により、耐食性も満足することができなかった。
試験材No.21はFe量が多いため、押出温度の640℃ではFeが完全に固溶せず、残留したFeが起点となって抽伸時に破断が生じた。
On the other hand, as shown in Table 4, the test material No. Since No. 12 has a low Cu content, the β-phase is not divided even when heat treatment is performed at a high temperature for a long time, and the dezincification corrosion resistance is not improved. Moreover, since the β phase abundance ratio was high, the cold workability was inferior, and fracture occurred in the drawing process.
Test material No. Since No. 13 had a large amount of Cu, the β phase abundance ratio was low, the deformation resistance during hot working was high, and clogging occurred. Extrusion was not possible even when the temperature was raised to 700 ° C.
Test material No. Since No. 14 had a low Pb content, the cutting scraps were spirally connected and sufficient machinability was not obtained.
Test material No. Since No. 15 has a large amount of Pb, cracking occurred due to melting of Pb during hot working, and the extrusion speed had to be reduced in order to suppress the cracking. In addition, fracture occurred at the time of drawing starting from Pb.
Test material No. In No. 16, since the P content was small, dezincification corrosion with a depth exceeding 100 μm occurred.
Test material No. Since No. 17 had a large amount of P, eutectic cracks occurred during hot extrusion, and could not be used in subsequent tests.
Test material No. Since No. 18 has a low Sn content, the effect of suppressing dezincification corrosion of the β phase was insufficient, and dezincification corrosion with a depth exceeding 100 μm occurred.
Test material No. Since No. 19 had a large amount of Sn, the γ phase was precipitated, and fracture occurred at the time of drawing starting from the γ phase.
Test material No. Since No. 20 had a low Fe content, the α phase was coarsened during high-temperature heat treatment, and cracks were caused due to insufficient ductility during drawing. Further, the corrosion resistance could not be satisfied due to intergranular corrosion.
Test material No. Since No. 21 had a large amount of Fe, Fe was not completely dissolved at an extrusion temperature of 640 ° C., and the remaining Fe was the starting point, and fracture occurred during drawing.

<実施例2及び比較例2・・・熱間押出後の冷却速度・熱処理条件の比較>
(実施例2)
切りくず等の再生原料を主原料とし、これに新地金を混合して添加元素の濃度を調整し、表5に示す組成の合金を溶解、鋳造し、直径294mmのビレットに造塊した。
No.22及びNo.23では、得られた鋳塊を、640℃の温度で直径18mmの棒材に押出加工した後、断面減少率10%で冷間抽伸加工し、次いで、No.22では350℃、5時間の条件で、No.23では650℃、1時間の条件で、熱処理し、更に断面減少率20%で冷間抽伸加工した後、矯正仕上げ加工した。なお、電気炉を使用して所定温度に所定時間保持した後、徐冷することにより熱処理を行った。押出比は約270であった。
また、No.24では、得られた鋳塊を、640℃の温度で直径18mmの棒材に押出加工した後、冷却速度10℃/秒で冷却し、断面減少率20%で冷間抽伸加工した後、矯正仕上げ加工した。押出比は約270であった。
矯正仕上げ加工後、No.22〜24の試験材を得た。
<Example 2 and Comparative Example 2 ... Comparison of cooling rate and heat treatment conditions after hot extrusion>
(Example 2)
A recycled raw material such as chips was used as a main raw material, and new ingots were mixed therein to adjust the concentration of the additive element. An alloy having a composition shown in Table 5 was melted and cast, and agglomerated into a billet having a diameter of 294 mm.
No. 22 and no. In No. 23, the obtained ingot was extruded into a bar having a diameter of 18 mm at a temperature of 640 ° C., and then cold-drawn at a cross-section reduction rate of 10%. No. 22 under conditions of 350 ° C. and 5 hours. In No. 23, heat treatment was performed at 650 ° C. for 1 hour, and cold drawing was performed at a cross-section reduction rate of 20%, followed by straightening finishing. In addition, it heat-processed by hold | maintaining to predetermined temperature for a predetermined time using an electric furnace, and then cooling slowly. The extrusion ratio was about 270.
No. 24, the obtained ingot was extruded into a bar having a diameter of 18 mm at a temperature of 640 ° C., then cooled at a cooling rate of 10 ° C./second, cold drawn at a cross-section reduction rate of 20%, and then straightened. Finished. The extrusion ratio was about 270.
After straightening finishing, No. 22-24 test materials were obtained.

Figure 0005062829
1)表中、Znの組成の「R」は、残部がZnであることを指す。
Figure 0005062829
1) In the table, “R” in the composition of Zn indicates that the balance is Zn.

(比較例2)
実施例2と同様に、切りくず等の再生原料を主原料とし、これに新地金を混合して添加元素の濃度を調整し、表6に示す組成の合金を溶解、鋳造し、直径294mmのビレットに造塊した。
No.25及びNo.26では、得られた鋳塊を、640℃の温度で直径18mmの棒材に押出加工した後、断面減少率10%で冷間抽伸加工し、次いで、No.25では340℃、5時間の条件で、No.26では660℃、1時間の条件で、熱処理し、さらに断面減少率20%で冷間抽伸加工した後、矯正仕上げ加工した。なお、電気炉を使用して所定温度に所定時間保持した後、徐冷することにより熱処理を行った。押出比は約270であった。
また、No.27では、得られた鋳塊を、640℃の温度で直径18mmの棒材に押出加工した後、冷却速度11℃/秒で冷却し、断面減少率20%で冷間抽伸加工した後、矯正仕上げ加工した。押出比は約270であった。
また、No.28では、得られた鋳塊を、710℃の温度で直径18mmの棒材に押出加工した後、断面減少率10%で冷間抽伸加工し、ついで、480℃、2時間の条件で、熱処理し、さらに断面減少率20%で冷間抽伸加工した後、矯正仕上げ加工した。なお、電気炉を使用して所定温度に所定時間保持した後、徐冷することにより熱処理を行った。押出比は約270であった。
また、No.29では、得られた鋳塊を、640℃の温度で直径50mmの棒材に押出加工した後、冷却速度10℃/秒で冷却し、断面減少率20%で冷間抽伸加工した後、矯正仕上げ加工した。押出比は約35であった。
矯正仕上げ加工後、No.25〜29の試験材を得た。
(Comparative Example 2)
As in Example 2, a recycled raw material such as chips is used as a main raw material, and new ingots are mixed therein to adjust the concentration of additive elements. An alloy having the composition shown in Table 6 is melted and cast, and has a diameter of 294 mm. Agglomerated into billets.
No. 25 and no. In No. 26, the obtained ingot was extruded into a bar having a diameter of 18 mm at a temperature of 640 ° C., and then cold-drawn at a cross-section reduction rate of 10%. No. 25 under conditions of 340 ° C. and 5 hours. In No. 26, heat treatment was performed at 660 ° C. for 1 hour, and cold drawing was performed at a cross-section reduction rate of 20%, followed by straightening finishing. In addition, it heat-processed by hold | maintaining to predetermined temperature for a predetermined time using an electric furnace, and then cooling slowly. The extrusion ratio was about 270.
No. In No. 27, the obtained ingot was extruded into a bar having a diameter of 18 mm at a temperature of 640 ° C., then cooled at a cooling rate of 11 ° C./second, cold drawn at a cross-section reduction rate of 20%, and then straightened. Finished. The extrusion ratio was about 270.
No. In No. 28, the obtained ingot was extruded into a bar having a diameter of 18 mm at a temperature of 710 ° C., then cold drawn at a cross-section reduction rate of 10%, and then heat-treated at 480 ° C. for 2 hours. Furthermore, after cold drawing with a cross-section reduction rate of 20%, straightening finishing was performed. In addition, it heat-processed by hold | maintaining to predetermined temperature for a predetermined time using an electric furnace, and then cooling slowly. The extrusion ratio was about 270.
No. In No. 29, the obtained ingot was extruded into a bar having a diameter of 50 mm at a temperature of 640 ° C., then cooled at a cooling rate of 10 ° C./second, cold drawn at a cross-section reduction rate of 20%, and then straightened. Finished. The extrusion ratio was about 35.
After straightening finishing, No. 25 to 29 test materials were obtained.

Figure 0005062829
1)表中、Znの組成の「R」は、残部がZnであることを指す。
Figure 0005062829
1) In the table, “R” in the composition of Zn indicates that the balance is Zn.

矯正仕上げ加工後の試験材について、実施例1と同様の評価を行った。評価結果を実施例2について表7、比較例2について表8に示す。   The test material after the straightening finishing was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 7 for Example 2 and Table 8 for Comparative Example 2.

Figure 0005062829
Figure 0005062829

Figure 0005062829
Figure 0005062829

表7にみられるように、実施例2の試験材No.22〜24はいずれも、β相がα相で分断された組織形態を示し、熱間加工性及び冷間加工性は良好であり、優れた切削性、耐脱亜鉛腐食性を示した。   As can be seen in Table 7, the test material No. 22-24 showed the structure | tissue form in which (beta) phase was divided | segmented by (alpha) phase, and hot workability and cold workability were favorable, and showed the outstanding machinability and dezincification corrosion resistance.

一方、表8に示すように、比較例2の試験材No.25は、熱処理温度が低いため、β相が完全に分断されず十分な耐脱亜鉛腐食性が得られなかった。また、熱処理後のβ相存在率が高いため抽伸時に破断が生じた。
試験材No.26は、熱処理温度が高いため、β相存在率が高くなり脱亜鉛腐食が顕著となり、抽伸時の破断発生率も大きくなった。
試験材No.27は、押出後の冷却速度が大きいためα相の析出が不十分となり、β相存在率が高く且つβ相がα相により分断されず、十分な耐脱亜鉛腐食性が得られなかった。また、抽伸時の破断発生率も大きくなった。
試験材No.28は、熱間押出し温度が高いために割れが発生し、以後の試験に供することができなかった。
試験材No.29は、押出比が低いため、α相、β相の結晶粒度が大きく、十分な耐脱亜鉛腐食性は得られなかった。
On the other hand, as shown in Table 8, the test material No. In No. 25, since the heat treatment temperature was low, the β phase was not completely divided and sufficient dezincification corrosion resistance was not obtained. Moreover, since the β phase existing rate after the heat treatment was high, fracture occurred during drawing.
Test material No. Since the heat treatment temperature of No. 26 was high, the β phase abundance ratio became high, dezincification corrosion became remarkable, and the fracture occurrence rate at the time of drawing also increased.
Test material No. In No. 27, since the cooling rate after extrusion was high, precipitation of the α phase was insufficient, the β phase abundance was high, and the β phase was not divided by the α phase, and sufficient dezincification corrosion resistance was not obtained. In addition, the fracture occurrence rate during drawing was increased.
Test material No. No. 28 was cracked due to the high hot extrusion temperature, and could not be used in subsequent tests.
Test material No. Since No. 29 has a low extrusion ratio, the crystal grains of the α phase and β phase were large, and sufficient dezincification corrosion resistance could not be obtained.

<実施例3及び比較例3・・・・熱間押出後の冷却速度・熱処理条件の比較>
(実施例3)
試験材No.5を用い、呼び径20Aの水栓バルブを750℃で熱間鍛造し、No.30では350℃、6時間の条件で熱処理を行い、No.31では650℃、1時間の条件で熱処理を行い、No.32では冷却速度10℃/秒で冷却を行って、No.30〜32の試験材を得た。
また、試験材No.27を用い、呼び径20Aの水栓バルブを750℃で熱間鍛造し、350℃、6時間の条件で熱処理を行って、No.33の試験材を得た。
なお、No.30、31及び33の試験材については、電気炉を使用して所定温度に所定時間保持した後、徐冷することにより熱処理を行った。
<Example 3 and Comparative Example 3 ... Comparison of cooling rate and heat treatment conditions after hot extrusion>
(Example 3)
Test material No. No. 5 was used, and a faucet valve having a nominal diameter of 20 A was hot forged at 750 ° C. No. 30 was heat-treated at 350 ° C. for 6 hours. In No. 31, heat treatment was performed at 650 ° C. for 1 hour. No. 32 is cooled at a cooling rate of 10 ° C./sec. 30 to 32 test materials were obtained.
In addition, test material No. No. 27, a water faucet valve having a nominal diameter of 20A was hot forged at 750 ° C. and heat-treated at 350 ° C. for 6 hours. 33 test materials were obtained.
In addition, No. The test materials 30, 31, and 33 were heat-treated by holding them at a predetermined temperature for a predetermined time using an electric furnace and then gradually cooling them.

Figure 0005062829
1)表中、Znの組成の「R」は、残部がZnであることを指す。
Figure 0005062829
1) In the table, “R” in the composition of Zn indicates that the balance is Zn.

(比較例3)
実施例3と同様、試験材No.5を用い、呼び径20Aの水栓バルブを750℃で熱間鍛造し、No.34では340℃、6時間の条件で熱処理を行い、No.35では660℃、1時間の条件で熱処理を行い、No.36では冷却速度11℃/秒で冷却を行って、No.34〜36の試験材を得た。なお、No.34及び35の試験材についは、電気炉を使用して所定温度に所定時間保持した後、徐冷することにより熱処理を行った。
(Comparative Example 3)
As in Example 3, the test material No. No. 5 was used, and a faucet valve having a nominal diameter of 20 A was hot forged at 750 ° C. In No. 34, heat treatment was performed at 340 ° C. for 6 hours. In No. 35, heat treatment was performed at 660 ° C. for 1 hour. No. 36 is cooled at a cooling rate of 11 ° C./sec. 34 to 36 test materials were obtained. In addition, No. The test materials 34 and 35 were heat-treated by holding them at a predetermined temperature for a predetermined time using an electric furnace and then gradually cooling them.

Figure 0005062829
1)表中、Znの組成の「R」は、残部がZnであることを指す。
Figure 0005062829
1) In the table, “R” in the composition of Zn indicates that the balance is Zn.

熱間鍛造後の試験材について、実施例1と同様の評価を行った。ただし、加工性の評価は熱間のみとし、熱間鍛造中に割れが生じたものを不合格(×)、欠陥を生じることなく加工できたものを合格(○)とした。
評価結果を実施例3について表11、比較例3について表12に示す。
Evaluation similar to Example 1 was performed about the test material after hot forging. However, the evaluation of workability was only hot, and those that were cracked during hot forging were rejected (x), and those that could be processed without causing defects were accepted (◯).
The evaluation results are shown in Table 11 for Example 3 and Table 12 for Comparative Example 3.

Figure 0005062829
Figure 0005062829

Figure 0005062829
Figure 0005062829

表11にみられるように、実施例3の試験材No.30〜33はいずれも、β相がα相で分断された組織形態を示し、熱間加工性は良好であり、優れた切削性、耐脱亜鉛腐食性を示した。   As seen in Table 11, the test material No. 30-33 showed the structure | tissue form in which (beta) phase was divided | segmented by (alpha) phase in all, the hot workability was favorable, and the outstanding cutting property and the dezincification corrosion resistance were shown.

一方、表12に示すように、比較例3の試験材No.34は、熱処理温度が低いため、α相比率が90%を下回り、十分な耐脱亜鉛腐食性が得られなかった。
試験材No.35は、熱処理温度が高いため、β相比率が10%を超え、且つβ相粒径が15μmを超えたため、脱亜鉛腐食が顕著となった。
試験材No.36は、熱間鍛造後の冷却速度が大きいためα相の析出が不十分となり、β相比率が10%を超え、且つβ相粒径が15μmを超えたため、十分な耐脱亜鉛腐食性が得られなかった。
On the other hand, as shown in Table 12, the test material No. Since the heat treatment temperature of 34 was low, the α phase ratio was less than 90%, and sufficient dezincification corrosion resistance was not obtained.
Test material No. In No. 35, since the heat treatment temperature was high, the β phase ratio exceeded 10% and the β phase particle size exceeded 15 μm, and therefore, dezincification corrosion became significant.
Test material No. No. 36 has a high cooling rate after hot forging, so that the precipitation of α phase becomes insufficient, the β phase ratio exceeds 10%, and the β phase particle size exceeds 15 μm. It was not obtained.

Claims (5)

Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有し、
且つα相とβ相の2相からなり、β相がα相で分断されている組織を有し、α相の結晶粒径が25μm以下であり、β相の結晶粒径が15μm以下であり、β相に対するα相の相対比率が90%以上であること、
を特徴とする黄銅材料。
Cu: 60.0-63.0 mass%, Pb: 0.9-3.7 mass%, P: 0.08-0.13 mass%, Sn: 0.10-0.50 mass%, Fe: Containing 0.10 to 0.50 mass%, having a composition consisting of the balance Zn and inevitable impurities,
In addition, the structure is composed of two phases of α phase and β phase, the β phase is divided by the α phase, the crystal grain size of the α phase is 25 μm or less, and the crystal grain size of the β phase is 15 μm or less. , The relative ratio of α phase to β phase is 90% or more,
Features brass material.
Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有する黄銅材であるビレットを、700℃以下の温度で熱間押出し、熱間押出材を得る熱間押出工程と、
該熱間押出材、又は該熱間押出材を冷間加工して得られる冷間加工材を、350〜650℃の温度で熱処理する熱処理工程と、
を有することを特徴とする黄銅材料の製造方法。
Cu: 60.0-63.0 mass%, Pb: 0.9-3.7 mass%, P: 0.08-0.13 mass%, Sn: 0.10-0.50 mass%, Fe: A hot extrusion process in which a billet which is a brass material containing 0.10 to 0.50% by mass and having the balance Zn and inevitable impurities is hot-extruded at a temperature of 700 ° C. or less to obtain a hot-extruded material. When,
A heat treatment step of heat-treating the hot-extruded material or the cold-worked material obtained by cold-working the hot-extruded material at a temperature of 350 to 650 ° C;
A method for producing a brass material, comprising:
Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有する黄銅材であるビレットを、700℃以下の温度で熱間押出し、熱間押出材を得る熱間押出工程と、
該熱間押出材を、10℃/秒以下の冷却速度で徐冷する冷却工程と、
を有することを特徴とする黄銅材料の製造方法。
Cu: 60.0-63.0 mass%, Pb: 0.9-3.7 mass%, P: 0.08-0.13 mass%, Sn: 0.10-0.50 mass%, Fe: A hot extrusion process in which a billet which is a brass material containing 0.10 to 0.50% by mass and having the balance Zn and inevitable impurities is hot-extruded at a temperature of 700 ° C. or less to obtain a hot-extruded material. When,
A cooling step of gradually cooling the hot extruded material at a cooling rate of 10 ° C./second or less;
A method for producing a brass material, comprising:
Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有する黄銅材である被鍛造材を、熱間鍛造し、熱間鍛造材を得る熱間鍛造工程と、
該熱間鍛造材を350〜650℃の温度で熱処理する熱処理工程と、
を有することを特徴とする黄銅材料の製造方法。
Cu: 60.0-63.0 mass%, Pb: 0.9-3.7 mass%, P: 0.08-0.13 mass%, Sn: 0.10-0.50 mass%, Fe: A hot forging step of hot forging a to-be-forged material that is a brass material containing 0.10 to 0.50 mass% and having the balance Zn and inevitable impurities, and obtaining a hot forged material;
A heat treatment step of heat treating the hot forged material at a temperature of 350 to 650 ° C .;
A method for producing a brass material, comprising:
Cu:60.0〜63.0質量%、Pb:0.9〜3.7質量%、P:0.08〜0.13質量%、Sn:0.10〜0.50質量%、Fe:0.10〜0.50質量%を含有し、残部Zn及び不可避不純物からなる組成を有する黄銅材である被鍛造材を、熱間鍛造し、熱間鍛造材を得る熱間鍛造工程と、
該熱間鍛造材を10℃/秒以下の冷却速度で徐冷する冷却工程と、
を有することを特徴とする黄銅材料の製造方法。
Cu: 60.0-63.0 mass%, Pb: 0.9-3.7 mass%, P: 0.08-0.13 mass%, Sn: 0.10-0.50 mass%, Fe: A hot forging step of hot forging a to-be-forged material that is a brass material containing 0.10 to 0.50 mass% and having the balance Zn and inevitable impurities, and obtaining a hot forged material;
A cooling step of gradually cooling the hot forged material at a cooling rate of 10 ° C./second or less;
A method for producing a brass material, comprising:
JP2007246751A 2007-09-25 2007-09-25 Brass material and method for producing brass material Active JP5062829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246751A JP5062829B2 (en) 2007-09-25 2007-09-25 Brass material and method for producing brass material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246751A JP5062829B2 (en) 2007-09-25 2007-09-25 Brass material and method for producing brass material

Publications (2)

Publication Number Publication Date
JP2009074156A JP2009074156A (en) 2009-04-09
JP5062829B2 true JP5062829B2 (en) 2012-10-31

Family

ID=40609411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246751A Active JP5062829B2 (en) 2007-09-25 2007-09-25 Brass material and method for producing brass material

Country Status (1)

Country Link
JP (1) JP5062829B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3138937B1 (en) 2014-04-30 2022-03-23 Kitz Corporation Production method for hot-forged articles using brass, hot-forged article, and fluid-contact product such as valve or tap, molded using same
JP6576079B2 (en) * 2015-04-01 2019-09-18 Dowaメタルテック株式会社 Low Pb brass rod and manufacturing method thereof
CN115125414B (en) * 2022-07-27 2023-05-09 宁波金田铜业(集团)股份有限公司 Brass alloy and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3461081B2 (en) * 1995-04-10 2003-10-27 東陶機器株式会社 Copper alloy for mold casting excellent in corrosion resistance, method for producing the alloy, and faucet using the alloy
JP3732305B2 (en) * 1997-03-14 2006-01-05 株式会社キッツ Copper base alloy having excellent corrosion resistance, hot workability and stress corrosion cracking resistance, and method for producing the copper base alloy
JP2001294956A (en) * 2000-04-11 2001-10-26 Sumitomo Light Metal Ind Ltd Free cutting brass excellent in dezincification resistance and its producing method
JP3824944B2 (en) * 2002-02-25 2006-09-20 同和鉱業株式会社 Copper alloy excellent in stress corrosion cracking resistance and dezincing resistance and manufacturing method thereof
JP2003277855A (en) * 2002-03-22 2003-10-02 San-Etsu Metals Co Ltd Lead-free, free-cutting brass alloy material and production method thereof
JP4318599B2 (en) * 2004-06-22 2009-08-26 住友軽金属工業株式会社 Method for producing brass material with excellent resistance to stress corrosion cracking

Also Published As

Publication number Publication date
JP2009074156A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP3903297B2 (en) Dezincing resistant copper base alloy
JP5479798B2 (en) Copper alloy sheet, copper alloy sheet manufacturing method, and electric / electronic component
JP2004244672A (en) Copper-base alloy with excellent dezincification resistance
JP2009299110A (en) HIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN INTERMITTENT MACHINABILITY
CN101701304B (en) Manufacturing method of low-cost corrosion-resistant lead-free easy-cutting brass
JPWO2012057055A1 (en) Pressure-resistant and corrosion-resistant copper alloy, brazed structure, and method for producing brazed structure
JP2006283142A (en) High-strength copper alloy superior in bending workability
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2008214760A (en) Lead-free free-cutting brass alloy and its manufacturing method
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
JP5143948B1 (en) Lead-free brass alloy for hot working
JP3824944B2 (en) Copper alloy excellent in stress corrosion cracking resistance and dezincing resistance and manufacturing method thereof
JP5062829B2 (en) Brass material and method for producing brass material
JP2005097638A (en) High-strength copper alloy superior in bending workability
JP2003277855A (en) Lead-free, free-cutting brass alloy material and production method thereof
JP2008038231A (en) High-strength sheet material of copper alloy superior in bendability, and manufacturing method therefor
KR101929170B1 (en) Brass alloy hot-worked article and method for producing brass alloy hot-worked article
JP4930993B2 (en) Copper alloy material, method for producing the same, and electrode member for welding equipment
JP4313136B2 (en) High strength copper alloy with excellent bending workability
JP4693028B2 (en) Manufacturing method of aluminum alloy material with excellent machinability
JP6448167B1 (en) High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
JP2002003967A (en) Lead-free free cutting brass excellent in dezincification corrosion resistance and its production method
JP2000169919A (en) Lead-free copper base alloy material
JP2002030364A (en) High strength free cutting brass
JP4184357B2 (en) Lead-free free-cutting brass alloy and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120803

R150 Certificate of patent or registration of utility model

Ref document number: 5062829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250