JP3461081B2 - Copper alloy for mold casting excellent in corrosion resistance, method for producing the alloy, and faucet using the alloy - Google Patents
Copper alloy for mold casting excellent in corrosion resistance, method for producing the alloy, and faucet using the alloyInfo
- Publication number
- JP3461081B2 JP3461081B2 JP08691696A JP8691696A JP3461081B2 JP 3461081 B2 JP3461081 B2 JP 3461081B2 JP 08691696 A JP08691696 A JP 08691696A JP 8691696 A JP8691696 A JP 8691696A JP 3461081 B2 JP3461081 B2 JP 3461081B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- alloy
- weight
- corrosion resistance
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、耐食性、特に耐脱
亜鉛腐食に優れた金型鋳造用銅合金に関し、水栓等の給
排水金具やバルブ等に最適な耐食性に優れた金型鋳造用
銅合金及びその合金の製造方法並びにその合金を使用し
た水栓に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for die casting which is excellent in corrosion resistance, particularly dezincification corrosion resistance, and is suitable for water supply and drainage fittings such as faucets and valves, and copper for die casting which is excellent in corrosion resistance. The present invention relates to an alloy, a method for producing the alloy, and a water faucet using the alloy.
【0002】[0002]
【従来の技術】耐食性に優れた銅合金として、特公昭5
8−38500号公報に重量比で、Cu58.0〜6
3.0%、Sb0.02〜0.5%、Pb0.5〜3.
0%、Sn0.2〜1.0%、Fe0.1〜0.5%、
残部Zn及び不可避の不純物からなる耐脱亜鉛腐食性特
殊黄銅が開示されている。また、青銅鋳物(JIS B
C6 表1参照)も耐食性に優れている。さらに、鋳造
に使用されている黄銅鋳物には、JIS YBsC3
(表1参照)がある。2. Description of the Related Art As a copper alloy having excellent corrosion resistance, Japanese Patent Publication No.
The weight ratio of Cu 58.0 to 6 is disclosed in JP-A 8-38500.
3.0%, Sb 0.02 to 0.5%, Pb 0.5 to 3.
0%, Sn 0.2 to 1.0%, Fe 0.1 to 0.5%,
A special dezincification-corrosion-resistant special brass consisting of the balance Zn and inevitable impurities is disclosed. In addition, bronze casting (JIS B
C6 (see Table 1) also has excellent corrosion resistance. Furthermore, the brass castings used for casting are JIS YBsC3
(See Table 1).
【0003】[0003]
【発明が解決しようとする課題】前記の従来合金に近似
した組成の合金(表4)について、金型鋳造を行なった
ところ鋳造割れが発生した。その理由は、Sn0.2重
量%以上で、且つ亜鉛当量が35.7重量%より小さく
なると、凝固温度範囲が17°Cを越え、金型表面で溶
湯が冷却されて凝固する際の収縮により生じた固体の割
れに対して、凝固温度範囲が広いため、固体に接する固
体と液体との混合物の層が厚くなるために湯流れが悪く
なって液体が固体の割れに供給されにくくなり、その結
果、鋳物の表面に割れが残る。前記JIS BC6につ
いても金型鋳造を行なったところ、やはり鋳造割れが発
生した。しかしながら、凝固温度範囲が小さいと、前記
の固体と液体との混合物が薄いので湯流れがよく、凝固
収縮により生じた固体の割れに液体が供給されるため、
鋳物の表面の割れが残らなくなる。When an alloy having a composition similar to that of the conventional alloy (Table 4) was subjected to die casting, casting cracks occurred. The reason is that when Sn is 0.2% by weight or more and the zinc equivalent is smaller than 35.7% by weight, the solidification temperature range exceeds 17 ° C and shrinkage occurs when the molten metal is cooled and solidifies on the mold surface. Since the solidification temperature range is wide with respect to the cracks of the generated solid, the layer of the mixture of the solid and the liquid in contact with the solid becomes thick, so that the flow of molten metal becomes poor and the liquid becomes difficult to be supplied to the crack of the solid. As a result, cracks remain on the surface of the casting. When die casting was also performed on JIS BC6, casting cracks also occurred. However, when the solidification temperature range is small, since the mixture of the solid and the liquid is thin, the flow of hot water is good, and the liquid is supplied to the cracks of the solid caused by the solidification shrinkage,
No cracks on the surface of the casting.
【0004】また、JIS YBsC1〜3は、鋳物用
ではあるが、耐食性が優れるものではない。Although JIS YBsC1 to 3 are for castings, they are not excellent in corrosion resistance.
【0005】そこで、本発明は、金型鋳造性及び耐食性
に優れた金型鋳造用銅合金及びその合金の耐食性を向上
させる製造方法並びに耐食性に優れた水栓を提供するも
のである。Therefore, the present invention provides a copper alloy for die casting which is excellent in die casting property and corrosion resistance, a manufacturing method for improving the corrosion resistance of the alloy, and a water faucet excellent in corrosion resistance.
【0006】[0006]
【課題を解決するための手段】本発明による金型鋳造用
合金は、α相とβ相との2相からなる銅合金であって、
組成がSn、Sb、As、P、Pb、Al、Fe、Z
n、及びCuである金型鋳造用合金において、前記各組
成分の配合比が、Sn0.05〜0.2重量%、Sb、
As又はPのいずれか1種又は2種以上0.05〜0.
3重量%、Zn=1、Sn=2、Pb=1、Al=6、
Fe=0.9のGuilletの係数により算出される
亜鉛当量が35.7〜41.0重量%、残部がCuから
なり、β相の面積占有比率を15%以下とした、凝固温
度範囲17°C以下であることを特徴とする。前記金型
鋳造用合金には、Zn33.0〜37.0重量%、Pb
0.5〜3.0重量%、Al0.1〜0.5重量%を含
有させることができる。また、本発明の金型鋳造用合金
の製造方法は、α相とβ相との2相からなる銅合金であ
って、組成がSn、Sb、As、P、Pb、Al、F
e、Zn、及びCuである金型鋳造用銅合金において、
前記各組成の配合比が、Sn0.05〜0.2重量%、
Sb、As又はPのいずれか1種又は2種以上0.05
〜0.3重量%、Zn=1、Sn=2、Pb=1、Al
=6、Fe=0.9のGuilletの係数により算出
される亜鉛当量が35.7〜41.0重量%、残部がC
uからなる銅合金を鋳造後に450〜550°Cで30
分以上3時間以内保持して、β相の面積占有比率を15
%以下にすることを特徴とする。 A die casting alloy according to the present invention is a copper alloy having two phases, an α phase and a β phase,
Composition is Sn, Sb, As, P, Pb, Al, Fe, Z
In the die casting alloys of n and Cu, each of the above groups
The compounding ratio of the components is Sn 0.05 to 0.2% by weight, Sb,
Any one or more of As and P is 0.05 to 0.
3% by weight, Zn = 1, Sn = 2, Pb = 1, Al = 6,
Solidification in which the zinc equivalent calculated from the Guillet coefficient of Fe = 0.9 is 35.7 to 41.0% by weight, the balance is Cu, and the β phase area occupation ratio is 15% or less. The temperature range is 17 ° C. or less. The die casting alloy contains Zn 33.0 to 37.0 wt% and Pb.
0.5 to 3.0 wt% and Al 0.1 to 0.5 wt% can be contained. Further, the alloy for die casting of the present invention
Is a copper alloy consisting of two phases, α phase and β phase.
The composition is Sn, Sb, As, P, Pb, Al, F
In the copper alloy for die casting, which is e, Zn, and Cu,
The compounding ratio of each composition is Sn 0.05 to 0.2% by weight,
Any one or more of Sb, As or P 0.05
~ 0.3 wt%, Zn = 1, Sn = 2, Pb = 1, Al
= 6, Fe = 0.9 calculated by Guillet's coefficient
Zinc equivalent is 35.7 to 41.0% by weight, the balance is C
After casting the copper alloy consisting of u
Hold it for at least 3 minutes and within 3 hours to increase the β phase area occupation ratio to 15
% Or less.
【0007】[0007]
【0008】[0008]
【0009】[0009]
【発明の実施の形態】本発明の銅合金は、Snを0.2
重量%以下、亜鉛当量を35.7重量%以上、必要に応
じてAlを0.1重量%以上とすることにより金型鋳造
性の改善を図り、Sb、As、Pを0.05〜0.3重
量%、亜鉛当量を41.0重量%以下、必要に応じてZ
nを37重量%以下にすることと、鋳造後の熱処理によ
りβ相の面積占有比率を下げることにより優れた耐食性
が得られる。BEST MODE FOR CARRYING OUT THE INVENTION The copper alloy of the present invention has a Sn content of 0.2.
The amount of Sb, As, and P is 0.05 to 0 in order to improve mold castability by adjusting the weight ratio to 1% or less, the zinc equivalent to 35.7% by weight or more, and the Al content to 0.1% by weight or more as necessary. 0.3% by weight, zinc equivalent 41.0% by weight or less, Z as necessary
Excellent corrosion resistance can be obtained by setting n to 37% by weight or less and by reducing the area occupancy ratio of the β phase by heat treatment after casting.
【0010】本発明の銅合金における添加合金元素の作
用及び組成範囲について説明する。
1) Sn0.05〜0.2重量%
耐食性を向上させるため、0.05重量%以上を添加す
るが、金型鋳造では、凝固温度範囲を広げる働きをする
Snが0.2重量%を越えると、凝固温度範囲が17°
Cを越え、鋳造割れが多発するので、図2に示されるよ
うに、凝固温度範囲が17°Cを越えないようにするた
め、Snは0.2重量%以下に抑える。また、被削性に
ついても、0.2重量%以下の成分で機械加工しても歩
留りに問題はない。The action and composition range of the additional alloying elements in the copper alloy of the present invention will be described. 1) Sn 0.05 to 0.2 wt% In order to improve the corrosion resistance, 0.05 wt% or more is added, but in the mold casting, Sn which functions to expand the solidification temperature range exceeds 0.2 wt%. And the solidification temperature range is 17 °
Since C exceeds C and casting cracks frequently occur, Sn is suppressed to 0.2% by weight or less in order to prevent the solidification temperature range from exceeding 17 ° C as shown in FIG. As for machinability, there is no problem in yield even if machined with a component of 0.2% by weight or less.
【0011】2) Sb、As又はPのいずれか1種又
は2種以上0.05〜0.3重量%
耐食性を向上させるため、0.05重量%以上を添加す
るが、0.3重量%を越えても耐食性が顕著に向上しな
いので、経済性を考慮して0.3重量%以下とした。な
お、Sbの代わりにSbと同様の作用をするAs又はP
を添加してもよいし、これらを組み合わせて添加しても
よい。2) Any one or more of Sb, As and P 0.05 to 0.3 wt% In order to improve the corrosion resistance, 0.05 wt% or more is added, but 0.3 wt% Since corrosion resistance does not remarkably improve even if the content exceeds the above range, it was set to 0.3% by weight or less in consideration of economic efficiency. It should be noted that, instead of Sb, As or P having the same action as Sb
May be added, or these may be added in combination.
【0012】3) Zn33.0〜37.0重量%
鋳造の歩留りを考慮して33.0重量%以上添加する
が、37.0重量%を越えると表3から分かるように、
耐食性に劣るβ相領域が増大し、耐脱亜鉛腐食性が低下
するため、37.0重量%以下とする。3) Zn 33.0 to 37.0 wt% 33.0 wt% or more is added in consideration of the casting yield, but when it exceeds 37.0 wt%, as shown in Table 3,
The β-phase region, which is inferior in corrosion resistance, increases and the dezincification corrosion resistance decreases, so the content is made 37.0% by weight or less.
【0013】4) Al0.1〜0.5重量%
鋳造性を向上させるために、0.1重量%以上を添加す
るが、0.5重量%を越えると、伸び、衝撃値が低下す
るため、0.5重量%以下とする。4) 0.1 to 0.5% by weight of Al 0.1% by weight or more is added to improve the castability, but if it exceeds 0.5% by weight, elongation and impact value decrease. , 0.5 wt% or less.
【0014】5) 亜鉛当量35.7〜41.0重量%
本発明の亜鉛当量は、周知のGuilletの亜鉛当量
であり、係数は、Zn=1、Ni=−1.3、Fe=
0.9、Pb=1、Mg=2、Sn=2、Al=6、S
i=10である。5) Zinc equivalent 35.7-41.0% by weight The zinc equivalent of the present invention is the well-known Guillet zinc equivalent, and the coefficients are Zn = 1, Ni = -1.3, Fe =
0.9, Pb = 1, Mg = 2, Sn = 2, Al = 6, S
i = 10.
【0015】亜鉛当量と腐食深さとの関係を調べた結
果、図3に示されるとおり、熱処理した銅合金は、亜鉛
当量が小さいほど耐食性が向上し、亜鉛当量が大きくな
り、熱処理をしない銅合金と同程度の腐食深さになるの
はJBMA試験で最大腐食深さ200μmで、さらに亜
鉛当量が増えると熱処理をしない銅合金よりも最大腐食
深さが大きくなる。そこで、熱処理による耐食性改善の
効果がなくなる200μm以下を最大腐食深さとした。
即ち、亜鉛当量で41.0重量%以下の範囲とした。次
に、亜鉛当量と凝固温度範囲の関係を調べたところ、図
4から明らかなとおり、亜鉛当量が大きいほど凝固温度
範囲が小さくなる。前述のとおり、凝固温度範囲が17
°Cを越えると鋳造割れが多発するので、凝固温度範囲
が17°C以下、したがって、亜鉛当量で35.7重量
%以上を許容範囲とした。As a result of investigating the relationship between the zinc equivalent and the corrosion depth, as shown in FIG. 3, the heat-treated copper alloy has higher corrosion resistance as the zinc equivalent is smaller, the zinc equivalent is larger, and the copper alloy is not heat treated. The maximum corrosion depth in the JBMA test is 200 μm, and the maximum corrosion depth becomes larger than that of the copper alloy without heat treatment when the zinc equivalent is further increased. Therefore, the maximum corrosion depth is set to 200 μm or less at which the effect of improving the corrosion resistance due to heat treatment is lost.
That is, the zinc equivalent was within the range of 41.0% by weight or less. Next, when the relationship between the zinc equivalent and the solidification temperature range was examined, as is clear from FIG. 4, the larger the zinc equivalent, the smaller the solidification temperature range. As mentioned above, the solidification temperature range is 17
When the temperature exceeds ° C, casting cracks frequently occur, so the solidification temperature range is 17 ° C or less, and therefore, the zinc equivalent is 35.7% by weight or more as the allowable range.
【0016】6) Pb0.5〜3.0重量%
被削性を向上させるための周知の添加元素であり、本発
明においては、必要に応じて、0.5重量%以上を添加
するが、3.0重量%を越えると、伸び、衝撃値が低下
するので、3.0重量%以下とする。6) Pb 0.5 to 3.0% by weight It is a well-known additive element for improving the machinability, and in the present invention, 0.5% by weight or more is added, if necessary. If it exceeds 3.0% by weight, the elongation and the impact value decrease, so the content is made 3.0% by weight or less.
【0017】7) 不純物
Feなどの不可避不純物は、できるだけ抑えて、その影
響を少なくする。7) The inevitable impurities such as the impurity Fe are suppressed as much as possible to reduce their influence.
【0018】次に、熱処理について説明する。本発明の
銅合金の成分組成は、鋳放し状態では、α+βの2相組
織を呈し、Snの添加量が少ないためにβ相の耐脱亜鉛
性が劣り、耐食性に優れるものではない。図1に示すよ
うに、β相の面積占有比率と腐食深さとの関係を調べた
ところ、β相の面積占有比率が小さいほど耐食性が向上
することが分かった。そこで、耐食性が許容されるβ相
の面積占有比率の範囲は、前述のとおりJBMA試験で
最大腐食200μm以下であるから、それに相当するβ
相の面積占有比率15%以下を許容の上限とした。Next, the heat treatment will be described. The component composition of the copper alloy of the present invention exhibits an α + β two-phase structure in the as-cast state, and since the amount of Sn added is small, the dezincification resistance of the β phase is poor and the corrosion resistance is not excellent. As shown in FIG. 1, when the relationship between the area occupancy ratio of the β phase and the corrosion depth was examined, it was found that the smaller the area occupancy ratio of the β phase, the higher the corrosion resistance. Therefore, the range of the area occupancy ratio of the β phase in which the corrosion resistance is allowed is the maximum corrosion of 200 μm or less in the JBMA test as described above, and therefore, the corresponding β
The area occupancy ratio of the phase was set to 15% or less as the upper limit of tolerance.
【0019】従来の材質及び金型鋳造法では、水栓とし
て要求される耐食性を有していないため、1次圧側のよ
うな耐圧部は、黄銅では腐食に耐えられないので、青銅
砂型鋳造で成形し、非耐圧部は金型鋳造により水栓金具
を成形していた。ところが、砂型鋳造では、粉塵などが
人体に有害であるため、粉塵対策に費用がかかるなどの
問題がある。また、研磨等の水栓外観の表面処理に費用
がかかりコストアップとなるという問題もあった。とこ
ろが、本発明の材質及び製造方法により、耐圧部にも金
型鋳造を使用することができ前記問題が解決できた。従
来、水栓の耐久年数は通常10年程度であるから、本発
明の銅合金を水栓の耐圧部に使用するとき、前記耐久年
数を満足させるためには、耐食性を考慮してβ相の面積
占有比率は8%以下にする。Since conventional materials and die casting methods do not have the corrosion resistance required for faucets, pressure resistant parts such as the primary pressure side cannot withstand corrosion with brass. The water resistant metal fittings were molded and the non-pressure resistant parts were molded by die casting. However, in sand mold casting, dust and the like are harmful to the human body, and therefore there is a problem that it is expensive to take measures against dust. In addition, there is a problem that the surface treatment of the faucet appearance such as polishing is expensive and the cost is increased. However, with the material and the manufacturing method of the present invention, the die casting can be used for the pressure resistant portion, and the above problem can be solved. Conventionally, the life of a faucet is usually about 10 years. Therefore, when the copper alloy of the present invention is used for a pressure resistant part of a faucet, in order to satisfy the above-mentioned durability, in consideration of corrosion resistance, β-phase The area occupation ratio should be 8% or less.
【0020】本発明の銅合金は、450〜550°Cの
熱処理によって、β相領域が縮小され、β相内のSn,
Sb濃度が上昇することにより、β相は飛躍的に耐食性
が増加する。In the copper alloy of the present invention, the β phase region is reduced by the heat treatment at 450 to 550 ° C.
As the Sb concentration increases, the β phase dramatically increases the corrosion resistance.
【0021】熱処理温度は、550°Cを越えるとβ相
領域が増大する傾向を示し耐食性が悪くなり、450°
C未満では粒界に存在する元素の局部的な偏在の解消や
β相領域の減少に多くの時間を要するため、450〜5
50°Cが望ましい。When the heat treatment temperature exceeds 550 ° C., the β-phase region tends to increase and the corrosion resistance deteriorates to 450 ° C.
If it is less than C, it takes a long time to eliminate the localized uneven distribution of elements existing in the grain boundaries and to reduce the β phase region, so that 450 to 5
50 ° C is desirable.
【0022】また、熱処理時間は、30分未満ではβ相
減少効果が現れないため30分以上保持することが望ま
しいが、3時間以内で充分であり、3時間を越えても熱
処理効果はあまりないので、経済性を考慮して30分以
上3時間以内とした。If the heat treatment time is less than 30 minutes, the effect of decreasing the β phase does not appear, so it is desirable to hold the heat treatment for 30 minutes or more, but 3 hours or less is sufficient, and if it exceeds 3 hours, the heat treatment effect is not so much. Therefore, it is set to 30 minutes or more and 3 hours or less in consideration of economy.
【0023】[0023]
【実施例】本発明の具体的実施例について説明する。表
1に示す組成の銅合金を周知の溶解法により製造し、本
発明の合金については、500°Cに3時間保持した。
なお、本実施例では、被削性を向上させるためにPbを
添加した。EXAMPLES Specific examples of the present invention will be described. Copper alloys having the compositions shown in Table 1 were manufactured by a known melting method, and the alloys of the present invention were held at 500 ° C for 3 hours.
In this example, Pb was added to improve machinability.
【0024】前記銅合金について脱亜鉛腐食試験を行な
った結果は、表2に示すとおりで、本発明の銅合金は、
比較例1の黄銅鋳物に比べて耐亜鉛腐食性に優れ、ま
た、比較例2の青銅鋳物と同等に近いほどの耐食性があ
ることが分かる。The results of the dezincification corrosion test conducted on the copper alloy are shown in Table 2. The copper alloy of the present invention is
It can be seen that zinc corrosion resistance is superior to that of the brass casting of Comparative Example 1, and that the corrosion resistance is comparable to that of the bronze casting of Comparative Example 2.
【0025】[0025]
【表1】 [Table 1]
【表2】 [Table 2]
【表3】 [Table 3]
【表4】 [Table 4]
【0026】[0026]
【発明の効果】本発明の効果は次のとおりである。
1) 本発明による銅合金は、ダイカストを含む金型鋳
造において、鋳造割れを起こしにくく、優れた鋳造性を
有する。The effects of the present invention are as follows. 1) The copper alloy according to the present invention hardly causes casting cracks in die casting including die casting, and has excellent castability.
【0027】2) 本発明による銅合金で製造した給排
水金具あるいはバルブは、上水、井水、工業用水等に対
して耐食性、特に耐脱亜鉛腐食性に優れている。2) The water supply / drainage fitting or valve made of the copper alloy according to the present invention is excellent in corrosion resistance against tap water, well water, industrial water, etc., particularly, dezincification corrosion resistance.
【0028】3) 本発明による銅合金は、従来、砂型
鋳造していた水栓等の鋳造品が金型鋳造できるので、従
来の砂型鋳造を必要としなくなり、砂型鋳造に伴う粉塵
対策の費用がかからなくなる。3) Since the copper alloy according to the present invention can be used for mold casting such as a water faucet which has been conventionally sand mold-cast, the conventional sand mold casting is not required, and the cost of dust countermeasures associated with the sand mold casting is eliminated. It will not take.
【0029】4) 本発明による銅合金は、金型鋳造性
が優れているため、鋳造品の表面性状が良いので、研磨
量が少なく、従来にくらべて研磨費用が安くなる。4) Since the copper alloy according to the present invention is excellent in mold castability, the surface quality of the cast product is good, so that the polishing amount is small and the polishing cost is lower than the conventional one.
【0030】5) 本発明によれば、簡単な熱処理によ
りβ相の面積占有比率が制御でき、耐食性に優れた合金
が製造できる。5) According to the present invention, the area occupancy ratio of the β phase can be controlled by a simple heat treatment, and an alloy having excellent corrosion resistance can be manufactured.
【図1】β相比率と腐食深さとの関係を示す図。FIG. 1 is a diagram showing a relationship between a β phase ratio and a corrosion depth.
【図2】Sn添加量と凝固温度範囲との関係を示す図。FIG. 2 is a diagram showing a relationship between a Sn addition amount and a solidification temperature range.
【図3】亜鉛当量と腐食深さとの関係を示す図。FIG. 3 is a diagram showing a relationship between zinc equivalent and corrosion depth.
【図4】亜鉛当量と凝固温度範囲との関係を示す図。FIG. 4 is a diagram showing a relationship between a zinc equivalent and a solidification temperature range.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 島 正昭 北九州市小倉北区中島2丁目1番1号 東陶機器株式会社内 (72)発明者 島村 信夫 北九州市小倉北区中島2丁目1番1号 東陶機器株式会社内 (72)発明者 西山 久喜 北九州市小倉北区中島2丁目1番1号 東陶機器株式会社内 (56)参考文献 特開 平6−108184(JP,A) 特開 昭60−194035(JP,A) 特開 昭54−56925(JP,A) 特開 平4−74838(JP,A) 特開 昭62−30862(JP,A) 特開 平5−271850(JP,A) 特公 昭56−53624(JP,B1) 特公 昭58−38500(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C22C 9/04 B22C 9/06 B22C 17/22 C22F 1/08 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Masaaki Shima, 1-1-2 Nakajima, Kokurakita-ku, Kitakyushu City Totoki Equipment Co., Ltd. (72) Nobuo Shimamura 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu No. Totoki Co., Ltd. (72) Inventor Kuki Nishiyama 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City Totoki Co., Ltd. (56) Reference JP-A-6-108184 (JP, A) JP 60-194035 (JP, A) JP 54-56925 (JP, A) JP 4-74838 (JP, A) JP 62-30862 (JP, A) JP 5-271850 (JP , A) JP-B 56-53624 (JP, B1) JP-B 58-38500 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 9/04 B22C 9/06 B22C 17/22 C22F 1/08
Claims (5)
って、組成がSn、Sb、As、P、Pb、Al、F
e、Zn、及びCuである金型鋳造用合金において、 前記各組成分の配合比が、 Sn0.05〜0.2重量
%、Sb、As又はPのいずれか1種又は2種以上0.
05〜0.3重量%、Zn=1、Sn=2、Pb=1、
Al=6、Fe=0.9のGuilletの係数により
算出される亜鉛当量が35.7〜41.0重量%、残部
がCuからなり、β相の面積占有比率を15%以下とし
た、凝固温度範囲17°C以下であることを特徴とする
金型鋳造用銅合金。1. A copper alloy having two phases, an α phase and a β phase, having a composition of Sn, Sb, As, P, Pb, Al, F.
In the alloy for die casting, which is e, Zn, and Cu, the compounding ratio of each composition is Sn 0.05 to 0.2 wt%, Sb, As, or P, and any one kind or two or more kinds.
05 to 0.3% by weight, Zn = 1, Sn = 2, Pb = 1,
According to Guillet's coefficient of Al = 6, Fe = 0.9
Gold having a calculated zinc equivalent of 35.7 to 41.0% by weight, the balance of Cu, and a solidification temperature range of 17 ° C. or lower with an area occupation ratio of β phase of 15% or lower. Copper alloy for die casting.
0.5〜3.0重量%、Al0.1〜0.5重量%を含
有することを特徴とする請求項1記載の金型鋳造用銅合
金。2. Zn33.0-37.0 wt%, Pb
The copper alloy for die casting according to claim 1, which contains 0.5 to 3.0% by weight and 0.1 to 0.5% by weight of Al.
って、組成がSn、Sb、As、P、Pb、Al、F
e、Zn、及びCuである金型鋳造用銅合金において、 前記各組成の配合比が、 Sn0.05〜0.2重量%、
Sb、As又はPのいずれか1種又は2種以上0.05
〜0.3重量%、Zn=1、Sn=2、Pb=1、Al
=6、Fe=0.9のGuilletの係数により算出
される亜鉛当量が35.7〜41.0重量%、残部がC
uからなる銅合金を、鋳造後に450〜550°Cで3
0分以上3時間以内保持して、β相の面積占有比率を1
5%以下にすることを特徴とする耐食性に優れた金型鋳
造用銅合金の製造方法。3. A copper alloy having two phases, an α phase and a β phase, having a composition of Sn, Sb, As, P, Pb, Al, F.
In the copper alloy for die casting, which is e, Zn, and Cu, the compounding ratio of each composition is Sn 0.05 to 0.2% by weight,
Any one or more of Sb, As or P 0.05
~ 0.3 wt%, Zn = 1, Sn = 2, Pb = 1, Al
= 6, Fe = 0.9 calculated by Guillet's coefficient
Zinc equivalent of 35.7 to 41.0 percent by weight, the balance being C
After casting, a copper alloy composed of u is cast at 450 to 550 ° C for 3
Hold for 0 minutes or more and within 3 hours, and set the β phase area occupation ratio to 1
A method for producing a copper alloy for die casting, which is excellent in corrosion resistance, characterized by being 5% or less.
量%、Pb0.5〜3.0重量%、Al0.1〜0.5
重量%含有することを特徴とする請求項3記載の耐食性
に優れた金型鋳造用銅合金の製造方法。4. The copper alloy comprises 33.0 to 37.0 wt% Zn, 0.5 to 3.0 wt% Pb, and 0.1 to 0.5 Al.
The method for producing a copper alloy for die casting having excellent corrosion resistance according to claim 3, wherein the copper alloy is contained in a weight percentage.
を使用してなることを特徴とする水栓。5. A water faucet comprising the copper alloy for die casting according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08691696A JP3461081B2 (en) | 1995-04-10 | 1996-04-09 | Copper alloy for mold casting excellent in corrosion resistance, method for producing the alloy, and faucet using the alloy |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-84264 | 1995-04-10 | ||
JP8426495 | 1995-04-10 | ||
JP08691696A JP3461081B2 (en) | 1995-04-10 | 1996-04-09 | Copper alloy for mold casting excellent in corrosion resistance, method for producing the alloy, and faucet using the alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08337831A JPH08337831A (en) | 1996-12-24 |
JP3461081B2 true JP3461081B2 (en) | 2003-10-27 |
Family
ID=26425324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08691696A Expired - Lifetime JP3461081B2 (en) | 1995-04-10 | 1996-04-09 | Copper alloy for mold casting excellent in corrosion resistance, method for producing the alloy, and faucet using the alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3461081B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160015252A (en) | 2013-06-05 | 2016-02-12 | 산에츠긴조쿠가부시키가이샤 | Copper-based alloy |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5062829B2 (en) * | 2007-09-25 | 2012-10-31 | サンエツ金属株式会社 | Brass material and method for producing brass material |
EP3050983B1 (en) * | 2015-01-28 | 2019-03-13 | Toto Ltd. | Brass having improved castability and corrosion resistance |
CN109475205B (en) * | 2016-07-26 | 2021-11-12 | Ykk株式会社 | Copper alloy zipper teeth and zipper |
-
1996
- 1996-04-09 JP JP08691696A patent/JP3461081B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160015252A (en) | 2013-06-05 | 2016-02-12 | 산에츠긴조쿠가부시키가이샤 | Copper-based alloy |
Also Published As
Publication number | Publication date |
---|---|
JPH08337831A (en) | 1996-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9963764B2 (en) | Lead-free free-machining brass having improved castability | |
EP1777306B1 (en) | Cast copper alloy article and method for casting thereof | |
JP3335002B2 (en) | Lead-free free-cutting brass alloy with excellent hot workability | |
JP5399818B2 (en) | Lead-free free-cutting silicon brass alloy | |
US8580191B2 (en) | Brass alloys having superior stress corrosion resistance and manufacturing method thereof | |
JP4838859B2 (en) | Low migration copper alloy | |
JP5591661B2 (en) | Copper-based alloy for die casting with excellent dezincification corrosion resistance | |
KR20190029532A (en) | Copper-nickel-tin alloy, its preparation method and use | |
EP1090154A1 (en) | Iron modified tin brass | |
KR20190030660A (en) | Copper-nickel-tin alloy, its preparation method and use | |
JP2000239765A (en) | Leadless corrosion resistant brass alloy for metallic mold casting or for sand mold casting, metallic mold cast product or sand mold cast product, and leadless corrosion resistant brass alloy for continuous casting or continuous cast product | |
JP3461081B2 (en) | Copper alloy for mold casting excellent in corrosion resistance, method for producing the alloy, and faucet using the alloy | |
KR101301290B1 (en) | Brass alloy of unleaded free cutting with advanced corrosion resistance and superplastic formability and shape memory ability | |
JP2003277855A (en) | Lead-free, free-cutting brass alloy material and production method thereof | |
AU646183B2 (en) | Corrosion-resistant copper-based alloy | |
JP3459623B2 (en) | Lead-free bronze alloy | |
JP2003193157A (en) | Alloy such as copper alloy, production method therefor and ingot and liquid contacting parts by using the same | |
JP2841270B2 (en) | Copper base alloy excellent in corrosion resistance and hot workability and valve parts using the alloy | |
JP3830946B2 (en) | Bronze alloy and ingot and wetted parts using the alloy | |
KR910003882B1 (en) | Cu-alloy for electric parts and the process for making | |
JPS6056220B2 (en) | aluminum bearing alloy | |
WO2024228354A1 (en) | Free-machining copper alloy casting and production method for free-machining copper alloy casting | |
JP2003147460A (en) | Lead-free copper alloy for casting having excellent machinability | |
JP4526108B2 (en) | Aluminum bronze | |
JPS5835250B2 (en) | Corrosion-resistant copper alloy with excellent hot workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070815 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080815 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080815 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090815 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100815 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130815 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140815 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |