JPS5846539B2 - Aluminum alloy for bearings and its manufacturing method - Google Patents

Aluminum alloy for bearings and its manufacturing method

Info

Publication number
JPS5846539B2
JPS5846539B2 JP54169198A JP16919879A JPS5846539B2 JP S5846539 B2 JPS5846539 B2 JP S5846539B2 JP 54169198 A JP54169198 A JP 54169198A JP 16919879 A JP16919879 A JP 16919879A JP S5846539 B2 JPS5846539 B2 JP S5846539B2
Authority
JP
Japan
Prior art keywords
alloy
less
bearings
aluminum alloy
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54169198A
Other languages
Japanese (ja)
Other versions
JPS5693849A (en
Inventor
常久 関口
元彦 満田
「こう」一郎 近藤
俊彦 奥原
勝寛 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Shibaura Machinery Corp
Showa Keikinzoku KK
Original Assignee
IHI Shibaura Machinery Corp
Showa Keikinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Shibaura Machinery Corp, Showa Keikinzoku KK filed Critical IHI Shibaura Machinery Corp
Priority to JP54169198A priority Critical patent/JPS5846539B2/en
Publication of JPS5693849A publication Critical patent/JPS5693849A/en
Publication of JPS5846539B2 publication Critical patent/JPS5846539B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials

Description

【発明の詳細な説明】 本発明は高強度、高疲労強度を有しかつ耐焼付性、耐摩
耗性の優れた軸受用アルミニウム合金およびその製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aluminum alloy for bearings that has high strength, high fatigue strength, and excellent seizure resistance and wear resistance, and a method for producing the same.

従来、すべり軸受材料としては黄銅、砲金、青銅、鉛青
銅等の銅合金、あるいはスズ基ホワイトメタル、鉛基ホ
ワイトメタル、アルミニウム合金(A 1l−8n系、
AA−8i−Cd系、AlAl−8n−8i−Cu−N
i系等)が使用されている。
Conventionally, sliding bearing materials include copper alloys such as brass, gunmetal, bronze, and lead bronze, tin-based white metals, lead-based white metals, and aluminum alloys (A 11-8n series,
AA-8i-Cd system, AlAl-8n-8i-Cu-N
i series, etc.) are used.

銅合金は耐焼付性、耐荷重性に優れ広く用いられてきた
が、高価格、高比重に難がある。
Copper alloys have been widely used due to their excellent seizure resistance and load resistance, but they suffer from high cost and high specific gravity.

またホワイトメタルはかじり性やなじみ性に優れるが軟
か過ぎるので裏金ライニングなしには使用しえず、しか
も裏金との密着性が悪いという欠点のほかにやはり高価
格、高比重に難がある。
In addition, white metal has excellent gripability and conformability, but it is too soft and cannot be used without a backing metal lining.In addition to the disadvantage of poor adhesion to the backing metal, it also has the disadvantages of high price and high specific gravity.

かXる実状から低価格、低比重のアルミニウム合金系で
銅系、ホワイトメタル系に匹敵する軸受特性を具備した
材料の開発が望まれている。
In view of these circumstances, it is desired to develop a low-cost, low-density aluminum alloy-based material that has bearing properties comparable to copper-based and white metal-based materials.

ところで一般に軸受材料として要求される性質は主とし
て(1)耐荷重性、(2)耐摩耗性、(3)耐焼付性で
ある。
By the way, the properties generally required for bearing materials are mainly (1) load resistance, (2) wear resistance, and (3) seizure resistance.

耐焼付性はなじみ性に依拠し従っである程度の軟かさ、
脆さを有し、たとえ軸受面が部分的に強い圧力または衝
撃を受は塑性加工を受けるようなことがあっても加工硬
化が少く容易に流動離脱するような順応性あるいは軸の
変形にも順応する性質が必要である。
Seizure resistance depends on conformability, and therefore a certain degree of softness,
It has brittleness, and even if the bearing surface is partially subjected to strong pressure or impact and undergoes plastic processing, it has little work hardening and is flexible enough to easily flow away or deform the shaft. Requires an adaptable nature.

また運転中硬質の微細異物が軸と軸受間に介在するよう
なことがあってもこれを埋込む埋収性も必要である。
In addition, it is necessary to have the ability to embed fine hard foreign matter that may become interposed between the shaft and the bearing during operation.

これに対して耐摩耗性はある程度の硬さがあることによ
って生ずる性質であり、耐焼付性とは両立し難い性質で
ある。
On the other hand, wear resistance is a property caused by a certain degree of hardness, and is a property that is difficult to coexist with seizure resistance.

銅系合金やホワイトメタルではこれら相反する性質を兼
備しているとはいえず、軸との接触面がなじみ易い反面
、高荷重下では「かじり」を生じ易く摩耗量も多いとい
う欠点があった。
Copper-based alloys and white metals cannot be said to have both of these contradictory properties, and while the contact surface with the shaft is easy to conform to, they have the disadvantage of being prone to "galling" and high wear under high loads. .

このため軸受精度が低下したり軸受面に作動流体が侵入
して軸受寿命が短かくなるなどの欠点が指摘されている
As a result, drawbacks have been pointed out, such as a decrease in bearing accuracy and a shortened bearing life due to the intrusion of working fluid into the bearing surface.

上記したように従来の材料はとりわけ高荷重のかかる軸
受材としては不満足なところがあった。
As mentioned above, conventional materials are unsatisfactory especially as bearing materials that are subjected to high loads.

また近年建設用機器、農業用機械、その他各種産業用機
器に広く適用される油圧ポンプ等についていえば小型、
高性能化の傾向にあり250kg/瀝以上の高吐出圧力
のものが要求されているが、このように軸と軸受間の接
触面圧が高いものでは従来のアルミニウム合金軸受材で
は偏摩耗してしまうと同時に疲労によって割れが発生し
実用に耐えない。
In recent years, hydraulic pumps, etc., which are widely used in construction equipment, agricultural machinery, and various other industrial equipment, are small and
There is a trend toward higher performance, and high discharge pressures of 250 kg/loss or higher are required, but in such cases where the contact surface pressure between the shaft and bearing is high, conventional aluminum alloy bearing materials tend to wear unevenly. As soon as it is put away, it cracks due to fatigue, making it unusable.

このように高荷重下において偏摩耗を来さずかつ疲労強
度の高い軸受用合金の出現が強く望まれている。
Thus, there is a strong desire for an alloy for bearings that does not cause uneven wear under high loads and has high fatigue strength.

本発明者等はこれらの実状に鑑み、鋭意研究の結果高荷
重下において耐焼付性、耐摩耗性および高強度、高疲労
強度を発揮する高精度、高寿命、良耐食性を兼備した軸
受用アルミニウム合金材を開発するに至った。
In view of these circumstances, the inventors of the present invention have conducted intensive research to develop aluminum for bearings that exhibits seizure resistance, wear resistance, high strength, and high fatigue strength under high loads, and has high precision, long life, and good corrosion resistance. This led to the development of an alloy material.

すなわち本願第1発明の合金は重量比でSi5、0〜8
.0%、Cu1.5〜3.5%、Sn1.0〜5.5%
を含み残部Alおよび不純物よりなる。
That is, the alloy of the first invention of the present application has a weight ratio of Si5.0 to 8.
.. 0%, Cu1.5-3.5%, Sn1.0-5.5%
The remainder consists of Al and impurities.

そして本願第2発明の合金は、上記組成元素のほか、M
n0.2〜1.5%、Mg0.5〜1..5%、Ti0
.01〜0.2%、Bo、002〜0.04%(たゾし
TiとBの合量が0.2%以下)の1種または2種以上
を含み残部A7および不純物よりなるいずれも軸受用ア
ルミニウム合金である。
In addition to the above compositional elements, the alloy of the second invention of the present application has M
n0.2-1.5%, Mg0.5-1. .. 5%, Ti0
.. 01-0.2%, Bo, 002-0.04% (the total amount of Ti and B is 0.2% or less), and the balance is A7 and impurities. aluminum alloy.

また本願第3発明は、上記第1、第2発明の組成を有し
かつ結晶粒径が2000μm以下、二次デンドライトア
ーム間隔(以下DASと略す)が40μm以下であって
さらに金属間化合物からなる第二相粒子が30μm以下
である組織を有することを特徴とする軸受用アルミニウ
ム合金である。
Further, the third invention of the present application has the composition of the first and second inventions above, has a crystal grain size of 2000 μm or less, a secondary dendrite arm spacing (hereinafter abbreviated as DAS) of 40 μm or less, and further comprises an intermetallic compound. This is an aluminum alloy for bearings, characterized by having a structure in which second phase particles are 30 μm or less.

そして本願第4発明は上記第1、第2、第3発明の組成
、組織を有しさらに共晶Siが15μm以下で球状化し
ており、かつ単体Snが結晶粒界に15μm以下の粒状
で網目状に配列して存在する組織を有することを特徴と
する軸受用アルミニウム合金である。
The fourth invention of the present application has the composition and structure of the first, second, and third inventions, and further, the eutectic Si is spheroidized with a diameter of 15 μm or less, and the elemental Sn is formed in a network in the form of grains of 15 μm or less at the grain boundaries. This is an aluminum alloy for bearings characterized by having a structure arranged in a shape.

本願第5ないし第8発明は、上記合金の製造法に関する
The fifth to eighth inventions of the present application relate to a method for manufacturing the above-mentioned alloy.

すなわち本願第5、第6発明は、それぞれ上記第1、第
2発明の組成を有する合金溶湯を凝固速度5℃/ se
c以上として鋳造することを特徴とするアルミニウム合
金の製造法であり、これによって本願第3発明の合金が
得られる。
That is, in the fifth and sixth inventions of the present application, the molten alloys having the compositions of the first and second inventions are solidified at a solidification rate of 5°C/se.
This is a method for producing an aluminum alloy, characterized in that the aluminum alloy is cast at a temperature of c or more, and thereby the alloy of the third invention of the present application is obtained.

そして本願第7、第8は、それぞれ上記第1、第2発明
の組成を有する合金溶湯を凝固速度5℃/sec以上と
して鋳造し、得られた合金鋳塊に加工率20%以上の塑
性加工を加え、ついで300〜500℃の温度で溶体化
加熱後焼入れし、その後150〜220℃の温度で焼戻
し処理することを特徴とする軸受用アルミニウム合金の
製造法であり、これによって本願第4発明の合金が得ら
れる。
In the seventh and eighth aspects of the present application, a molten alloy having the compositions of the first and second inventions is cast at a solidification rate of 5°C/sec or higher, and the resulting alloy ingot is subjected to plastic working at a working rate of 20% or higher. A method for producing an aluminum alloy for bearings, which is characterized in that the aluminum alloy for bearings is then subjected to solution heating and quenching at a temperature of 300 to 500°C, and then tempered at a temperature of 150 to 220°C, thereby achieving the fourth invention of the present application. An alloy of

本発明における合金組成の限定理由について述べる。The reasons for limiting the alloy composition in the present invention will be described.

まず基本的構成成分であるSi、Cu、Snについては
、 (1) S i : 5.0〜5.8重量%初晶Si
は存在せず、すべて合金基質中に共晶として微細に分散
し軸受材に必要な耐摩耗性および強度を賦与すると同時
に鋳造時の溶湯の流動性を改善する。
First, regarding the basic constituents Si, Cu, and Sn, (1) Si: 5.0 to 5.8% by weight primary Si
All of them are finely dispersed as eutectics in the alloy matrix, giving the bearing material the necessary wear resistance and strength, and at the same time improving the fluidity of the molten metal during casting.

5,0重量%未満では耐摩耗性が不足し、8.0重量%
を超えると靭性が低下し、軸受材の疲労強度が劣化する
If it is less than 5.0% by weight, wear resistance will be insufficient, and if it is less than 8.0% by weight.
If it exceeds this, the toughness will decrease and the fatigue strength of the bearing material will deteriorate.

また合金の塑性加工性が悪化する。Moreover, the plastic workability of the alloy deteriorates.

(2) Cu : 1.5〜3.5重量%Cuは合金
基質中に固溶して強度を高め、耐摩耗性の向上に寄与す
るが1.5重量%未満ではその効果が不充分であり、3
.5重量%を超える量では耐食性が劣化し化学摩耗の因
となる。
(2) Cu: 1.5 to 3.5% by weight Cu dissolves solidly in the alloy matrix to increase strength and contribute to improving wear resistance, but if it is less than 1.5% by weight, the effect is insufficient. Yes, 3
.. If the amount exceeds 5% by weight, corrosion resistance will deteriorate and cause chemical wear.

(3) S n : 1.0−5.5重量%SnはA
Aにほとんど固溶することなく、単体で結晶粒界に沿っ
て分布し合金に摺動性およびなじみ性を与え耐焼付性を
具備させると同時に異物の埋収性を賦与する。
(3) Sn: 1.0-5.5% by weight Sn is A
It hardly forms a solid solution in A, but is distributed alone along the grain boundaries, giving the alloy sliding properties and conformability, seizure resistance, and at the same time, the ability to embed foreign substances.

1.0重量%未満ではその効果はほとんどなく、5.5
重量%を超える量では合金は脆くなり、とくに塑性加工
性を害するようになる。
If it is less than 1.0% by weight, there is almost no effect, and 5.5
If the amount exceeds % by weight, the alloy becomes brittle, and particularly its plastic workability is impaired.

つぎに本願発明合金の付加的選択成分であるMn、 M
g、 T iおよびBの特定量は、いづれも合金基質を
強化して強度を向上するほか、特に、合金を軸受材に使
用した場合、高荷重下において優れた耐焼付性および耐
摩耗性を発揮する。
Next, Mn, M which is an additional selective component of the alloy of the present invention
The specific amounts of g, Ti, and B all strengthen the alloy matrix and improve its strength, and especially when the alloy is used as a bearing material, it provides excellent seizure resistance and wear resistance under high loads. Demonstrate.

このため、上記付加的選択成分の1種または2種以上を
添加含有せしめることにより、本願発明合金の特性は一
層優れたものとなる。
Therefore, by adding one or more of the above-mentioned additional selective components, the properties of the alloy of the present invention can be made even more excellent.

以下上記付加的選択成分の各限定理由について述べる。The reasons for limiting each of the additional selected components will be described below.

Mnは1.5重量%を超えると粗大な金属間化合物が析
出し強度と伸びを著しく低下する。
If Mn exceeds 1.5% by weight, coarse intermetallic compounds will precipitate, significantly reducing strength and elongation.

また0、2重量%未満では効果が不充分である。Further, if it is less than 0.2% by weight, the effect is insufficient.

Mgは0.5重量%未満ではその効果は充分に発揮され
ず、また1、5重量%を超える量では伸びが低下し耐疲
労強度が著しく低下する。
If the amount of Mg is less than 0.5% by weight, its effect will not be sufficiently exhibited, and if the amount exceeds 1.5% by weight, the elongation will decrease and the fatigue strength will decrease significantly.

TiO,01重量%またはBo、002重量%未満では
効果が少く、Ti0.2重量%またはBo、04重量%
を超える量では粗大結晶の析出によりかえって強度低下
をもたらすので好ましくない。
Less than 0.01% by weight of TiO or 0.2% by weight of Bo has little effect, and 0.2% by weight of Ti or 4% by weight of Bo.
If the amount exceeds 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 crystals, it is preferable.

T1、Bを併用する場合同じ理由により合量で0.2重
量%以下とする。
When T1 and B are used together, the total amount should be 0.2% by weight or less for the same reason.

本願第1、第2発明の組成の合金はそれ自体鋳造造形し
切削加工を加え鋳造組織のままいわゆるソリッド軸受と
して上記のごとく優れた軸受特性を発揮する。
The alloys having the compositions of the first and second inventions of the present application are themselves cast, shaped, and cut to exhibit the excellent bearing characteristics as described above as a so-called solid bearing with the cast structure.

また加工用鋳塊に鋳造しこれに圧延、押出、鍛造等の塑
性加工を施して裏金鋼板にバイメタルして使用した場合
においても従来の合金に比して改善された軸受特性が得
られる。
Furthermore, even when the alloy is cast into a working ingot and subjected to plastic working such as rolling, extrusion, or forging, and used as a bimetal on a backing steel plate, bearing characteristics improved compared to conventional alloys can be obtained.

本発明者等は第1、第2発明の組成の合金について、さ
らに軸受特性の改善を図るべく研究の結果、この合金の
組成とあいまって合金の組織が特性に強い影響を有して
いることに着目しこれに基いて本願第3発明および第4
発明に到達した。
The present inventors conducted research on the alloys having the compositions of the first and second inventions in order to further improve the bearing characteristics, and found that the structure of the alloy, together with the composition of the alloy, has a strong influence on the characteristics. Focusing on this, the third invention and the fourth invention of the present application are made based on this.
invention has been achieved.

第3発明は前記したように結晶粒径200μm、DAS
40μm、第二相粒子30μmを各上限とする微細均質
な鋳造組織であることが必要である。
As mentioned above, the third invention has a crystal grain size of 200 μm and a DAS
It is necessary to have a fine and homogeneous cast structure with upper limits of 40 μm and 30 μm of second phase particles.

こ\において第二相粒子としては初晶およびAl−、C
u、 Al−8i、 Mg S i、 A7 Mn
F e、 Al−F e−8i、 Al−Cu −M
g等の金属間化合物をいう。
In this case, the second phase particles include primary crystals, Al-, C
u, Al-8i, MgSi, A7Mn
Fe, Al-Fe-8i, Al-Cu-M
Refers to intermetallic compounds such as g.

上記のように限定された組織を有する本発明の合金は、
鋳造材のままあるいはこれを切削加工して軸受に使用し
一段と改善された強度、疲労強度でしかも一層耐摩耗性
、耐焼付性を向上することが認められた。
The alloy of the present invention having a defined structure as described above is
It has been found that by using the cast material as it is or by cutting it into bearings, it has further improved strength and fatigue strength, as well as further improved wear resistance and seizure resistance.

上記限定外の組織ではこのような優れた特性はえられな
い。
Such excellent properties cannot be obtained with tissues outside the above-mentioned limits.

第4発明は前記したように共晶SiおよびSnの組織的
特徴を要件としたものであり、かかる組織により耐焼付
性・なじみ性およびかじり性を改善する効果が顕著であ
り、また切削加工性も良好となり切削面の平滑性及び寸
法精度が改善される。
As described above, the fourth invention requires the structural characteristics of eutectic Si and Sn, and such a structure has a remarkable effect of improving seizure resistance, conformability, and galling property, and also has cutting workability. The smoothness and dimensional accuracy of the cut surface are also improved.

前記のごとく本願発明合金の製造方法は、いづれも共通
して合金溶湯を5℃/ sec以上の凝固速度にて鋳造
することを要件とする。
As mentioned above, the methods for producing the alloy of the present invention all require that the molten alloy be cast at a solidification rate of 5° C./sec or more.

このような高速凝固速度は一般にDC鋳造(垂直または
水平の直冷連続鋳造)あるいは適当な冷却媒体によって
強制冷却される金型鋳造によって実現される。
Such high solidification rates are generally achieved by DC casting (vertical or horizontal direct cooling continuous casting) or die casting with forced cooling by a suitable cooling medium.

なおここで凝固速度とは鋳塊あるいは鋳造物の凝固時の
固相一液相境界面の温度降下速度を意味する。
Note that the solidification rate herein means the rate of temperature drop at the solid phase-liquid phase interface during solidification of an ingot or casting.

凝固速度20℃/sec以上のごとき高速凝固により一
層微細かつ均質な組織をうるのがさらに望ましいが、こ
のような状態を効率よく実現するには、DC鋳造法によ
って2〜3インチ直径の細径ビレットに連結鋳造するの
が最も好ましい実施態様である。
It is more desirable to obtain a finer and more homogeneous structure through high-speed solidification, such as a solidification rate of 20°C/sec or more, but in order to efficiently achieve this state, it is necessary to use a DC casting method to form a finer and more homogeneous structure. Consolidated casting into a billet is the most preferred embodiment.

上記したような凝固速度条件下で本発明の組成の合金溶
湯を鋳造すれば得られる鋳塊の組織は第3発明の合金の
組織要件を満足する。
The structure of the ingot obtained by casting the molten alloy having the composition of the present invention under the solidification rate conditions described above satisfies the structure requirements of the alloy of the third invention.

そしてかかる凝固速度条件は合金中の共晶Siの微細化
にも不可欠な要件となっている。
Such solidification rate conditions are also essential for the refinement of eutectic Si in the alloy.

すなわち共晶組織のSi結晶の巾の減少は鋳塊製造時に
おける合金の凝固速度に支配され、充分に大きい凝固速
度の下でえられる細い針状の共晶Siを析出せしめ、か
かる鋳塊を特定限度以上に塑性加工することによって共
晶Siを細かく分断して、球状化した共晶Si粒子を形
成せしめつるのである。
In other words, the decrease in the width of the Si crystal in the eutectic structure is controlled by the solidification rate of the alloy during the production of the ingot, and thin needle-shaped eutectic Si, which is obtained at a sufficiently high solidification rate, is precipitated and the ingot is By plastic working beyond a certain limit, the eutectic Si is finely divided to form spherical eutectic Si particles.

このように凝固速度は第4発明の前提要件となるのであ
る。
In this way, the solidification rate is a prerequisite for the fourth invention.

第4発明はSnの存在状態についても特定している。The fourth invention also specifies the state of existence of Sn.

既述のとと<SnはA7に固溶せず、αAA結晶の粒界
に網状に析出する。
The aforementioned Sn does not form a solid solution in A7, but precipitates in the form of a network at the grain boundaries of αAA crystals.

α−AA結晶が第3発明のとと<200μm以下の微細
粒であれば、Snの析出巾も小さい。
If the α-AA crystals are fine grains of <200 μm or less as in the third invention, the Sn precipitation width is also small.

このように析出しているSnを塑性加工と熱処理によっ
て分断粒状化するとね状Snは第3図の顕微鏡写真(倍
率×440)ととくα−Al晶の粒界に網目状に配列し
て存在するようになる。
When the precipitated Sn is divided into grains by plastic working and heat treatment, the strip-like Sn is arranged in a network at the grain boundaries of α-Al crystals, as shown in the micrograph in Figure 3 (magnification x 440). I come to do it.

SiおよびSnが共に第4発明のごとき組織となれば、
合金は強度、耐摩耗性を損うことなく、一段と改善され
たなじみ性、かじり性および埋収性を具備するようにな
り、結局優れた耐焼付性を発揮することが認められた。
If both Si and Sn form a structure like the fourth invention,
The alloy has been found to have improved conformability, galling and embedding properties without sacrificing strength or wear resistance, and ultimately exhibits excellent seizure resistance.

そしてこのような合金組織は第7、第8発明の要件すな
わち合金鋳塊製造、塑性加工に続く特定の熱処理を施す
ことによってはじめてえられるものである。
Such an alloy structure can only be obtained by performing a specific heat treatment subsequent to the requirements of the seventh and eighth inventions, that is, production of an alloy ingot and plastic working.

なお熱処理時間は、溶体化処理、焼戻し処理とも所定温
度範囲において1〜10時間の範囲で調整されるがCu
、Mg等の元素の固溶体硬化を考慮すれば溶体化温度は
450〜500℃が推賞される。
Note that the heat treatment time is adjusted within a range of 1 to 10 hours at a predetermined temperature range for both solution treatment and tempering treatment.
Considering the solid solution hardening of elements such as , Mg, etc., a solution temperature of 450 to 500°C is recommended.

以下実験にもとづいて本発明を説明する。The present invention will be explained below based on experiments.

(実験例 1) 重量比でSi6.5%、Cu2.9%、Sn4.8%、
Mn0.1%、Mg1.1%、Ti0.15%残部Al
と不可避的不純物からなる合金溶湯を凝固速度10℃/
secに保持して垂直半連続鋳造した。
(Experiment Example 1) Weight ratio: Si6.5%, Cu2.9%, Sn4.8%,
Mn0.1%, Mg1.1%, Ti0.15% balance Al
A molten alloy consisting of unavoidable impurities is solidified at a rate of 10℃/
Vertical semi-continuous casting was performed by holding at 100 sec.

えられた合金鋳塊の組織は第1図の顕微鏡写真(倍率X
120)に示した。
The structure of the obtained alloy ingot is shown in the micrograph in Figure 1 (magnification:
120).

一方、上記と同一組成の合金溶湯を凝固速度1’C/
Secで砂型鋳造し、その鋳塊断面の組織を第2図の顕
微鏡写真(倍率XI 20 )に示した。
On the other hand, a molten alloy having the same composition as above was solidified at a solidification rate of 1'C/
Sand casting was carried out at Sec, and the structure of the cross section of the ingot is shown in the micrograph (magnification XI 20 ) of FIG.

第1図の鋳塊においては金属間化合物の粒子サイズは3
0μm以下、DASは40μm以下であることが観測さ
れ、これに対し第2図の鋳塊においてはDASが40μ
mを超え、しかも第二相粒子も相当粗大で約60μm以
上と観測される。
In the ingot shown in Figure 1, the particle size of the intermetallic compound is 3.
It was observed that the DAS was 40 μm or less in the ingot shown in Figure 2.
In addition, the second phase particles are also considerably coarse and are observed to be approximately 60 μm or more.

(実験例 2) 重量比でSi7.0%、Cu3.1%、Sn5.4%、
Mn1.1%、Mg1.0%、Ti0.11%、BO,
005%残部Alと不可避的不純物からなる合金溶湯を
直径50mmのビレットに垂直半連続鋳造し、その際凝
固速度を1〜b 特定値に保持した。
(Experiment Example 2) Weight ratio: Si7.0%, Cu3.1%, Sn5.4%,
Mn1.1%, Mg1.0%, Ti0.11%, BO,
A molten alloy consisting of 0.05% balance Al and unavoidable impurities was vertically semi-continuously cast into a billet with a diameter of 50 mm, the solidification rate being maintained at a specific value of 1-b.

凝固速度とえられたビレットの組織におけるDASサイ
ズの関係を第4図に示す。
FIG. 4 shows the relationship between the solidification rate and the DAS size in the structure of the obtained billet.

図から明らかなように本発明者等が見出したDASの限
界値40μmに相当する凝固速度は5’C/ SeCで
ある。
As is clear from the figure, the solidification rate corresponding to the DAS limit value of 40 μm found by the present inventors is 5'C/SeC.

次に実施例にもとづいて本発明を説明する。Next, the present invention will be explained based on examples.

(実施例 1) 第1表は本実施例に適用した合金の組成を示す。(Example 1) Table 1 shows the composition of the alloy used in this example.

このうちA1−、%15は本発明合金でありAI6〜A
17は従来軸受用に実用されている代表的な比較合金で
ある。
Among them, A1-, %15 is the invention alloy, and AI6~A
No. 17 is a typical comparative alloy that has been used in conventional bearings.

これらの合金溶湯を直径40朋の棒状鋳塊に金型鋳造し
た。
These molten alloys were mold cast into rod-shaped ingots with a diameter of 40 mm.

凝固速度は本発明合金の場合6℃/sec、比較合金の
場合1〜2°C/secである。
The solidification rate is 6°C/sec for the alloy of the present invention and 1-2°C/sec for the comparative alloy.

716.1〜/162は鋳造のままのものであるが、A
3〜涜4は鋳塊をT5処理(200℃X6hr加熱)を
行い、またA5〜涜15は鋳塊をT6処理(500℃X
6hr溶体化加熱→水焼入れ→170℃×6hr焼戻し
加熱)を行った。
716.1~/162 are as-cast, but A
3 to 4, the ingots were subjected to T5 treatment (heated at 200°C for 6 hours), and A5 to 15 were ingots subjected to T6 treatment (500°C
Solution heating for 6 hours → water quenching → tempering heating at 170° C. for 6 hours) was performed.

比較合金416〜A17の鋳塊にはT5処理(200℃
X6hr加熱)を施した。
Ingots of comparative alloys 416 to A17 were subjected to T5 treatment (200℃
X6hr heating) was applied.

上記のごとく熱処理した鋳塊の常温、高温(100,2
00℃)における機械的特性を測定した。
Ingots heat-treated as described above at room temperature and high temperature (100,2
The mechanical properties were measured at 00°C.

耐摩耗性は大越式摩耗試験機によって測定した。Abrasion resistance was measured using an Okoshi type abrasion tester.

第2表は常温、第3表は高温における機械的特性値であ
り、第5図は摩擦試験結果である。
Table 2 shows the mechanical property values at room temperature, Table 3 shows the mechanical property values at high temperature, and FIG. 5 shows the friction test results.

これらの表および図の値から明らかなように、本発明合
金は熱処理の有無にかかわらず従来合金(比較合金)に
比して常温における強度・耐力・硬度が優れ高荷重軸受
材として適していることが認められる。
As is clear from the values in these tables and figures, the alloy of the present invention has superior strength, yield strength, and hardness at room temperature compared to conventional alloys (comparative alloys), regardless of whether heat treatment is performed, making it suitable as a high-load bearing material. It is recognized that

また第3表に示されるごとく高温における強度、伸びと
もに優れており、本発明合金が高速高荷重に耐える軸受
材であることが認められる。
Furthermore, as shown in Table 3, both the strength and elongation at high temperatures are excellent, and it is recognized that the alloy of the present invention is a bearing material that can withstand high speed and high loads.

特に本発明合金T6処理することにより、従来合金材と
は格段の差異のある優れた特性を発揮することが認めら
れる。
In particular, it is recognized that the T6 treatment of the alloy of the present invention exhibits excellent properties that are significantly different from conventional alloy materials.

第5図の結果は相手材をFC−30として摩擦距離60
0 m、最終荷重18.8kgでタービン油を潤滑油と
して使用したものである。
The results in Figure 5 show a friction distance of 60 when the mating material is FC-30.
0 m, the final load was 18.8 kg, and turbine oil was used as the lubricant.

図中の屑は第1表の屑に対応している。本発明合金41
、屑5、應9、屑12はいづれも従来合金A16AI
7に比して耐摩耗性が格別優れていることが認められる
The waste in the figure corresponds to the waste in Table 1. Invention alloy 41
, scraps 5, 9, and 12 are all conventional alloys A16AI.
It is recognized that the abrasion resistance is particularly excellent compared to No. 7.

(実施例 2) 第4表はこの実施例に適用した合金の組成を示す。(Example 2) Table 4 shows the composition of the alloy used in this example.

このうち/1618、應19、屑20、慮21は本発明
合金、磨22.423は従来軸受用に実用されている代
表的な比較合金である。
Of these, /1618, 19, 20, and 21 are alloys of the present invention, and 22.423 is a typical comparison alloy that has been used in conventional bearings.

これらの合金溶湯を直径40mmの棒状鋳塊に金型鋳造
した。
These molten alloys were mold cast into rod-shaped ingots with a diameter of 40 mm.

本発明合金/1618の鋳塊はT6処理(500℃X4
hr溶体化加熱→水焼入れ→160℃X 6 h r焼
戻し加熱)を施した。
The ingot of the alloy of the present invention/1618 was treated with T6 (500℃
hr solution heating → water quenching → tempering heating at 160° C. for 6 hr).

本発明合金419、/16.20、涜21の鋳塊は50
0℃×4時間の均質化加熱処理後空冷し、常温において
加工率30%のスェージ加工を加え、その後T6処理(
500℃X2hr溶体化加熱→水焼入れ1160℃X6
hr焼戻し加熱)を施した。
The ingot of the invention alloy 419, /16.20, 21 is 50
After homogenization heat treatment at 0°C x 4 hours, air cooling, swage processing at room temperature with a processing rate of 30%, and then T6 treatment (
Solution heating at 500°C for 2 hours → water quenching at 1160°C for 6 hours
hr tempering heating) was applied.

かく製造した本発明合金の組織例として合金A19の顕
微鏡写真を第3図(倍率X440)に示す。
As an example of the structure of the alloy of the present invention thus produced, a micrograph of alloy A19 is shown in FIG. 3 (magnification: X440).

比較合金A22、/1623は通常の用法に従って、い
ずれも焼戻し処理を行った。
Comparative alloys A22 and /1623 were both subjected to tempering treatment in accordance with normal usage.

処理条件は、屑22はひずみ取りを兼ねて、250℃X
5hr加熱、A23は’l’5(200℃X6hr加熱
)処理である。
The processing conditions are as follows: The waste 22 is heated at 250℃
Heating for 5 hours, A23 is 'l'5 (heating at 200°C for 6 hours) treatment.

上記のごとく調整した合金を機械成形加工してギヤーポ
ンプの軸受として組込み耐久試験を行つた。
The alloy prepared as described above was machine-formed and assembled into a gear pump bearing, and a durability test was conducted.

ギヤーポンプの仕様は第5表に示すごとく最高圧力15
0kg/−である。
The gear pump specifications are as shown in Table 5, with a maximum pressure of 15
It is 0 kg/-.

回転数250Or・p−mのディーゼルエンジンにポン
プを減速ギヤを介して連結し、負荷、無負荷釜1秒とし
、サイクル2秒で80時間の耐久試験を行った。
The pump was connected to a diesel engine with a rotational speed of 250 Or.pm via a reduction gear, and an 80-hour durability test was conducted with a load and no-load kettle for 1 second and a cycle of 2 seconds.

試験結果を第6表に示すが、本発明合金では摩耗量が少
く、軸との接触面が美麗であり耐久試験前後における性
能の低下もなく、良好な結果が得られた。
The test results are shown in Table 6. The alloy of the present invention had a small amount of wear, the contact surface with the shaft was beautiful, and there was no deterioration in performance before and after the durability test, and good results were obtained.

Claims (1)

【特許請求の範囲】 1 重量比でSi5.O〜8.0%、Cu1.5〜3.
5%、Sn1.0〜5.5%を含み残部Alおよび不純
物よりなる軸受用アルミニウム合金。 2 重量比でS i 5.0−8.0%、Cu1.5〜
3.5%、S n 1.C)−5,5%、およびMn0
.2〜1.5%、Mg0.5〜1.5%、TiO,01
〜0.2%、BO,002〜0.04%(たゾしTiと
Bの合量が0.2%以下)の1種または2種以上を含み
残部Alおよび不純物よりなる軸受用アルミニウム合金
。 3 結晶粒径が200μm以下、二次デンドライトアー
ム間隔が40μm以下、金属間化合物からなる第二相粒
子が30μm以下である組織を有することを特徴とする
特許請求の範囲第1項または第2項記載の軸受用アルミ
ニウム合金。 4 共晶Siが■5μm以下で球状化分散しており、か
つ単体Snが結晶粒界に15μm以下の粒状で網目状に
配列して存在する組織を有することを特徴とする特許請
求の範囲第1項第2項、または第3項記載の軸受用アル
ミニウム合金。 5 重量比でSi5.O〜8.0%、Cu1.5〜3.
5%、Sn1.O〜5,5%を含み残部AAおよび不純
物よりなる組成の合金溶湯を凝固速度5℃/sec以上
として鋳造することを特徴とする軸受用アルミニウム合
金の製造法。 6 重量比でS i 5.0−8.0%、Cu1.5〜
3.5%、Sn1.0−5.5%、およびMn0.2〜
1.5%、Mg0.5〜1.5%、Ti0.01〜0.
2%、BO,002〜0.04、(たゾしTiとBの合
量が0.2%以下)の1種または2種以上を含み、残部
A7および不純物よりなる組成の合金溶湯を凝固速度5
℃/sec以上として鋳造することを特徴とする軸受用
アルミニウム合金の製造法。 7 重量比でS i 5.0〜8.0%、Cu1.5〜
3.5%、Sn1.O〜5,5%、を含み残部Alおよ
び不純物よりなる組成の合金溶湯を5℃/see以上の
凝固速度で鋳造し、得られた合金鋳塊に加工率20%以
上の塑性加工を加え、ついで300〜500℃の温度範
囲で溶体化加熱後焼入れし、その後150〜220℃の
温度範囲で焼戻し処理することを特徴とする軸受用アル
ミニウム合金の製造法。 8 重量比でS i 5.O〜8.0%、Cu1.5〜
3.5%、S n 1.0−5.5%、およびMn0.
2〜1.5%、Mg0.5〜1,5%、Ti0.01〜
0.2%、BO,002〜0°04%(たゾしTiとB
の合量が0.2%以下)の1種または2種以上を含み、
残部A[および不純物よりなる組成の合金溶湯を5℃/
sec以上の凝固速度で鋳造し、得られた合金鋳塊に加
工率20%以上の塑性加工を加え、ついで300〜50
0℃の温度範囲で溶体化加熱後焼入れし、その後150
〜220℃の温度範囲で焼戻し処理することを特徴とす
る軸受用アルミニウム合金の製造法。
[Claims] 1 Si5. O~8.0%, Cu1.5~3.
5% Sn, 1.0 to 5.5% Sn, and the balance Al and impurities. 2 Si 5.0-8.0%, Cu 1.5~ by weight ratio
3.5%, S n 1. C) -5,5%, and Mn0
.. 2-1.5%, Mg0.5-1.5%, TiO,01
-0.2%, BO, 002-0.04% (the total amount of Ti and B is 0.2% or less), and the balance is Al and impurities. . 3. Claims 1 or 2, characterized by having a structure in which the crystal grain size is 200 μm or less, the secondary dendrite arm spacing is 40 μm or less, and the second phase particles made of an intermetallic compound are 30 μm or less. Aluminum alloy for bearings listed. 4. Claim No. 4 characterized by having a structure in which eutectic Si is spheroidized and dispersed with a size of 5 μm or less, and elemental Sn exists in grain boundaries arranged in a network in the form of grains of 15 μm or less The aluminum alloy for bearings according to item 1, item 2, or item 3. 5 Si5. O~8.0%, Cu1.5~3.
5%, Sn1. 1. A method for producing an aluminum alloy for bearings, which comprises casting a molten alloy having a composition of O~5.5% and the balance AA and impurities at a solidification rate of 5° C./sec or more. 6 Si 5.0-8.0% by weight, Cu 1.5~
3.5%, Sn1.0-5.5%, and Mn0.2~
1.5%, Mg0.5-1.5%, Ti0.01-0.
2%, BO, 002 to 0.04, (total amount of Ti and B is 0.2% or less), and solidify a molten alloy having a composition of A7 and impurities. speed 5
A method for manufacturing an aluminum alloy for bearings, characterized by casting at a temperature of ℃/sec or higher. 7 Si 5.0-8.0%, Cu 1.5-8.0% by weight
3.5%, Sn1. A molten alloy having a composition of O~5.5% and the balance Al and impurities is cast at a solidification rate of 5°C/see or higher, and the resulting alloy ingot is subjected to plastic working at a processing rate of 20% or higher, A method for manufacturing an aluminum alloy for bearings, which comprises: followed by solution heating and quenching in a temperature range of 300 to 500°C, and then tempering in a temperature range of 150 to 220°C. 8 S i by weight ratio 5. O~8.0%, Cu1.5~
3.5%, S n 1.0-5.5%, and Mn 0.
2-1.5%, Mg0.5-1.5%, Ti0.01-
0.2%, BO, 002~0°04% (Tazoshi Ti and B
containing one or more types (with a total amount of 0.2% or less),
A molten alloy having a composition consisting of the remainder A [and impurities] was heated at 5°C/
The alloy ingot obtained by casting at a solidification rate of 300 to 500 m
Quenched after solution heating in the temperature range of 0℃, then 150℃
A method for producing an aluminum alloy for bearings, which comprises tempering in a temperature range of ~220°C.
JP54169198A 1979-12-27 1979-12-27 Aluminum alloy for bearings and its manufacturing method Expired JPS5846539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54169198A JPS5846539B2 (en) 1979-12-27 1979-12-27 Aluminum alloy for bearings and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54169198A JPS5846539B2 (en) 1979-12-27 1979-12-27 Aluminum alloy for bearings and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5693849A JPS5693849A (en) 1981-07-29
JPS5846539B2 true JPS5846539B2 (en) 1983-10-17

Family

ID=15882021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54169198A Expired JPS5846539B2 (en) 1979-12-27 1979-12-27 Aluminum alloy for bearings and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5846539B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119530A (en) * 2001-10-10 2003-04-23 Daido Metal Co Ltd Aluminum-based bearing alloy

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193254A (en) * 1983-04-14 1984-11-01 Taiho Kogyo Co Ltd Preparation of aluminum alloy bearing
EP0383636A1 (en) * 1989-02-17 1990-08-22 Nippon Shokubai Co., Ltd. Carrier for catalyst and method for production thereof
JPH0693360A (en) * 1992-09-10 1994-04-05 Ndc Co Ltd Al-sn bearing alloy material
JPH07179968A (en) * 1993-12-22 1995-07-18 Daido Metal Co Ltd Aluminum alloy for sliding material
US5616192A (en) * 1994-07-21 1997-04-01 Fuji Oozx Inc. Coil retainer for engine valve and preparation of the same
US20130004364A1 (en) * 2010-03-10 2013-01-03 Daido Metal Company Ltd. Al-based bearing alloy
KR20120136402A (en) * 2010-03-26 2012-12-18 다이도 메탈 고교 가부시키가이샤 Aluminum alloy bearing
CN103014427B (en) * 2012-11-22 2015-09-09 合肥长源液压股份有限公司 Z-alloy containing silicon and preparation method thereof
CN103014423B (en) * 2012-11-22 2015-12-02 合肥长源液压股份有限公司 Z-alloy and preparation method thereof
CN104651675A (en) * 2013-11-20 2015-05-27 江西华友机械有限公司 A heat-treatment-free cast aluminium alloy material and a producing process thereof
CN104561706B (en) * 2015-01-30 2016-08-17 合肥熠辉轻合金科技有限公司 A kind of high-strength antifriction aluminium alloy
CN106048312A (en) * 2016-05-31 2016-10-26 安徽潜山轴承制造有限公司 Abrasion-resistant aluminum-based alloy bearing and preparation method thereof
GB2552998C (en) * 2016-08-19 2020-06-24 Mahle Int Gmbh Aluminium alloy composition for a sliding element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1073428A (en) * 1912-05-06 1913-09-16 Ohio Rake Company Disk harrow.
JPS4916327A (en) * 1972-05-21 1974-02-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1073428A (en) * 1912-05-06 1913-09-16 Ohio Rake Company Disk harrow.
JPS4916327A (en) * 1972-05-21 1974-02-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119530A (en) * 2001-10-10 2003-04-23 Daido Metal Co Ltd Aluminum-based bearing alloy

Also Published As

Publication number Publication date
JPS5693849A (en) 1981-07-29

Similar Documents

Publication Publication Date Title
JP4190570B2 (en) Lead-free free-cutting copper alloy extruded material
JP5868510B2 (en) Free-cutting lead-free copper alloy and manufacturing method thereof
JP6374530B2 (en) Aluminum bronze alloy, production method, and product made from aluminum bronze
JPS5846539B2 (en) Aluminum alloy for bearings and its manufacturing method
CN102899525B (en) High strength and toughness wear-resisting complex brass and production method thereof
JP2004244672A (en) Copper-base alloy with excellent dezincification resistance
EP2333126B1 (en) Brass alloys having superior stress corrosion resistance and manufacturing method thereof
JP4806823B2 (en) Bronze alloy and manufacturing method thereof, sliding member using bronze alloy
JP2738999B2 (en) High wear-resistant aluminum bronze casting alloy, sliding member using the alloy
CN110106393A (en) A kind of wear-resisting aluminium bronze of high manganese and preparation method thereof
CN104862520A (en) Brass alloy as well as preparation method and application thereof
CN109022945B (en) Special rare earth aluminum alloy material for upper and lower bearing flanges, partition plate and cylinder body of refrigeration compressor and preparation method thereof
JPS60208443A (en) Aluminum alloy material
US6706126B2 (en) Aluminum alloy for sliding bearing and its production method
JP2019511631A (en) Tin-containing copper alloy, process for its preparation and its use
JPS6056220B2 (en) aluminum bearing alloy
US6899844B2 (en) Production method of aluminum alloy for sliding bearing
JPS6086237A (en) Cu-alloy for slide member
JPH029099B2 (en)
JP3920656B2 (en) High rigidity aluminum alloy containing boron
JP3057468B2 (en) Wear-resistant aluminum-based sintered alloy and method for producing the same
KR102577574B1 (en) Special brass alloy and special brass alloy product
JPS61117244A (en) Sliding aluminum alloy
JPH0913133A (en) Aluminum bronze and sliding member using the same
EP0809715A1 (en) Aluminum alloy with improved tribological characteristics