JPH0693360A - Al-sn bearing alloy material - Google Patents

Al-sn bearing alloy material

Info

Publication number
JPH0693360A
JPH0693360A JP26798092A JP26798092A JPH0693360A JP H0693360 A JPH0693360 A JP H0693360A JP 26798092 A JP26798092 A JP 26798092A JP 26798092 A JP26798092 A JP 26798092A JP H0693360 A JPH0693360 A JP H0693360A
Authority
JP
Japan
Prior art keywords
bearing
alloy
alloy material
bearing alloy
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26798092A
Other languages
Japanese (ja)
Inventor
Masahito Fujita
正仁 藤田
Yukio Yamaguchi
幸夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP26798092A priority Critical patent/JPH0693360A/en
Publication of JPH0693360A publication Critical patent/JPH0693360A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To improve the seizing resistance of an Al-Sn bearing allay by forming the distributing shape of Sn in the Al-Sn bearing allay into a three-dimensionally reticulate one and forming the reticulate, connecting parts into Sn banks. CONSTITUTION:The bearing alloy material is constituted of an Al-Sn allay cast by a vertical casting machine. The structure of the distributing state of Sn in this alloy is formed into a one connected into a three-dimensionally reticulate shape. Then, the Al-Sn bearing allay material is incorporated with, by weight, 3.0 to 25% Sn, 0.1 to 11% Si and one or more kinds among Zr, V, Cr and Mn by 0.1 to 3.0% alone or in total as well as incorporated with 0.01 to 0.3% Ti and 0.005 to 0.05% B, and in which the ratio of Ti/B is regulated to 5 to 20. The alloy material is incorporated with 0.001 to 0.1% Sr or Sb. Moreover, 0.2 to 5% Pb is incorporated therein. In this way, the durability of the bearing can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はAl−Sn系軸受合金材
料に係り、詳しくは、合金中のSnの分布状態が3次元
的に網目状に連結した組織を持ち、かつ、網目の連結部
が適切なSn留りとなる構造を有するもので、特に、高
速・高負荷運転時に耐焼付性に優れたAl−Sn系軸受
合金材料に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al-Sn bearing alloy material, and more specifically, it has a structure in which the distribution state of Sn in the alloy is three-dimensionally connected in a mesh-like shape, and a mesh-like connecting portion. Is a suitable Sn retention structure, and particularly relates to an Al-Sn bearing alloy material having excellent seizure resistance during high-speed / high-load operation.

【0002】[0002]

【従来の技術】最近の自動車エンジンは、省燃費、高出
力のものとなり、これに伴って軸受にかかる荷重が増加
すると共に、潤滑油の温度が上昇し、時には境界潤滑条
件下でも、使われる程、軸受の使用条件は、苛酷化の一
途をたどっている。また、近年はメタノ−ルを燃料とし
て使用する等、表面に鉛系のオ−バ−レイを使用するケ
ルメット系の高鉛青銅合金軸受では耐食性に問題があ
り、より安定なAl−Sn系の軸受合金、しかも、耐荷
重性にすぐれた軸受が要求されるようになってきた。
2. Description of the Related Art Recent automobile engines are fuel-efficient and high-powered, and the load applied to the bearings is accordingly increased, and the temperature of the lubricating oil is also raised, sometimes even under boundary lubrication conditions. However, the operating conditions of bearings are becoming severer. Further, in recent years, a Kelmet type high lead bronze alloy bearing that uses a lead type overlay on the surface such as using methanol as a fuel has a problem in corrosion resistance, and a more stable Al--Sn type Bearing alloys and bearings with excellent load bearing capacity have been required.

【0003】すなわち、表面にオ−バ−レイメッキ層を
有する軸受は一般的には、JISH 5402、AJ−
1(10%Sn、0.75%Cu、0.5%Ni、Al
Bal)や、JIS H 5402、AJ−2(6%S
n、2.5%Cu、1.0%Ni、AlBal)等のJ
IS規格、SAE780(6%Sn、2%Si、1%C
u、0.5%Ni、0.1%Ti、AlBal)等のS
AE規格に示される通り、その軸受合金部分はSn含有
量が比較的少ない低Sn−Al合金から成っているが、
これら軸受合金部分の表面には更にPb−Sn系合金の
オ−バ−レイメッキによって表面積が形成され、この表
面積が軸受面を構成している。しかし、これら軸受は、
近年の高負荷、高温の使用条件下では表面のオ−バ−レ
イメッキによる表面層が摩滅して焼付きに至り、使用に
耐えられなくなっている。これに対し、表面にオ−バ−
レイメッキによって表面積を形成しない軸受はSAE7
83(20%Sn、0.5%Si、1.0%Cu、0.
1%Ti、AlBal)に示される通り、その軸受合金
部分がSn含有量の多い高Sn−Al合金から成ってい
る。しかし、このようにSnが20%程度の如く多く含
まれる合金は硬度が低く、Alマトリックスが弱くなる
ため、高負荷に耐えられない。
That is, a bearing having an overlay plating layer on the surface thereof is generally in accordance with JIS 5402, AJ-.
1 (10% Sn, 0.75% Cu, 0.5% Ni, Al
Bal), JIS H 5402, AJ-2 (6% S
n, 2.5% Cu, 1.0% Ni, AlBal) etc. J
IS standard, SAE780 (6% Sn, 2% Si, 1% C
u, 0.5% Ni, 0.1% Ti, AlBal) and other S
As shown in the AE standard, the bearing alloy part is made of a low Sn-Al alloy having a relatively low Sn content.
A surface area is further formed on the surfaces of these bearing alloy portions by overlay plating of a Pb-Sn alloy, and this surface area constitutes a bearing surface. However, these bearings
Under high load and high temperature use conditions in recent years, the surface layer of the surface is overwhelmed by abrasion, causing seizure, which makes it unusable. On the other hand, the surface is over
Bearings that do not form a surface area by lay plating are SAE7
83 (20% Sn, 0.5% Si, 1.0% Cu, 0.
1% Ti, AlBal), the bearing alloy portion is made of a high Sn-Al alloy having a high Sn content. However, the alloy containing a large amount of Sn, such as about 20%, has a low hardness and the Al matrix becomes weak, so that it cannot withstand a high load.

【0004】また、Sn含有量の多少に拘らずAl−S
n系合金中にPbを添加して潤滑性を増進させ、耐焼付
性をもたせた軸受合金が例えば水野昴一著昭和29年日
刊工業新聞社発行「軸受合金」第139頁に記載され、
この軸受合金は10%Sn、1.5%Cu、0.5%S
iを含むとともに3%Pbを添加して成るAl−Sn−
Pb系合金である。
Al-S is used regardless of the Sn content.
A bearing alloy having seizure resistance by adding Pb to an n-based alloy to improve lubricity is described in, for example, "Bearing Alloy", page 139, published by Nikkan Kogyo Shimbun in 1929 by Junichi Mizuno,
This bearing alloy is 10% Sn, 1.5% Cu, 0.5% S
Al-Sn- containing i and 3% Pb
It is a Pb-based alloy.

【0005】更に、Al−Sn−Pb系合金中のPbは
Alとはほとんど固溶しない為、この潤滑成分であるP
bの分散性向上の為にSbを添加したAl−Sn−Pb
−Sb系合金が特公昭52−12131号公報に記載さ
れ、この上に、Sn粒子の粗大化を防止したAl−Sn
−Si−Cr系合金が特公昭61−40297号公報に
示されている。
Further, since Pb in the Al-Sn-Pb type alloy hardly forms a solid solution with Al, P which is this lubricating component.
Al-Sn-Pb with Sb added to improve the dispersibility of b
A -Sb alloy is described in Japanese Examined Patent Publication No. 52-12131, and on top of this, Al-Sn in which coarsening of Sn particles is prevented.
A -Si-Cr alloy is disclosed in Japanese Patent Publication No. 61-40297.

【0006】これら軸受合金の技術の流れはいずれも潤
滑成分を少なくし分散させることで相対的に合金のマト
リックス強度を上げ、耐疲労性を確保しようとしたもの
である。しかし、本来的にこれらの合金強度の上昇及び
耐摩耗性の向上、ひいては耐焼付性の向上は、主とし
て、Siの添加による効果が大きく、Al−Sn系合金
のうちでもAl−Sn系とAl−Sn−Si系とは区別
されてしかるべきで、Si添加の効果が十分に峻別して
理解されるべきである。
All of these bearing alloy technologies are intended to relatively increase the matrix strength of the alloy and secure the fatigue resistance by reducing and dispersing the lubricating component. However, the increase in the strength of these alloys and the improvement in the wear resistance, and thus the improvement in the seizure resistance are inherently largely due to the addition of Si, and among Al-Sn alloys, Al-Sn alloys and Al alloys It should be distinguished from the -Sn-Si system, and the effect of Si addition should be sufficiently distinguished and understood.

【0007】ちなみに、従来例(特公昭61−4029
7号公報)では、CrおよびSiを添加することでSn
が微細化され硬さが向上するとし、これにより高温状態
におけるSnの移動と成長がほとんどなく、高温硬さの
低下も少ないとしている。
Incidentally, a conventional example (Japanese Patent Publication No. 61-4029)
No. 7), Sn and Sn by adding Cr and Si.
It is said that the particles are refined and the hardness is improved. As a result, there is almost no movement and growth of Sn in a high temperature state, and the decrease in high temperature hardness is small.

【0008】すなわち、従来の軸受合金の流れをまとめ
るとAl−Sn二元系でSnを40〜20wt%も含む
きわめて潤滑力に富む軟らかい合金系から、Sn分を少
なくし、Si等を添加し、マトリックスを強化したもの
へと変化して来ているわけである。ここで注目しなけれ
ばならないのは、マトリックスを強化した為に、潤滑力
が低下せざるを得ないという問題をどのような形で対処
して来たかということであり、それは前述のSb添加で
あり、Cr添加であり、そうすることでSnの分散を計
ったという事実である。
That is, the flow of conventional bearing alloys is summarized as follows: Al-Sn binary system, which is a soft alloy system containing 40 to 20 wt% of Sn and having an extremely high lubricating power, with a reduced Sn content and added Si or the like. , The matrix has been strengthened. What we should pay attention to here is how we have dealt with the problem that the lubrication force must be reduced due to the strengthening of the matrix. It is the fact that Cr was added, and the dispersion of Sn was measured by doing so.

【0009】更に、従来例として本発明の出願人が開示
した特公平2−35020号や特開昭62−21853
8号公報では、Siを含むAl−Sn系合金にSrある
いはSbを微量添加することでマトリックス強化元素で
あるSi粒子を球状、だ円状若しくはそれに近い形状に
均一に析出させ、しかも、この析出されたSi粒子を前
記マトリックス表面に存在させるとともに、このSi粒
子の近傍に、Sn−Pb合金粒子と存在させることによ
って、潤滑力を低下させることなく耐焼付性の向上を図
る技術が知られている。しかし、これらのAl−Sn系
合金のSnの潤滑効果は十分でないという問題があっ
た。
Further, as a conventional example, Japanese Patent Publication No. 2-352020 and Japanese Patent Laid-Open No. 62-21853 disclosed by the applicant of the present invention.
According to Japanese Patent Laid-Open No. 8 (1994), a small amount of Sr or Sb is added to an Al-Sn alloy containing Si to uniformly deposit Si particles, which are matrix strengthening elements, in a spherical shape, an elliptical shape, or a shape close to the spherical shape. There is known a technique for improving seizure resistance without lowering the lubrication force by allowing the formed Si particles to exist on the surface of the matrix and the Sn—Pb alloy particles in the vicinity of the Si particles. There is. However, there is a problem that the lubricating effect of Sn of these Al-Sn based alloys is not sufficient.

【0010】[0010]

【発明が解決しようとする課題】本発明は上記問題の解
決を目的とし、具体的には、Al−Sn合金材中の少な
いSn成分で、最大の耐焼付性を付与することができる
Al−Sn系軸受合金材料を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and specifically, it is possible to impart maximum seizure resistance with a small amount of Sn component in an Al-Sn alloy material. An object is to provide a Sn-based bearing alloy material.

【0011】[0011]

【課題を解決するための手段】本発明は縦型鋳造機より
鋳造されたAl−Sn系軸受合金材であって、この合金
中のSnの分布状態が3次元的に網目状に連結した組織
を有し、かつ網目状の連結部が適切なSn留りとなる構
造を有することを特徴とする。
The present invention is an Al-Sn bearing alloy material cast by a vertical casting machine, in which the distribution state of Sn in this alloy is three-dimensionally connected in a mesh structure. And has a structure in which the mesh-shaped connecting portion is an appropriate Sn retention.

【0012】本発明はこうしたAl−Sn系のSnの潤
滑のあり方について基本的な考察を行ない、単にSnの
分散効果を主眼とした従来技術に鑑み、より効果的なS
nの分布状態を求めることで、耐焼付性を向上させたも
のである。
The present invention makes a basic study on the way of lubrication of such Al--Sn system Sn, and in view of the prior art that merely focuses on the dispersion effect of Sn, a more effective S
The seizure resistance is improved by determining the distribution state of n.

【0013】そこで、本発明の手段たる構成ならびにそ
の作用について更に図面を参照しながら詳しく説明する
と、次の通りである。
The structure and operation of the means of the present invention will now be described in detail with reference to the drawings.

【0014】すなわち、本発明では、少ない潤滑成分で
最大の耐焼付性を確保するには如何なる方法をとるべき
かについて根本的な解決を求めたものである。
That is, the present invention has sought a fundamental solution as to what method should be taken to secure the maximum seizure resistance with a small amount of lubricating components.

【0015】図1は潤滑状態の軸受材と軸との関係を示
す説明図であり、図2は本発明の軸受合金材組織を説明
する組織モデルの模式図であり、図3は本発明によるA
l−Sn系合金材の鋳造時の組織モデルの模式図であ
り、図4は縦型鋳造の凝固モデルの模式図であり、図5
は横型鋳造の凝固モデルの模式図であり、図6はAl−
Sn系連通管部の断面を説明する組織モデルの模式図で
あり、図7は図6を熱処理した模式図であり、図8はA
lとSnのヌレ性の関係を示す説明図であり、図9は図
8のヌレ性が良い場合の説明図であり、図10は図8の
ヌレ性が悪い場合の説明図である。符号1は軸、2はS
n、3はAl−Sn系軸受合金、4は裏金、6はSn発
汗部、10はカ−ボンモ−ルド、11は液相(Sn)、
12は固液界面、13は固相、31は連通管部、32は
Sn留り、33はAlマトリックス部、34は花弁状組
織(Al)、35は成長結晶を示す。
FIG. 1 is an explanatory view showing a relationship between a bearing material in a lubricated state and a shaft, FIG. 2 is a schematic view of a structure model for explaining the structure of the bearing alloy material of the present invention, and FIG. 3 is according to the present invention. A
FIG. 5 is a schematic diagram of a microstructure model during casting of an 1-Sn alloy material, FIG. 4 is a schematic diagram of a solidification model of vertical casting, and FIG.
Is a schematic diagram of a solidification model of horizontal casting, and FIG.
It is a schematic diagram of the tissue model explaining the cross section of a Sn type | system | group communication pipe part, FIG. 7 is a schematic diagram which heat-processed FIG. 6, and FIG. 8 is A.
9 is an explanatory diagram showing the relationship between l and Sn wetting properties, FIG. 9 is an explanatory diagram when the wetting property of FIG. 8 is good, and FIG. 10 is an explanatory diagram when the wetting property of FIG. 8 is bad. Reference numeral 1 is an axis, 2 is an S
n, 3 are Al-Sn type bearing alloys, 4 is back metal, 6 is Sn perspiration part, 10 is carbon mold, 11 is liquid phase (Sn),
12 is a solid-liquid interface, 13 is a solid phase, 31 is a communicating tube part, 32 is Sn retention, 33 is an Al matrix part, 34 is a petal-like tissue (Al), and 35 is a grown crystal.

【0016】図1に示すようにAl−Sn系軸受合金3
が軸1に焼付く寸前、すなわち、境界潤滑下での状態
で、符号2で示されるSnにより潤滑性を確保するとい
うことは、軸1と軸受合金3の金属接触下で界面に潤滑
成分であるSnが適量供給され、軸1の鉄と軸受合金3
のアルミニウムの凝着が回避されるということである。
言い換えれば、耐焼付性を向上させるとは、焼付界面へ
Sn(液相)の供給能力を改善することにある。すなわ
ち、耐焼付性を向上させたAl−Sn系軸受合金3と
は、Al−Sn系合金中のSnの分布状態が表面へのS
nの供給能力に優れた状態にある軸受と言うことができ
る。
As shown in FIG. 1, Al-Sn bearing alloy 3
On the verge of seizure on the shaft 1, that is, in the state under boundary lubrication, to secure the lubricity by Sn indicated by reference numeral 2 means that the lubrication component is present at the interface under the metal contact between the shaft 1 and the bearing alloy 3. A certain amount of Sn is supplied, iron of shaft 1 and bearing alloy 3
This means that aluminum adhesion is avoided.
In other words, improving the seizure resistance means improving the supply capability of Sn (liquid phase) to the seizure interface. That is, the Al-Sn bearing alloy 3 having improved seizure resistance means that the distribution state of Sn in the Al-Sn alloy is S on the surface.
It can be said that the bearing is in an excellent state of supplying n.

【0017】ふり返って従来のAl−Sn系軸受合金
は、マトリックス強度を確保する為に、むしろ、Snを
分断、粒子化し、しかも、細分化してしまっている。こ
の状態では、軸受の最表面に存在するSn粒子のみが焼
付性に寄与し、内部のSnは全く意味のないものとなっ
てしまっている。
Looking back, in the conventional Al-Sn bearing alloy, in order to secure matrix strength, Sn is rather divided, granulated and further subdivided. In this state, only the Sn particles existing on the outermost surface of the bearing contribute to the seizure property, and the Sn inside has no meaning at all.

【0018】本発明に述べるSnの分布状態とは図2に
示す如く、 3次元的に網目状にSn相が連結していること。 Snの供給源となる適切なSn留り32を連通管部3
1に有していること。ここで、適切なSn留りとは少な
くとも連通管部より大きな断面積を有するSn溶融時に
多量のSn液相を表面に供給するに十分な体積を有する
部分をいう。この2つの条件を兼ね備えていることが必
要である。表面が金属接触を起し、局部的にSnの融点
を越える危機的な状況になった時、Snが融解し、同時
に発汗現象を起し、3次元的なネットワ−クを通して、
Sn液相が供給され、致命的な焼付を回避してくれるわ
けである。
The distribution state of Sn described in the present invention means that Sn phases are three-dimensionally connected in a mesh shape as shown in FIG. An appropriate Sn residue 32 that serves as a source of Sn is connected to the communication pipe section 3
Must have 1. Here, the appropriate Sn retention means a portion having a larger cross-sectional area than at least the communicating tube portion and having a sufficient volume to supply a large amount of Sn liquid phase to the surface during Sn melting. It is necessary to combine these two conditions. When the surface causes metal contact and locally reaches a critical situation that exceeds the melting point of Sn, Sn melts and at the same time causes a sweating phenomenon, through a three-dimensional network,
The Sn liquid phase is supplied and avoids fatal seizure.

【0019】こうした理想的なSnの分布状態をAl−
Sn系合金の平軸受において現出せしめるには、この軸
受合金のSnの分布状態をどのようにすれば良いかとい
うことが本発明の範囲で述べられている所である。
Such an ideal Sn distribution state is represented by Al-
It is within the scope of the present invention how the Sn distribution state of this bearing alloy should be made to appear in the plain bearing of the Sn alloy.

【0020】すなわち、最終的な軸受製品におけるSn
の分布はもともとAS CAST(鋳放し鋳物)でのS
n相の析出状態に、次の圧延、熱処理工程でのSnの挙
動が相乗された結果としての形態であり、いづれの段階
でも最終製品で連結し、かつSn留り32のある状態の
Sn分布の為に、如何なる製法が適切か、吟味されるべ
き所である。
That is, Sn in the final bearing product
The distribution of S is originally S in AS CAST (as-cast casting)
This is a form resulting from the synergistic effect of Sn behavior in the subsequent rolling and heat treatment steps on the n-phase precipitation state, and the Sn distribution in the state where Sn is connected in the final product at any stage and Sn residue 32 is present. Therefore, what kind of manufacturing method is appropriate should be examined.

【0021】まず、鋳物組織においては、3次元的に均
一なSnのネットワ−ク組織でかつ適切なSn留り32
を設けるのに最適な鋳造条件は、図3に示す如く、Ti
−Bを核生成剤として使って花弁状の結晶を成長させ、
その花弁状組織34の周辺に比較的大きなSn留り32
ができるよう、凝固を制御したものが最も上の条件に適
することが判った。また、こうした自由晶を方向性無く
凝固させるには、縦型の鋳造機に依る鋳物が好適で、横
型による一般的な鋳造機を用いた鋳物はどうしても指向
性の強い方向性のある鋳物になってしまい、縦型鋳造の
ようなどの断面をとっても同様な3次元的なネットワ−
ク状のSnの分布組織は得がたい。
First, in the casting structure, a three-dimensionally uniform Sn network structure and an appropriate Sn retention 32
The optimum casting conditions for the provision of Ti are, as shown in FIG.
Growing petal-like crystals using -B as a nucleating agent,
A relatively large Sn retention 32 around the petal-like tissue 34
It has been found that controlled coagulation is suitable for the uppermost conditions so that Moreover, in order to solidify such free crystals without directivity, a casting by a vertical casting machine is suitable, and a casting using a general casting machine of a horizontal type is inevitably a directional casting with a strong directivity. The same three-dimensional network regardless of the cross section like vertical casting.
It is difficult to obtain a textured Sn distribution structure.

【0022】縦型と横型の鋳造法の差というものは単に
鋳物を図4に示すカ−ボンモ−ルドから鉛直に引き出す
方式と、図5に示す水平に引き出す方式という形式的な
次元に留まらず、モ−ルド内部での凝固形態が全く異な
り、特に本発明の合金系のようにSn、Pb等、溶質を
多量に含む合金系では、結果的に全く異なる形態がみら
れる。
The difference between the vertical casting method and the horizontal casting method is not limited to the formal dimension of the method of pulling the casting vertically from the carbon mold shown in FIG. 4 and the method of pulling the casting horizontally as shown in FIG. , The solidification morphology inside the mold is completely different, and in particular, in the alloy system containing a large amount of solute such as Sn and Pb as in the alloy system of the present invention, a completely different morphology is observed as a result.

【0023】すなわち、縦型鋳造法では、液相11の凝
固方向と鋳造方向が同一の鉛直軸にあり、モ−ルド10
からの抜熱も左右対称で、鋳物の凝固収縮により凝固直
後固相13となった鋳物はモ−ルド10から離れる為、
固液界面12の成長結晶35は自由晶(方向性をもたな
い)となる。一方、横型鋳造法では、液相11の凝固方
向と鋳造方向が同一軸上になく、凝固直後も鋳物下面と
モ−ルド10との接触が保たれ、モ−ルド10内の上面
には空隙ができるため、下面からの冷却が優先され、従
って、成長結晶35の形態も方向性のある形になってし
まう。
That is, in the vertical casting method, the solidification direction of the liquid phase 11 and the casting direction are on the same vertical axis, and the mold 10 is used.
The heat removal from the mold is also symmetrical, and since the casting that has become the solid phase 13 immediately after solidification due to the solidification shrinkage of the casting separates from the mold 10,
The grown crystal 35 at the solid-liquid interface 12 becomes a free crystal (having no directivity). On the other hand, in the horizontal casting method, the solidification direction of the liquid phase 11 and the casting direction are not on the same axis, the lower surface of the casting is kept in contact with the mold 10 immediately after solidification, and a void is formed in the upper surface of the mold 10. Therefore, the cooling from the lower surface is prioritized, so that the morphology of the grown crystal 35 also becomes directional.

【0024】また、Sn、Pbの比重はAlに比べ数倍
大きく凝固時どうしても下面に沈降しようとする為、横
型鋳造法においては、下面にSn、Pbが偏析しやす
く、前記方向性のある成長結晶の粒界に大きな偏析をつ
くってしまう。一方、縦型で鋳造したものは、Sn、P
bの沈降方向と鋳造方向が同一である為、そういったS
n、Pbの偏析は起らず、均一に凝固した自由晶の間隙
にSn、Pbは均一にしかも3次元的に連結した形態で
凝固する。すなわち、本発明で求める組織はこの縦型鋳
物による組織を必要とするわけである。
Further, since the specific gravity of Sn and Pb is several times larger than that of Al and tends to settle on the lower surface during solidification, Sn and Pb are easily segregated on the lower surface in the horizontal casting method, and the directional growth described above occurs. Large segregation is created at the grain boundaries of crystals. On the other hand, vertical castings are Sn, P
Since the sinking direction of b and the casting direction are the same, such S
Segregation of n and Pb does not occur, and Sn and Pb are solidified in a uniform and three-dimensionally connected state in the gap of the uniformly solidified free crystal. That is, the structure required by the present invention requires the structure of this vertical casting.

【0025】3次元的に連結した組織は、本来的に自由
晶の凝固過程で形成される。すなわち、核生成した自由
晶は理想的にはいくつものデンドライトセルが集合し、
外観上は球状を呈している。その球状をしたアルミニウ
ム結晶は、断面にもセルとセルの間隙に薄いSn相を包
含しているが、残りの多くのSn相は球状のデンドライ
トセル集合体の前面に押し出され、最終凝固部として球
体と球体の間隙において凝固することになる。従って、
図2における連通管部とはこの球体と球体の間隙を埋め
るSn相の断面が細っている部分の事で、凝固形態が自
由晶の場合、3次元的に分散して核生成する為、最終凝
固部のSn相は連結して存在することになる。
The three-dimensionally connected structure is originally formed in the solidification process of free crystals. That is, in the nucleated free crystal, ideally several dendrite cells gather,
The appearance is spherical. The spherical aluminum crystal also contains a thin Sn phase in the cell-to-cell gap in the cross section, but most of the remaining Sn phase is extruded to the front surface of the spherical dendrite cell aggregate, and as a final solidification part. It will solidify in the space between the spheres. Therefore,
The communicating tube portion in FIG. 2 is a portion where the cross section of the Sn phase that fills the gap between the spheres is narrow, and when the solidification morphology is a free crystal, three-dimensionally dispersed nuclei are generated, so the final The Sn phases in the solidified portion are connected and exist.

【0026】一方、Sn留り32とSn留り32を結ぶ
Sn連通管部31の断面形状は、図6に示すように角の
とがったような三角形状をしており、圧延、熱処理をく
り返す毎に、図7に示すように角が縮退し表面積を小さ
くなるようなSnの挙動が見られるわけである。本発明
ではこの連通管部31のSnの挙動に着目し、実験を重
ねた結果、このSn連通管部31の縮退の度合いとSn
の発汗部6の量に相関が認められ、その縮退の度合いは
アルミニウムマトリックス33とSnのヌレ性(ヌレ
角)にあることをつきとめた。すなわち、図8、図9な
らびに図10に示すように、アルミニウムマトリックス
33を構成する表1に示す第3添加元素によってSn液
相とのヌレ性が異なり、そのヌレ性の大小に因って連通
管部の縮退の度合いが違い、結果として、Sn液相を軸
受表面に押し出す起動力となっていることが判った。
On the other hand, the Sn connecting pipe portion 31 connecting the Sn staying 32 and the Sn staying 32 has a triangular cross-section as shown in FIG. 6, and rolling and heat treatment are repeated. Each time it is returned, the behavior of Sn such that the corners degenerate and the surface area decreases as shown in FIG. 7 is observed. In the present invention, attention was paid to the behavior of Sn of the communicating pipe portion 31, and as a result of repeated experiments, the degree of degeneration of the communicating pipe portion 31 of Sn and the Sn
It was found that there was a correlation with the amount of the sweating part 6 of No. 3, and the degree of degeneration thereof was due to the wetting property (wet angle) of the aluminum matrix 33 and Sn. That is, as shown in FIG. 8, FIG. 9 and FIG. 10, the wettability with the Sn liquid phase differs depending on the third additive element shown in Table 1 which constitutes the aluminum matrix 33, and the continuity depends on the size of the wettability. It was found that the degree of shrinkage of the tube portion was different, and as a result, the starting force for pushing the Sn liquid phase onto the bearing surface was obtained.

【0027】また、このアルミニウムマトリックスとS
nのヌレ性の問題は鋳物の凝固時にも同じ事が言え、初
晶として核生成したアルミニウムセルと、Sn液相の関
係において、第3添加元素(Zr、V、Cr、Mn等)
をアルミニウムの固溶限内で添加した場合、Sn液相と
のヌレ性が悪くなる為、球状に成長しようとするセルと
セルの間隙に滞留しようとするSn液相をより強く前面
に押し出す事になり、本件で言う3次元的に連結しかつ
適切なSn留りを有する構造を鋳造段階でも助長するこ
とになる。
Further, this aluminum matrix and S
The same can be said of the problem of wettability of n during solidification of a casting. In the relationship between the aluminum cell nucleated as a primary crystal and the Sn liquid phase, the third additive element (Zr, V, Cr, Mn, etc.)
When added within the solid solubility limit of aluminum, the wettability with the Sn liquid phase deteriorates, so the Sn liquid phase that tends to grow spherically and stay in the gap between the cells should be pushed out to the front more strongly. Therefore, the structure which is three-dimensionally connected and has an appropriate Sn retention is promoted even in the casting stage.

【0028】[0028]

【表1】 [Table 1]

【0029】すなわち、本発明の範囲で求めた、Sn相
とアルミニウムマトリックスのヌレ性をスズスウェット
しやすい方向(連通管部の縮退の度合いを強める方向)
に働く第3添加元素として、Zr、V、Cr、Mn等が
確かめられたわけである。従って、軸受表面がダメ−ジ
を受け、摩擦熱により軸受自体が高温にさらされた時、
前記熱処理時に見られたSnを表面に押出す現象が起る
わけである。すなわち、軸受合金のSn留り及びそれが
連結されている連通管部が表面積を小さくしようとして
縮退を起し、結果的にSnをしぼり出す効果となるわけ
である。この縮退、すなわち、表面積を小さくする合金
内部での変化に第3添加元素がヌレ性という形で関与
し、よりそのSnの移動を効果的にしようとしたもの
が、本発明の目的とする所である。なお、上記の効果を
有効ならしめる各元素の添加量の限定理由を示すと次の
通りである。
That is, the wetting property of the Sn phase and the aluminum matrix obtained in the range of the present invention is liable to be easily tin-sweated (the direction of increasing the degree of degeneration of the communicating pipe portion).
It was confirmed that Zr, V, Cr, Mn, etc. were confirmed as the third additive element that works for the. Therefore, when the bearing surface is damaged and the bearing itself is exposed to high temperature due to frictional heat,
The phenomenon of extruding Sn on the surface, which is observed during the heat treatment, occurs. That is, the Sn staying of the bearing alloy and the communicating pipe portion connected to the bearing alloy are degenerated in an attempt to reduce the surface area, and as a result, Sn is squeezed out. The purpose of the present invention is to reduce the surface area of the alloy, that is, the change in the alloy to reduce the surface area by the third additive element in the form of wettability so as to make the movement of Sn more effective. Is. The reasons for limiting the addition amounts of the respective elements that make the above effects effective are as follows.

【0030】まず、第3添加元素は化合物とならず、固
溶されている状態が理想的で、それぞれの元素のアルミ
ニウム中への固溶限はZrが0.28%、Vが0.37
%、Crが0.77%、Mnが1.82%であり、Mn
の固溶限は比較的大きいが、Al合金中に含まれ、不可
避的に存在するFeとの化合物生成を避ける為にも、最
大固溶限まで添加する必要はない。本発明では、最も効
果的にSnのヌレ性を改善できる添加範囲であればよ
く、これらの1種若しくは2種以上を単味又は合量で
0.1〜3.0%の範囲とした。
First, it is ideal that the third additive element is not a compound but is in a solid solution state. The solid solution limit of each element in aluminum is 0.28% Zr and 0.37 V.
%, Cr 0.77%, Mn 1.82%, Mn
The solid solution limit of is relatively large, but it is not necessary to add it up to the maximum solid solution limit in order to avoid formation of a compound contained in the Al alloy and inevitably present in Fe. In the present invention, the addition range that can most effectively improve the wettability of Sn is sufficient, and one or two or more of these are set to a range of 0.1 to 3.0% as a simple substance or a total amount.

【0031】また、異質核生成剤として、花弁状鋳造組
織を生成させるのに有効なTi−B添加は、核となる化
合物(TiAl3及びTiB2)が均一に分散し、かつ粗
大な化合物に成長させない為にも、Ti量を0.01〜
0.3%、B量を0.005〜0.05%、かつTi/
Bの比を5〜20の範囲におさえるのが最も効果的であ
る。TiとBの比が逆転したり、Bを0.05%以上含
む場合、粗大な高融点のTi−B化合物が生成され、微
細な核となるべきAl−Ti、Ti−Bの各化合物の凝
集が促進され、かえって本発明でいう均一な花弁状組織
の核の形成を阻害することになる。
As a heterogeneous nucleating agent, addition of Ti-B, which is effective for producing a petal-shaped casting structure, the compounds serving as nuclei (TiAl 3 and TiB 2 ) are uniformly dispersed and a coarse compound is formed. In order to prevent growth, the Ti content should be 0.01-
0.3%, B content 0.005-0.05%, and Ti /
It is most effective to keep the ratio of B within the range of 5 to 20. When the ratio of Ti and B is reversed or when B is contained in an amount of 0.05% or more, a coarse high-melting point Ti-B compound is generated, and each of Al-Ti and Ti-B compounds that should form fine nuclei. Aggregation is promoted, which rather inhibits the formation of uniform petaloid nucleus in the present invention.

【0032】また、軸受合金として必要なSn量は3%
以下では、本発明で言う連通管をつくることがむずかし
く、また、25%以上では、Snが多すぎネットワ−ク
組織において、Sn留りが連続化してしまい、マトリッ
クス強度を保てなくなるのでこの範囲とした。
The amount of Sn required for the bearing alloy is 3%.
In the following, it is difficult to form a communicating pipe according to the present invention, and if it is 25% or more, Sn retention becomes continuous in a network structure with too much Sn, and the matrix strength cannot be maintained. And

【0033】また、Si量については、亜共晶範囲を基
本とし、Siが微細にアルミニウムマトリックス中に分
散するためには、0.1〜11%の範囲が本発明の好ま
しい範囲とした。
The amount of Si is basically in the hypoeutectic range, and in order to finely disperse Si in the aluminum matrix, the range of 0.1 to 11% is the preferred range of the present invention.

【0034】すなわち、本発明はAl−Sn系軸受材料
の耐焼付性を向上させるにはSnの組織が単に分散して
いれば良いのでなく、エンジンに組付けの使用状態で、
軸受表面にSnが供給できる組織として3次元的な網状
組織でしかもSn留りを結ぶ連通管部を有する組織を提
案するもので、その解決手段たる構成は、縦型鋳造法に
よる合金鋳造が必須の条件である。
That is, according to the present invention, in order to improve the seizure resistance of the Al--Sn type bearing material, it is not necessary that the structure of Sn is merely dispersed, but in the use condition of being assembled in the engine,
As a structure capable of supplying Sn to the surface of the bearing, a structure having a three-dimensional network structure and a connecting pipe portion connecting Sn retentions is proposed. As a solution means, alloy casting by a vertical casting method is essential. Is the condition.

【0035】更に、 (1)Snの鋳造組織における析出形態を改善する為の
Ti、Bを添加構成する。 (2)Snとアルミニウムマトリックスのヌレ性の改質
材としてZr、V、Cr、Mnを選択構成する。 (3)潤滑成分のPbを添加構成する。 (4)Sr又はSbを重量%で0.001〜0.1%添
加構成する。 この場合にはSiとPbを必須構成すると非常に耐焼付
性の向上に効果的である。
Further, (1) Ti and B are added to improve the precipitation morphology of Sn in the cast structure. (2) Zr, V, Cr, and Mn are selectively configured as a wetting modifier for Sn and aluminum matrix. (3) Add Pb as a lubricating component. (4) Add 0.001 to 0.1% by weight of Sr or Sb. In this case, the essential constitution of Si and Pb is very effective in improving the seizure resistance.

【0036】Sr又はSbの微量添加は、マトリックス
強化元素であるSi粒子を球状、だ円状若しくはそれに
近い形状に均一に析出させ、しかも、この析出させたS
i粒子をアルミニウムマトリックス表面に存在させると
ともに、このSi粒子の近傍にSn−Pb合金粒子を存
在する状態が作られ、潤滑力を低下させることなく、耐
焼付性の向上を図る事ができる。この場合のSiの添加
量はSr又はSbがSiに作用する上で1.0〜11%
が望ましい。
The addition of a small amount of Sr or Sb causes the Si particles, which are the matrix-strengthening element, to be uniformly precipitated in a spherical shape, an elliptical shape or a shape close thereto, and the precipitated S
It is possible to improve the seizure resistance without lowering the lubrication force because i-particles are present on the surface of the aluminum matrix and Sn-Pb alloy particles are present in the vicinity of the Si particles. In this case, the addition amount of Si is 1.0 to 11% because Sr or Sb acts on Si.
Is desirable.

【0037】また、Sr又はSbの添加量は非常に微量
でも効果があるが、管理上0.001%を下限とし、同
様の効果が持続しマイナス面が現れない0.1%を上限
として前記(1)、(2)に加え、添加構成する事で、
より望ましい耐焼付性を有するAl−Sn系軸受材料が
得られる。
Although the addition amount of Sr or Sb is effective even if the amount is very small, the lower limit is 0.001% for control purposes, and the upper limit is 0.1% at which the same effect is sustained and no negative side appears. By configuring in addition to (1) and (2),
An Al-Sn bearing material having more desirable seizure resistance can be obtained.

【0038】次に、本発明の実施例について説明するが
明細書記載の%は何れも重量%で示した。
[0038] Next, examples of the present invention will be explained, but all% in the specification are shown by weight%.

【0039】[0039]

【実施例】まず、図2に示す組成のAl−Sn系軸受合
金を従来品については横型鋳造機により鋳造ビレット材
(板状材)を製造し、本発明品にあっては縦型鋳造機に
より鋳造ビレット材(板状材)を製造し、各鋳造ビレッ
トの上下面を面削し、続いて、冷間圧延により2mm程
度まで圧下した。この状態で熱処理を行なって歪を除去
し、その後、純Alの薄い板を介して裏金の鉄板に圧着
させて厚さ1.5mmの軸受材を得た。
EXAMPLE First, an Al—Sn bearing alloy having the composition shown in FIG. 2 was manufactured as a cast billet material (plate material) by a horizontal casting machine for a conventional product, and a vertical casting machine was manufactured for the product of the present invention. A cast billet material (plate-shaped material) was manufactured by the above method, and the upper and lower surfaces of each cast billet were chamfered, and then cold-rolled to about 2 mm. In this state, heat treatment was performed to remove the strain, and thereafter, it was pressed onto the iron plate of the back metal through a thin plate of pure Al to obtain a bearing material having a thickness of 1.5 mm.

【0040】これらの軸受材のうち試料No.1〜N
o.10は横型鋳造機より製し、かつ、B、Srを含ま
ない従来例の供試材である。試料No.11〜No.2
6は本発明に係る供試材でいずれも縦型鋳造機によって
鋳造したものである。この中で試料No.11〜No.
14ならびに試料No.19〜No.22はTiとBを
含み、試料No.15〜No.18ならびに試料No.
23〜No.26はTi、BとSrまたはSbを添加し
てなるものである。
Of these bearing materials, Sample No. 1 to N
o. Reference numeral 10 is a conventional test material manufactured by a horizontal casting machine and containing no B or Sr. Sample No. 11-No. Two
6 is a test material according to the present invention, which was cast by a vertical casting machine. Sample No. 11-No.
14 and Sample No. 19-No. Sample No. 22 contains Ti and B. 15-No. 18 and sample No.
23-No. No. 26 is formed by adding Ti, B and Sr or Sb.

【0041】これら複合軸受材の耐焼付性を調べるに鈴
木式焼付限界荷重試験機を用い、試験を行なった。その
結果を表2に組成と合わせて示す。
To examine the seizure resistance of these composite bearing materials, a Suzuki type seizure limit load tester was used to carry out the test. The results are shown in Table 2 together with the composition.

【0042】[0042]

【表2】 [Table 2]

【0043】次に、試験方法について説明する。Next, the test method will be described.

【0044】その焼付試験条件は次の通りである。 摩擦速度 4m/秒 相 手 材 材 質 S45C 硬 さ HRC55 面粗さ 0.8〜1.0S 使用オイル SAE 20W−40 油 温 150℃±5℃ 焼付荷重 20Kgfから10Kgf ステップで
15分毎に面圧を上げて行き、焼付をおこした面圧を焼
付荷重とした。なお、焼付の判定は材料温度が180℃
を超えた場合又は摩擦力が25.5Kgfを超えた場合
とした。
The seizure test conditions are as follows. Friction speed 4m / sec Phase material Material S45C Hardness HRC55 Surface roughness 0.8-1.0S Oil used SAE 20W-40 Oil temperature 150 ° C ± 5 ° C Baking load 20Kgf to 10Kgf Surface pressure every 15 minutes in steps Was raised, and the surface pressure at which seizure occurred was taken as the seizure load. Note that the temperature of the material is 180 ° C for the judgment of seizure
Or the frictional force exceeded 25.5 Kgf.

【0045】試験結果によれば、試料No.11〜N
o.26の本発明品を示す何れも従来例に比べ、良好な
耐焼付性を示しており、縦型鋳造法によりTi、Bを添
加し、更に、アルミニウムマトリックス強化元素である
Cr、Mn、V、Zrが従来品に比べ、より効果的にS
n組織の良好な潤滑組織として作用している事が理解で
きる。また、SrまたはSbを添加することで更に良好
な潤滑状態が得られることを示している。
According to the test results, the sample No. 11-N
o. 26 of the present invention show good seizure resistance as compared with the conventional example, Ti and B are added by the vertical casting method, and further, Cr, Mn, V which are aluminum matrix strengthening elements, Zr is more effective than conventional products in S
It can be understood that the n-structure acts as a good lubricating structure. Further, it is shown that a better lubricating state can be obtained by adding Sr or Sb.

【0046】[0046]

【発明の効果】以上説明したように、本発明は縦型鋳造
機より鋳造されたAl−Sn系軸受合金材であって、こ
の合金中のSnの分布状態が3次元的に網目状に連結し
た組織を有し、かつ網目状の連結部が適切なSn留りと
なる構造を有することを特徴とする。
As described above, the present invention is an Al-Sn bearing alloy material cast by a vertical casting machine, and the distribution state of Sn in this alloy is three-dimensionally connected in a mesh shape. It is characterized by having the above-mentioned structure and having a structure in which the mesh-like connecting portion is an appropriate Sn retention.

【0047】本発明の軸受合金材をエンジンに組付け、
高荷重運転する際に、軸との接触等で油膜が破断したよ
うな状態にあっても、従来品と同一のSn量を含むAl
−Sn系合金に比し、Al−Sn系軸受合金中のSn成
分は本来の機能である耐焼付性を有するようにAl−S
n系合金材の組織が3次元的組織となっていて、軸受合
金材の表面に供給しやすい組織としたため、耐焼付性の
改善効果は結果として軸受の耐久性を向上させる結果と
もなる。
Assembling the bearing alloy material of the present invention into an engine,
Even when the oil film is broken due to contact with the shaft during high load operation, Al containing the same amount of Sn as the conventional product
Compared to the -Sn alloy, the Sn component in the Al-Sn bearing alloy has an original function of Al-S so that it has seizure resistance.
Since the structure of the n-based alloy material is a three-dimensional structure and is easily supplied to the surface of the bearing alloy material, the effect of improving seizure resistance is also the result of improving the durability of the bearing.

【図面の簡単な説明】[Brief description of drawings]

【図1】潤滑状態の軸受材と軸との関係を示す説明図で
ある。
FIG. 1 is an explanatory diagram showing a relationship between a bearing material in a lubricated state and a shaft.

【図2】本発明の軸受合金材組織を説明する組織モデル
の模式図である。
FIG. 2 is a schematic diagram of a microstructure model for explaining the microstructure of the bearing alloy material of the present invention.

【図3】本発明によるAl−Sn系合金材の鋳造時の組
織モデルの模式図である。
FIG. 3 is a schematic diagram of a microstructure model during casting of an Al—Sn alloy material according to the present invention.

【図4】縦型鋳造の凝固モデルの模式図である。FIG. 4 is a schematic diagram of a solidification model of vertical casting.

【図5】横型鋳造の凝固モデルの模式図である。FIG. 5 is a schematic diagram of a solidification model of horizontal casting.

【図6】Al−Sn系連通管部の断面を説明する組織モ
デルの模式図である。
FIG. 6 is a schematic diagram of a tissue model for explaining a cross section of an Al—Sn system communication pipe portion.

【図7】図6を熱処理した模式図である。FIG. 7 is a schematic view of FIG. 6 after heat treatment.

【図8】AlとSnのヌレ性の関係を示す説明図であ
る。
FIG. 8 is an explanatory diagram showing the relationship between the wettability of Al and Sn.

【図9】図8のヌレ性が良い場合の説明図である。FIG. 9 is an explanatory diagram when the wetting property of FIG. 8 is good.

【図10】図8のヌレ性が悪い場合の説明図である。FIG. 10 is an explanatory diagram when the wetting property of FIG. 8 is poor.

【符号の説明】[Explanation of symbols]

1 軸 2 Sn 3 Al−Sn系軸受合金 4 裏金 6 Sn発汗部 10 カ−ボンモ−ルド 11 液相(Sn) 12 固液界面 13 固相 31 連通管部 32 Sn留り 33 Alマトリックス部 34 花弁状組織(Al) 35 成長結晶 1 shaft 2 Sn 3 Al-Sn bearing alloy 4 back metal 6 Sn sweating part 10 carbon mold 11 liquid phase (Sn) 12 solid-liquid interface 13 solid phase 31 communicating pipe part 32 Sn retention 33 Al matrix part 34 petal Structure (Al) 35 grown crystal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 縦型鋳造機より鋳造されたAl−Sn系
軸受合金材であって、この合金中のSnの分布状態が3
次元的に網目状に連結した組織を有し、かつ網目状の連
結部が適切なSn留りとなる構造を有するAl−Sn系
軸受合金材料。
1. An Al-Sn bearing alloy material cast by a vertical casting machine, wherein the distribution state of Sn in the alloy is 3 or less.
An Al-Sn based bearing alloy material having a three-dimensionally meshed structure and having a structure in which the mesh-shaped connecting portion is an appropriate Sn retention.
【請求項2】 前記Al−Sn系軸受合金材が少なくと
も重量%で3.0〜25%Sn、0.1〜11%Siな
らびにZr、V、Cr、Mnのうち1種若しくは2種以
上を単味又は合量で0.1〜3.0%を含むと共に0.
01〜0.3%Tiと0.005〜0.05%Bを含
み、かつTi/Bの比が5〜20である請求項1記載の
Al−Sn系軸受合金材料。
2. The Al-Sn bearing alloy material contains at least 1% or more of 3.0 to 25% Sn, 0.1 to 11% Si, and Zr, V, Cr, and Mn in weight%. It contains 0.1 to 3.0% by weight or in a total amount, and 0.
The Al-Sn bearing alloy material according to claim 1, which contains 01-0.3% Ti and 0.005-0.05% B, and has a Ti / B ratio of 5-20.
【請求項3】 前記Al−Sn系軸受合金材が重量%で
0.001〜0.1%のSr又はSbを含んで成る請求
項2記載のAl−Sn系軸受合金材料。
3. The Al—Sn based bearing alloy material according to claim 2, wherein the Al—Sn based bearing alloy material contains 0.001 to 0.1% by weight of Sr or Sb.
【請求項4】 前記Al−Sn系軸受合金材が重量%で
0.2〜5%のPbを含んで成る請求項2又は3記載の
Al−Sn系軸受合金材料。
4. The Al-Sn based bearing alloy material according to claim 2 or 3, wherein the Al-Sn based bearing alloy material contains 0.2 to 5% by weight of Pb.
JP26798092A 1992-09-10 1992-09-10 Al-sn bearing alloy material Pending JPH0693360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26798092A JPH0693360A (en) 1992-09-10 1992-09-10 Al-sn bearing alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26798092A JPH0693360A (en) 1992-09-10 1992-09-10 Al-sn bearing alloy material

Publications (1)

Publication Number Publication Date
JPH0693360A true JPH0693360A (en) 1994-04-05

Family

ID=17452244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26798092A Pending JPH0693360A (en) 1992-09-10 1992-09-10 Al-sn bearing alloy material

Country Status (1)

Country Link
JP (1) JPH0693360A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302041B1 (en) * 2011-05-25 2013-09-05 다이도 메탈 고교 가부시키가이샤 Aluminum alloy bearing
CN107326290A (en) * 2017-05-27 2017-11-07 苏州铭晟通物资有限公司 A kind of corrosion-resistant tin iron material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693849A (en) * 1979-12-27 1981-07-29 Showa Alum Ind Kk Bearing use aluminum alloy and production thereof
JPS61153255A (en) * 1984-12-27 1986-07-11 N D C Kk Al-sn bearing alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693849A (en) * 1979-12-27 1981-07-29 Showa Alum Ind Kk Bearing use aluminum alloy and production thereof
JPS61153255A (en) * 1984-12-27 1986-07-11 N D C Kk Al-sn bearing alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302041B1 (en) * 2011-05-25 2013-09-05 다이도 메탈 고교 가부시키가이샤 Aluminum alloy bearing
CN107326290A (en) * 2017-05-27 2017-11-07 苏州铭晟通物资有限公司 A kind of corrosion-resistant tin iron material

Similar Documents

Publication Publication Date Title
US4452866A (en) Aluminum-based alloy bearing
JP4195455B2 (en) Sliding member
US4857267A (en) Aluminum base bearing alloy and method of producing same
Zhu et al. The effects of varying Mg and Si levels on the microstructural inhomogeneity and eutectic Mg 2 Si morphology in die-cast Al–Mg–Si alloys
US3936298A (en) Metal composition and methods for preparing liquid-solid alloy metal composition and for casting the metal compositions
US4789607A (en) Aluminum bearing alloy and two-layer bearing material having bearing layer of aluminum bearing alloy therein
US10288118B2 (en) Sliding member
EP0669404B1 (en) Wear-resistant sintered aluminum alloy and method for producing the same
WO1980000352A1 (en) Process for producing graphite-containing aluminum alloy
US8900721B2 (en) Bronze alloy, process for producing the same, and sliding member comprising bronze alloy
JP2017515974A (en) Aluminum bronze alloy, production method, and product made from aluminum bronze
JP2020523475A (en) Monoclinic aluminum plain bearing alloy, method of making the same, and plain bearing made thereby
AU742692B2 (en) Aluminium-bismuth bearing alloy and methods for its continuous casting
JP2918292B2 (en) Sliding material
US20200232068A1 (en) Bronze alloy, and sliding member using the bronze alloy
JPH0693360A (en) Al-sn bearing alloy material
Tiwari et al. Microstructures and mechanical properties of leaded aluminium alloys
JP3375802B2 (en) Brass sliding material
JPH0235020B2 (en) ALLSNNPBKEIJIKUKEGOKIN
JPS5867841A (en) Aluminum alloy bearing
JPS6254853B2 (en)
JPH0569894B2 (en)
JP2574274B2 (en) Aluminum bearing alloy
JPS6056220B2 (en) aluminum bearing alloy
JPS61117244A (en) Sliding aluminum alloy