JPH08337831A - Copper alloy for die casting excellent in corrosion resistance, production of the same alloy and faucet using the same alloy - Google Patents

Copper alloy for die casting excellent in corrosion resistance, production of the same alloy and faucet using the same alloy

Info

Publication number
JPH08337831A
JPH08337831A JP8691696A JP8691696A JPH08337831A JP H08337831 A JPH08337831 A JP H08337831A JP 8691696 A JP8691696 A JP 8691696A JP 8691696 A JP8691696 A JP 8691696A JP H08337831 A JPH08337831 A JP H08337831A
Authority
JP
Japan
Prior art keywords
copper alloy
phase
weight
corrosion resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8691696A
Other languages
Japanese (ja)
Other versions
JP3461081B2 (en
Inventor
Tadashi Kichijima
正 吉島
Hiroshi Nojima
宏 野島
Atsushi Yamauchi
淳 山内
Masaaki Shima
正昭 島
Nobuo Shimamura
信夫 島村
Hisayoshi Nishiyama
久喜 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP08691696A priority Critical patent/JP3461081B2/en
Publication of JPH08337831A publication Critical patent/JPH08337831A/en
Application granted granted Critical
Publication of JP3461081B2 publication Critical patent/JP3461081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE: To produce a copper alloy for die casting excellent in die castability and corrosion resistance, to provide a producing method for improving the corrosion resistance of the same alloy and to produce a faucet excellent in corrosion resistance. CONSTITUTION: This copper alloy is the one in which, a in a copper alloy composed of two phases of an α phase and a β phase, at least, by weight, 0.05 to 0.2% Sn and one or >= two kinds among Sb, As and P by 0.05 to 0.3% are contained, the maximum corrosion depth is regulated to <=200μm (JBMA test) and the solidifying temp. range is regulated to <=17 deg.C or is the one in which, in a copper alloy composed of two phases of an α phase and a βphase, at least, 0.05 to 0.2% Sn and or >= two kinds among Sb, As and P by 0.05 to 0.3% are contained, and zinc equivalent is regulated to 35.7 to 41.0%. In either alloy, the area occupancy ratio of the βphase is preferably regulated to <=15%. Moreover, the same copper alloy is suitable for faucet fittings, particularly for the pressure resistant parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性、特に耐脱
亜鉛腐食に優れた金型鋳造用銅合金に関し、水栓等の給
排水金具やバルブ等に最適な耐食性に優れた金型鋳造用
銅合金及びその合金の製造方法並びにその合金を使用し
た水栓に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for die casting which is excellent in corrosion resistance, particularly dezincification corrosion resistance, and is suitable for water supply and drainage fittings such as faucets and valves, and copper for die casting which is excellent in corrosion resistance. The present invention relates to an alloy, a method for producing the alloy, and a water faucet using the alloy.

【0002】[0002]

【従来の技術】耐食性に優れた銅合金として、特公昭5
8−38500号公報に重量比で、Cu58.0〜6
3.0%、Sb0.02〜0.5%、Pb0.5〜3.
0%、Sn0.2〜1.0%、Fe0.1〜0.5%、
残部Zn及び不可避の不純物からなる耐脱亜鉛腐食性特
殊黄銅が開示されている。また、青銅鋳物(JIS B
C6 表1参照)も耐食性に優れている。さらに、鋳造
に使用されている黄銅鋳物には、JIS YBsC3
(表1参照)がある。
2. Description of the Related Art As a copper alloy having excellent corrosion resistance, Japanese Patent Publication No.
The weight ratio of Cu 58.0 to 6 is disclosed in JP-A 8-38500.
3.0%, Sb 0.02 to 0.5%, Pb 0.5 to 3.
0%, Sn 0.2 to 1.0%, Fe 0.1 to 0.5%,
A special dezincification-corrosion-resistant special brass consisting of the balance Zn and inevitable impurities is disclosed. In addition, bronze casting (JIS B
C6 (see Table 1) also has excellent corrosion resistance. Furthermore, the brass castings used for casting are JIS YBsC3
(See Table 1).

【0003】[0003]

【発明が解決しようとする課題】前記の従来合金に近似
した組成の合金(表4)について、金型鋳造を行なった
ところ鋳造割れが発生した。その理由は、Sn0.2重
量%以上で、且つ亜鉛当量が35.7重量%より小さく
なると、凝固温度範囲が17°Cを越え、金型表面で溶
湯が冷却されて凝固する際の収縮により生じた固体の割
れに対して、凝固温度範囲が広いため、固体に接する固
体と液体との混合物の層が厚くなるために湯流れが悪く
なって液体が固体の割れに供給されにくくなり、その結
果、鋳物の表面に割れが残る。前記JIS BC6につ
いても金型鋳造を行なったところ、やはり鋳造割れが発
生した。しかしながら、凝固温度範囲が小さいと、前記
の固体と液体との混合物が薄いので湯流れがよく、凝固
収縮により生じた固体の割れに液体が供給されるため、
鋳物の表面の割れが残らなくなる。
When an alloy having a composition similar to that of the conventional alloy (Table 4) was subjected to die casting, casting cracks occurred. The reason is that when Sn is 0.2% by weight or more and the zinc equivalent is smaller than 35.7% by weight, the solidification temperature range exceeds 17 ° C and shrinkage occurs when the molten metal is cooled and solidifies on the mold surface. Since the solidification temperature range is wide with respect to the cracks of the generated solid, the layer of the mixture of the solid and the liquid in contact with the solid becomes thick, so that the flow of molten metal becomes poor and the liquid becomes difficult to be supplied to the crack of the solid. As a result, cracks remain on the surface of the casting. When die casting was also performed on JIS BC6, casting cracks also occurred. However, when the solidification temperature range is small, since the mixture of the solid and the liquid is thin, the flow of hot water is good, and the liquid is supplied to the cracks of the solid caused by the solidification shrinkage,
No cracks on the surface of the casting.

【0004】また、JIS YBsC1〜3は、鋳物用
ではあるが、耐食性が優れるものではない。
Although JIS YBsC1 to 3 are for castings, they are not excellent in corrosion resistance.

【0005】そこで、本発明は、金型鋳造性及び耐食性
に優れた金型鋳造用銅合金及びその合金の耐食性を向上
させる製造方法並びに耐食性に優れた水栓を提供するも
のである。
Therefore, the present invention provides a copper alloy for die casting which is excellent in die casting property and corrosion resistance, a manufacturing method for improving the corrosion resistance of the alloy, and a water faucet excellent in corrosion resistance.

【0006】[0006]

【課題を解決するための手段】本発明による金型鋳造用
銅合金は、α相とβ相との2相からなる銅合金に少なく
とも、Sn0.05〜0.2重量%、Sb、As又はP
のいずれか1種又は2種以上0.05〜0.3重量%を
含有し、最大腐食深さ200μm以下(JBMA試
験)、凝固温度範囲17°C以下である銅合金、あるい
はα相とβ相との2相からなる銅合金に少なくとも、S
n0.05〜0.2重量%、Sb、As又はPのいずれ
か1種又は2種以上0.05〜0.3重量%を含有し、
亜鉛当量が35.7〜41.0重量%である金型鋳造用
銅合金である。前記各金型鋳造用合金には、Zn33.
0〜37.0重量%、Al0.1〜0.5重量%を含有
させることができる。
In the copper alloy for die casting according to the present invention, at least 0.05 to 0.2% by weight of Sn, Sb, As or a copper alloy consisting of two phases of α phase and β phase is used. P
Any one or two or more of 0.05 to 0.3% by weight, a maximum corrosion depth of 200 μm or less (JBMA test), a solidification temperature range of 17 ° C or less, a copper alloy, or an α phase and a β alloy. At least S in a copper alloy consisting of two phases
n 0.05-0.2 wt%, Sb, As or any one kind of P or two or more 0.05-0.3 wt% is contained,
It is a copper alloy for die casting having a zinc equivalent of 35.7 to 41.0% by weight. Zn33.
0 to 37.0 wt% and Al 0.1 to 0.5 wt% can be contained.

【0007】また、本発明は、前記各金型鋳造用合金を
鋳造後に熱処理して、β相の面積占有比率を下げること
により耐食性に優れた金型鋳造用銅合金を製造すること
ができ、特にβ相の面積占有比率を15%以下に下げて
耐食性を向上させる。
Further, according to the present invention, it is possible to produce a copper alloy for die casting which is excellent in corrosion resistance by heat-treating each of the die casting alloys after casting to reduce the β phase area occupancy ratio. In particular, the area occupancy ratio of the β phase is reduced to 15% or less to improve the corrosion resistance.

【0008】前記各金型鋳造用銅合金を450〜550
°Cで30分以上3時間以内熱処理し、β相の面積占有
比率を15%以下にすることにより、耐食性に優れた金
型鋳造用銅合金を製造することができ、β相の面積占有
比率を8%以下とすることにより、水栓金具用の耐食性
に優れた金型鋳造用銅合金を製造することができ、特に
水栓金具の耐圧部に適している。
Each of the above-mentioned copper alloys for die casting is used in the range of 450 to 550.
By heat treatment at ° C for 30 minutes or more and within 3 hours to reduce the β phase area occupancy rate to 15% or less, a copper alloy for die casting with excellent corrosion resistance can be manufactured. When it is 8% or less, it is possible to manufacture a copper alloy for die casting, which is excellent in corrosion resistance for a water faucet metal fitting, and is particularly suitable for a pressure resistant portion of the water faucet metal fitting.

【0009】[0009]

【発明の実施の形態】本発明の銅合金は、Snを0.2
重量%以下、亜鉛当量を35.7重量%以上、必要に応
じてAlを0.1重量%以上とすることにより金型鋳造
性の改善を図り、Sb、As、Pを0.05〜0.3重
量%、亜鉛当量を41.0重量%以下、必要に応じてZ
nを37重量%以下にすることと、鋳造後の熱処理によ
りβ相の面積占有比率を下げることにより優れた耐食性
が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The copper alloy of the present invention has a Sn content of 0.2.
The amount of Sb, As, and P is 0.05 to 0 in order to improve mold castability by adjusting the weight ratio to 1% or less, the zinc equivalent to 35.7% by weight or more, and the Al content to 0.1% by weight or more as necessary. 0.3% by weight, zinc equivalent 41.0% by weight or less, Z as necessary
Excellent corrosion resistance can be obtained by setting n to 37% by weight or less and by reducing the area occupancy ratio of the β phase by heat treatment after casting.

【0010】本発明の銅合金における添加合金元素の作
用及び組成範囲について説明する。 1) Sn0.05〜0.2重量% 耐食性を向上させるため、0.05重量%以上を添加す
るが、金型鋳造では、凝固温度範囲を広げる働きをする
Snが0.2重量%を越えると、凝固温度範囲が17°
Cを越え、鋳造割れが多発するので、図2に示されるよ
うに、凝固温度範囲が17°Cを越えないようにするた
め、Snは0.2重量%以下に抑える。また、被削性に
ついても、0.2重量%以下の成分で機械加工しても歩
留りに問題はない。
The action and composition range of the additional alloying elements in the copper alloy of the present invention will be described. 1) Sn 0.05 to 0.2 wt% In order to improve the corrosion resistance, 0.05 wt% or more is added, but in the mold casting, Sn which functions to expand the solidification temperature range exceeds 0.2 wt%. And the solidification temperature range is 17 °
Since C exceeds C and casting cracks frequently occur, Sn is suppressed to 0.2% by weight or less in order to prevent the solidification temperature range from exceeding 17 ° C as shown in FIG. As for machinability, there is no problem in yield even if machined with a component of 0.2% by weight or less.

【0011】2) Sb、As又はPのいずれか1種又
は2種以上0.05〜0.3重量% 耐食性を向上させるため、0.05重量%以上を添加す
るが、0.3重量%を越えても耐食性が顕著に向上しな
いので、経済性を考慮して0.3重量%以下とした。な
お、Sbの代わりにSbと同様の作用をするAs又はP
を添加してもよいし、これらを組み合わせて添加しても
よい。
2) Any one or more of Sb, As and P 0.05 to 0.3 wt% In order to improve the corrosion resistance, 0.05 wt% or more is added, but 0.3 wt% Since corrosion resistance does not remarkably improve even if the content exceeds the above range, it was set to 0.3% by weight or less in consideration of economic efficiency. It should be noted that, instead of Sb, As or P having the same action as Sb
May be added, or these may be added in combination.

【0012】3) Zn33.0〜37.0重量% 鋳造の歩留りを考慮して33.0重量%以上添加する
が、37.0重量%を越えると表3から分かるように、
耐食性に劣るβ相領域が増大し、耐脱亜鉛腐食性が低下
するため、37.0重量%以下とする。
3) Zn 33.0 to 37.0 wt% 33.0 wt% or more is added in consideration of the casting yield, but when it exceeds 37.0 wt%, as shown in Table 3,
The β-phase region, which is inferior in corrosion resistance, increases and dezincification corrosion resistance decreases, so the content is made 37.0% by weight or less.

【0013】4) Al0.1〜0.5重量% 鋳造性を向上させるために、0.1重量%以上を添加す
るが、0.5重量%を越えると、伸び、衝撃値が低下す
るため、0.5重量%以下とする。
4) 0.1 to 0.5% by weight of Al 0.1% by weight or more is added to improve the castability, but if it exceeds 0.5% by weight, elongation and impact value decrease. , 0.5 wt% or less.

【0014】5) 亜鉛当量35.7〜41.0重量% 本発明の亜鉛当量は、周知のGuilletの亜鉛当量
であり、係数は、Zn=1、Ni=−1.3、Fe=
0.9、Pb=1、Mg=2、Sn=2、Al=6、S
i=10である。
5) Zinc equivalent 35.7-41.0% by weight The zinc equivalent of the present invention is the well-known Guillet zinc equivalent, and the coefficients are Zn = 1, Ni = -1.3, Fe =
0.9, Pb = 1, Mg = 2, Sn = 2, Al = 6, S
i = 10.

【0015】亜鉛当量と腐食深さとの関係を調べた結
果、図3に示されるとおり、熱処理した銅合金は、亜鉛
当量が小さいほど耐食性が向上し、亜鉛当量が大きくな
り、熱処理をしない銅合金と同程度の腐食深さになるの
はJBMA試験で最大腐食深さ200μmで、さらに亜
鉛当量が増えると熱処理をしない銅合金よりも最大腐食
深さが大きくなる。そこで、熱処理による耐食性改善の
効果がなくなる200μm以下を最大腐食深さとした。
即ち、亜鉛当量で41.0重量%以下の範囲とした。次
に、亜鉛当量と凝固温度範囲の関係を調べたところ、図
4から明らかなとおり、亜鉛当量が大きいほど凝固温度
範囲が小さくなる。前述のとおり、凝固温度範囲が17
°Cを越えると鋳造割れが多発するので、凝固温度範囲
が17°C以下、したがって、亜鉛当量で35.7重量
%以上を許容範囲とした。
As a result of investigating the relationship between the zinc equivalent and the corrosion depth, as shown in FIG. 3, the heat-treated copper alloy has higher corrosion resistance as the zinc equivalent is smaller, the zinc equivalent is larger, and the copper alloy is not heat treated. The maximum corrosion depth in the JBMA test is 200 μm, and the maximum corrosion depth becomes larger than that of the copper alloy without heat treatment when the zinc equivalent is further increased. Therefore, the maximum corrosion depth is set to 200 μm or less at which the effect of improving the corrosion resistance due to heat treatment is lost.
That is, the zinc equivalent was within the range of 41.0% by weight or less. Next, when the relationship between the zinc equivalent and the solidification temperature range was examined, as is clear from FIG. 4, the larger the zinc equivalent, the smaller the solidification temperature range. As mentioned above, the solidification temperature range is 17
When the temperature exceeds ° C, casting cracks frequently occur, so the solidification temperature range is 17 ° C or less, and therefore, the zinc equivalent is 35.7% by weight or more as the allowable range.

【0016】6) Pb0.5〜3.0重量% 被削性を向上させるための周知の添加元素であり、本発
明においては、必要に応じて、0.5重量%以上を添加
するが、3.0重量%を越えると、伸び、衝撃値が低下
するので、3.0重量%以下とする。
6) Pb 0.5 to 3.0% by weight It is a well-known additive element for improving the machinability, and in the present invention, 0.5% by weight or more is added, if necessary. If it exceeds 3.0% by weight, the elongation and the impact value decrease, so the content is made 3.0% by weight or less.

【0017】7) 不純物 Feなどの不可避不純物は、できるだけ抑えて、その影
響を少なくする。
7) Impurities Inevitable impurities such as Fe are suppressed as much as possible to reduce their influence.

【0018】次に、熱処理について説明する。本発明の
銅合金の成分組成は、鋳放し状態では、α+βの2相組
織を呈し、Snの添加量が少ないためにβ相の耐脱亜鉛
性が劣り、耐食性に優れるものではない。図1に示すよ
うに、β相の面積占有比率と腐食深さとの関係を調べた
ところ、β相の面積占有比率が小さいほど耐食性が向上
することが分かった。そこで、耐食性が許容されるβ相
の面積占有比率の範囲は、前述のとおりJBMA試験で
最大腐食200μm以下であるから、それに相当するβ
相の面積占有比率15%以下を許容の上限とした。
Next, the heat treatment will be described. The component composition of the copper alloy of the present invention exhibits an α + β two-phase structure in the as-cast state, and since the amount of Sn added is small, the dezincification resistance of the β phase is poor and the corrosion resistance is not excellent. As shown in FIG. 1, when the relationship between the area occupancy ratio of the β phase and the corrosion depth was examined, it was found that the smaller the area occupancy ratio of the β phase, the higher the corrosion resistance. Therefore, the range of the area occupancy ratio of the β phase in which the corrosion resistance is allowed is the maximum corrosion of 200 μm or less in the JBMA test as described above, and therefore, the corresponding β
The area occupancy ratio of the phase was set to 15% or less as the upper limit of tolerance.

【0019】従来の材質及び金型鋳造法では、水栓とし
て要求される耐食性を有していないため、1次圧側のよ
うな耐圧部は、黄銅では腐食に耐えられないので、青銅
砂型鋳造で成形し、非耐圧部は金型鋳造により水栓金具
を成形していた。ところが、砂型鋳造では、粉塵などが
人体に有害であるため、粉塵対策に費用がかかるなどの
問題がある。また、研磨等の水栓外観の表面処理に費用
がかかりコストアップとなるという問題もあった。とこ
ろが、本発明の材質及び製造方法により、耐圧部にも金
型鋳造を使用することができ前記問題が解決できた。従
来、水栓の耐久年数は通常10年程度であるから、本発
明の銅合金を水栓の耐圧部に使用するとき、前記耐久年
数を満足させるためには、耐食性を考慮してβ相の面積
占有比率は8%以下にする。
Since conventional materials and die casting methods do not have the corrosion resistance required for faucets, pressure resistant parts such as the primary pressure side cannot withstand corrosion with brass. The water resistant metal fittings were molded and the non-pressure resistant parts were molded by die casting. However, in sand casting, dust and the like are harmful to the human body, and therefore there is a problem in that dust countermeasures are expensive. In addition, there is a problem that the surface treatment of the faucet appearance such as polishing is expensive and the cost is increased. However, with the material and the manufacturing method of the present invention, the die casting can be used for the pressure resistant portion, and the above problem can be solved. Conventionally, the life of a faucet is usually about 10 years. Therefore, when the copper alloy of the present invention is used for a pressure resistant part of a faucet, in order to satisfy the above-mentioned durability, in consideration of corrosion resistance, β-phase The area occupation ratio should be 8% or less.

【0020】本発明の銅合金は、450〜550°Cの
熱処理によって、β相領域が縮小され、β相内のSn,
Sb濃度が上昇することにより、β相は飛躍的に耐食性
が増加する。
In the copper alloy of the present invention, the β phase region is reduced by the heat treatment at 450 to 550 ° C.
As the Sb concentration increases, the β phase dramatically increases the corrosion resistance.

【0021】熱処理温度は、550°Cを越えるとβ相
領域が増大する傾向を示し耐食性が悪くなり、450°
C未満では粒界に存在する元素の局部的な偏在の解消や
β相領域の減少に多くの時間を要するため、450〜5
50°Cが望ましい。
When the heat treatment temperature exceeds 550 ° C., the β-phase region tends to increase and the corrosion resistance deteriorates to 450 ° C.
If it is less than C, it takes a long time to eliminate the localized uneven distribution of elements existing in the grain boundaries and to reduce the β phase region, so that 450 to 5
50 ° C is desirable.

【0022】また、熱処理時間は、30分未満ではβ相
減少効果が現れないため30分以上保持することが望ま
しいが、3時間以内で充分であり、3時間を越えても熱
処理効果はあまりないので、経済性を考慮して30分以
上3時間以内とした。
If the heat treatment time is less than 30 minutes, the effect of decreasing the β phase does not appear, so it is desirable to hold the heat treatment for 30 minutes or more, but 3 hours or less is sufficient, and if it exceeds 3 hours, the heat treatment effect is not so much. Therefore, it is set to 30 minutes or more and 3 hours or less in consideration of economy.

【0023】[0023]

【実施例】本発明の具体的実施例について説明する。表
1に示す組成の銅合金を周知の溶解法により製造し、本
発明の合金については、500°Cに3時間保持した。
なお、本実施例では、被削性を向上させるためにPbを
添加した。
EXAMPLES Specific examples of the present invention will be described. Copper alloys having the compositions shown in Table 1 were manufactured by a known melting method, and the alloys of the present invention were held at 500 ° C for 3 hours.
In this example, Pb was added to improve machinability.

【0024】前記銅合金について脱亜鉛腐食試験を行な
った結果は、表2に示すとおりで、本発明の銅合金は、
比較例1の黄銅鋳物に比べて耐亜鉛腐食性に優れ、ま
た、比較例2の青銅鋳物と同等に近いほどの耐食性があ
ることが分かる。
The results of the dezincification corrosion test conducted on the copper alloy are shown in Table 2. The copper alloy of the present invention is
It can be seen that zinc corrosion resistance is superior to that of the brass casting of Comparative Example 1, and that the corrosion resistance is comparable to that of the bronze casting of Comparative Example 2.

【0025】[0025]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【0026】[0026]

【発明の効果】本発明の効果は次のとおりである。 1) 本発明による銅合金は、ダイカストを含む金型鋳
造において、鋳造割れを起こしにくく、優れた鋳造性を
有する。
The effects of the present invention are as follows. 1) The copper alloy according to the present invention hardly causes casting cracks in die casting including die casting, and has excellent castability.

【0027】2) 本発明による銅合金で製造した給排
水金具あるいはバルブは、上水、井水、工業用水等に対
して耐食性、特に耐脱亜鉛腐食性に優れている。
2) The water supply / drainage fitting or valve made of the copper alloy according to the present invention is excellent in corrosion resistance against tap water, well water, industrial water, etc., particularly, dezincification corrosion resistance.

【0028】3) 本発明による銅合金は、従来、砂型
鋳造していた水栓等の鋳造品が金型鋳造できるので、従
来の砂型鋳造を必要としなくなり、砂型鋳造に伴う粉塵
対策の費用がかからなくなる。
3) Since the copper alloy according to the present invention can be used for mold casting such as a water faucet which has been conventionally sand mold-cast, the conventional sand mold casting is not required, and the cost of dust countermeasures associated with the sand mold casting is eliminated. It will not take.

【0029】4) 本発明による銅合金は、金型鋳造性
が優れているため、鋳造品の表面性状が良いので、研磨
量が少なく、従来にくらべて研磨費用が安くなる。
4) Since the copper alloy according to the present invention is excellent in mold castability, the surface quality of the cast product is good, so that the polishing amount is small and the polishing cost is lower than the conventional one.

【0030】5) 本発明によれば、簡単な熱処理によ
りβ相の面積占有比率が制御でき、耐食性に優れた合金
が製造できる。
5) According to the present invention, the area occupancy ratio of the β phase can be controlled by a simple heat treatment, and an alloy having excellent corrosion resistance can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】β相比率と腐食深さとの関係を示す図。FIG. 1 is a diagram showing a relationship between a β phase ratio and a corrosion depth.

【図2】Sn添加量と凝固温度範囲との関係を示す図。FIG. 2 is a diagram showing a relationship between a Sn addition amount and a solidification temperature range.

【図3】亜鉛当量と腐食深さとの関係を示す図。FIG. 3 is a diagram showing a relationship between zinc equivalent and corrosion depth.

【図4】亜鉛当量と凝固温度範囲との関係を示す図。FIG. 4 is a diagram showing a relationship between a zinc equivalent and a solidification temperature range.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山内 淳 北九州市小倉北区中島2丁目1番1号 東 陶機器株式会社内 (72)発明者 島 正昭 北九州市小倉北区中島2丁目1番1号 東 陶機器株式会社内 (72)発明者 島村 信夫 北九州市小倉北区中島2丁目1番1号 東 陶機器株式会社内 (72)発明者 西山 久喜 北九州市小倉北区中島2丁目1番1号 東 陶機器株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jun Yamauchi 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City Tohoku Kikai Co., Ltd. (72) Inventor Masaaki Shima 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu No. Totoki Co., Ltd. (72) Inventor Nobuo Shimamura 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City In-Tokoki Co., Ltd. (72) Kuki Nishiyama 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu No. Totoki Equipment Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 α相とβ相との2相からなる銅合金に少
なくとも、Sn0.05〜0.2重量%、Sb、As又
はPのいずれか1種又は2種以上0.05〜0.3重量
%を含有し、最大腐食深さ200μm以下(JBMA試
験)、凝固温度範囲17°C以下であることを特徴とす
る金型鋳造用銅合金。
1. A copper alloy consisting of two phases, an α phase and a β phase, containing at least one of 0.05 to 0.2% by weight of Sn and Sb, As or P or two or more of 0.05 to 0. A copper alloy for die casting, containing 0.3% by weight, a maximum corrosion depth of 200 μm or less (JBMA test), and a solidification temperature range of 17 ° C. or less.
【請求項2】 α相とβ相との2相からなる銅合金に少
なくとも、Sn0.05〜0.2重量%、Sb、As又
はPのいずれか1種又は2種以上0.05〜0.3重量
%を含有し、亜鉛当量が35.7〜41.0重量%であ
ることを特徴とする金型鋳造用銅合金。
2. A copper alloy consisting of two phases, an α phase and a β phase, containing at least one of 0.05 to 0.2% by weight of Sn, Sb, As, and P or two or more of 0.05 to 0. A copper alloy for die casting, containing 0.3% by weight and having a zinc equivalent of 35.7 to 41.0% by weight.
【請求項3】 β相の面積占有比率が15%以下である
ことを特徴とする請求項1又は2記載の金型鋳造用銅合
金。
3. The copper alloy for die casting according to claim 1, wherein the area occupancy ratio of the β phase is 15% or less.
【請求項4】 Zn33.0〜37.0重量%、Al
0.1〜0.5重量%を含有することを特徴とする請求
項1、2又は3記載の金型鋳造用銅合金。
4. Zn 33.0-37.0 wt%, Al
The copper alloy for die casting according to claim 1, 2 or 3, wherein the copper alloy contains 0.1 to 0.5% by weight.
【請求項5】 β相の面積占有比率が8%以下であるこ
とを特徴とする請求項1、2、3又は4記載の水栓金具
用の金型鋳造用銅合金。
5. The copper alloy for casting metal molds for faucet fittings according to claim 1, wherein the area occupancy ratio of the β phase is 8% or less.
【請求項6】 α相とβ相との2相からなる銅合金に少
なくとも、Sn0.05〜0.2重量%、Sb、As又
はPのいずれか1種又は2種以上0.05〜0.3重量
%を含有し、亜鉛当量が35.7〜41.0重量%であ
る銅合金を鋳造後に熱処理して、β相の面積占有比率を
下げることを特徴とする耐食性に優れた金型鋳造用銅合
金の製造方法。
6. A copper alloy consisting of two phases, an α phase and a β phase, containing at least one of 0.05 to 0.2% by weight of Sn and Sb, As or P or two or more of 0.05 to 0. A die having excellent corrosion resistance, characterized by containing a copper alloy containing 0.3% by weight of zinc and having a zinc equivalent of 35.7 to 41.0% by weight and then heat-treating it after casting to reduce an area occupancy ratio of β phase. Manufacturing method of copper alloy for casting.
【請求項7】 銅合金がZn33.0〜37.0重量
%、Al0.1〜0.5重量%を含有することを特徴と
する請求項6記載の耐食性に優れた金型鋳造用銅合金の
製造方法。
7. The copper alloy for die casting having excellent corrosion resistance according to claim 6, wherein the copper alloy contains 33.0 to 37.0% by weight of Zn and 0.1 to 0.5% by weight of Al. Manufacturing method.
【請求項8】 鋳造後に450〜550°Cで30分以
上3時間以内熱処理して、β相の面積占有比率を15%
以下にすることを特徴とする請求項6又は7記載の耐食
性に優れた金型鋳造用銅合金の製造方法。
8. A heat treatment for 30 minutes or more and 3 hours or less at 450 to 550 ° C. after casting to make the β phase area occupation ratio 15%.
The method for producing a copper alloy for die casting having excellent corrosion resistance according to claim 6 or 7, characterized by the following.
【請求項9】 前記β相の面積占有比率を8%以下にす
ることを特徴とする請求項6、7又は8記載の水栓金具
用の金型鋳造用銅合金の製造方法。
9. The method for producing a copper alloy for die casting for a faucet fitting according to claim 6, 7 or 8, wherein the area occupancy ratio of the β phase is 8% or less.
【請求項10】 α相とβ相との2相からなる銅合金に
少なくとも、Sn0.05〜0.2重量%、Sb、As
又はPのいずれか1種又は2種以上0.05〜0.3重
量%を含有し、亜鉛当量が35.7〜41.0重量%で
あり、且つβ相の面積占有比率が15%以下である銅合
金を使用してなることを特徴とする水栓。
10. A copper alloy consisting of two phases, an α phase and a β phase, containing at least 0.05 to 0.2 wt% Sn, Sb and As.
Or P, containing one or more of 0.05 to 0.3% by weight, zinc equivalent of 35.7 to 41.0% by weight, and β phase area occupancy ratio of 15% or less. A faucet characterized by using a copper alloy that is.
【請求項11】 α相とβ相との2相からなる銅合金に
少なくとも、Sn0.05〜0.2重量%、Sb、As
又はPのいずれか1種又は2種以上0.05〜0.3重
量%を含有し、亜鉛当量が35.7〜41.0重量%で
あり、β相の面積占有比率が8%以下である銅合金を、
少なくとも耐圧部に使用してなることを特徴とする水
栓。
11. A copper alloy consisting of two phases, an α phase and a β phase, containing at least 0.05 to 0.2 wt% Sn, Sb and As.
Or, one or more of P is contained in an amount of 0.05 to 0.3% by weight, zinc equivalent is 35.7 to 41.0% by weight, and the β phase area occupancy ratio is 8% or less. A copper alloy
A water faucet characterized by being used at least in a pressure resistant portion.
JP08691696A 1995-04-10 1996-04-09 Copper alloy for mold casting excellent in corrosion resistance, method for producing the alloy, and faucet using the alloy Expired - Lifetime JP3461081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08691696A JP3461081B2 (en) 1995-04-10 1996-04-09 Copper alloy for mold casting excellent in corrosion resistance, method for producing the alloy, and faucet using the alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-84264 1995-04-10
JP8426495 1995-04-10
JP08691696A JP3461081B2 (en) 1995-04-10 1996-04-09 Copper alloy for mold casting excellent in corrosion resistance, method for producing the alloy, and faucet using the alloy

Publications (2)

Publication Number Publication Date
JPH08337831A true JPH08337831A (en) 1996-12-24
JP3461081B2 JP3461081B2 (en) 2003-10-27

Family

ID=26425324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08691696A Expired - Lifetime JP3461081B2 (en) 1995-04-10 1996-04-09 Copper alloy for mold casting excellent in corrosion resistance, method for producing the alloy, and faucet using the alloy

Country Status (1)

Country Link
JP (1) JP3461081B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074156A (en) * 2007-09-25 2009-04-09 San-Etsu Metals Co Ltd Brass material and manufacturing method thereof
EP3050983A1 (en) * 2015-01-28 2016-08-03 Toto Ltd. Brass having improved castability and corrosion resistance
CN109475205A (en) * 2016-07-26 2019-03-15 Ykk株式会社 Copper alloy slide fastener coupling element and zipper

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101852053B1 (en) 2013-06-05 2018-04-25 산에츠긴조쿠가부시키가이샤 Copper-based alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074156A (en) * 2007-09-25 2009-04-09 San-Etsu Metals Co Ltd Brass material and manufacturing method thereof
EP3050983A1 (en) * 2015-01-28 2016-08-03 Toto Ltd. Brass having improved castability and corrosion resistance
CN109475205A (en) * 2016-07-26 2019-03-15 Ykk株式会社 Copper alloy slide fastener coupling element and zipper
US20190269207A1 (en) * 2016-07-26 2019-09-05 Ykk Corporation Copper Alloy Fastener Element and Slide Fastener
US10918171B2 (en) * 2016-07-26 2021-02-16 Ykk Corporation Copper alloy fastener element and slide fastener
CN109475205B (en) * 2016-07-26 2021-11-12 Ykk株式会社 Copper alloy zipper teeth and zipper
US11246382B2 (en) 2016-07-26 2022-02-15 Ykk Corporation Copper alloy fastener element and slide fastener

Also Published As

Publication number Publication date
JP3461081B2 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
US9963764B2 (en) Lead-free free-machining brass having improved castability
JP5111853B2 (en) Copper alloy casting excellent in machinability, strength, wear resistance and corrosion resistance and casting method thereof
JP5399818B2 (en) Lead-free free-cutting silicon brass alloy
US8580191B2 (en) Brass alloys having superior stress corrosion resistance and manufacturing method thereof
KR20200023073A (en) A aluminum alloy and for die casting and method for manufacturing the same, die casting method
JP4838859B2 (en) Low migration copper alloy
WO1994024324A1 (en) Copper-bismuth casting alloys
KR20010053140A (en) Iron modified tin brass
JP2011219857A (en) Copper-based alloy for die casting having excellent dezincification corrosion resistance
JP2002302722A (en) High strength bronze alloy and production method therefor
JP2010242184A (en) Lead-free, free-machining brass excellent in castability and corrosion resistance
JP2000239765A (en) Leadless corrosion resistant brass alloy for metallic mold casting or for sand mold casting, metallic mold cast product or sand mold cast product, and leadless corrosion resistant brass alloy for continuous casting or continuous cast product
US4377424A (en) Mold of precipitation hardenable copper alloy for continuous casting mold
JPS5846539B2 (en) Aluminum alloy for bearings and its manufacturing method
JP3461081B2 (en) Copper alloy for mold casting excellent in corrosion resistance, method for producing the alloy, and faucet using the alloy
JP3459623B2 (en) Lead-free bronze alloy
AU646183B2 (en) Corrosion-resistant copper-based alloy
NZ227940A (en) Method of casting a hypereutectic al-si alloy
JP2003193157A (en) Alloy such as copper alloy, production method therefor and ingot and liquid contacting parts by using the same
CA2547664C (en) Bronze alloy and ingot and liquid-contacting part using the alloy
JP2002088427A (en) Bronze alloy
JP2003147460A (en) Lead-free copper alloy for casting having excellent machinability
JPS6056220B2 (en) aluminum bearing alloy
KR100834202B1 (en) Sn-CONTAINING COPPER ALLOY AND METHOD FOR PRODUCTION THEREOF
JP4526108B2 (en) Aluminum bronze

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140815

Year of fee payment: 11

EXPY Cancellation because of completion of term