JP4318599B2 - Method for producing brass material with excellent resistance to stress corrosion cracking - Google Patents

Method for producing brass material with excellent resistance to stress corrosion cracking Download PDF

Info

Publication number
JP4318599B2
JP4318599B2 JP2004183750A JP2004183750A JP4318599B2 JP 4318599 B2 JP4318599 B2 JP 4318599B2 JP 2004183750 A JP2004183750 A JP 2004183750A JP 2004183750 A JP2004183750 A JP 2004183750A JP 4318599 B2 JP4318599 B2 JP 4318599B2
Authority
JP
Japan
Prior art keywords
phase
stress corrosion
corrosion cracking
brass
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004183750A
Other languages
Japanese (ja)
Other versions
JP2006009053A (en
Inventor
哲也 安藤
善浩 吉川
孝順 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
San Etsu Metals Co Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
San Etsu Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, San Etsu Metals Co Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2004183750A priority Critical patent/JP4318599B2/en
Publication of JP2006009053A publication Critical patent/JP2006009053A/en
Application granted granted Critical
Publication of JP4318599B2 publication Critical patent/JP4318599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)
  • Forging (AREA)

Description

本発明は、耐応力腐食割れ性に優れた黄銅材料、とくに空調器のフレアナット用として好適に使用される耐応力腐食割れ性に優れた黄銅材料およびその製造方法に関する。   The present invention relates to a brass material excellent in stress corrosion cracking resistance, in particular, a brass material excellent in stress corrosion cracking resistance used suitably for a flare nut of an air conditioner, and a method for producing the same.

フレアナットは、拡管された銅管をユニオンと共に挟持し、所定のトルクにより締め付けて冷媒ガスの漏洩を防止するもので、黄銅棒から成形されており、適用される黄銅棒としては、JIS H3250 C3604およびC3771の使用が規定されている。   The flare nut sandwiches the expanded copper tube together with the union, and is tightened with a predetermined torque to prevent leakage of the refrigerant gas. The flare nut is formed from a brass rod, and the applicable brass rod is JIS H3250 C3604. And the use of C3771 is prescribed.

締め付けによって、残留応力がフレアナットの表層面において引張応力として作用し、使用環境側から稀に発生するアンモニアガスなどを腐食媒として、締め付けによる残留応力ならびに結露水が原因となってフレアナットに応力腐食が発生することが経験されている。   By tightening, residual stress acts as a tensile stress on the surface of the flare nut, and ammonia gas, which is rarely generated from the usage environment, acts as a corrosion medium, causing stress on the flare nut due to residual stress and condensed water due to tightening. Corrosion has been experienced.

とくに、フレアナットの寸法が大きいものについては、締め付けトルクも増加するため、応力腐食割れの発生する確率が高くなるから、径が3/8インチまでの小さいサイズのフレアナットのように、熱間押出加工および冷間加工後に熱処理を施して応力除去を行い、切削加工により成形するという製造工程をとることができず、径が4/8インチ以上の大きいサイズのフレアナットについては、熱間鍛造により成形加工されている。しかしながら、熱間鍛造は切削加工と比べて加工費が著しく増大し、また、良好な寸法精度を得ることも困難であるという問題点がある。   In particular, when the flare nut size is large, the tightening torque also increases, so the probability of stress corrosion cracking increases, so hot flare nuts with a diameter of up to 3/8 inch are hot. It is not possible to take the manufacturing process of removing stress by heat treatment after extrusion and cold working, and forming by cutting, and forging flare nuts with a diameter of 4/8 inch or more, hot forging The molding process. However, hot forging has a problem that the machining cost is remarkably increased as compared with cutting, and it is difficult to obtain good dimensional accuracy.

黄銅材料の耐応力割れ性には、残留応力の他、結晶粒径、β相比率が影響することが知られており、フレアナット用の黄銅棒の製造においては、残留応力を低減するとともに、β相の比率を小さくするために、熱間押出加工および冷間加工後に、平衡状態図上α相比率が最も高くなる475℃近傍で熱処理が行われるが、450℃以上の温度に加熱すると結晶粒の粗大化が生じ易くなるため、応力腐食割れ感受性を十分に改善することができない。   In addition to residual stress, the crystal grain size and β phase ratio are known to affect the stress cracking resistance of brass materials. In the production of brass bars for flare nuts, while reducing residual stress, In order to reduce the β-phase ratio, after hot extrusion and cold processing, heat treatment is performed at around 475 ° C. where the α-phase ratio is highest in the equilibrium diagram, but when heated to a temperature of 450 ° C. or higher, the crystal Since grain coarsening is likely to occur, the stress corrosion cracking susceptibility cannot be sufficiently improved.

黄銅材料の耐応力腐食割れ性を改善する手法についてはいくつかの提案がなされているが、フレアナットを用途の一つとする耐応力腐食割れ性に優れた黄銅材料として、見掛け上のZn含有量が37〜46wt%であり、常温においてα+βの結晶組織を有し、当該結晶組織において、β相の面積比率が20%以上、α相およびβ相の平均結晶粒径が15μm以下の特徴を有する黄銅が提案されており(特許文献1参照)、とくに高速外力に対して高い延性を有するとされている。
特開2000−355746号公報
Several proposals have been made on methods for improving the stress corrosion cracking resistance of brass materials. As a brass material with excellent stress corrosion cracking resistance, which uses flare nuts as an application, the apparent Zn content Is 37 to 46 wt%, has an α + β crystal structure at room temperature, and has an area ratio of β phase of 20% or more and an average crystal grain size of α phase and β phase of 15 μm or less in the crystal structure. Brass has been proposed (see Patent Document 1), and is said to have high ductility, especially for high-speed external forces.
JP 2000-355746 A

本発明は、上記提案の黄銅材料をベースとして、より改善された耐応力割れ性を得るために、合金成分、結晶粒径、β相比率と耐応力腐食割れ性との関連について、さらに試験、検討を加えた結果としてなされたものであり、その目的は、応力腐食割れ環境で使用される黄銅製品、とくにフレアナットとして適用した場合に、良好な耐応力割れ性が得られ、製造コスト的にも有利な黄銅材料およびその製造方法を提供することにある。   The present invention is based on the above-mentioned proposed brass material, and in order to obtain further improved stress crack resistance, further tests were conducted on the relationship between the alloy composition, crystal grain size, β phase ratio and stress corrosion crack resistance, As a result of investigation, the purpose was to achieve good stress cracking resistance when applied as a brass product used in a stress corrosion cracking environment, especially as a flare nut. Is to provide an advantageous brass material and a method for producing the same.

上記の目的を達成するための請求項1による耐応力割れ性に優れた黄銅材料の製造方法は、Cu:57〜61%(質量%、以下同じ)、Pb:1〜3.7%を含有し、Snの含有量を0.35%以下、Feの含有量を0.50%以下とし、残部Znおよび不純物からなり、450〜600℃の温度で熱間押出加工した後、冷間加工により棒状に加工し、300〜450℃の温度で熱処理を施すことにより、常温でα+β二相からなる黄銅であって、α相の平均結晶粒径が15μm以下、β相の平均結晶粒径が10μm以下、α相の相比率が80%を越えることを特徴とする。 The manufacturing method of the brass material excellent in stress cracking resistance according to claim 1 for achieving the above object includes Cu: 57 to 61% (mass%, hereinafter the same), Pb: 1 to 3.7%. The Sn content is 0.35% or less, the Fe content is 0.50% or less , the balance is Zn and impurities, and after hot extrusion at a temperature of 450 to 600 ° C., cold processing is performed. It is brass made of α + β two phases at room temperature by processing into a rod shape and heat treatment at a temperature of 300 to 450 ° C., the average crystal grain size of α phase is 15 μm or less, and the average crystal grain size of β phase is 10 μm Hereinafter, the phase ratio of the α phase exceeds 80%.

前記α相の相比率が85%を越えることが好ましい。 Phase fraction of the α-phase is preferably in excess of 85%.

また、互いに接触して連なるβ相群の群径の最大値が15μm以下であることが好ましい。 In addition, it is preferable that the maximum value of the group diameter of the β phase groups that are in contact with each other and be 15 μm or less .

本発明に係る黄銅材料は、ビッカース硬度Hvが、Hv≦420−5×[Cu%]を満足するように製造するのがより好ましい。 The brass material according to the present invention is more preferably manufactured so that the Vickers hardness Hv satisfies Hv ≦ 420−5 × [Cu%] .

本発明によれば、応力腐食割れ環境で使用される黄銅製品、とくにフレアナットとして適用した場合に、良好な耐応力割れ性が得られ、製造コスト的にも有利な黄銅材料およびその製造方法が提供される。   According to the present invention, when applied to a brass product used in a stress corrosion cracking environment, in particular, as a flare nut, a brass material and a method for manufacturing the same are obtained that have good stress cracking resistance and are advantageous in terms of manufacturing cost. Provided.

本発明においては、常温でα+β二相からなる黄銅であって、α相の平均結晶粒径が15μm以下、β相の平均結晶粒径が10μm以下であり、α相の相比率が80%を越え、β相の相比率を20%未満に低減することが重要であり、これらの条件を全て満たすことにより、締め付けトルクが高い、大径のフレアナットにおいても応力腐食割れを防止することが可能となる。α相の相比率が85%を越え、β相の相比率を15%未満に低減することにより、耐応力腐食割れ性はさらに向上する。   In the present invention, it is brass composed of α + β two phases at room temperature, the average crystal grain size of α phase is 15 μm or less, the average crystal grain size of β phase is 10 μm or less, and the phase ratio of α phase is 80%. It is important to reduce the β-phase ratio to less than 20%. By satisfying all of these conditions, stress corrosion cracking can be prevented even in large-diameter flare nuts with high tightening torque. It becomes. By reducing the phase ratio of the α phase to more than 85% and the phase ratio of the β phase to less than 15%, the stress corrosion cracking resistance is further improved.

このような特性を得るためのフレアナット用黄銅材料は、JIS H3250 C3604およびC3771の成分範囲を満足する組成、すなわち、Cuを57〜61%、Pbを1.0〜3.7%含有し、Feを0.50%以下、Fe+Snを1.2%以下、残部Znおよび不純物とする組成範囲において、Sn含有量を0.35%以下として、α相の相比率を80%を越えるようにすることが望ましい。Sn含有量が0.35%を越えると、α相の比率が低くなりβ相が多くなって、耐応力腐食割れ防止効果が減少する。 The brass material for flare nuts for obtaining such characteristics contains a composition satisfying the component ranges of JIS H3250 C3604 and C3771, that is, contains 57 to 61% of Cu and 1.0 to 3.7% of Pb, In a composition range in which Fe is 0.50 % or less, Fe + Sn is 1.2% or less, and the balance is Zn and impurities, the Sn content is 0.35% or less and the phase ratio of the α phase exceeds 80%. It is desirable. If the Sn content exceeds 0.35%, the ratio of α phase becomes low and β phase increases, and the effect of preventing stress corrosion cracking is reduced.

β相の平均結晶粒径が10μm以下であっても、互いに接触して連なるβ相群の群径D(図1参照)の最大値が15μmを越えると、応力腐食割れを生じる場合があるから、互いに接触して連なるβ相群の群径Dの最大値を15μm以下とするのが好ましい。   Even if the average crystal grain size of the β phase is 10 μm or less, stress corrosion cracking may occur if the maximum value of the group diameter D (see FIG. 1) of the β phase group in contact with each other exceeds 15 μm. It is preferable that the maximum value of the group diameter D of the β phase groups that are in contact with each other to be 15 μm or less.

フレアナット用に供される黄銅棒は、熱間押出加工および冷間加工後、冷間加工に起因する残留応力を除去するために、応力除去焼鈍が施されるが、この焼鈍処理による応力除去が不十分な場合には応力腐食割れが生じる。十分な応力除去が行われたかどうかを評価する指標として硬度が用いられる。   Brass bars used for flare nuts are subjected to stress relief annealing after hot extrusion and cold working to remove residual stress caused by cold working. If the thickness is insufficient, stress corrosion cracking occurs. Hardness is used as an index for evaluating whether sufficient stress removal has been performed.

具体的には、応力除去焼鈍後の黄銅材料のビッカース硬度Hvが、Hv≦(420−5×[Cu%])を満足することが必要であり、この条件により応力腐食割れの発生を抑制することが可能となる。α+β二相からなる黄銅材料の場合には、Cu濃度が同じ場合でも、熱処理条件によってα相の比率が相違し、α相比率の相違により硬度が異なるが、上記の式は、請求項1に示すα相比率も考慮したものであり、この式を満足することにより応力腐食割れの抑制が可能となる。   Specifically, the Vickers hardness Hv of the brass material after stress-relieving annealing needs to satisfy Hv ≦ (420−5 × [Cu%]), and this condition suppresses the occurrence of stress corrosion cracking. It becomes possible. In the case of a brass material composed of α + β two phases, even if the Cu concentration is the same, the α phase ratio differs depending on the heat treatment conditions, and the hardness varies depending on the α phase ratio. The α phase ratio shown is also taken into consideration, and stress corrosion cracking can be suppressed by satisfying this equation.

黄銅材料において、Pの添加は、脱亜鉛腐食性を向上させる効果があり、とくにα相の脱亜鉛腐食を抑制するのに効果的である。また、結晶粒を微細化する効果も有する。一方、Pの一部は硬くて脆いCu P相として存在するため、冷間加工性の観点からは多量のPの添加は好ましくない。Pの好ましい含有量は0.02〜0.07%の範囲であり、さらに好ましい含有範囲は0.03〜0.06%である。
In brass materials , the addition of P has the effect of improving the dezincification corrosion resistance, and is particularly effective in suppressing the dezincification corrosion of the α phase. It also has the effect of miniaturizing crystal grains. On the other hand, since a part of P exists as a hard and brittle Cu 3 P phase, addition of a large amount of P is not preferable from the viewpoint of cold workability. The preferable content of P is in the range of 0.02 to 0.07%, and the more preferable content range is 0.03 to 0.06%.

本発明に係る黄銅材料は、ビレットを熱間押出加工し、さらに冷間抽伸加工などの冷間加工を行って棒材に成形する。熱間押出加工温度は低いほうが望ましく、α相の比率を大きくβ相の比率を小さくして、耐応力腐食割れ感受性を低減することができる。好ましい熱間押出加工温度は450〜600℃であり、熱間押出加工における断面減少率は90%以上とするのが望ましい。600℃を越えると、結晶粒径が粗大となって応力腐食を抑制する効果が減少することがあり、450℃未満では、変形抵抗が大きくなって押出加工が困難となる場合がある。さらに好ましい熱間押出加工温度は570℃以下であり、冷間加工後の切削加工により、熱間鍛造材よりも優れた耐応力腐食割れ性を付与することができる。   The brass material according to the present invention is formed into a bar by hot extruding a billet and further performing cold working such as cold drawing. It is desirable that the hot extrusion temperature is low, and the resistance to stress corrosion cracking can be reduced by increasing the ratio of α phase and decreasing the ratio of β phase. The preferable hot extrusion processing temperature is 450 to 600 ° C., and the cross-sectional reduction rate in the hot extrusion processing is desirably 90% or more. If it exceeds 600 ° C., the crystal grain size becomes coarse and the effect of suppressing stress corrosion may decrease, and if it is less than 450 ° C., deformation resistance may increase and extrusion may become difficult. Furthermore, a preferable hot extrusion temperature is 570 ° C. or less, and stress corrosion cracking resistance superior to that of a hot forged material can be imparted by cutting after cold working.

フレアナット材の製造において、寸法公差を満足させるためには、熱間押出加工後に冷間抽伸などの冷間加工を行うことが望ましい。冷間加工により残留応力が生じるため、残留応力除去のために焼鈍処理を施す。一般には、熱間押出加工後の段階で十分なα相比率が得られないことから、残留応力除去とα相比率の増大を兼ねて475℃近傍で熱処理されるが、この温度で熱処理すると、結晶粒の粗大化が生じ易く耐応力腐食割れ性の低下を招く。   In the manufacture of the flare nut material, in order to satisfy the dimensional tolerance, it is desirable to perform cold working such as cold drawing after hot extrusion. Since residual stress is generated by cold working, annealing is performed to remove the residual stress. Generally, since a sufficient α-phase ratio cannot be obtained at the stage after hot extrusion, heat treatment is performed near 475 ° C. in combination with residual stress removal and increase of the α-phase ratio. Crystal grains are likely to be coarsened, resulting in a decrease in stress corrosion cracking resistance.

本発明において、450〜600℃の温度で熱間押出加工することにより、熱間押出段階でβ相の比率を十分に低減することができるため、冷間加工後の焼鈍処理は、残留応力除去のためにのみ行うことができ、熱処理は300〜450℃の低温で実施することができる。450℃を越える温度では、熱間押出加工の段階で微細化した結晶粒が粗大化し易く応力腐食割れの抑制効果が小さくなり、300℃未満の温度では長時間の処理が必要となるため実生産には適しない。   In the present invention, by performing hot extrusion at a temperature of 450 to 600 ° C., the ratio of β phase can be sufficiently reduced in the hot extrusion stage. The heat treatment can be performed at a low temperature of 300 to 450 ° C. When the temperature exceeds 450 ° C, the crystal grains refined in the hot extrusion process are likely to become coarser, and the effect of suppressing stress corrosion cracking is reduced. Not suitable for.

以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。これらの実施例は、本発明の一実施態様であり、本発明はこれに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects of the present invention. These examples are one embodiment of the present invention, and the present invention is not limited thereto.

実施例1
快削黄銅の削り屑を主原料とし、銅線屑、再生亜鉛、鉛屑を配合して成分元素の濃度を調整して、表1に示す組成の合金を溶解、鋳造し、直径203〜294mmのビレットに造塊した。得られたビレットを表1に示す温度で対辺間寸法d:16〜32mmの六角棒(断面正六角形の棒材)(図2参照)に熱間押出加工し、ついで、断面減少率15%で冷間抽伸を行い、その後、表1に示す温度で熱処理した。
Example 1
Using free-cutting brass shavings as the main raw material, copper wire scraps, recycled zinc and lead scraps are blended to adjust the concentration of the component elements, and alloys having the composition shown in Table 1 are melted and cast, with a diameter of 203 to 294 mm. Ingots into billets. The obtained billet was hot-extruded into a hexagonal bar (cross section regular hexagonal bar) (see FIG. 2) having an opposite side dimension d: 16 to 32 mm at the temperature shown in Table 1, and then the cross-section reduction rate was 15%. Cold drawing was performed, and then heat treatment was performed at the temperature shown in Table 1.

得られた六角棒材(試験材)について、以下の方法により、平均結晶粒径、α相の比率、互いに接触して連なるβ相群の群径D、Hvおよび耐応力腐食割れ性を評価した。結果を表4および表5に示す。   With respect to the obtained hexagonal bar (test material), the average crystal grain size, the ratio of α phase, the group diameter D and Hv of the β phase group that are in contact with each other and the stress corrosion cracking resistance were evaluated by the following methods. . The results are shown in Tables 4 and 5.

平均結晶粒径の測定:試験材の長さ方向に対して垂直および平行な断面について組織観察を行い、400倍で撮影した組織写真を用いて、JISに準拠した切断法により、α相およびβ相の平均結晶粒径を測定した。
α相の比率測定:上記の組織写真を用いて、JISに準拠した切断法により、α相の比率を測定した。
β相群の群径Dの測定:上記の組織写真を用いて、JISに準拠した切断法により、互いに接触して連なるβ相群の群径Dを測定した。
Measurement of average grain size: Structure observation was performed on cross sections perpendicular to and parallel to the length direction of the test material, and α phase and β were cut by a cutting method in accordance with JIS using a structure photograph taken at 400 times. The average crystal grain size of the phase was measured.
α-phase ratio measurement: The α-phase ratio was measured by the cutting method in accordance with JIS, using the above-described structure photograph.
Measurement of group diameter D of β phase group: The group diameter D of β phase groups that were in contact with each other and were connected to each other by a cutting method in accordance with JIS was measured using the above-described structure photograph.

Hvの測定:JISに準拠して、(1/6)D(D:内接円の半径)の位置におけるビッカース硬度(Hv)を測定した。 耐応力割れ性の評価:試験材をJIS B8607に準拠した形状のフレアナット加工後、同規格に規定される締め付けトルクの中央値(表2参照)で締め付け、表3に示す条件で暴露を行った。評価は、試験後のフレアナットにおいて、銅管側、ユニオン側共に割れが発生しなかったものは(◎)、極微細な割れが発生しただけのものは(○)、割れが発生したが、肉厚を貫通しなかったものは(△)、肉厚を貫通する割れが発生したものは(×)とし、◎および○の場合を合格とした。   Measurement of Hv: Vickers hardness (Hv) at a position of (1/6) D (D: radius of the inscribed circle) was measured according to JIS. Evaluation of stress cracking resistance: After processing the flare nut of the shape conforming to JIS B8607, tighten the test material with the median tightening torque specified in the same standard (see Table 2) and expose it under the conditions shown in Table 3 It was. In the evaluation of the flare nut after the test, cracks did not occur on both the copper tube side and the union side (◎), those with only extremely fine cracks (○), and cracks occurred, Those that did not penetrate the wall thickness were marked with (Δ), those that had cracks that penetrated the wall thickness were marked with (×), and cases where ◎ and ○ were passed.

Figure 0004318599
Figure 0004318599

Figure 0004318599
Figure 0004318599

Figure 0004318599
Figure 0004318599

Figure 0004318599
Figure 0004318599

Figure 0004318599
Figure 0004318599

表4〜5にみられるように、本発明に従う試験材はいずれも、α相の平均結晶粒径が15μm以下、β相の平均結晶粒径が10μm以下、β相群径Dの最大値が15μm以下、α相の比率が80%を越えており、優れた耐応力腐食割れ性を示した。とくに、α相の比率が85%を越える試験材No.2、3、5および9はきわめて優れた耐応力割れ特性を示した。   As can be seen from Tables 4 to 5, all the test materials according to the present invention have an average crystal grain size of α phase of 15 μm or less, an average crystal grain size of β phase of 10 μm or less, and a maximum value of β phase group diameter D. The ratio of α phase was 15 μm or less, and the ratio of α phase exceeded 80%, indicating excellent stress corrosion cracking resistance. In particular, test material No. with an α-phase ratio exceeding 85%. 2, 3, 5 and 9 showed very good stress cracking resistance.

比較例1
快削黄銅の削り屑を主原料とし、銅線屑、再生亜鉛、鉛屑を配合して成分元素の濃度を調整して、表6に示す組成の合金を溶解、鋳造し、直径203〜294mmのビレットに造塊した。得られたビレットを表6に示す温度で対辺間寸法d:16〜32mmの六角棒(断面正六角形の棒材)(図2参照)に熱間押出加工し、ついで、断面減少率15%で冷間抽伸を行い、その後、表6に示す温度で熱処理した。
Comparative Example 1
Using free-cutting brass shavings as the main raw material, copper wire scraps, recycled zinc and lead scraps are blended to adjust the concentration of the component elements, and alloys having the compositions shown in Table 6 are melted and cast, with a diameter of 203 to 294 mm. Ingots into billets. The obtained billet was hot-extruded into a hexagonal bar (cross section regular hexagonal bar) (see FIG. 2) having an opposite side dimension d: 16 to 32 mm at the temperature shown in Table 6, and then the cross-section reduction rate was 15%. Cold drawing was performed, and then heat treatment was performed at a temperature shown in Table 6.

得られた六角棒材(試験材)について、実施例1と同一の方法により、平均結晶粒径、α相の比率、互いに接触して連なるβ相群の群径D、Hvおよび耐応力腐食割れ性を評価した。結果を表7および表8に示す。   With respect to the obtained hexagonal bar (test material), the same method as in Example 1 was used, and the average crystal grain size, the ratio of α phase, the group diameter D, Hv of the β phase group in contact with each other and the stress corrosion cracking resistance Sex was evaluated. The results are shown in Table 7 and Table 8.

Figure 0004318599
Figure 0004318599

Figure 0004318599
Figure 0004318599

Figure 0004318599
Figure 0004318599

表7〜8に示すように、試験材No.11は押出温度が高いため、また試験材No.13は焼鈍処理温度が高いため、いずれもα相の結晶粒径が大きくなり、締め付けトルクが大きくなると(注:フレアナットの径が大きくなると締め付けトルクが大きくなる)応力腐食が生じた。試験材No.12は押出温度が低いため熱間押出加工が困難となり、試験材の製造ができなかった。試験材No.14は焼鈍温度が低いため残留応力の除去が不十分となり、Hvの式を満たすことができず、β相の比率、β相の結晶粒径、β相の群径Dも大きくなり、耐応力腐食割れ性が劣るものとなった。   As shown in Tables 7-8, the test material No. No. 11 has a high extrusion temperature. Since No. 13 had a high annealing temperature, stress corrosion occurred when the crystal grain size of the α phase increased and the tightening torque increased (note: the tightening torque increased as the flare nut diameter increased). Test material No. Since No. 12 had a low extrusion temperature, it was difficult to perform hot extrusion, and the test material could not be produced. Test material No. No. 14 has a low annealing temperature, and thus the residual stress is not sufficiently removed, the Hv equation cannot be satisfied, the β-phase ratio, the β-phase crystal grain size, and the β-phase group diameter D become large, and the stress resistance Corrosion cracking was inferior.

試験材No.15はα相の結晶粒径が大きいため、締め付けトルクが大きくなると応力腐食が生じた。試験材No.16はβ相の群径Dが大きく、試験材No.17はβ相の結晶粒径が大きく、また試験材No.18はHvの式を満足しないため、いずれも締め付けトルクが大きくなると応力腐食が生じた。試験材No.19はSn量が多くα相の比率が低いため、耐応力腐食性が劣るものとなっている。   Test material No. Since No. 15 had a large α phase crystal grain size, stress corrosion occurred when the tightening torque was increased. Test material No. No. 16 has a large group diameter D of the β phase. No. 17 has a large β-phase crystal grain size. Since No. 18 does not satisfy the Hv equation, stress corrosion occurred when the tightening torque increased. Test material No. Since No. 19 has a large amount of Sn and a low ratio of the α phase, the stress corrosion resistance is inferior.

互いに接触して連なるβ相群の群径Dを示す図である。It is a figure which shows the group diameter D of the beta phase group which contacts and mutually connects. 断面正六角形の棒材を示す斜視図である。It is a perspective view which shows the rod of a regular hexagonal cross section.

Claims (2)

Cu:57〜61%(質量%、以下同じ)、Pb:1〜3.7%を含有し、Snの含有量を0.35%以下、Feの含有量を0.50%以下とし、残部Znおよび不純物からなり、450〜600℃の温度で熱間押出加工した後、冷間加工により棒状に加工し、300〜450℃の温度で熱処理を施すことにより、常温でα+β二相からなる黄銅であって、α相の平均結晶粒径が15μm以下、β相の平均結晶粒径が10μm以下、α相の相比率が80%を越えることを特徴とする耐応力腐食割れ性に優れた黄銅材料の製造方法Cu: 57 to 61% (mass%, the same shall apply hereinafter), Pb: 1 to 3.7%, Sn content is 0.35% or less, Fe content is 0.50% or less , the balance Brass made of Zn and impurities , hot extruded at a temperature of 450 to 600 ° C., then processed into a rod shape by cold working, and heat treated at a temperature of 300 to 450 ° C. The brass having excellent stress corrosion cracking resistance, characterized in that the average crystal grain size of the α phase is 15 μm or less, the average crystal grain size of the β phase is 10 μm or less, and the phase ratio of the α phase exceeds 80%. Material manufacturing method . ビッカース硬度Hvが応力除去焼鈍により、Hv≦420−5×[Cu%]を満足することを特徴とする請求項1に記載の耐応力腐食割れ性に優れた黄銅材料の製造方法The method for producing a brass material excellent in stress corrosion cracking resistance according to claim 1, wherein the Vickers hardness Hv satisfies Hv ≦ 420−5 × [Cu%] by stress relief annealing .
JP2004183750A 2004-06-22 2004-06-22 Method for producing brass material with excellent resistance to stress corrosion cracking Expired - Lifetime JP4318599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004183750A JP4318599B2 (en) 2004-06-22 2004-06-22 Method for producing brass material with excellent resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004183750A JP4318599B2 (en) 2004-06-22 2004-06-22 Method for producing brass material with excellent resistance to stress corrosion cracking

Publications (2)

Publication Number Publication Date
JP2006009053A JP2006009053A (en) 2006-01-12
JP4318599B2 true JP4318599B2 (en) 2009-08-26

Family

ID=35776617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004183750A Expired - Lifetime JP4318599B2 (en) 2004-06-22 2004-06-22 Method for producing brass material with excellent resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JP4318599B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101573462B (en) 2006-12-28 2012-10-10 株式会社开滋 Lead-free brass alloy with excellent resistance to stress corrosion cracking
JP5062829B2 (en) * 2007-09-25 2012-10-31 サンエツ金属株式会社 Brass material and method for producing brass material
US9023272B2 (en) * 2010-07-05 2015-05-05 Ykk Corporation Copper-zinc alloy product and process for producing copper-zinc alloy product
CN115125414B (en) * 2022-07-27 2023-05-09 宁波金田铜业(集团)股份有限公司 Brass alloy and preparation method thereof
CN115386765B (en) * 2022-08-24 2023-07-21 宁波金田铜业(集团)股份有限公司 Brass alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2006009053A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP5421613B2 (en) High strength aluminum alloy wire rod excellent in softening resistance and manufacturing method thereof
KR100375426B1 (en) Free-cutting copper alloy
JP5456927B2 (en) High-strength, high-conductivity copper rod
KR101213801B1 (en) High strength and high conductivity copper alloy pipe, rod, or wire
JP5410845B2 (en) Al-Mg-Si aluminum alloy extruded material with excellent fatigue strength and impact fracture resistance
JP3966896B2 (en) Brass
JP5830006B2 (en) Extruded aluminum alloy with excellent strength
KR102162947B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
WO2011114591A1 (en) Aluminium alloy and high-strength bolt made from aluminium alloy
JP2008133531A (en) Beta titanium alloy
EP1947204B1 (en) Free-cutting aluminum alloy extrudate with excellent brittle resistance at high temperature
JPWO2013115227A1 (en) High strength aluminum alloy extruded material excellent in corrosion resistance, ductility and hardenability and method for producing the same
JP6235513B2 (en) Magnesium-lithium alloy component manufacturing method and magnesium-lithium alloy manufacturing method
WO2020203980A1 (en) Magnesium alloy sheet with excellent balance between strength and ductility and workability at ordinary temperature
JP4318599B2 (en) Method for producing brass material with excellent resistance to stress corrosion cracking
JP7195054B2 (en) Copper alloy sheet material and manufacturing method thereof
JP5605273B2 (en) High strength α + β type titanium alloy having excellent hot and cold workability, production method thereof, and titanium alloy product
WO2012140977A1 (en) Copper-based alloy having excellent forgeability, stress corrosion cracking resistance and dezincification corrosion resistance
JP3454755B2 (en) Shock absorbing member with excellent pressure-resistant cracking resistance
JPH11152552A (en) Method for working aluminum-zinc-silicon alloy
JP2011038130A (en) Aluminum alloy having excellent machinability and high temperature embrittlement resistance
JP5007708B2 (en) Free-cutting aluminum alloy
JP7496106B1 (en) Aluminum alloy screw material, aluminum alloy screw, and manufacturing method thereof
JP4987640B2 (en) Titanium alloy bar wire for machine parts or decorative parts suitable for manufacturing cold-worked parts and method for manufacturing the same
JP2010174337A (en) Al-Mg-Si-BASED ALLOY BILLET FOR FORGING

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4318599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150605

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250