JP2008155756A - 車両用サスペンションシステム - Google Patents

車両用サスペンションシステム Download PDF

Info

Publication number
JP2008155756A
JP2008155756A JP2006346388A JP2006346388A JP2008155756A JP 2008155756 A JP2008155756 A JP 2008155756A JP 2006346388 A JP2006346388 A JP 2006346388A JP 2006346388 A JP2006346388 A JP 2006346388A JP 2008155756 A JP2008155756 A JP 2008155756A
Authority
JP
Japan
Prior art keywords
control
force
actuator
vehicle
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006346388A
Other languages
English (en)
Other versions
JP4775250B2 (ja
Inventor
Kazuo Ogawa
一男 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006346388A priority Critical patent/JP4775250B2/ja
Publication of JP2008155756A publication Critical patent/JP2008155756A/ja
Application granted granted Critical
Publication of JP4775250B2 publication Critical patent/JP4775250B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

【課題】ばね上部とばね下部との相対動作に対して電磁モータの力に依拠する力を作用させる電磁式のアクチュエータを備えたサスペンションシステムの実用性を向上させる。
【解決手段】(a)ばね上速度とばね下速度との少なくとも一方に基づいてアクチュエータ力を制御する第1制御(S6)と、(b)アクチュエータ力の発生を専ら電磁モータによる発電を伴うものとすべく、ばね上部とばね下部との相対動作に対してその相対動作の速度に応じた特定の大きさの抵抗力となるアクチュエータ力を発生させる第2制御(S11)とを、切換可能に構成する。本システムによれば、良好な振動減衰特性が要求される場合に第1制御を実行させて、それ以外の場合には、第2制御によって電磁モータにより発電された電流を電源へ常に回生してアクチュエータによる消費電力を低減することが可能である。
【選択図】図6

Description

本発明は、ばね上部とばね下部との相対動作に対して電磁モータの力に依拠する力を作用させる電磁式のアクチュエータを含んで構成されるサスペンションシステムに関する。
近年では、車両用サスペンションシステムとして、油圧式のアブソーバを備えたコンベンショナルなサスペンションシステムに代え、例えば、下記特許文献に記載されているような、ばね上部とばね下部との相対動作に対して電磁モータの力に依拠する抵抗力を発生させることで、ショックアブソーバとして機能する電磁式のアクチュエータを備えたサスペンションシステム、いわゆる電磁式サスペンションシステムが検討されている。そのようなサスペンションシステムは、電磁モータの力を制御することで抵抗力の大きさを適切に制御可能とされ、いわゆるスカイフック理論に基づくサスペンション特性を容易に実現できる等の利点から、高性能なサスペンションシステムとして期待されている。
特開2003−104025号公報 特開2006−117210号公報
電磁式アクチュエータは、上述のように振動減衰のためにショックアブソーバとして機能させることから、走行中において常時作動させられる。そのため、電磁式アクチュエータによるシステムの電力消費は、電磁式サスペンションシステムの抱える重大な問題となっている。上記特許文献1に記載されているシステムでは、高速で走行している場合に、アクチュエータに発生させる力を低下させて消費電力を減少させることで、上記の問題に対処している。このように、何らかの対処手段によって、電磁式アクチュエータによる消費電力を低減することにより、電磁式アクチュエータを備えたサスペンションシステムの実用性を向上させ得るのである。本発明は、そのような実情に鑑みてなされたものであり、電磁式アクチュエータを備えたサスペンションシステムの実用性を向上させることを課題とする。
上記課題を解決するために、本発明の車両用サスペンションシステムは、電磁式のアクチュエータが有する電磁モータにより発電された電流を回生可能な構造とされた駆動回路を制御することによって、アクチュエータが発生させるアクチュエータ力を制御する制御装置が、(a)ばね上速度とばね下速度との少なくとも一方に基づいてアクチュエータ力を制御する第1制御と、(b)アクチュエータ力の発生を専ら電磁モータによる発電を伴うものとすべく、ばね上部とばね下部との相対動作に対してその相対動作の速度に応じた特定の大きさの抵抗力となるアクチュエータ力を発生させる第2制御とを、切換可能に構成されたことを特徴とする。
本発明のサスペンションシステムは、例えば、良好な振動減衰特性が要求される場合に第1制御を実行させて、それ以外の場合には、第2制御によって電磁モータにより発電された電流を電源へ常に回生してアクチュエータによる消費電力を低減することが可能である。したがって、そのような2つの制御を切換可能に構成された本発明のシステムによれば、実用性の高いサスペンションシステムが構築されることになる。
発明の態様
以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、それらの発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から何某かの構成要素を削除した態様も、請求可能発明の一態様となり得るのである。なお、以下の項において、(1)項ないし(5)項の各々が、請求項1ないし請求項5の各々に相当する。
(1)ばね上部とばね下部との間に配設され、動力源としての電磁モータを有し、ばね上部とばね下部との相対動作に応じて動作するとともにその相対動作に対する抵抗力および推進力となるアクチュエータ力を発生させることで、ショックアブソーバとして機能する電磁式のアクチュエータと、
前記電磁モータと電源との間に配設され、その電磁モータを駆動するとともに、起電力に依拠して電磁モータによって発電された電流を電源に回生可能な構造とされた駆動回路と、
その駆動回路を制御することによって、前記アクチュエータ力を制御する制御装置と
を備えた車両用サスペンションシステムであって、
前記制御装置が、(a)ばね上速度とばね下速度との少なくとも一方に基づいて前記アクチュエータ力を制御する第1制御と、(b)前記アクチュエータ力の発生を専ら前記電磁モータによる発電を伴うものとすべく、ばね上部とばね下部との相対動作に対してその相対動作の速度に応じた特定の大きさの抵抗力となる前記アクチュエータ力を発生させる第2制御とを、切換可能に構成されたことを特徴とする車両用サスペンションシステム。
本項に記載の態様における「第1制御」には、例えば、ばね上速度に基づいてばね上振動に対する減衰力を発生させるいわゆるスカイフック理論に基づいた制御,ばね下速度に基づいてばね下振動に対する減衰力を発生させるいわゆるグランドフック理論に基づいた制御,それらの両者を実行する制御を採用可能である。したがって、第1制御においては、電磁モータが電源からの電力を受けて抵抗力を発生させる状態だけでなく、場合によっては、ばね上部とばね下部との相対動作と同じ方向の力、すなわち、推進力を発生させる状態にもなり得る。つまり、第1制御によって、優れた振動抑制効果が得られることになる。それに対して、第1制御では、アクチュエータ力が抵抗力だけでなく推進力とされることもあるため、その第1制御において消費される電力量は多くなってしまうという問題もある。
本項の態様は、上記のような実情に鑑みてなされたものであり、制御装置が、電磁モータが発生させる起電力に依拠したアクチュエータ力を発生させるべく、アクチュエータ力を、ばね上部とばね下部との相対動作(ばね上部とばね下部との一方の他方に対するストローク動作と考えることもできるため、以下、「ストローク動作」と呼ぶ場合がある)の速度に応じた特定の大きさの抵抗力となるように制御する第2制御を実行可能とされて、その第2制御と上記第1制御とを切り換えることが可能とされている。つまり、本項の態様は、平たく言えば、専らアクチュエータ力を抵抗力として発生させるパッシブ制御(第2制御)と、アクチュエータ力を抵抗力だけでなく場合によって推進力としても発生させるアクティブ制御(第1制御)とを切換可能な態様と考えることもできる。本項の態様によれば、例えば、良好な振動減衰特性が要求される場合に第1制御を実行させて、それ以外の場合には、第2制御の実行により電磁モータによって発電された電流を電源に回生して、アクチュエータによる消費電力を低減することが可能である。
一般的に、電動モータが電源からの電力を受けて力を発生させる状態となるか、電動モータが発電しつつ力を発生させる状態となるかは、電動モータの動作速度と電動モータの力との関係、つまり、ストローク動作の速度とアクチュエータ力との関係によって定まる。本項における「第2制御」には、例えば、電磁モータの動作速度と電磁モータの力とを関係づける減衰係数を固定して、専ら起電力に依拠したアクチュエータ力を発生させるような制御を採用することが可能である。なお、システムの省電力化を考慮すれば、できるだけ電源に回生される電流が大きくなるようにアクチュエータ力が制御されることが望ましい。
本項の態様における「電磁式のアクチュエータ」は、それの具体的な構造が限定されるものではなく、また、機能に関しても特に限定されず、ショックアブソーバとしての機能の他に、例えば、車両の旋回,加減速等に起因する車体のロール,ピッチ等の抑制を目的として車体の姿勢を制御する機能等を有するものを採用可能である。そのアクチュエータの動力源である「電磁モータ」は、その形式等は特に限定されず、ブラシレスDCモータを始めとして種々の形式のモータを採用可能であり、また、動作に関して言えば、回転モータであっても、リニアモータであってもよい。その電磁モータを駆動させるための「駆動回路」は、例えば、いわゆるインバータ等を採用することができる。インバータは、例えば、スイッチング素子の作動によってモータを駆動する構造のものであればよく、PWM(Pulse Width Modulation)制御を実行可能な構造のものを採用することが望ましい。
(2)前記制御装置が、車両の走行速度が比較的高い場合に前記第1制御を実行し、比較的低い場合に前記第2制御を実行するように構成された(1)項に記載の車両用サスペンションシステム。
車両の走行速度が高くなるほど、路面入力によって車両に生じる振動は大きくなるため、走行速度が高い場合には、良好な振動減衰効果が得られる状態とすることが望ましい。つまり、本項の態様によれば、第1制御と第2制御との切換を効果的に行うことが可能である。本項の態様は、例えば、走行速度に閾値を設け、その閾値を境に第1制御と第2制御とを切り換えるような態様を採用可能である。
(3)前記制御装置が、車体の挙動が比較的大きい場合に前記第1制御を実行し、比較的小さい場合に前記第2制御を実行するように構成された(1)項または(2)項に記載の車両用サスペンションシステム。
一般的に、路面が粗い道路や起伏が大きい道路を走行している場合,急ブレーキや急加速時,急カーブのコーナリング時等は、車体の挙動は比較的大きくなる。ちなみに、車輪の振動が車体に伝わって生じる車体の振動も、車体の挙動に含まれる。そして、車体の挙動が大きくなる場合には、良好な振動減衰効果が得られる状態とすることが望ましい。つまり、本項の態様によれば、第1制御と第2制御との切換を効果的に行うことが可能である。なお、本項の態様には、例えば、車体の挙動の大きさを指標するパラメータ、具体的には、車体に発生する加速度である縦加速度(ばね上加速度),前後加速度,横加速度や、ばね下加速度等に基づいて車体の挙動の大きさを判断あるいは推定し、第1制御と第2制御とを切り換えるような態様を採用可能である。なお、その場合、現時点におけるパラメータの値から車体の挙動の大きさが判断されてもよく、現時点から遡った設定時間内におけるパラメータの値の変化の具合から現時点における車体の挙動の大きさが推定されてもよい。
(4)前記第2制御が、電源に回生される電流がもっとも大きくなる大きさの抵抗力となる前記アクチュエータ力を発生させる制御である(1)項ないし(3)項のいずれかに記載の車両用サスペンションシステム。
(5)前記第2制御が、前記電磁モータの通電端子間を短絡させた場合において発生する抵抗力の1/2の大きさの抵抗力となる前記アクチュエータ力を発生させる制御である(1)項ないし(4)項のいずれかに記載の車両用サスペンションシステム。
上記2つの項に記載の態様のように、発生させるアクチュエータ力の大きさを特定すれば、回生される電流を、もっとも大きくすることが可能であり、上記2つの項に記載の態様によれば、効率的に電流を回生することが可能である。なお、後者の態様は、前者の態様の一態様であると考えることもできる。
(6)前記第1制御が、少なくともばね上速度に基づいて前記アクチュエータ力を制御する制御である(1)項ないし(5)項のいずれかに記載の車両用サスペンションシステム。
上記のアクチュエータは、ばね上振動に対しては充分な減衰力を発生させることが可能であるため、本項の態様のように、少なくともばね上速度に基づいてアクチュエータ力が制御されることが望ましい。
(7)前記制御装置が、車体のロールとピッチとの少なくとも一方を抑制するための姿勢制御力として前記アクチュエータ力を発生させる車体姿勢制御を実行可能とされた(1)項ないし(6)項のいずれかに記載の車両用サスペンションシステム。
本項の態様は、アクチュエータによって、例えば、車両旋回時,車両加減速時に生じる車体の傾斜を抑制することを可能とする態様である。本項の態様によれば、例えば、車速,操舵角,車体に発生する横加速度,前後加速度等に応じてアクティブな車体の姿勢制御が実行可能となる。なお、本項の態様は、車体姿勢制御が第1制御とのみ総合的に実行され、第2制御が実行される場合には実行されない態様であってもよく、車体姿勢制御が第1制御,第2制御とは別に常に実行される態様であってもよい。ただし、車体姿勢制御は、専ら電源から電力の供給を受けて力を発生させる制御であることを考慮すれば、前者の態様のように、第2制御が実行される場合には、車体姿勢制御が実行されない方が望ましい。
(8)前記アクチュエータが、ばね上部とばね下部との一方に設けられた雄ねじ部と、その雄ねじ部と螺合する雌ねじとを有し、前記電磁モータがそれら雄ねじ部と雌ねじ部との相対回転に応じて回転し、その相対回転に対する抵抗力および推進力を発生させる構造とされた(1)項ないし(7)項のいずれかに記載の車両用サスペンションシステム。
本項に記載の態様は、アクチュエータを、いわゆるねじ機構を採用したものに限定した態様である。この態様では、電磁モータに回転モータを採用した場合において、そのモータの回転力を、ストローク動作に対する減衰力に容易に変換することが可能となる。なお、本項の態様においては、ばね上部,ばね下部のいずれに雄ねじ部を設け、いずれに雌ねじ部を設けるかは、任意である。さらに、雄ねじ部を回転不能とし、雌ねじ部を回転可能とするような構成としてもよく、逆に、雌ねじ部を回転不能とし、雄ねじ部を回転可能とするような構成としてもよい。
以下、請求可能発明の実施例を、図を参照しつつ詳しく説明する。なお、請求可能発明は、下記実施例の他、前記〔発明の態様〕の項に記載された態様を始めとして、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することができる。
≪サスペンションシステムの構成≫
図1に、請求可能発明の実施例である車両用サスペンションシステム10を模式的に示す。本サスペンションシステム10は、前後左右の車輪12の各々に対応する独立懸架式の4つのサスペンション装置を備えており、それらサスペンション装置の各々は、サスペンションスプリングとショックアブソーバとが一体化されたスプリング・アブソーバAssy20を有している。車輪12,スプリング・アブソーバAssy20は総称であり、4つの車輪のいずれに対応するものであるかを明確にする必要のある場合には、図に示すように、車輪位置を示す添え字として、左前輪,右前輪,左後輪,右後輪の各々に対応するものにFL,FR,RL,RRを付す場合がある。
スプリング・アブソーバAssy20は、図2に示すように、車輪12を保持してばね下部の一部分を構成するサスペンションロアアーム22と、車体に設けられてばね上部の一部分を構成するマウント部24との間に、それらを連結するようにして配設された電磁式のアクチュエータ26と、それと並列的に設けられたサスペンションスプリングとしてのエアスプリング28とを備えている。
アクチュエータ26は、アウタチューブ30と、そのアウタチューブ30に嵌入してアウタチューブ30の上端部から上方に突出するインナチューブ32とを含んで構成されている。アウタチューブ30は、それの下端部に設けられた取付部材34を介してロアアーム22に連結され、一方、インナチューブ32は、それの上端部に形成されたフランジ部36においてマウント部24に連結されている。アウタチューブ30には、その内壁面にアクチュエータ26の軸線の延びる方向(以下、「軸線方向」という場合がある)に延びるようにして1対のガイド溝38が設けられるとともに、それらのガイド溝38の各々には、インナチューブ32の下端部に付設された1対のキー40の各々が嵌まるようにされており、それらガイド溝38およびキー40によって、アウタチューブ30とインナチューブ32とが、相対回転不能、軸線方向に相対移動可能とされている。ちなみに、アウタチューブ30の上端部には、シール42が付設されており、後に説明する圧力室44からのエアの漏れが防止されている。
また、アクチュエータ26は、ねじ溝が形成された雄ねじ部としてのねじロッド50と、ベアリングボールを保持してそのねじロッド50と螺合する雌ねじ部としてのナット52とを含んで構成されたボールねじ機構と、動力源としての電磁モータ54(以下、単に「モータ54」という場合がある)とを備えている。モータ54はモータケース56に固定して収容されるとともに、そのモータケース56の鍔部がマウント部24の上面側に固定されており、モータケース56の鍔部にインナチューブ32のフランジ部36が固定されていることで、インナチューブ32は、モータケース56を介してマウント部24に連結されている。モータ54の回転軸であるモータ軸58は、ねじロッド50の上端部と一体的に接続されている。つまり、ねじロッド50は、モータ軸58を延長する状態でインナチューブ32内に配設され、モータ54によって回転させられる。一方、ナット52は、ねじロッド50と螺合させられた状態で、アウタチューブ30の内底部に付設されたナット支持筒60の上端部に固定支持されている。
エアスプリング28は、マウント部24に固定されたハウジング70と、アクチュエータ26のアウタチューブ30に固定されたエアピストン72と、それらを接続するダイヤフラム74とを備えている。ハウジング70は、概して有蓋円筒状をなし、蓋部76に形成された穴にアクチュエータ26のインナチューブ32を貫通させた状態で、蓋部76の上面側においてマウント部24の下面側に固定されている。エアピストン72は、概して円筒状をなし、アウタチューブ30を嵌入させた状態で、アウタチューブ30の上部に固定されている。それらハウジング70とエアピストン72とは、ダイヤフラム74によって気密性を保ったまま接続されており、それらハウジング70とエアピストン72とダイヤフラム74とによって圧力室44が形成されている。その圧力室44には、流体としての圧縮エアが封入されている。このような構造から、エアスプリング28は、その圧縮エアの圧力によって、ロアアーム22とマウント部24、つまり、車輪12と車体とを相互に弾性的に支持しているのである。
上述のような構造から、ばね上部とばね下部とが接近・離間する場合、アウタチューブ30とインナチューブ32とは、軸線方向に相対移動が可能とされている。その相対移動に伴って、ねじロッド50とナット52とが軸線方向に相対移動するとともに、ねじロッド50がナット52に対して回転する。モータ54は、ねじロッド50に回転トルクを付与可能とされ、この回転トルクによって、ばね上部とばね下部との相対動作(ストローク動作)に対して、そのストローク動作を阻止する抵抗力を発生させることが可能とされている。この抵抗力をばね上部とばね下部とのストローク動作に対する減衰力として作用させることで、アクチュエータ26は、いわゆるアブソーバ(「ダンパ」と呼ぶこともできる)として機能するものとなっている。言い換えれば、アクチュエータ26は、自身が発生させる軸線方向の力であるアクチュエータ力によって、ストローク動作に対して減衰力を付与する機能を有しているのである。また、アクチュエータ26は、アクチュエータ力を、ストローク動作に対する推進力つまり駆動力として作用させる機能をも有している。この機能により、ばね上絶対速度に比例する減衰力を作用させるスカイフック制御を実行することが可能とされている。さらに、アクチュエータ26は、アクチュエータ力によって上下方向におけるばね上部とばね下部との距離(以下、「ばね上ばね下間距離」という場合がある)を積極的に変更し、また、ばね上ばね下間距離を所定の距離に維持する機能をも有している。この機能によって、旋回時の車体のロール,加速・減速時の車体のピッチ等を効果的に抑制すること、車両の車高を調整すること等が可能とされているのである。
サスペンションシステム10は、各スプリング・アブソーバAssy20が有するエアスプリング28に対して流体としてのエア(空気)を流入・流出させるための流体流入・流出装置、詳しく言えば、エアスプリング28の圧力室44に接続されて、その圧力室44にエアを供給し、圧力室44からエアを排出するエア給排装置80を備えている。詳しい説明は省略するが、本サスペンションシステム10は、エア給排装置80によって、各エアスプリング28の圧力室44内のエア量を調整することが可能とされており、エア量の調整によって、各エアスプリング28のばね長を変更し、各車輪12についてのばね上ばね下間距離を変化させることが可能とされている。具体的に言えば、圧力室44のエア量を増加させてばね上ばね下間距離を増大させ、エア量を減少させてばね上ばね下間距離を減少させることが可能とされている。
本サスペンションシステム10は、サスペンション電子制御ユニット(ECU)140によって、スプリング・アブソーバAssy20の作動、つまり、アクチュエータ26およびエアスプリング28の制御が行われる。詳しくは、アクチュエータ26のモータ54およびエア給排装置80の作動の制御が行われる。ECU140は、CPU,ROM,RAM等を備えたコンピュータを主体として構成されたコントローラ142と、エア給排装置80の駆動回路としてのドライバ144と、各アクチュエータ26が有するモータ54に対応する駆動回路としてのインバータ146とを有している。それらドライバ144およびインバータ146は、コンバータ148を介してバッテリ150に接続されており、エア給排装置80が有する各制御弁,ポンプモータ等、および、各アクチュエータ26のモータ54には、そのコンバータ148とバッテリ150とを含んで構成される電源から電力が供給される。なお、モータ54は定電圧駆動されることから、モータ54への供給電力量は、供給電流量を変更することによって変更される。
車両には、イグニッションスイッチ[I/G]160,車両走行速度(以下、「車速」と略す場合がある)を検出するための車速センサ[v]162,各車輪12についてのばね上ばね下間距離を検出する4つのストロークセンサ[St]164,車高変更指示のために運転者によって操作される車高変更スイッチ[HSw]166,ステアリングホイールの操作角を検出するための操作角センサ[δ]170,車体に実際に発生する前後加速度である実前後加速度を検出する前後加速度センサ[Gx]172,車体に実際に発生する横加速度である実横加速度を検出する横加速度センサ[Gy]174,各車輪12に対応する車体の各マウント部24の縦加速度(上下加速度)を検出する4つの縦加速度センサ[GzU]176,各車輪12の縦加速度を検出する4つの縦加速度センサ[GzL]178,アクセルスロットルの開度を検出するスロットルセンサ[Sr]180,ブレーキのマスタシリンダ圧を検出するブレーキ圧センサ[Br]182,モータ54のロータの回転角を検出するレゾルバ[θ]184等が設けられており、それらはコントローラ142に接続されている。ECU140は、それらのスイッチ,センサからの信号に基づいて、スプリング・アブソーバAssy20の作動の制御を行うものとされている。ちなみに、[ ]の文字は、上記スイッチ,センサ等を図面において表わす場合に用いる符号である。また、コントローラ142のコンピュータが備えるROMには、後に説明するところのアクチュエータ26の制御に関するプログラム,各種のデータ等が記憶されている。
≪インバータ等の構成≫
図3に示すように、各アクチュエータ26のモータ54は、コイルがスター結線(Y結線)された3相ブラシレスDCモータであり、上述したようにインバータ146によって制御駆動される。そのインバータ146は、図に示すような一般的なものであり、high側(高電位側),low側(低電位側)のそれぞれに対応し、かつ、モータ54の3つの相であるU相,V相,W相のそれぞれに対応する6つのスイッチング素子HUS,HVS,HWS,LUS,LVS,LWSを備えている。また、ECU140のコントローラ142は、モータ54に設けられたレゾルバ184によりモータ回転角(電気角)を判断し、そのモータ回転角に基づいてスイッチング素子を開閉作動させる。インバータ146は、いわゆる正弦波駆動によってモータ54を駆動するのであり、モータ54の3つの相の各々に流れる電流量が、それぞれが正弦波状に変化し、その位相差が電気角で120°ずつ異なるように、インバータ146が制御される。そして、インバータ146は、PWM(Pulse Width Modulation)制御によってモータ54に通電するようにされており、パルスオン時間とパルスオフ時間との比(デューティ比)を変更することで、モータ54を流れる電流量(通電電流量)を変更して、モータ54が発生させる回転トルクの大きさを変更する。詳しくは、デューティ比が大きくされることで、通電電流量が大きくされて、モータ54の発生する回転トルクは大きくされ、逆に、デューティ比が小さくされることで、通電電流量が小さくされて、モータ54の発生する回転トルクは小さくされる。
モータ54が発生する回転トルクの方向は、モータ54が実際に回転している方向と同じ方向である場合もあり、また、逆の場合もある。モータ54が発生する回転トルクの方向とモータ54の回転方向が逆となる場合、つまり、アクチュエータ26が、アクチュエータ力をストローク動作に対する抵抗力として作用させている場合には、モータ54の発生させる力は、必ずしも、電源から供給される電力(電流)に依存したものとはならない。詳しく言えば、モータ54が外部からの力によって回転させられることで、そのモータ54に起電力が生じ、モータ54は、その起電力に依存したモータ力を発生させる場合、つまり、アクチュエータ26が起電力に依存したアクチュエータ力を発生させる場合もある。
図4に、モータ54の回転速度ωとモータ54が発生させる回転トルクTqとの関係を概念的に示す。すなわち、ストローク動作の速度であるストローク速度VStと、ストローク動作に対して発生可能な力FM(回転トルクTqと考えてもよい)との関係を示すものと考えることもできる。この図における領域(a)が、モータ54の回転トルクの方向と回転方向が同じ方向となる領域であり、領域(b)および領域(c)が、モータ54の回転トルクの方向と回転方向が逆となる領域である。領域(b)と領域(c)とを区画する線は、モータ54の各相の通電端子間を短絡させた場合の特性線、すなわち、いわゆる短絡制動させた場合に得られるモータ54の回転速度ωと回転トルクTqとの関係を示す短絡特性線である。回転速度に対してモータ54が発生させる回転トルクがその短絡特性線における回転トルクより小さい領域(c)が、モータ54が発電機として機能し、モータ54が起電力に依存した抵抗力となる回転トルクを発生させる領域、いわゆる“回生制動領域”である。ちなみに、領域(b)は、モータ54がバッテリ150から電流の供給を受けて抵抗力となるトルクを発生させる領域、いわゆる“逆転制動領域”であり、領域(a)は、モータ54がバッテリ150から電流の供給を受けて駆動力となるトルクを発生させる領域、いわゆる“力行領域”である。
なお、インバータ146は、起電力よって発電された電流をバッテリ150に回生可能な構造とされている。つまり、モータ54の回転速度ωとモータ54が発生する回転トルクTqとの関係が上記領域(c)となる場合に、起電力に依拠した発電電流が回生されるのである。また、モータ54が発生する回転トルクとモータ54の回転方向が逆となる場合においては、前述したスイッチング素子のPWM制御は、起電力によってモータ54の各コイルに流れる電流量を制御するものとなっており、デューティ比を変更することで、モータ54が発生する回転トルクの大きさが変更されることになる。すなわち、インバータ146は、電源からの供給電流であるか、あるいは、起電力によって生じる発電電流であるかに拘わらず、モータ54のコイルを流れる電流、つまり、モータ54の通電電流を制御して、モータ力を制御する構造とされているのである。
≪サスペンションシステムの基本的な制御≫
本サスペンションシステム10では、4つのスプリング・アブソーバAssy20の各々を独立して制御することが可能となっている。それらスプリング・アブソーバAssy20の各々において、アクチュエータ26のアクチュエータ力が独立して制御されて、車体および車輪12の振動、つまり、ばね上振動およびばね下振動を減衰するための制御(以下、「振動減衰制御」という場合がある)が実行される。また、車両の旋回に起因する車体のロールを抑制するための制御(以下、「ロール抑制制御」という場合がある),車両の加減速に起因する車体のピッチを抑制するための制御(以下、「ピッチ抑制制御」という場合がある)が実行される。上記振動減衰制御,ロール抑制制御,ピッチ抑制制御は、各制御ごとのアクチュエータ力の成分である振動減衰成分,ロール抑制成分,ピッチ抑制成分を合計して目標アクチュエータ力が決定され、アクチュエータ26がその目標アクチュエータ力を発生させるように制御されることで、総合的に実行される。なお、以下の説明において、アクチュエータ力およびそれの成分は、ばね上部とばね下部とを離間させる方向(リバウンド方向)の力に対応するものが正の値,ばね上部とばね下部とを接近させる方向(バウンド方向)の力に対応するものが負の値となるものとして扱うこととする。
また、本サスペンションシステム10では、エアスプリング28によって、悪路走行への対処等を目的として運転者の意思に基づいて車両の車高を変更する制御(以下、「車高変更制御」という場合がある)が実行される。その車高変更制御について簡単に説明する。車高変更制御は、運転者の意図に基づく車高変更スイッチ166の操作によって実現すべき設定車高である目標設定車高が変更された場合において、実行される。その目標設定車高の各々に応じて、各車輪12についての目標となるばね上ばね下間距離が設定されており、ストロークセンサ164の検出値に基づいて、それぞれの車輪12についてのばね上ばね下間距離が目標距離になるように、エア給排装置80の作動が制御され、各車輪12のばね上ばね下間距離が目標設定車高に応じた距離に変更されるのである。さらに、この車高変更制御では、例えば、乗員数の変化,荷物の積載量の変化等による車高の変動に対処することを目的とした、いわゆるオートレベリングと呼ばれる制御も行われる。
i)振動減衰制御
振動減衰制御では、車体および車輪12の振動を減衰するためにその振動の速度に応じた大きさのアクチュエータ力を発生させるべく、アクチュエータ力の振動減衰成分FVが決定される。つまり、いわゆるスカイフック理論に基づいた制御と、いわゆるグランドフック理論に基づいて制御との両者を行う制御である。具体的には、車体のマウント部24に設けられた縦加速度センサ176によって検出される縦加速度から計算される車体のマウント部24の上下方向の動作速度、いわゆる、ばね上速度VUと、ロアアーム22に設けられた縦加速度センサ178によって検出される縦加速度から計算される車輪12の上下方向の動作速度、いわゆる、ばね下速度VLとに基づいて、次式に従って、振動減衰成分FVが演算される。
V=CU・VU−CL・VL
ここで、CUは、車体のマウント部24の上下方向の動作速度に応じた減衰力を発生させるためのゲインであり、CLは、車輪12の上下方向の動作速度に応じた減衰力を発生させるためのゲインである。つまり、CU,CLは、いわゆるばね上,ばね下絶対振動に対する減衰係数と考えることができる。
ii)ロール抑制制御
車両の旋回時においては、その旋回に起因するロールモーメントによって、旋回内輪側のばね上部とばね下部とが離間させられるとともに、旋回外輪側のばね上部とばね下部とが接近させられる。ロール抑制制御では、その旋回内輪側の離間および旋回外輪側の接近を抑制すべく、旋回内輪側のアクチュエータ26にバウンド方向のアクチュエータ力を、旋回外輪側のアクチュエータ26にリバウンド方向のアクチュエータ力を、それぞれ、ロール抑制力として発生させる。具体的に言えば、まず、車体が受けるロールモーメントを指標する横加速度として、ステアリングホイールの操舵角δと車速vとに基づいて推定された推定横加速度Gycと、横加速度センサ174によって実測された実横加速度Gyrとに基づいて、制御に利用される横加速度である制御横加速度Gy*が、次式に従って決定される。
Gy*=K1・Gyc+K2・Gyr (K1,K2:ゲイン)
そのように決定された制御横加速度Gy*に基づいて、ロール抑制力成分FRが、次式に従って決定される。
R=K3・Gy* (K3:ゲイン)
iii)ピッチ抑制制御
車体の制動時等、減速時に発生する車体のノーズダイブに対しては、そのノーズダイブを生じさせるピッチモーメントによって、前輪側のばね上部とばね下部とが接近させられるとともに、後輪側のばね上部とばね下部とが離間させられる。また、車体の加速時に発生する車体のスクワットに対しては、そのスクワットを生じさせるピッチモーメントによって、前輪側のばね上部とばね下部とが離間させられるとともに、後輪側のばね上部とばね下部とが接近させられる。ピッチ抑制制御では、それらの場合の接近・離間距離を抑制すべく、アクチュエータ力をピッチ抑制力として発生させる。具体的には、車体が受けるピッチモーメントを指標する前後加速度として、前後加速度センサ172によって実測された実前後加速度Gxが採用され、その実前後加速度Gxに基づいて、ピッチ抑制力成分FPが、次式に従って決定される。
P=K4・Gx (K4:ゲイン)
なお、ピッチ抑制制御は、スロットルセンサ180によって検出されるスロットルの開度、あるいは、ブレーキ圧センサ182によって検出されるマスタシリンダ圧が、設定された閾値を超えることをトリガとして実行される。
iv)目標アクチュエータ力とモータの作動制御
アクチュエータ26の制御は、それが発生させるべきアクチュエータ力である目標アクチュエータ力に基づいて行われる。詳しく言えば、上述のようにして、アクチュエータ力の振動減衰成分FV,ロール抑制成分FR,ピッチ抑制成分FPが決定されると、それらに基づき、次式に従って目標となるアクチュエータ力F*が決定される。
*=FV+FR+FP
そして、上述のように決定された目標アクチュエータ力F*に基づいて、目標となるデューティ比が決定され、そのデューティ比に基づいた指令がインバータ146に送信される。インバータ146は、その適切なデューティ比の下、目標アクチュエータ力を発生させるようにモータ54を駆動する。
≪特定抵抗力制御≫
上述したように、本サスペンションシステム10では、通常、ばね上部,ばね下部の上下方向の速度に比例した減衰力を発生させる第1制御としての上記振動減衰制御と、専らバッテリ150からの電力供給を受けて力を発生させる車体姿勢制御との総合的な制御、つまり、アクティブ制御が実行されており、アクチュエータ26によって消費される電力量は多くなる。そこで、本システム10においては、上記アクティブ制御は、良好な減衰振動特性が要求される場合に実行され、それ以外の場合には、専らモータ54によって発電された電流がバッテリ150に回生されるように、ストローク速度VStに応じた特定の大きさの抵抗力となるアクチュエータ力を発生させる特定抵抗力制御が実行されるようになっている。つまり、特定抵抗力制御は、上記第1制御としての振動減衰制御とは異なる振動減衰制御である第2制御である。
例えば、車両の走行速度が高くなるほど、路面入力に対する車両に生じる振動は大きくなるため、走行速度が高い場合には、上記アクティブ制御が実行されることが望ましい。また、例えば、路面が粗い道路や起伏が大きい道路を走行している場合,急ブレーキや急加速時,急カーブのコーナリング時等は、車体の挙動は比較的大きくなる。そのような車体の挙動が大きくなる場合にも、上記アクティブ制御が実行されることが望ましい。本システム10では、車速センサ162によって検出された車速vが閾値v1以下である場合に、特定抵抗力制御が実行される。また、車速vが閾値v1以下であっても、車体の挙動が比較的大きくなることが推定される場合には、アクティブ制御が実行される。詳しくは、車両に作用する加速度、つまり、マウント部24に設けられた縦加速度センサ176によって検出される縦加速度GzU,ロアアーム22に設けられた縦加速度センサ178によって検出される縦加速度GzL,前後加速度センサ172によって検出された前後加速度Gx,横加速度センサ174によって実測された実横加速度Gyrのいずれかが、それぞれの閾値であるG1,G2,G3,G4以上となった場合に、アクティブ制御が実行され、それ以外の場合に、特定抵抗力制御が実行される。
特定抵抗力制御が実行される場合には、先に説明したように、アクチュエータ力がストローク速度VStに応じた特定の大きさの抵抗力となるように、詳しくは、ストローク速度VStに対して回生される電流量がもっとも大きくなるような大きさの抵抗力となるように制御される。具体的には、特定抵抗力制御においては、目標アクチュエータ力F*が次式に従って決定されるのである。
*=−(C/2)・VSt
なお、後に詳しく説明するが、Cはモータ54の通電端子間を短絡させた場合における減衰係数である。そして、この決定された目標アクチュエータ力F*に基づいて、目標となるデューティ比が決定され、そのデューティ比に基づいた指令がインバータ146に送信される。インバータ146は、その適切なデューティ比とすることで、発電電流をバッテリ150に回生しつつ、抵抗力を発生させるようにモータ54を駆動するのである。
以下に、その特定抵抗力制御における目標アクチュエータ力の決定が、上記の式によって行われることについて詳しく説明する。図5に、本サスペンションシステム10の等価回路図を示す。まず、アクチュエータ26が、目標となるアクチュエータ力Fを発生させる際に必要な電力、つまり、回路内の抵抗によって消費されるエネルギである消費エネルギEを考える。その消費エネルギEは、電源電圧eとモータ54を流れる通電電流iとの積であるから、それら通電電流i,電源電圧eを順に求める。
モータ54の回転トルクTqは通電電流iに比例するため次式によってによって表される。
Tq=KT・i (KT:モータ定数)
その回転トルクTqとアクチュエータ力Fとの関係は、ねじロッド50のリードをLとすると、次式よって表される。
F=(2π/L)・Tq
それらの2つの式から通電電流iは次式で表されることになる。
i=F/ψ (ψ=KT・2π/L) ・・・(1)
また、モータ54の回転速度ωの場合、回路内の抵抗をRとすると、電源電圧eと通電電流iとは次式のような関係が成り立つ。
i=(e−KT・ω)/R
また、回転速度ωとストローク速度VStとの関係は、次式によって表される。
St=(L/2π)・ω
それらの2つの式から電源電圧eは次式で表されることになる。
e=R・i+ψ・VSt
そして、この式に(1)式を代入すると次式が得られる。
e=F・(R/ψ)+ψ・VSt ・・・(2)
したがって、消費エネルギEは、E=e・iであるため、(1)式,(2)式から次式によって表されることになる。
E=F2・(R/ψ2)+F・VSt ・・・(3)
ここで、モータ54の通電端子間を短絡させた場合を考える。その場合、消費エネルギE=0となるため、(3)式から短絡時のアクチュエータ力FSが、次式のように得られることになる。
S=−(ψ2/R)・VSt
アクチュエータ力は、ストローク速度に比例する(ダンパ特性)ことから、上記の式におけるψ2/Rは、短絡時におけるモータ54の減衰係数Cであるといえる。そして、そのC=ψ2/Rおよびダンパ特性F=−Cd・VSt(Cd:減衰係数)を(3)式に代入すれば、次式となる。
E=(Cd2−C・Cd)・VSt 2/C ・・・(4)
したがって、Cd<Cの場合に消費エネルギEが負の値となり、モータ54によって発電された電流が回生されることを表している。そして、Cd=C/2の場合に消費エネルギEが最小、つまり、回生される電流量がもっとも大きくなるのである。以上ことから、システムの省電力化という観点から、特定抵抗力制御における目標アクチュエータ力F*は、式F*=−(C/2)・VStによって決定されるのである。
以上のように、本サスペンションシステム10は、(a)ばね上速度とばね下速度とに基づいてアクチュエータ力を制御する第1制御としての振動減衰制御と、(b)アクチュエータ力の発生を専らモータ54による発電を伴うものとすべく、ばね上部とばね下部との相対動作に対してその相対動作の速度に応じた特定の大きさの抵抗力となるアクチュエータ力を発生させる第2制御としての特定抵抗力制御とを、切換可能に構成されている。なお、その特定抵抗力制御においては、アクチュエータ力が、モータ54の各相の通電端子間を短絡させた場合に得られる抵抗力の1/2の大きさとなる抵抗力として発生させられ、回生される電流量がもっとも大きくされている。つまり、本サスペンションシステム10は、この特定抵抗力制御が実行されることによって、効率的に発電電流を回生して、システム10の電力消費を抑制することが可能とされているのである。
≪アクチュエータの制御フロー≫
上述のようなアクチュエータ26の制御は、図6にフローチャートを示すアクチュエータ制御プログラムが、イグニッションスイッチ160がON状態とされている間、短い時間間隔(例えば、数msec〜数十msec)をおいてコントローラ142により繰り返し実行されることによって行われる。以下に、その制御のフローを、図に示すフローチャートを参照しつつ、簡単に説明する。なお、アクチュエータ制御プログラムは、4つの車輪12にそれぞれ設けられたスプリング・アブソーバAssy20のアクチュエータ26の各々に対して実行される。以降の説明においては、説明の簡略化に配慮して、1つのアクチュエータ26に対しての本プログラムによる処理について説明する。
本プログラムにおいては、まず、ステップ1(以下、「S1」と略す、他のステップも同様である)およびS2において、車速vによって、アクティブ制御,特定抵抗力制御のいずれを実行するかが判定される。車速vが閾速度v1より速い場合には、アクティブ制御が実行される。つまり、S6〜S9において、先に説明したような手法で、振動減衰成分FVと、ロール抑制成分FRと、ピッチ抑制成分FPとが決定され、それらを足し合わせて、目標アクチュエータ力F*が決定される。また、車速v=0、つまり、停車している場合および、車速vが閾速度v1以下で走行している場合には、S10以下の特定抵抗力制御が実行される。ただし、車速vが閾速度v1以下で走行している場合には、S3〜S5において、車体の挙動が比較的大きいか否かが、車両に作用している加速度GzU,GzL,Gx,実横加速度Gyrの各々がそれぞれの閾値であるG1,G2,G3,G4以上であるか否かによって判定され、車体の挙動が大きいと判定された場合には、S6以下のアクティブ制御が実行される。なお、特定抵抗力制御において用いられるストローク速度VStは、S10において、ストロークセンサ164による前回の本プログラム実行時における検出値と、今回の検出値との差をもって算定される。
以上のように決定されたモータ54の目標アクチュエータ力F*に基づいてデューティ比が決定され、そのデューティ比に応じた制御信号が、インバータ146に送信される。以上の一連の処理の後、アクチュエータ制御プログラムの1回の実行が終了する。
≪変形例≫
上述した実施例のサスペンションシステムにおいては、サスペンションスプリングとしてエアスプリング28が採用されていたが、コイルスプリングを採用してもよい。また、第2制御は、バッテリ150の充電量(残量)に応じて実行されるか否かが決定されるように、つまり、充電量が比較的少ない場合にのみ実行されるようにしてもよい。さらに、上記実施例における第2制御では、車体の挙動の大きさが縦加速度,前後加速度,横加速度に基づいて判断されていたが、縦加速度のみに基づいて判断されてもよい。その第2制御においては、現時点での加速度の値から車体の挙動の大きさが判断されていたが、現時点から遡った設定時間内における加速度の変化の具合から現時点での車体の挙動の大きさが推定されてもよい。なお、上記実施例における第2制御においては、第2制御が実行される場合に車体姿勢制御が実行されないようにされていたが、車体姿勢制御は、第1制御であるか第2制御であるかに関係なく実行されるようにされてもよい。
請求可能発明の実施例である車両用サスペンションシステムの全体構成を示す模式図である。 図1に示すスプリング・アブソーバAssyを示す正面断面図である。 図2のアクチュエータが備える電磁モータの制御を行う駆動回路等の回路図である。 図2のアクチュエータが備える電磁モータの回転速度と回転トルクとの関係を示す図である。 請求可能発明の実施例である車両用サスペンションシステムの等価回路図である。 図1に示すサスペンション電子制御ユニットによって実行されるアクチュエータ制御プログラムを表すフローチャートである。
符号の説明
10:車両用サスペンションシステム 20:スプリング・アブソーバAssy 22:ロアアーム(ばね下部) 24:マウント部(ばね上部) 26:アクチュエータ 28:エアスプリング 50:ねじロッド(雄ねじ部) 52:ナット(雌ねじ部) 54:電磁モータ 80:エア給排装置 140:サスペンション電子制御ユニット(制御装置) 146:インバータ(駆動回路) 148:コンバータ 150:バッテリ

Claims (5)

  1. ばね上部とばね下部との間に配設され、動力源としての電磁モータを有し、ばね上部とばね下部との相対動作に応じて動作するとともにその相対動作に対する抵抗力および推進力となるアクチュエータ力を発生させることで、ショックアブソーバとして機能する電磁式のアクチュエータと、
    前記電磁モータと電源との間に配設され、その電磁モータを駆動するとともに、起電力に依拠して電磁モータによって発電された電流を電源に回生可能な構造とされた駆動回路と、
    その駆動回路を制御することによって、前記アクチュエータ力を制御する制御装置と
    を備えた車両用サスペンションシステムであって、
    前記制御装置が、(a)ばね上速度とばね下速度との少なくとも一方に基づいて前記アクチュエータ力を制御する第1制御と、(b)前記アクチュエータ力の発生を専ら前記電磁モータによる発電を伴うものとすべく、ばね上部とばね下部との相対動作に対してその相対動作の速度に応じた特定の大きさの抵抗力となる前記アクチュエータ力を発生させる第2制御とを、切換可能に構成されたことを特徴とする車両用サスペンションシステム。
  2. 前記制御装置が、車両の走行速度が比較的高い場合に前記第1制御を実行し、比較的低い場合に前記第2制御を実行するように構成された請求項1に記載の車両用サスペンションシステム。
  3. 前記制御装置が、車体の挙動が比較的大きい場合に前記第1制御を実行し、比較的小さい場合に前記第2制御を実行するように構成された請求項1または請求項2に記載の車両用サスペンションシステム。
  4. 前記第2制御が、電源に回生される電流がもっとも大きくなる大きさの抵抗力となる前記アクチュエータ力を発生させる制御である請求項1ないし請求項3のいずれかに記載の車両用サスペンションシステム。
  5. 前記第2制御が、前記電磁モータの通電端子間を短絡させた場合において発生する抵抗力の1/2の大きさの抵抗力となる前記アクチュエータ力を発生させる制御である請求項1ないし請求項4のいずれかに記載の車両用サスペンションシステム。
JP2006346388A 2006-12-22 2006-12-22 車両用サスペンションシステム Expired - Fee Related JP4775250B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006346388A JP4775250B2 (ja) 2006-12-22 2006-12-22 車両用サスペンションシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006346388A JP4775250B2 (ja) 2006-12-22 2006-12-22 車両用サスペンションシステム

Publications (2)

Publication Number Publication Date
JP2008155756A true JP2008155756A (ja) 2008-07-10
JP4775250B2 JP4775250B2 (ja) 2011-09-21

Family

ID=39657171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006346388A Expired - Fee Related JP4775250B2 (ja) 2006-12-22 2006-12-22 車両用サスペンションシステム

Country Status (1)

Country Link
JP (1) JP4775250B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018111393A (ja) * 2017-01-11 2018-07-19 トヨタ自動車株式会社 サスペンション装置
CN113232566A (zh) * 2021-07-01 2021-08-10 周宇 Ai电磁瞬控主动防震座椅及其方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274281A (ja) * 1997-03-28 1998-10-13 Mitsubishi Heavy Ind Ltd 振動減衰装置
JP2004266907A (ja) * 2003-02-28 2004-09-24 Sony Corp 回生装置及び自転車

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274281A (ja) * 1997-03-28 1998-10-13 Mitsubishi Heavy Ind Ltd 振動減衰装置
JP2004266907A (ja) * 2003-02-28 2004-09-24 Sony Corp 回生装置及び自転車

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018111393A (ja) * 2017-01-11 2018-07-19 トヨタ自動車株式会社 サスペンション装置
CN113232566A (zh) * 2021-07-01 2021-08-10 周宇 Ai电磁瞬控主动防震座椅及其方法

Also Published As

Publication number Publication date
JP4775250B2 (ja) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4525660B2 (ja) 車両用サスペンションシステム
JP4519113B2 (ja) 車両用サスペンションシステム
JP4743276B2 (ja) 車両用サスペンションシステム
JP4894545B2 (ja) 車両用サスペンションシステム
JP4643416B2 (ja) 車両制振装置
JP4858292B2 (ja) 車両用サスペンションシステム
JP4775250B2 (ja) 車両用サスペンションシステム
JP4788675B2 (ja) 車両用サスペンションシステム
JP4894501B2 (ja) 車両用サスペンションシステム
JP2008162333A (ja) 車両用サスペンションシステム
JP5272799B2 (ja) 車両用サスペンションシステム
JP5187252B2 (ja) 車両用サスペンションシステム
JP2008114745A (ja) 車両用サスペンションシステム
JP2008296802A (ja) 車両用サスペンションシステム
JP4946714B2 (ja) 車両用サスペンションシステム
JP4631847B2 (ja) 車両用サスペンションシステム
JP4888078B2 (ja) 車両用サスペンションシステム
JP2009196484A (ja) 車両用サスペンションシステム
JP5088014B2 (ja) 車両用サスペンションシステム
JP2009096315A (ja) 車両用サスペンションシステム
JP4693055B2 (ja) 車両用サスペンションシステム
JP2008222023A (ja) 車両用電磁式アブソーバシステム
JP4582068B2 (ja) 車両用サスペンションシステム
JP5266811B2 (ja) 車両用サスペンションシステム
JP2009202623A (ja) 車両用サスペンションシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees