JP2008153439A - 半導体装置及び半導体装置の製造方法 - Google Patents

半導体装置及び半導体装置の製造方法 Download PDF

Info

Publication number
JP2008153439A
JP2008153439A JP2006339950A JP2006339950A JP2008153439A JP 2008153439 A JP2008153439 A JP 2008153439A JP 2006339950 A JP2006339950 A JP 2006339950A JP 2006339950 A JP2006339950 A JP 2006339950A JP 2008153439 A JP2008153439 A JP 2008153439A
Authority
JP
Japan
Prior art keywords
film
hole
silicon oxide
semiconductor device
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006339950A
Other languages
English (en)
Inventor
Tsuguhiro Horikawa
貢弘 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2006339950A priority Critical patent/JP2008153439A/ja
Publication of JP2008153439A publication Critical patent/JP2008153439A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】半導体装置のキャパシタ層間絶縁膜に高いアスペクト比の孔を空けることで、キャパシタ電極の面積を増大させることが可能な半導体装置及びその製造方法を提供する。
【解決手段】半導体基板1上に形成されたメモリセル選択用トランジスタTrと、メモリセル選択用トランジスタTrのソース・ドレインにコンタクトプラグ25を介して接続された蓄積容量部24とを具備してなり、メモリセル選択用トランジスタTrの半導体基板1と反対側に、少なくとも第1の酸化シリコン膜32、ポリシリコン膜33及び第2の酸化シリコン膜34が順次積層されてなる積層膜35が備えられ、積層膜35にはコンタクトプラグ25を露出させる貫通孔35aが形成され、蓄積容量部24が貫通孔35aの内面に形成されていることを特徴とする半導体装置を採用する。
【選択図】図1

Description

本発明は、半導体装置及び半導体装置の製造方法に関するものであり、特に、キャパシタを備えた半導体装置及びその製造方法に関するものである。
近年、コンピューターや電気機器の主要部分には、多数のMOSトランジスタや抵抗等を一つのチップ上に集積化する大規模集積回路(以下、LSIという)が採用されている。LSIの中でも、例えば、DRAM(Dynamic Random Access Memory)などの素子においては、急速な微細化が進んでいる。
DRAMのキャパシタには,トレンチ型やスタック型と呼ばれるものがある。トレンチ型のキャパシタは、シリコン基板に形成された溝の側壁を利用するキャパシタであり(非特許文献1)、一方、スタック型のキャパシタは、MOSFETの上に配置した積層型のキャパシタである(非特許文献2)。DRAMでは、信号電圧を確保するために,微細化が進んでも25乃至30fF/bit程度のキャパシタ容量が必要とされている。そこで、従来から、キャパシタの電極面積を大きくすることで容量の増大が図られている。
積層型キャパシタでは、下部電極の多結晶シリコンの厚さを厚くし、下部電極の表面と側面を使うことでキャパシタ電極面積を大きくしてきた。その後、キャパシタをビット線の上に形成するCOB(Capacitor Over Bit line)構造が採用され(非特許文献3)、円筒(シリンダー)型のキャパシタが形成され、円筒の内と外の壁をキャパシタの電極面として利用できるようになってきた。
更には電極表面に凹凸を形成して面積を増大させるHSG(Hemi-Spherical Grain)と呼ばれる技術が採用され(非特許文献4)、これによる電極面積を2倍程度に増やせるようになってきた。このHSG技術は、非晶質シリコン上でシリコンが移動する現象を利用して、表面上に飛び出た領域とへこんだ領域を形成する方法である。しかしながら,微細化が進むとシリンダーの内壁と外壁の両方を利用することやシリンダ内壁に凹凸を形成することが難しくなる。
COB構造やHSG技術を利用可能にするためには、キャパシタを構成するシリンダの深さ(高さ)を大きくする必要がある。このようなシリンダは、例えば以下のような方法で形成される。
まず、トランジスタを形成後のウェーハ全面にCVD法でシリコン酸化膜を形成し、その上にホトリソグラフィー技術でマスクを形成する。次に,マスクで覆われていない領域のシリコン酸化膜をドライエッチング技術で除去してシリコン酸化膜に孔を形成し、その後、マスクや異物を除去する。このシリコン酸化膜が、キャパシタの層間絶縁膜となる。
ここから積層型のキャパシタを形成する工程が始まる。層間絶縁膜であるシリコン酸化膜にドライエッチングによって形成した孔はほぼ円筒形で、その底面および内側および外側の側面(壁)を覆うように下部電極、誘電体膜及び上部電極を形成する。その後、プレート電極を成膜し、フォトリソグラフィ技術でマスクを形成する。マスクに覆われていないプレート電極、上部電極、誘電体膜及び下部電極を一緒にドライエッチングで除去する。この方法ではシリコン酸化膜をドライエッチングして孔を形成するが、シリコン酸化膜に対して選択比(ドライエッチング速度比)の高いマスク材料がないため、深い孔を形成する途中でマスクが先にエッチングされてしまい、深い孔を形成することが難しくなってきている。
また、従来の半導体装置では,上述のようにキャパシタ層間絶縁膜に酸化シリコンを用いることが主であったが、この場合、高いアスペクト比の孔を形成しようとすると横方向の孔の拡がりの不均一が問題となる、いわゆるボーイングの問題が発生する。これによって隣接する孔とのショートが問題となり、シリコン酸化膜に対して高いアスペクト比の孔を空けることは難しい状況であった。
一方,トレンチ型キャパシタでは、シリコン基板をエッチングして溝を形成するが、シリコン酸化膜をエッチングする場合に比べて選択比が大きく相対的に深い溝を形成することができる。そのため、電極の表面積を大きくすることができる。しかしながら、この方法には二つの問題がある。
一つは、キャパシタに用いる誘電体膜の耐熱性である。トレンチ型ではキャパシタを形成した後にトランジスタのソース,ドレインを形成するためにドーパントをイオン注入し1000℃以上で熱処理を行う。この熱処理によって誘電体膜が劣化しリーク電流が大きくなるおそれがある。また、電極に用いられる金属材料も劣化してしまう。現状では、この熱処理に耐えられるキャパシタ用の下部電極及び誘電体は、SiO/Si系、SiO/Al系またはSiO/HfSiO系のみに限られてきた。つまり、下部電極は酸化シリコンでなければならず、実効的な誘電体厚さを薄くすることができないという問題があった。
二つ目の問題は、トレンチ型キャパシタでは積層型キャパシタのようにCOB構造を採用できないので、積層型に比べて隣接するトレンチとの干渉が問題となる。
以上のような理由から、積層型スタック構造で電極表面積を大きくできる技術の開発が望まれている。
M.Koyanagi,H.Sunami,N.Hashimoto and M.Ashikawa,IEEE Int.Electron Devices Meeting,Tech.Dig.,p.348(1978) H.Sunami,T.Kure,N.Hashimoto,K.Ito,T.Toyabe and S.Asai,IEEE Int.Electron Devices Meeting,Tech.Dig.,p.806(1982) S.Kimura,Y.Kawamoto,T.Kure,N.Hasegawa,T.Kisu,J.Etoh,M.Aoki,E.Takeda,H.Sunami and K.Itoh,IEEE Trans.Electron Devices 37 (1990)737 H.Watanabe,N.Aoto,S.Adachi,T.Ishijima,E.Ikawa and K.Terada,Extended Abstracts of the 22th (1990 International)Conference on Solid State Devices and Materials,Sendai,p.873(1990)
本発明は、上記事情に鑑みてなされたものであって、半導体装置のキャパシタ層間絶縁膜に高いアスペクト比の孔を空けることで、キャパシタ電極の面積を増大させることが可能な半導体装置及びその製造方法を提供することを目的とする。
上記の目的を達成するために、本発明は以下の構成を採用した。
本発明の半導体装置は、半導体基板上に形成されたメモリセル選択用トランジスタと、前記メモリセル選択用トランジスタのソース・ドレインにコンタクトプラグを介して接続された蓄積容量部とを具備してなり、前記メモリセル選択用トランジスタの前記半導体基板と反対側に、少なくとも第1の酸化シリコン膜、ポリシリコン膜及び第2の酸化シリコン膜が順次積層されてなる積層膜が備えられ、前記積層膜には前記コンタクトプラグを露出させる貫通孔が形成され、前記蓄積容量部が前記貫通孔の内面に形成されていることを特徴とする。
また、本発明の半導体装置においては、前記貫通孔の内面の少なくとも一部が、窒化シリコン絶縁膜または酸化シリコン絶縁膜で被覆されていることが好ましい。
更に、本発明の半導体装置においては、前記コンタクトプラグの前記貫通孔側に、リンまたは砒素がイオン注入されていることが好ましい。
上記の半導体装置によれば、第1の酸化シリコン膜、ポリシリコン膜及び第2の酸化シリコン膜からなる積層膜に貫通孔が形成され、この貫通孔に蓄積容量部が形成されており、ポリシリコン膜の厚みを大きくすることで貫通孔の内面の表面積が拡大され、これにより蓄積容量部の電極面積が拡大されて、静電容量部の静電容量を向上させることができる。
また、上記の半導体装置によれば、貫通孔の内面に、窒化シリコン絶縁膜または酸化シリコン絶縁膜が形成されているので、蓄積容量部の絶縁性を高めることができ、静電容量のロスを防止できる。更に、これら絶縁膜によって、蓄積容量部の構成材料のポリシリコン膜への拡散を防止できる。
また、上記の半導体装置によれば、コンタクトプラグの貫通孔側に、リンまたは砒素がイオン注入されているので、コンタクトプラグの抵抗率を低下させることができ、蓄積容量部の静電容量を更に高めることができる。
次に、本発明の半導体装置の製造方法は、半導体基板上に形成された、ソース・ドレインに接続されるコンタクトプラグを有するメモリセル選択用トランジスタの上方に、少なくとも第1の酸化シリコン膜、ポリシリコン膜及び第2の酸化シリコン膜を積層して積層膜を形成する工程と、前記積層膜に貫通孔を設けて、前記コンタクトプラグを露出させる工程と、前記貫通孔の内面に、前記コンタクトプラグに接続される蓄積容量部を形成する工程と、を具備してなることを特徴とする。
また、本発明の半導体装置の製造方法においては、前記積層膜に前記貫通孔を設けるとともに、前記貫通孔の内面の少なくとも一部に、窒化シリコン絶縁膜または酸化シリコン絶縁膜を形成することが好ましい。
更に、本発明の半導体装置の製造方法においては、前記第2の酸化シリコン膜及び前記ポリシリコン膜をエッチングすることにより、前記第1の酸化シリコン膜のみを残した状態で前記積層膜に前記貫通孔の一部を形成し、次いで、少なくとも、エッチングにより形成された前記ポリシリコン膜の内面に、窒化シリコン絶縁膜または酸化シリコン絶縁膜を形成し、次いで残存した前記第1の酸化シリコン膜を除去することにより、前記貫通孔を完成させることが好ましい。
更にまた、本発明の半導体装置の製造方法においては、前記積層膜に前記貫通孔を設けた後、前記コンタクトプラグの前記貫通孔側に、リンまたは砒素をイオン注入することが好ましい。
また、本発明の半導体装置の製造方法においては、前記窒化シリコン絶縁膜または前記酸化シリコン絶縁膜をCVD(Chemical Vapor Deposition)法またはALD(Atomic layer CVD)法により形成することが好ましい。
更に、本発明の半導体装置の製造方法においては、前記酸化シリコン絶縁膜を熱酸化法により形成することが好ましい。
更にまた、本発明の半導体装置の製造方法においては、前記ポリシリコン膜の形成後に、前記ポリシリコン膜を再結晶化させる熱処理を行うことが好ましい。
上記の半導体装置の製造方法によれば、第1の酸化シリコン膜、ポリシリコン膜及び第2の酸化シリコン膜からなる積層膜を形成してからこの積層膜に貫通孔を形成し、この貫通孔に蓄積容量部を形成するので、ポリシリコン膜の厚みを大きくすることで貫通孔の内面の表面積が拡大され、これにより蓄積容量部の電極面積が拡大されて、静電容量部の静電容量を向上させることができる。
また、酸化シリコンに比べて、マスクに対するエッチング選択率が高い(マスクよりもエッチング速度が低い)ポリシリコン膜を用いることによって、マスクが完全にエッチングされる前にポリシリコン膜に深い貫通孔を形成することが可能になる。
また、ポリシリコン膜は従来の酸化シリコン膜に比べて、アスペクト比の高い貫通孔を形成できるので、隣接する貫通孔同士が相互に連通して、蓄積容量部同士がショートするおそれがない。なお、ポリシリコン膜にアスペクト比の高い貫通孔を形成できるのは、ポリシリコン膜は、貫通孔の経方向へのエッチング速度が、従来の酸化シリコン膜に比べて低いため、貫通孔の経方向への広がりが均一となり、いわゆるボーイングの問題が回避できるためである。
また、上記の半導体装置の製造方法によれば、第1の酸化シリコン膜を貫通孔形成の際のエッチングストッパとして利用できる。また、貫通孔の内面に、窒化シリコン絶縁膜または酸化シリコン絶縁膜を形成するので、蓄積容量部の絶縁性を高めることができ、これにより静電容量のロスを防止できる。更に、これら絶縁膜の形成によって、その後に形成する蓄積容量部の構成材料のポリシリコン膜への拡散を防止できる。また、第1の酸化シリコン膜を残した状態でこれら絶縁膜を形成し、その後にこれらの膜を除去することで、絶縁膜を貫通孔の側壁面のみに形成することができ、コンタクトプラグと蓄積容量部との導通を確保することができる。
また、上記の半導体装置の製造方法によれば、コンタクトプラグの貫通孔側に、リンまたは砒素をイオン注入するので、コンタクトプラグの抵抗率を低下させることができ、蓄積容量部の静電容量を更に高めることができる。
また、窒化シリコン絶縁膜または酸化シリコン絶縁膜をステップカバレッジ性に優れたCVD法またはALD法で形成することにより、貫通孔の内面にこれらの絶縁膜を均一に形成することができる。
また、酸化シリコン絶縁膜を熱酸化法で形成することにより、ポリシリコン膜の内面に酸化シリコン絶縁膜を均一に形成することができる。
また、ポリシリコン膜の形成後に、ポリシリコン膜を再結晶化させる熱処理を行うことで、アスペクト比のより高い貫通孔を形成することができる。
本発明によれば、半導体装置のキャパシタ層間絶縁膜に高いアスペクト比の孔を空けることで、キャパシタ電極の面積を増大させることが可能な半導体装置及びその製造方法を提供することができる。
「半導体装置」
以下、本発明の実施の形態を図面を参照して説明する。本実施形態では、半導体装置をDRAM素子に適用した例について説明する。図1は、本実施形態の半導体装置であるDRAM素子の断面構造を示す模式図であって、(a)がメモリセル部の断面構造を示す図であり、(b)が周辺回路部の断面構造を示す模式図である。尚、以下の説明において参照する図面は、半導体装置及びその製造方法を説明する図面であり、図示される各部の大きさや厚さや寸法等は、実際の半導体装置の寸法関係とは異なっている。
本実施形態の半導体装置に係るDRAM素子は、メモリセル部と周辺回路部とから概略構成されている。最初に、メモリセル部について図1(a)を用いて説明する。メモリセル部は、図1(a)に示すように、メモリセル選択用のMOSトランジスタTr(メモリセル選択用トランジスタ)と、MOSトランジスタTrにコンタクトプラグ9A及び容量コンタクトプラグ25を介して接続された蓄積容量部24とから概略構成されている。
図1(a)において、半導体基板1は所定濃度の不純物を含有する半導体、例えばシリコンにて形成されている。この半導体基板1には、素子分離絶縁膜3が形成されている。素子分離絶縁膜3は、半導体基板1の表面にSTI(Shallow Trench Isolation)法により、活性領域K以外の部分に形成され、隣接する活性領域Kを絶縁分離している。本実施形態では、1つの活性領域Kに2ビットのメモリセルが配置されるセル構造に本発明を適用した場合の一例構造を示している。
半導体基板1において素子分離絶縁膜3に区画された活性領域Kには、不純物拡散領域からなるソース8A及びドレイン8Bが離間して形成され、ソース8Aとドレイン8Bとの間にゲート電極5が形成されている。ソース8A及びドレイン8Bは、例えば砒素などのN型不純物が拡散されて構成されている。
また、ゲート電極5は、多結晶シリコン膜と金属膜との多層膜により形成されており、多結晶シリコン膜はCVD法(Chemical Vapor Deposition)での成膜時に不純物を含有させて形成するドープド多結晶シリコン膜を用いることができる。金属膜は、タングステン(W)やタングステンシリサイド(WSi)等の高融点金属を用いることができる。更に、ゲート電極5と半導体基板1との間にはゲート絶縁膜5aが形成されている。また、ゲート電極5は窒化シリコンなどの絶縁膜5bによって被覆されている。
また、図1(a)に示すように、半導体基板1上には第1の層間絶縁膜4が形成され、第1の層間絶縁膜4にはコンタクトホール4aが設けられ、このコンタクトホール4aにはソース8A及びドレイン8Bに接続されるコンタクトプラグ9Aが形成されている。コンタクトプラグ9Aは、たとえば、リンドープドシリコン層から構成される。
更に、第1の層間絶縁膜4の上には第2の層間絶縁膜10が積層され、第2の層間絶縁膜10にはコンタクトプラグ9Aに接続されるビット線コンタクトプラグ9Bが形成されている。ビット線コンタクトプラグ9Bは、Ti/TiN膜12と、タングステンからなる金属膜13とが積層されて構成されている。このTi膜はビット線コンタクトプラグ9Bを構成するシリコンと反応し、チタンシリサイドを形成する。
ビット線コンタクトプラグ9Bに接続するようにビット線106が形成されている。ビット線106は窒化タングステンおよびタングステンからなる積層膜で構成され、ビット線106は窒化シリコン等の絶縁膜106aによって被覆されている。
第2の層間絶縁膜10の上には、ビット線106を覆うように、第3の層間絶縁膜21が形成されている。また、第2の層間絶縁膜10および第3の層間絶縁膜21を貫通してコンタクトプラグ9Aに接続するように、容量コンタクトプラグ25がポリシリコン等で形成されている。また、第3の層間絶縁膜21上には、第1の窒化シリコン層間膜31、第1の酸化シリコン膜32、ポリシリコン膜33及び第2の酸化シリコン膜34が順次積層されている。第1の酸化シリコン膜32、ポリシリコン膜33及び第2の酸化シリコン膜34によって本発明に係る積層膜35が構成されている。そして、積層膜35には、容量コンタクトプラグ25に接続する蓄積容量部24が形成されている。
第1の酸化シリコン膜32及び第2の酸化シリコン膜34の厚みは例えば0.05μm乃至0.5μmの範囲とされ、ポリシリコン膜33の厚みは例えば1.5μm乃至3μmの範囲とされている。
蓄積容量部24は、積層膜35に形成された貫通孔35aの内部に、下部電極膜24a、誘電体膜24b及び上部電極24cが順次形成されて構成されている。下部電極膜24aは、容量コンタクトプラグ25を介してMOSトランジスタTrに接続されている。容量コンタクトプラグ25の貫通孔35a側には、砒素、リン等のN型不純物がイオン注入法によって打ち込まれており、これにより容量コンタクトプラグ25と下部電極膜24aとの間における抵抗率が低減されている。また、誘電体膜24bは、隣接する貫通孔35a同士の間で連続している。また、上部電極24cも誘電体膜24bと同様に、隣接する貫通孔35a同士の間で連続しており、この上部電極24cがプレート電極になっている。上部電極24cには更にタングステン等からなる導電膜26が積層され、更にその上には配線層27が形成されている。配線層27は、窒化タングステンおよびタングステンからなる積層膜で構成されている。
また、貫通孔35aの側壁面及び第2の酸化シリコン膜34の上には、窒化シリコン絶縁膜28が形成されている。
次に、図1(b)を参照して周辺回路部について説明する。周辺回路部には、半導体基板1に埋め込まれた素子分離絶縁膜3と、半導体基板1上に形成されたゲート電極105と、ゲート電極105と半導体基板1との間に形成されたゲート絶縁膜105aと、ゲート電極105を覆う窒化シリコン等からなる絶縁膜105bが形成されている。
また、図1(b)に示すように、半導体基板1上には第1の層間絶縁膜4及び第2の層間絶縁膜10が形成され、第1の層間絶縁膜4及び第2の層間絶縁膜10にはコンタクトホール4bが設けられ、このコンタクトホール4bにはコンタクトプラグ9Cが形成されている。コンタクトプラグ9Cは、たとえば、リンドープドシリコン層から構成される。
更に、第2の層間絶縁膜10の上には、コンタクトプラグ9Cに接続するようにビット線106が形成され、ビット線106は窒化シリコン等の絶縁膜106aによって被覆されている。
更に図1(b)に示すように、第2の層間絶縁膜10の上には、ビット線106を覆う第3の層間絶縁膜21が積層され、第3の層間絶縁膜21の上には第1の窒化シリコン層間膜31が形成され、第1の窒化シリコン層間膜31上には酸化シリコンからなる第4の層間絶縁膜134が形成され、第4の層間絶縁膜134の上には第2の窒化シリコン層間膜135が形成され、更にその上には酸化シリコンからなる第5の層間絶縁膜136が形成されている。また、第5の層間絶縁膜136上には配線層127が形成されている。そして、配線層127とビット線106とが、コンタクトプラグ140によって接続されている。
「半導体装置の製造方法の一例」
次に、上記の半導体装置の製造方法の一例について図2乃至図9を参照して説明する。
本実施形態の半導体装置の製造方法は、MOSトランジスタTr等を形成後のメモリセル部の形成領域に、積層膜35を形成する工程と、積層膜35に貫通孔35aを形成する工程と、貫通孔35a内の一部に窒化シリコン絶縁膜28を形成する工程と、窒化シリコン絶縁膜28を形成後の貫通孔35a内に蓄積容量部24を形成する工程とから概略構成されている。
「積層膜35の形成工程」
本工程の前に、MOSトランジスタTr等を形成する。すなわち図2(a)に示すように、メモリセル部側の半導体基板1上に、ゲート電極5、ゲート絶縁膜5a、ソース8A及びドレイン8BからなるMOSトランジスタTrを形成し、半導体基板1上には第1、第2、第3の層間絶縁膜4、10、21を順次積層する。また、各層間絶縁膜4、10、21にはコンタクトプラグ9A及び容量コンタクトプラグ25並びにビット線コンタクトプラグ9Bを形成する。更に、第2の層間絶縁膜10の上にはビット線コンタクトプラグ9Bに接続されるビット線106を形成する。
また、図2(b)に示すように、周辺回路部側の半導体基板1上には、ゲート電極105及びゲート絶縁膜105aを形成する。また、半導体基板1上には第1、第2、第3の層間絶縁膜4、10、21を順次積層し、各層間絶縁膜4、10、21にはコンタクトプラグ9Cを形成する。そして、第2の層間絶縁膜10の上にはコンタクトプラグ9Cに接続されるビット線106を形成する。
そして、本工程では、図2(a)及び図2(b)に示すように、第3の層間絶縁膜21上に、厚さ50nmの第1の窒化シリコン層間膜31と、厚さ2μmの酸化シリコンからなる第4の層間絶縁膜134と、厚さ50nmの第2の窒化シリコン層間膜135とを順次積層する。次に、周辺回路部側の第2の窒化シリコン層間膜135上に、ハードマスク層M及びフォトレジスト層Mを形成する。
ハードマスク層Mの材質は、例えばアモルファスカーボン等が好ましい。また、ハードマスク層Mの膜厚は、例えば0.3μm〜1.5μmの範囲が好ましい。また、フォトレジスト層Mの膜厚は、例えば100nm〜500nmの範囲が好ましく、例えば300nmがよい。
また、ハードマスク層Mとフォトレジスト層Mとの間にSiO/SiONの積層膜からなる反射防止膜を形成してもよい。
次に、図3(a)及び図3(b)に示すように、ハードマスク層M及びフォトレジスト層Mをマスクにして、メモリセル部側の第4の層間絶縁膜134及び第2の窒化シリコン層間膜135をドライエッチングで除去する。メモリセル部側の第1の窒化シリコン層間膜31が、ドライエッチングの際のエッチングストッパとして機能する。また、このドライエッチングによって、フォトレジスト層Mのほとんど全部が同時にエッチングされる。
次に、図4(a)及び図4(b)に示すように、メモリセル部側の第1の窒化シリコン層間膜31上に、例えば厚さ0.1μm〜0.5μmの第1の酸化シリコン膜32、厚さ1.5μm〜3μmのポリシリコン膜33及び厚さ0.1μm〜0.5μmの第2の酸化シリコン膜34を順次積層する。これら第1の酸化シリコン膜32、ポリシリコン膜33及び第2の酸化シリコン膜34は、周辺回路部側のハードマスク層M上にも順次積層される。各膜の積層後に、ハードマスク層Mを除去する。このとき、ハードマスク層M上の第1の酸化シリコン膜32、ポリシリコン膜33及び第2の酸化シリコン膜34はリフトオフされてハードマスク層Mと同時に除去される。また、ポリシリコン膜33の形成後に、ポリシリコン膜33の結晶性を高めるために700℃〜1150℃でアニール処理を行ってもよい。これにより、後の工程において形成する、貫通孔35aのアスペクト比をより高めることが可能になる。
そして、CMP法によって、第2の酸化シリコン膜34の上面を平坦化する。このときの平坦化は、好ましくは第2の酸化シリコン膜34の上面が、周辺回路部側の窒化シリコン膜135の上面と同一面になるように行なうとよい。
「貫通孔35aの形成工程及び窒化シリコン絶縁膜28の形成工程」
次に、図5(a)及び図5(b)に示すように、貫通孔形成用のハードマスク層M及びフォトレジスト層Mを、第2の酸化シリコン膜34及び窒化シリコン膜135の全面に形成する。そして、メモリセル部側のハードマスク層M及びフォトレジスト層Mに、貫通孔形成用の開口部Hを設ける。
ハードマスク層Mの材質は、ポリシリコンよりもエッチング速度が低い材質で形成することが好ましく、例えば、アモルファスカーボン、酸化シリコン、窒化シリコン等で形成することが好ましい。また、ハードマスク層Mの膜厚は、例えば300nm〜1000nmの範囲が好ましい。また、フォトレジスト層Mの膜厚は、例えば100nm〜500nmの範囲が好ましい。
次に、図6(a)及び図6(b)に示すように、第2酸化シリコン膜34及びポリシリコン膜33の開口部Hに対応する位置に、異方性エッチングを行って、予備貫通孔35b(貫通孔の一部)を形成する。これにより、第1の酸化シリコン膜32の一部が露出される。第1の酸化シリコン膜32はエッチングの際のエッチングストッパ層として機能する。その後、ハードマスク層M及びフォトレジスト層Mを除去する。
貫通孔形成用のハードマスク層Mは、ポリシリコン膜33に比べてエッチング速度が遅いので、ポリシリコン膜33に予備貫通孔35bを設けた後にも、ハードマスク層Mは膜厚が薄くなった状態で残存する。このように、予備貫通孔35bを形成する間にはハードマスク層Mが必ず存在することになるので、深い貫通孔35aを形成することが可能になる。
また、ポリシリコン膜33を異方性エッチングすることによって、従来のように酸化シリコンをエッチングした場合に比べて、予備貫通孔35bのアスペクト比が高められ、最終的に形成される貫通孔35aのアスペクト比も高められる。ここで、貫通孔35aのアスペクト比とは、貫通孔35aの深さを、貫通孔35aの開孔径で除した値である。
次に、図7(a)及び図7(b)に示すように、CVD法またはALD法によって、予備貫通孔35bの内部及び第2の酸化シリコン膜34の上に、窒化シリコン絶縁膜28を形成する。ステップカバレッジ性に優れたCVD法またはALD法を用いることによって、予備貫通孔35bの内部にも膜厚が均一な窒化シリコン絶縁膜28が形成される。
次に、異方性エッチングによって、予備貫通孔35bの底部に積層された窒化シリコン絶縁膜28と、その下の第1の酸化シリコン膜32及び第1の窒化シリコン層間膜31とを除去する。これにより、容量コンタクトプラグ25の上面が露出される。なお、予備貫通孔35bの側壁面に形成された窒化シリコン絶縁膜28はエッチングされずに残存する。このようにして、貫通孔35aが形成される。
更に、貫通孔35aの形成後に、貫通孔35aの底部に露出された容量コンタクトプラグ25に対して、砒素、リン等のN型不純物をイオン注入してもよい。これにより容量コンタクトプラグ25の抵抗率が低減され、後に形成する蓄積容量部24と容量コンタクトプラグ25との間の接続抵抗を低減できる。また、第2酸化シリコン膜34がイオン注入する際のポリシリコン膜33のマスク層となり、ポリシリコン膜33に対するイオン注入が防止される。
「蓄積容量部24の形成工程」
次に、メモリセル部側においては、図8(a)に示すように、窒化シリコン絶縁膜28の一部を含む貫通孔35aの内面を覆うように、厚みが10nm〜20nm程度の下部電極膜24aをたとえばCVD法により形成する。下部電極膜24aの材質は例えば、TiN、WN、Ru等を例示できる。
下部電極膜24aの形成後、下部電極膜24a及び第1酸化シリコン膜上の窒化シリコン絶縁膜28を覆うように、厚みが7nm〜10nm程度の誘電体膜24bをたとえばALD法またはCVD法により形成する。誘電体膜24bの材質は例えば、Al、HfO、ZrOあるいはこれらの積層膜等を例示できる。
誘電体膜24bの形成後、貫通孔35aを埋めるように、上部電極膜24cをCVD法及びスパッタ法により形成する。すなわち、厚み10nm〜20nm程度のTiN、WNまたはRuからなる膜をCVD法で形成してから、Wをスパッタ法で150nm程度に成膜することによって、上部電極膜24cを形成する。
上部電極膜24cの上にはタングステン等からなる導電膜26を積層し、更にその上に配線層27を形成する。
一方、周辺回路部側においては、図8(b)に示すように、第2の窒化シリコン層間膜135上に、酸化シリコンからなる第5の層間絶縁膜136を形成する。第5の層間絶縁膜136については、その上面をCMP法等で平坦化することによって、メモリセル部側の導電膜26の上面と同一面にするとよい。第5の層間絶縁膜136の形成後に、フォトリソグラフィ及びエッチングによって、第5の層間絶縁膜136から第3の層間絶縁膜21の一部までを貫通して、ビット線106を露出させるコンタクトホールを形成する。次いで、コンタクトホール内にポリシリコン等を充填してコンタクトプラグ140を形成する。次いで、第5の層間絶縁膜136の上に配線層127を形成する。
以上の工程を経て、本実施形態の半導体装置が製造される。
上記の半導体装置によれば、第1の酸化シリコン膜32、ポリシリコン膜33及び第2の酸化シリコン膜34からなる積層膜35に貫通孔35aが形成され、この貫通孔35aに蓄積容量部24が形成されており、ポリシリコン膜34の厚みを大きくすることで貫通孔35aの内面の表面積が拡大され、これにより蓄積容量部24の電極面積が拡大されて、静電容量部24の静電容量を向上させることができる。
例えば、従来のように酸化シリコン膜に貫通孔を形成しようとした場合、貫通孔が形成可能な酸化シリコン膜の膜厚は3μm程度となるところ、貫通孔をポリシリコン膜に形成する場合は、貫通孔が形成可能なポリシリコン膜の膜厚は4.5μm程度になり、従来の1.5倍になる。これにより、貫通孔のアスペクト比も従来に比べて1.5倍に増大させることができ、蓄積容量部の静電容量もこれに比例して1.5倍程度に高めることができる。例えば、従来の静電容量が25fF/bitのところを、37.5fF/bitに増やすことができる。
また、上記の半導体装置によれば、貫通孔35aの内面に、窒化シリコン絶縁膜28が形成されているので、蓄積容量部24の絶縁性を高めることができ、静電容量のロスを防止できる。更に、窒化シリコン絶縁膜28によって、蓄積容量部24の構成材料のポリシリコン膜33への拡散を防止できる。
また、上記の半導体装置によれば、容量コンタクトプラグ25の貫通孔側に、リンまたは砒素がイオン注入されることによって、容量コンタクトプラグ25の抵抗率を低下させることができ、蓄積容量部24の静電容量を更に高めることができる。
また、上記の半導体装置の製造方法によれば、第1の酸化シリコン膜32、ポリシリコン膜33及び第2の酸化シリコン膜34からなる積層膜35を形成してからこの積層膜35に貫通孔35aを形成し、この貫通孔35aに蓄積容量部24を形成するので、ポリシリコン膜33の厚みを大きくすることで貫通孔35aの内面の表面積が拡大され、これにより蓄積容量部24の電極面積が拡大されて、静電容量部24の静電容量を向上させることができる。
また、酸化シリコンに比べて、ハードマスクMに対するエッチング選択率が高い(マスクよりもエッチング速度が低い)ポリシリコン膜33を用いることによって、ハードマスクMが完全にエッチングされる前にポリシリコン膜33に深い貫通孔35aを形成することが可能になる。
また、ポリシリコン膜33は従来の酸化シリコン膜に比べて、アスペクト比の高い貫通孔35aを形成できるので、隣接する貫通孔35a同士が相互に連通して、蓄積容量部24同士がショートするおそれがない。なお、ポリシリコン膜33にアスペクト比の高い貫通孔35aを形成できるのは、ポリシリコン膜33は、貫通孔35aの経方向へのエッチング速度が、従来の酸化シリコン膜に比べて低いため、貫通孔35aの経方向への広がりが均一となり、いわゆるボーイングの問題が回避できるためである。
これにより、上述したように、貫通孔35aのアスペクト比も従来に比べて1.5倍に増大させることができ、蓄積容量部24の静電容量もこれに比例して1.5倍程度に高めることができる。
また、第1酸化シリコン膜32を積層することで、予備貫通孔35bの形成の際のエッチングストッパ層として利用できる。また、第2の酸化シリコン膜34を積層することによって、容量コンタクトプラグ25に砒素等をイオン注入する際のマスク層として利用することができ、これによりポリシリコン膜33に対するイオン注入を防止できる。
また、貫通孔35aの内面に、窒化シリコン絶縁膜28を形成するので、蓄積容量部24の絶縁性を高めることができ、静電容量のロスを防止できる。更に、窒化シリコン絶縁膜28の形成によって、その後に形成する蓄積容量部24の構成材料のポリシリコン膜33への拡散を防止できる。また、第1の酸化シリコン膜32を残した状態で窒化シリコン絶縁膜28を形成し、その後、これらの膜を除去することで、窒化シリコン絶縁膜28を貫通孔35aの側壁面のみに形成することができ、容量コンタクトプラグ25と蓄積容量部24との導通を確保することができる。
また、上記の半導体装置の製造方法によれば、容量コンタクトプラグ25の貫通孔側に、リンまたは砒素をイオン注入するので、容量コンタクトプラグ25の抵抗率を低下させることができ、蓄積容量部24の静電容量を更に高めることができる。
また、窒化シリコン絶縁膜28をステップカバレッジ性に優れたCVD法またはALD法で形成することにより、貫通孔35aの内面に窒化シリコン絶縁膜28を均一に形成することができる。
また、ポリシリコン膜33の形成後に、ポリシリコン膜33を再結晶化させる熱処理を行うことで、アスペクト比のより高い貫通孔35aを形成することができる。
なお、上記の実施形態においては、窒化シリコン絶縁膜28に代えて、酸化シリコン絶縁膜をCVD法またはALD法で形成してもよい。
「半導体装置の製造方法の別の例」
次に、半導体装置の製造方法の別の例について説明する。
まず、先に説明した半導体装置の製造方法と同様にして、第3層間絶縁膜21上に、第1の窒化シリコン層間膜31、第1の酸化シリコン膜32、ポリシリコン膜33及び第2の酸化シリコン膜34を積層する。
次に、図示しないハードマスク層及びレジスト層を第2の酸化シリコン膜34に上に順次積層し、ハードマスク層及びレジスト層に開口部を形成することによって、貫通孔形成用のマスクを形成する。
そして、このマスクを用いて異方性エッチングを行い、窒化シリコン膜31から第2の酸化シリコン膜34までを貫通する貫通孔135aを設ける。形成された貫通孔135aの側壁面には、ポリシリコン膜33の一部が露出された状態になっている。この状態で、ポリシリコンに対する熱酸化処理を行う。熱酸化処理によって、貫通孔135aのポリシリコン膜33が露出された部分に、酸化シリコン絶縁膜128が形成される。これにより、貫通孔135aの内面の全面には、酸化シリコンが露出した状態になる。酸化シリコン絶縁膜128の膜厚は、熱酸化処理の条件によって調整可能だが、例えば4nm〜10nmの範囲が好ましい。
貫通孔135aの形成後に、貫通孔135aの底部に露出された容量コンタクトプラグ25に対して、砒素、リン等のN型不純物をイオン注入してもよい。
その後、図10に示すように、先に説明した半導体装置の製造方法と同様にして、下部電極膜24a、誘電体膜24b及び上部電極膜24cを順次形成することにより、蓄積容量部24を形成する。更に、上部電極膜24cの上にタングステン等からなる導電膜26を積層し、更にその上に配線層27を形成する。
このようにして、半導体装置が製造される。
上記の構成によれば、貫通孔135aの内面に、熱酸化処理によって形成された酸化シリコン絶縁膜128が備えられているので、蓄積容量部24の絶縁性を高めることができ、静電容量のロスを防止できる。更に、酸化シリコン絶縁膜128によって、蓄積容量部24の構成材料のポリシリコン膜33への拡散を防止できる。また、酸化シリコン絶縁膜128を形成することで、下部電極膜24aの下地となる貫通孔135aの内面が全て酸化シリコンで構成され、これにより下部電極膜24aに欠陥等が発生するおそれが少なくなり、蓄積容量部24の品質改善が図られる。
「半導体装置の製造方法の更に別の例」
次に、半導体装置の製造方法の更に別の例について説明する。
まず、先に説明した半導体装置の製造方法と同様にして、図11に示すように、第3層間絶縁膜21上に、第1の窒化シリコン層間膜31、第1の酸化シリコン膜32、ポリシリコン膜33及び第2の酸化シリコン膜34を積層する。
次に、第2の酸化シリコン膜34上に、別のポリシリコン膜133及び第3の酸化シリコン膜134を積層する。
ポリシリコン膜133の厚みは、0.5μm〜2μmの範囲でポリシリコン膜33の厚みと同じでも異なっていてもよい。また、第3の酸化シリコン膜134の厚みは、0.05μm〜0.5μmの範囲で第1、第2の酸化シリコン膜32、34の厚みと同じでも異なっていてもよい。
また、各ポリシリコン膜33、133の形成後に、結晶性向上のためのアニール処理を行ってもよい。
次に、図示しないハードマスク層及びレジスト層を第3の酸化シリコン膜134に上に順次積層し、ハードマスク層及びレジスト層に開口部を形成することによって、貫通孔形成用のマスクを形成する。
そして、このマスクを用いて異方性エッチングを行い、第1の酸化シリコン膜32から第3の酸化シリコン膜134までを貫通する貫通孔235aを設ける。
次に、CVD法またはALD法によって、貫通孔235aの内部及び第3の酸化シリコン膜134の上に、窒化シリコン絶縁膜228を形成する。ステップカバレッジ性に優れたCVD法またはALD法を用いることによって、貫通孔235aの内部にも膜厚が均一な窒化シリコン絶縁膜228が形成される。
次に、異方性エッチングによって、貫通孔235bの底部に積層された窒化シリコン絶縁膜128と、その下の第1の酸化シリコン膜32及び第1の窒化シリコン層間膜31とを除去する。これにより、容量コンタクトプラグ25の上面が露出される。なお、貫通孔235bの側壁面に形成された窒化シリコン絶縁膜228はエッチングされずに残存する。このようにして、貫通孔235aが形成される。
貫通孔235aの形成後に、貫通孔235aの底部に露出された容量コンタクトプラグ25に対して、砒素、リン等のN型不純物をイオン注入してもよい。
その後、図12に示すように、先に説明した半導体装置の製造方法と同様にして、下部電極膜224a、誘電体膜224b及び上部電極膜224cを順次形成することにより、蓄積容量部224を形成する。更に、上部電極膜224cの上にタングステン等からなる導電膜26を積層し、更にその上に配線層27を形成する。
このようにして、半導体装置が製造される。
上記の半導体装置及びその製造方法によれば、先に説明した半導体装置及びその製造方法の場合と同様な効果が得られる他に、以下の効果も得られる。
すなわち、上記の半導体装置によれば、第1の酸化シリコン膜32から第3の酸化シリコン膜134までの多層膜に貫通孔235aが形成され、この貫通孔235aに蓄積容量部224が形成されており、例えば図1に示した半導体装置の場合に比べて貫通孔235aの内面の表面積を更に拡大させることができる。これにより蓄積容量部224の電極面積が更に拡大されて、静電容量部224の静電容量を更に向上させることができる。
図1は本発明の実施形態である半導体装置を示す図であって、(a)はメモリセル部の要部を示す断面模式図であり、(b)は周辺回路部の要部を示す断面模式図である。 図2は本発明の実施形態である半導体装置の製造方法における積層膜の形成工程を説明する工程図であって、(a)はメモリセル部の要部を示す断面模式図であり、(b)は周辺回路部の要部を示す断面模式図である。 図3は本発明の実施形態である半導体装置の製造方法における積層膜の形成工程を説明する工程図であって、(a)はメモリセル部の要部を示す断面模式図であり、(b)は周辺回路部の要部を示す断面模式図である。 図4は本発明の実施形態である半導体装置の製造方法における積層膜の形成工程を説明する工程図であって、(a)はメモリセル部の要部を示す断面模式図であり、(b)は周辺回路部の要部を示す断面模式図である。 図5は本発明の実施形態である半導体装置の製造方法における貫通孔の形成工程を説明する工程図であって、(a)はメモリセル部の要部を示す断面模式図であり、(b)は周辺回路部の要部を示す断面模式図である。 図6は本発明の実施形態である半導体装置の製造方法における貫通孔の形成工程を説明する工程図であって、(a)はメモリセル部の要部を示す断面模式図であり、(b)は周辺回路部の要部を示す断面模式図である。 図7は本発明の実施形態である半導体装置の製造方法における絶縁膜の形成工程を説明する工程図であって、(a)はメモリセル部の要部を示す断面模式図であり、(b)は周辺回路部の要部を示す断面模式図である。 図8は本発明の実施形態である半導体装置の製造方法における蓄積容量部の形成工程を説明する工程図であって、(a)はメモリセル部の要部を示す断面模式図であり、(b)は周辺回路部の要部を示す断面模式図である。 図9は本発明の実施形態である半導体装置の製造方法における絶縁膜の形成工程の別の例を説明する工程図であって、(a)はメモリセル部の要部を示す断面模式図であり、(b)は周辺回路部の要部を示す断面模式図である。 図10は本発明の実施形態である半導体装置の製造方法における蓄積容量部の形成工程の別の例を説明する工程図であって、(a)はメモリセル部の要部を示す断面模式図であり、(b)は周辺回路部の要部を示す断面模式図である。 図11は本発明の実施形態である半導体装置の製造方法における絶縁膜の形成工程の更に別の例を説明する工程図であって、(a)はメモリセル部の要部を示す断面模式図であり、(b)は周辺回路部の要部を示す断面模式図である。 図12は本発明の実施形態である半導体装置の製造方法における蓄積容量部の形成工程の更に別の例を説明する工程図であって、(a)はメモリセル部の要部を示す断面模式図であり、(b)は周辺回路部の要部を示す断面模式図である。
符号の説明
1…半導体基板、8A…ソース、8B…ドレイン、24、224…蓄積容量部、25…容量コンタクトプラグ(コンタクトプラグ)、28、228…窒化シリコン絶縁膜、32…第1の酸化シリコン膜、33…ポリシリコン膜、34…第2の酸化シリコン膜、35…積層膜、35a、135a、235a…貫通孔、128…酸化シリコン絶縁膜、Tr…MOSトランジスタ(メモリセル選択用トランジスタ)

Claims (10)

  1. 半導体基板上に形成されたメモリセル選択用トランジスタと、前記メモリセル選択用トランジスタのソース・ドレインにコンタクトプラグを介して接続された蓄積容量部とを具備してなり、
    前記メモリセル選択用トランジスタの前記半導体基板と反対側に、少なくとも第1の酸化シリコン膜、ポリシリコン膜及び第2の酸化シリコン膜が順次積層されてなる積層膜が備えられ、前記積層膜には前記コンタクトプラグを露出させる貫通孔が形成され、前記蓄積容量部が前記貫通孔の内面に形成されていることを特徴とする半導体装置。
  2. 前記貫通孔の内面の少なくとも一部が、窒化シリコン絶縁膜または酸化シリコン絶縁膜で被覆されていることを特徴とする請求項1に記載の半導体装置。
  3. 前記コンタクトプラグの前記貫通孔側に、リンまたは砒素がイオン注入されていることを特徴とする請求項1または請求項2に記載の半導体装置。
  4. 半導体基板上に形成された、ソース・ドレインに接続されるコンタクトプラグを有するメモリセル選択用トランジスタの上方に、少なくとも第1の酸化シリコン膜、ポリシリコン膜及び第2の酸化シリコン膜を積層して積層膜を形成する工程と、
    前記積層膜に貫通孔を設けて、前記コンタクトプラグを露出させる工程と、
    前記貫通孔の内面に、前記コンタクトプラグに接続される蓄積容量部を形成する工程と、を具備してなることを特徴とする半導体装置の製造方法。
  5. 前記積層膜に前記貫通孔を設けるとともに、前記貫通孔の内面の少なくとも一部に、窒化シリコン絶縁膜または酸化シリコン絶縁膜を形成することを特徴とする請求項4に記載の半導体装置の製造方法。
  6. 前記第2の酸化シリコン膜及び前記ポリシリコン膜をエッチングすることにより、前記第1の酸化シリコン膜のみを残した状態で前記積層膜に前記貫通孔の一部を形成し、次いで、少なくとも、エッチングにより形成された前記ポリシリコン膜の内面に、窒化シリコン絶縁膜または酸化シリコン絶縁膜を形成し、次いで残存した前記第1の酸化シリコン膜を除去することにより、前記貫通孔を完成させることを特徴とする請求項5に記載の半導体装置の製造方法。
  7. 前記積層膜に前記貫通孔を設けた後、前記コンタクトプラグの前記貫通孔側に、リンまたは砒素をイオン注入することを特徴とする請求項4乃至請求項6のいずれかに記載の半導体装置の製造方法。
  8. 前記窒化シリコン絶縁膜または前記酸化シリコン絶縁膜をCVD法またはALD法により形成することを特徴とする請求項4乃至請求項6に何れかに記載の半導体装置の製造方法。
  9. 前記酸化シリコン絶縁膜を熱酸化法により形成することを特徴とする請求項4乃至請求項6に何れかに記載の半導体装置の製造方法。
  10. 前記ポリシリコン膜の形成後に、前記ポリシリコン膜を再結晶化させる熱処理を行うことを特徴とする請求項4乃至請求項9のいずれかに記載の半導体装置の製造方法。
JP2006339950A 2006-12-18 2006-12-18 半導体装置及び半導体装置の製造方法 Pending JP2008153439A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339950A JP2008153439A (ja) 2006-12-18 2006-12-18 半導体装置及び半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339950A JP2008153439A (ja) 2006-12-18 2006-12-18 半導体装置及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2008153439A true JP2008153439A (ja) 2008-07-03

Family

ID=39655302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339950A Pending JP2008153439A (ja) 2006-12-18 2006-12-18 半導体装置及び半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2008153439A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111968980A (zh) * 2020-08-26 2020-11-20 无锡拍字节科技有限公司 一种存储器件的制造方法及其电容器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111968980A (zh) * 2020-08-26 2020-11-20 无锡拍字节科技有限公司 一种存储器件的制造方法及其电容器

Similar Documents

Publication Publication Date Title
US6423591B2 (en) Semiconductor device and method for fabricating the same
US7429507B2 (en) Semiconductor device having both memory and logic circuit and its manufacture
TW586213B (en) Semiconductor integrated circuit and its manufacturing method
US6815752B2 (en) Semiconductor memory device for increasing access speed thereof
US20040173836A1 (en) Semiconductor device and method of manufacturing the same
JP2000049304A (ja) 高集積dramセルキャパシタ及びその製造方法
WO2006011632A2 (en) Semiconductor device including a conductive layer buried in an opening and method of manufacturing the same
JPH0294554A (ja) 半導体記憶装置およびその製造方法
JP2002184958A (ja) 半導体装置およびその製造方法
US20090001437A1 (en) Integrated Circuit Devices Including Recessed Conductive Layers and Related Methods
US20020055222A1 (en) Semiconductor memory device having self-aligned contact and fabricating method thereof
KR20010078327A (ko) 반도체 집적 회로 장치 및 그 제조 방법
US7781820B2 (en) Semiconductor memory device and method of manufacturing the same
JP4400626B2 (ja) 半導体装置及び半導体装置の製造方法
JP2000124423A (ja) 半導体装置及びその製造方法
US20080087926A1 (en) Ferroelectric random access memory and methods of fabricating the same
JP2002190580A (ja) 半導体装置およびその製造方法
JP2008153439A (ja) 半導体装置及び半導体装置の製造方法
JP2005236135A (ja) 半導体装置の製造方法
JP4328396B2 (ja) Dramにおけるメモリセルの製造方法
JP3954606B2 (ja) 半導体記憶装置
JP2004179497A (ja) 半導体装置および半導体装置の製造方法
JP2969789B2 (ja) 半導体記憶装置の製造方法
JP2004266248A (ja) キャパシタの形成方法および半導体装置の製造方法
JP2009117722A (ja) 半導体装置およびその製造方法