JP2008153274A - 評価装置およびその評価装置を用いた評価方法 - Google Patents

評価装置およびその評価装置を用いた評価方法 Download PDF

Info

Publication number
JP2008153274A
JP2008153274A JP2006336942A JP2006336942A JP2008153274A JP 2008153274 A JP2008153274 A JP 2008153274A JP 2006336942 A JP2006336942 A JP 2006336942A JP 2006336942 A JP2006336942 A JP 2006336942A JP 2008153274 A JP2008153274 A JP 2008153274A
Authority
JP
Japan
Prior art keywords
wiring
evaluation
semiconductor film
thin film
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006336942A
Other languages
English (en)
Inventor
Toru Takeguchi
徹 竹口
Kaoru Motonami
薫 本並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006336942A priority Critical patent/JP2008153274A/ja
Priority to TW096144744A priority patent/TW200836282A/zh
Priority to US11/946,426 priority patent/US20080290892A1/en
Priority to KR1020070128135A priority patent/KR20080055652A/ko
Priority to CNA200710305133XA priority patent/CN101207139A/zh
Publication of JP2008153274A publication Critical patent/JP2008153274A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136254Checking; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/104Materials and properties semiconductor poly-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors

Landscapes

  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】 非晶質シリコン膜をレーザー光により結晶化した多結晶シリコン膜を用いた薄膜トランジスタを備えた表示装置においては、表示品質の点で、基板面内における多結晶シリコン膜の粒径のばらつきを低減することが必要となる。しかし、多結晶シリコン膜の表面の凹凸を光学的に管理する方法では、ミクロレベルのばらつきしか把握できない。
【解決手段】 本発明にかかる評価装置においては、複数の評価セル101と、評価セル101に電圧を印加する信号配線105と、評価セル101からの出力を信号取り出し配線106を介して測定するための信号取り出し配線用出力端子パッド104とを絶縁性基板1上に備えているので、電気特性の面内分布を容易に測定できる。また、多結晶シリコン膜の結晶粒径と関連する電気特性を評価することにより、多結晶シリコン膜の結晶粒径の面内ばらつきを管理できる。
【選択図】 図2

Description

本発明は、非晶質半導体膜にレーザー光を照射することにより得られた多結晶半導体膜の膜質を評価するための評価装置とその評価装置を用いた評価方法に関する。
従来からの一般的な薄型パネルの一つである液晶表示装置(LCD)は、低消費電力や軽量といった特徴がある。このような特徴を活かして、LCDは、パーソナルコンピュータのモニタや携帯情報端末機器のモニタなどに広く用いられている。また近年では、従来のブラウン管にとってかわり、TV用途としても広く用いられるようになっている。しかし、LCDは、視野角及びコントラストの制限や、動画対応の高速応答への追従が困難といった問題がある。このような問題をクリアした次世代の薄型パネル用デバイスとして、EL表示装置が用いられるようになってきている。これは、EL素子のような発光体を画素表示部に用いた電界発光型EL表示装置である。このように、EL表示装置は、自発光型で広視野角、高コントラスト、高速応答等、LCDにはない特徴がある。
これらの表示装置には、スイッチング素子として、薄膜トランジスタ(TFT)が用いられる。TFTとしては、半導体膜を用いたMOS構造が多用される。TFTには、逆スタガ型やトップゲート型といった種類があり、半導体薄膜にも非晶質半導体膜や多結晶半導体膜がある。それらは、表示装置の用途や性能により適宜選択される。小型のパネルにおいては、多結晶半導体膜を使用することが多い。多結晶半導体膜を用いたTFTは、非晶質半導体膜を用いたTFTよりも、移動度が100倍程度も高いという利点を有している。そこで、多結晶半導体膜を含むTFTを画素スイッチング素子として用いるだけでなく、周辺駆動回路としても用いることにより、画素のTFTと駆動回路のTFTとを同一基板上に同時に形成した駆動回路一体型のTFT−LCDが開発されている。
多結晶半導体膜の作成方法としては、まず下地膜として形成されたシリコン酸化膜(SiO膜)等の上層に、非晶質半導体膜を形成した後、例えばレーザー光を照射することにより半導体膜を多結晶化する方法が知られている(例えば、特許文献1)。
このような多結晶半導体膜を作成した後に、TFTを製造する方法も知られている。具体的には、所望の形状にパターニングされた多結晶半導体膜上にSiO等からなるゲート絶縁膜を形成し、ゲート電極を形成する。次に、ゲート絶縁膜を介して多結晶半導体膜にP(リン)やB(ボロン)等の不純物を導入することによりソース・ドレイン領域を形成する。また、ソース・ドレイン領域とは、多結晶半導体膜の不純物を含む導電性領域である。そして、後に、ソース領域にはソース電極が接続され、ドレイン領域にはドレイン電極が接続される。ここで、ソース・ドレイン領域に挟まれて、かつ不純物の導入が行われない領域がチャネル領域である。その後、ゲート電極とゲート絶縁膜とを覆うように層間絶縁膜を形成する。そして、多結晶半導体膜のソース・ドレイン領域に到達するコンタクトホールを層間絶縁膜とゲート絶縁膜とに開口する。層間絶縁膜上に金属膜を形成し、多結晶半導体膜に形成されたソース・ドレイン領域にコンタクトホールを介して接続するようにパターニングして、ソース・ドレイン電極を形成する。このようにしてTFTが形成される。その後、ドレイン電極に接続されるように、画素電極やEL素子などを形成することにより、表示装置が形成される。
多結晶半導体膜の結晶粒径と多結晶半導体膜を用いて形成したTFTの特性には相関が見られ、例えば粒径が大きければ移動度が高くなるといった傾向が見られる。このため、結晶粒径を正確に把握することは重要である。従来、結晶粒径の大きさを知るためには、セコエッチングなどのエッチングにより結晶粒界を選択的に除去した後、走査型電子顕微鏡(SEM)等を用いて粒径を測定したり、原子間力顕微鏡(AFM)を用いて結晶粒径の観察や測定を行っている(例えば特許文献2)。これらの方法は実際の結晶を観察するものであり、形成された多結晶半導体膜の結晶粒径を正確に評価することができる。さらに多結晶半導体膜を用いて作成した単体TFTの電気特性を測定して、移動度やオン電流、急竣性といった電気特性を評価することにより、所望の多結晶半導体膜の膜質が得られているかどうかを評価している(例えば特許文献3)。
特開2003−17505号公報(図1) 特開2000−31229号公報(第2頁) 特開2001−308336号公報(図1)
しかしながら、このような方法ではせいぜい数〜数十um平方程度のミクロな領域における代表的な結晶粒径やTFT特性は分かっても、表示装置を作製するために必要となる数cm以上の広範囲な領域での結晶粒径や電気特性の安定性やばらつきの把握は困難である。
非晶質半導体膜へ公知のレーザー照射方法などを適用して、多結晶半導体膜を形成する場合、約0.1〜1.0um程度の様々な大きさを有する結晶が配列した構造をとる。レーザーは光学系に使用されるレンズの収差や微小な研磨キズ、あるいはレーザー光の相互干渉、さらにはレーザー走査方向においても発振器の微小な出力変動などの影響を受けることによって、エネルギー照射密度に分布を持っていることが原因の一つであると考えられる。
このような様々な結晶粒径を有する多結晶半導体膜を用いてTFTを形成する場合、これらの結晶粒径のばらつきは、TFT特性のばらつきを発生させる要因となっていた。これは、TFTを配置する場所によって各TFTのチャネル内に存在する結晶粒のサイズや数が異なるためである。これにより、TFT特性が左右されることとなる。このような特性のばらつきを有するTFTを画素内や周辺駆動回路に使用した場合、各画素に書き込む電圧や電流にばらつきが発生する。これが表示ムラとなって視認されることとなり、表示特性を低下させることにつながる。
したがって、レーザー照射条件の決定を行うだけでなく、光学系調整などのレーザーアニール装置の管理を行うためには、従来のミクロな領域における結晶粒径やTFT特性を把握するとともに、広範囲な領域における多結晶半導体膜の膜質評価を行うための手段が必要である。
本発明は、上記のような問題を解決するためになされたものであり、絶縁性基板上に成膜した非晶質半導体膜へレーザー光を照射することにより作成した多結晶半導体膜の膜質を広範囲な領域で電気的に評価し、膜質の安定性やばらつきを評価することが可能な装置を提供することを目的とする。
本発明の評価装置とは、基板と、基板上に配置されて薄膜トランジスタを各々備えた複数の素子と、電気信号を前記の各素子に印加するための第1の配線と、前記の各素子から電気出力を取り出すための第2の配線と、走査配線とを備え、前記薄膜トランジスタが各々、第1の配線と第2の配線と走査配線とに接続されることにより各素子同士が接続され、前記第2の配線から延在する端子パッドが前記基板上に設けられていることを特徴とする。
本発明によれば、電気信号を印加された素子から出力される電気出力を測定することにより、基板面内の各素子の特性分布を測定することができる。例えば、絶縁性基板上に形成した非晶質半導体膜にレーザー光を照射することにより多結晶化された半導体膜の膜質の安定性やばらつきを広範囲な領域にわたって電気的に評価することにも適用できる。
実施の形態1.
以下に、本実施の形態1に係る評価装置について図を用いて説明する。図1は本実施の形態1に係る評価装置を示す構成図であり、図2は本実施の形態1に係る評価装置の構成を示す等価回路図である。また、図3は本実施の形態1に係る評価装置を構成する評価セルを示す等価回路図である。
まず、図1を用いて評価装置の説明を行う。本実施の形態1に係る評価装置は絶縁性基板1上に形成されており、素子である評価セルが配置された評価セル配置領域108と、評価セル配置領域108内の各評価セルに印加する信号電圧を出力する信号配線デコーダ110と、各評価セルから出力された電流を読み取る信号出力バッファ109と、電気特性を測定する評価セルを選択するための電圧を印加する走査配線デコーダ111とを備えたものである。
次に、評価セルが配置された評価セル配置領域108の詳細について、図2を用いて説明する。評価セル配置領域108内には、信号出力バッファ109と接続される信号取り出し配線用出力端子パッド104と、信号配線デコーダ110と接続される信号配線用入力パッド103と、走査配線デコーダ111と接続される走査配線用入力端子パッド102とが形成される。外部から任意の走査配線、信号配線を選択する回路などが各端子パッドに電気的に接続されるとともに、信号取り出し配線用出力端子パッド104には信号を読み出すための回路が接続されている。
そして、信号配線用入力パッド103から延在される第1の配線である信号配線105と、信号取り出し配線用出力端子パッド104から延在される第2の配線である信号取り出し配線106とが、評価セル配置領域108内を縦断するように形成されている。また、走査配線用入力端子パッド102から延在される走査配線107が評価セル配置領域108内を横断するように形成されている。すなわち、走査配線107、信号配線105および信号取り出し配線106には外部から信号を入出力するための端子パッドが各々設けられている。
したがって、走査配線107は、信号配線105と信号取り出し配線106と直交するように形成されている。直交部の近傍には各々、評価セル101が形成されており、各々の評価セルは走査配線107と信号配線105と信号取り出し配線106のいずれにも接続している。すなわち、各々の評価セルはこれらの配線により互いに接続されていることになる。また、図2において、評価セル101は複数行×複数列のマトリクス状に形成されているが、一列すなわち1次元配列であってもよい。
次に、評価セル101内の構成について図3を用いて説明する。本実施の形態1においては、評価セルとして薄膜トランジスタ120を用いることを特徴としている。図3において薄膜トランジスタ120はゲート端子120a、ソース端子120b、ドレイン端子120cとを備えており、それぞれが走査配線107、信号配線105、信号取り出し配線106と接続されている。
したがって、走査配線デコーダ111から出力された電圧は走査配線用入力端子パッド102と走査配線107とを介して、評価セル101内のゲート端子120aに印加されることになる。ゲート端子120aに電圧が印加された薄膜トランジスタ120はオン状態となる。この時、信号配線デコーダ110から出力された電圧が信号配線105を介してソース端子120bに印加されている場合は、薄膜トランジスタ120の特性に応じた電圧が信号取り出し配線106を介して信号出力バッファ109に出力されることになる。
薄膜トランジスタ120としては、逆スタガ型、トップゲート型等いずれでもよい。以下にトップゲート型の薄膜トランジスタの構造について説明する。図4は、本実施の形態1において評価セル101として用いられる薄膜トランジスタ120の断面図である。
絶縁性基板1上にSiN膜2とSiO2膜3とが積層された上層にポリシリコン等の多結晶半導体膜4が形成されている。多結晶半導体膜4は、非結晶半導体膜を形成後に公知のレーザーアニール法により多結晶化されたものである。また、多結晶半導体膜4は、不純物が導入されて低抵抗化されているソース領域4aとドレイン領域4bと、不純物の導入がなされておらずソース領域4aとドレイン領域4bとに挟まれるチャネル領域4cとを含んでいる。
多結晶半導体膜4を覆うようにしてゲート絶縁膜5が形成され、さらにゲート絶縁膜5を介してチャネル領域4cと対向するようにゲート電極6が形成されている。このゲート電極6は走査配線107と電気的に接続されている。ゲート電極6上には層間絶縁膜7が形成されており、層間絶縁膜7はソース領域4a、ドレイン領域4bとに接続するようなコンタクトホール8、9を備える。層間絶縁膜7上にはソース電極9とドレイン電極10とが形成され、それぞれコンタクトホール8、9を介してソース領域4aとドレイン領域4bとに接続されている。なお、図示しないがゲート電極6とソース電極10は、各々ゲート端子120a、ソース端子120bに相当し、走査配線107、信号配線105と接続されるものである。同様に、ドレイン電極11はドレイン端子120cに相当し、信号取り出し配線106と電気的に接続されている。
本実施の形態1では、評価セル101を構成する素子としては絶縁性基板1上に形成した非晶質半導体膜4にレーザー光5を照射することにより多結晶化した半導体膜を用いて形成した薄膜トランジスタ120を評価セルの構成素子とした。本実施の形態1では、チャネル長が5um、チャネル幅が10umのサイズの薄膜トランジスタ120とした。ただし、薄膜トランジスタ120の大きさは前記のサイズに限られない。
本実施の形態1に係る評価装置は、絶縁性基板上に配置されて薄膜トランジスタを各々備えた複数の評価セルと、電気信号を評価セルに印加するための第1の配線と、評価セルから電気出力を取り出すための第2の配線と、走査配線とを備え、薄膜トランジスタが各々、第1の配線と第2の配線と走査配線とに接続されることにより評価セルが互いに接続されている。さらに、電気出力を取り出すための第2の配線から延在する端子パッドが絶縁性基板上に設けられている。
したがって、複数の評価セルの中から任意の評価セルを選択し、その電気特性を端子パッドを介して外部に取り出すことができるので、評価セル配置領域108内における評価セルの電気特性の面内分布を測定することができる。特に、評価セルを複数行×複数列のマトリクス状に配置した場合は、基板上の広範な範囲にわたって電気特性のばらつきを評価することができるので、得られた評価結果を元に設計や製造プロセスを最適化することにより、表示品質に優れた表示装置を得ることができる。
このような構成により、膜質評価を行いたい領域に位置する評価セルに接続されている走査配線および信号配線の信号入力端子パッドから電圧を印加すると信号取り出し配線に電流が流れる。この信号取り出し配線から出力される電流値を読み出すことによって、例えば、多結晶半導体膜の膜質およびその面内分布を評価するという方法にも適用することができる。
次に、この実施の形態1における評価装置を用いた評価方法の具体例について説明する。膜質評価を行いたい領域に位置する評価セル101に接続されている信号配線105に対して信号配線用入力端子パッド103からVd1(V)の電圧を印加する。さらに評価セル101の走査配線107に対して走査配線用入力端子パッド102からVg1(V)の電圧を印加することによって、評価セル101に形成した薄膜トランジスタ120がオンし、電流が流れることになる。
このとき、この電流値i1を接続された信号取り出し配線106から読み出す。さらに評価セル101の走査配線107へ走査配線用入力端子パッド102からVg2(V)の電圧を印加することにより、電流値i1と同様の方法により電流値i2を読み出す。すなわち、信号配線105を介して電圧を印加された薄膜トランジスタ120に対して、走査配線105を介して複数の電圧値の電圧を印加した時に、それぞれの電圧に対して評価セル101から出力される電流等の電気信号を信号取り出し配線106を介して測定する。この電流値の変化量(i2−i1)が、ゲート電圧Vg1〜Vg2(V)における薄膜トランジスタ120の急峻性を示す指標Skとなる。すなわち、評価セル配置領域108内に配置した各評価セルに対して、
Figure 2008153274
を求め、隣接する評価セルのSkの差分ΔSkや配置した評価セルの均一性について比較および評価を行う。
本実施の形態1における評価装置を用いて得られたSkやΔSkの評価を行うことにより、例えば多結晶半導体膜の膜質およびその面内分布を評価するという方法にも適用することができる。図5(a)は、本実施の形態1にかかる評価セルから得られたSkの分布のグラフである。また、その領域における多結晶半導体膜の結晶粒の観察結果を比較するためにSEM写真を図5(b)〜(d)に示す。なお、図5(a)では横軸として、絶縁性基板1上に形成された評価セルの各々の位置関係を示す距離を用いたことでもわかるように
1次元方向に配置した評価セルから得られた評価結果を示しているが、これは簡単化した例であり、評価セルは2次元的に配置してもよい。
本実施の形態1においては、走査配線107へ印加した電圧値はVg1=+2V、Vg2=+3.5Vである。それぞれの電圧に応じた電流値から各評価セルにおけるSk を計算し、図5(a)に示すグラフをプロットした。図5(a)と結晶粒の観察結果である図5(b)〜(d)とを比較すると、領域114のようにSkが大きい場合には図5(d)に示すように結晶粒径が大きく、領域112のようにSkが小さい場合には図5(b)に示すように結晶粒径が小さい傾向が見られる。また、図5(c)で示す領域のように結晶粒径ばらつきが大きい場合には、領域113のようにΔSkが大きい傾向が見られ、この実施の形態1で示す評価装置にて電気的に評価した結果が、多結晶半導体膜の膜質を反映していることが分かる。
ここで、選択した評価セル101に接続していない走査配線107に対する走査配線用入力端子パッド102には、評価セル101を構成する薄膜トランジスタ120に対して逆バイアス(n型の場合はマイナス、p型の場合はプラス)を印加しておくことが好ましい。こうすることによって、選択した評価セル101に接続されている他の評価セルからのリーク電流による影響を軽減でき、より正確な評価が可能となる。
また、評価セル101を構成する薄膜トランジスタ120の特性によって、選択した評価セル101の走査配線107へ印加する最適な電圧値は異なるが、略閾値電圧を挟む電圧値とすることが好ましい。このとき、評価セル101から出力される出力電流は1uA前後の値が得られるため、他の評価セルからのリーク電流の影響をほぼ無視することができる。さらに、走査配線107への印加電圧に対する出力電流の変化量が大きいので、多結晶半導体膜の膜質の安定性やばらつきに対する評価の感度を高くすることができる。
次に、この実施の形態1における評価装置の製造方法について図を用いて説明する。図6、図7は、本実施の形態に係る半導体薄膜の製造方法を示す断面模式図である。まず、図6(a)を参照して、ガラス基板や石英基板などの透過性を有する絶縁性基板1上に、CVD法を用いて、下地膜を形成する。下地膜は、透過性絶縁膜であるシリコン窒化膜(SiN膜)2やシリコン酸化膜(SiO膜)3である。これを、後に成膜される半導体薄膜の下地として成膜する。本実施の形態1では、ガラス基板である絶縁性基板1上に、SiN膜2を40〜60nmの膜厚に成膜し、その上にSiO膜3を180〜220nmの膜厚に成膜する。つまり、下地膜がSiN膜2とSiO膜3の積層構造となっている。このような下地膜は、ガラス基板からのNaなどの可動イオンが半導体薄膜へ拡散することを防止する目的で設けたものであり、上記の膜厚に限るものではない。また、上記の構成に限るものでもない。
次に、下地膜の上に非晶質半導体膜12をCVD法により成膜する。本実施の形態では、非晶質半導体膜12としてシリコン膜(Si膜)を用いた。また、Si膜は30〜100nm、好ましくは60〜80nmの膜厚に成膜する。これら下地膜及び非晶質半導体膜11は、同一装置あるいは同一チャンバ内にて連続的に成膜することが好ましい。これにより、大気雰囲気中に存在するボロンなどの汚染物質が各膜の界面に取り込まれることを防止することができ、特性ばらつきの要因の一つを取り除くことができるため、より正確な多結晶半導体膜の膜質評価が可能となる。
なお、非晶質半導体膜12の成膜後に、高温中でアニールを行うことが好ましい。これは、CVD法によって成膜した非晶質半導体膜12の膜中に、多量に含有された水素を低減するために行う。本実施の形態では、窒素雰囲気の低真空状態で保持したチャンバ内を480℃程度に加熱し、非晶質半導体膜12を成膜した基板1を45分間保持した。このような処理を行っておくことにより、非晶質半導体膜12を結晶化する際に、温度が上昇しても水素の急激な脱離が起こらず、非晶質半導体膜12表面の荒れを抑制することが可能となる。以上の工程により、図6(a)に示す構成となる。
そして、非晶質半導体膜12表面に形成された自然酸化膜をフッ酸などでエッチング除去する。次に、非晶質半導体膜12に対して窒素などのガスを吹き付けながら、図6(b)に示されるように、非晶質半導体膜12の上からレーザー光13を照射する。レーザー光13は、所定の光学系を通して線状のビーム形状に変換された後、非晶質半導体膜12に照射される。本実施の形態では、レーザー光13としてYAGレーザーの第2高調波(発振波長:532nm)を用いた。また、スポットを約60um×100mmの線状ビーム形状とした。そして、線状ビームの長方向に対して垂直に、送りピッチ2umとして、非晶質半導体膜12の上を走査した。このようにして、非晶質半導体膜12は多結晶化される。なお、YAG−2ωレーザーの代わりに、エキシマレーザーを用いても本実施の形態1に示す評価装置にて多結晶半導体膜の評価ができることは言うまでもない。
そして、感光性樹脂であるレジストをスピンコートによって塗布し、塗布したレジストを露光、現像する公知の写真製版法を行う。これにより、各評価セルに評価素子としての薄膜トランジスタを構成するための形状にフォトレジストをパターニングする。その後、多結晶半導体膜をエッチングし、フォトレジストパターンを除去する。これにより、図6(c)に示されるように所望の形状に多結晶半導体膜4がパターニングされる。
次に、ゲート絶縁膜5を基板表面全体を覆うように成膜する。つまり、多結晶半導体膜4の上にゲート絶縁膜5を成膜する。また、ゲート絶縁膜5としては、SiN膜、SiO膜等が用いられる。本実施の形態では、ゲート絶縁膜5として、SiO膜を用い、CVD法によって50〜100nmの膜厚に成膜した。また、多結晶半導体膜4の表面粗さRaを3nm以下、Rmaxを30nm以下としており、さらに多結晶半導体膜4のパターン端部の断面がテーパー形状となるように加工している。従って、ゲート絶縁膜5の被覆性が高く、初期故障を大幅に低減することができるため、各評価セルの特性を歩留まり良く評価することが可能である。以上の工程により、図6(d)に示す構成となる。
次に、評価セルを構成する薄膜トランジスタ用のゲート電極6および評価セルを電気的に接続する走査配線107を形成するための第1の導電膜を成膜する。第1の導電膜は、Mo、Cr、W、Al、Taやこれらを主成分とする合金膜であればよい。本実施の形態では、Moを膜厚200〜400nmとして、DCマグネトロンを用いたスパッタリング法により、第1の導電膜を形成した。次に、形成した第1の導電膜を公知の写真製版法を用いて、所望の形状にパターニングし、ゲート電極6及び走査配線107(図示せず)を形成する。本実施の形態1では、第1の導電膜のエッチングは、リン酸系のエッチング液を用いたウェットエッチング法により行った。
次に、形成したゲート電極6をマスクとして、多結晶半導体膜4のソース領域4aとドレイン領域4bに不純物元素を導入する。ゲート電極6の下方には不純物元素が導入されないチャネル領域4cが形成される。ここで導入する不純物元素としてP、Bを用いることができる。Pを導入すればn型のTFTを形成することができ、Bを導入すればp型のTFTを形成することができる。また、ゲート電極6の加工をn型TFT用ゲート電極とp型TFT用ゲート電極の2回に分けて行えば、n型とp型のTFTを同一基板上に作り分けることができる。したがって、各走査配線107および各信号配線105を任意に選択するための駆動回路を評価装置と同じ絶縁性基板上に作成することも可能である。ここで、PやBの不純物元素の導入には、イオンドーピング法を用いて行った。以上の工程により、ゲート電極6、ソース領域4a、ドレイン領域4bが形成され、図7(a)に示す構成となる。
次に、層間絶縁膜7を基板表面全体を覆うように成膜する。つまり、ゲート電極6および走査配線107(図示せず)の上に層間絶縁膜7を成膜する。本実施の形態では、SiO膜を膜厚500〜1000nmとして、CVD法により層間絶縁膜7を成膜した。そして、窒素雰囲気中で450℃程度に加熱したアニール炉の中に1時間程度保持した。これは、多結晶半導体膜4のソース領域4aとドレイン領域4bに導入した不純物元素をさらに活性化させるためである。以上の工程により、図7(b)に示す構成となる。
次に、形成したゲート絶縁膜5及び層間絶縁膜7を公知の写真製版法を用いて所望の形状にパターニングする。ここでは、多結晶半導体膜4のソース領域4a及びドレイン領域4bに到達するコンタクトホール8、コンタクトホール9をそれぞれ形成する。つまり、コンタクトホール8、9では、ゲート絶縁膜5及び層間絶縁膜7が除去され、多結晶半導体膜4が露出している。以上の工程により、図7(c)に示す構成となる。なお、図7(c)には図示しないが、走査配線107を介してゲート電極6と電気的に接続する走査配線用入力端子パッド102を形成する部位にもコンタクトホールを開口する。
次に、ソース電極10とドレイン電極11及び配線を形成するための第2の導電膜を成膜する。第2の導電膜は、Mo、Cr、W、Al、Taやこれらを主成分とする合金膜であればよい。また、これらを積層させた多層構造としてもよい。本実施の形態1では、Mo/Al/Moの積層させた構造とし、膜厚はAl膜が200〜400nm、Al下層及び上層のMo膜が50〜150nmとした。これらは、DCマグネトロンを用いたスパッタリング法により形成した。次に、形成した第2の導電膜を公知の写真製版法を用いて所望の形状にパターニングして、ソース電極10とドレイン電極11及び信号配線105、信号取り出し配線106を形成する。同時に、信号配線用入力端子パッド103、信号取り出し配線用出力端子パッド104を形成してもよい。
以上の工程により、ソース領域4aでは、コンタクトホール8を介して多結晶半導体膜4に接続されるソース電極10および信号配線105(図示せず)が形成される。また、ドレイン領域4bでは、コンタクトホール9を介して多結晶半導体膜4に接続されるドレイン電極11および信号取り出し配線106(図示せず)が形成される。これにより、図7(d)に示す構成となる。また、図示しないが、走査配線用入力端子パッド102、信号配線用入力端子パッド103、信号取り出し配線用出力端子パッド104も形成される。
実施の形態2.
以下に、本実施の形態2に係る評価装置について説明する。本実施の形態2に係る評価装置においても、その構成は実施の形態1で示した図1と同様である。実施の形態1では、評価セルとして多結晶半導体膜を用いて作製した薄膜トランジスタを構成素子とした。一方、本実施の形態2においては、薄膜トランジスタをスイッチング素子として用い、これに直列に電気的に接続した容量素子も併せて評価セルの構成素子としたことを特徴とする。また、本実施の形態2にかかる評価装置においても、絶縁性基板上に形成した非晶質半導体膜にレーザー光を照射することにより多結晶化した半導体膜を薄膜トランジスタに適用することにより、多結晶半導体膜の結晶粒径やそのばらつき等を評価することが可能である。
図8は本実施の形態2に係る評価装置を構成する評価セル101を示す等価回路図である。本実施の形態2においては、評価セルとして薄膜トランジスタ120と容量素子121とを直列に接続した構造を用いることを特徴としている。図8において薄膜トランジスタ120はゲート端子120a、ソース端子120bを備えており、薄膜トランジスタ120と容量素子121との間にはドレイン容量接続部121aがあり、容量素子121には信号取り出し端子121bが備えられている。実施の形態1と同様に、ゲート端子120aとソース端子120bとはそれぞれが走査配線107、信号配線105と接続されている。また、容量素子121の出力側となる信号取り出し端子121bは信号取り出し配線106に接続されている。このようにして、評価セル101の各々は実施の形態1と同様、配線によって互いに接続されて配置される。配置は1列すなわち1次元配列でもいいし、マトリクス状に2次元配置されてもよい。
図9に示すのは、評価セル101の構成素子を薄膜トランジスタ120と容量素子121とで結合した場合の断面構造の一例を示したものである。図9において、薄膜トランジスタ120の構造は図4と同様であるので説明を省略する。図9において、容量素子121は、上部電極14と下部電極4dとの間に誘電絶縁膜としてのゲート絶縁膜5が挟まれた構造からなっている。ここで、上部電極14は薄膜トランジスタ120のゲート絶縁膜5上に形成される導電膜であり、ゲート電極6と同一材料を用いて形成されてもよい。また、下部電極4dとしては多結晶半導体膜4を用いている。なお、容量素子121の誘電絶縁膜としては薄膜トランジスタ120のゲート絶縁膜5を用いたが、容量素子121に適した誘電絶縁膜を別途形成してもよい。
容量素子121の上部には層間絶縁膜7が形成され、層間絶縁膜7にはコンタクトホール8、9、15、16が形成されている。コンタクトホール8、9、16については層間絶縁膜7だけでなくゲート絶縁膜5にも形成されており多結晶半導体膜4に到達している。さらに、層間絶縁膜7上にはソース電極10、ドレイン接続電極17、信号取り出し電極18が形成されている。ここで、ソース電極10はコンタクトホール8を介してソース領域4aと接続されている。また、ドレイン接続電極17はコンタクトホール9を介してドレイン領域4bと接続されると共に、コンタクトホール15を介して下部電極4dと接続される。すなわちドレイン領域4bと下部電極4dとは、ドレイン接続電極17を介して接続されることになる。さらに、信号取り出し電極18はコンタクトホール16を介して容量素子121の下部電極4dと接続されている。
また、図9において図示しないが、ゲート電極6とソース電極10は、各々ゲート端子120a、ソース端子120bに相当し、走査配線107、信号配線105と接続されるものである。さらに、信号取り出し電極18は信号取り出し端子121bに相当し、信号取り出し配線106と電気的に接続されている。なお、ドレイン接続電極17はドレイン容量接続部121aに相当するものである。以上のように、薄膜トランジスタ120と容量素子121とが直列に接続されている。
図8及び、図9に示した評価セル101としての出力は、容量素子121の下部電極4dに接続されている信号取り出し電極18を介して、実施の形態1と同様に信号取り出し配線用出力端子パッド104まで伝わる。したがって、本実施の形態2にかかる評価装置においても、実施の形態1と同様の効果を奏する。なお、本実施の形態2においては評価セルの構成素子として薄膜トランジスタに容量素子を追加したこと以外は、基本的に実施の形態1と同様であるため、評価装置の製造方法についての説明は省略する。
次に、この実施の形態2における評価方法について説明する。ここでは、実施の形態2にかかる評価装置を用いて、薄膜トランジスタ120に備えられる多結晶シリコン膜等の多結晶半導体膜4の膜質を評価する方法について説明する。まず、膜質評価を行いたい領域に位置する評価セル101に接続されている走査配線107に対して入力端子パッド102からVg1(V)の電圧を印加する。さらに評価セル101に接続する信号配線105に対して信号入力端子から測定周波数f1のもとで印加電圧Vd(V)を走査することによって、評価セル101に形成した薄膜トランジスタ120がオンし、これに接続される容量素子121に電荷が蓄えられ、容量が変化する。ここで、電圧を走査するとは、複数の異なる電圧値の電圧を印加することを指す。
このとき、容量素子121に接続された信号取り出し配線106から容量素子121のキャパシタ容量を読み出すことにより、評価素子である容量素子121のC−V特性を測定することができる。ここで、キャパシタ容量とは、導電膜/誘電体/多結晶半導体膜のMOS構造からなるキャパシタに電圧を印加した際に得られる容量値を指し、本実施の形態2の評価装置においては、上部電極14、ゲート絶縁膜5、下部電極4dからなる構造がキャパシタに対応する。
評価セル101を構成する容量素子121の特性によって、選択した評価セルの信号配線105へ印加する最適な電圧範囲は異なるが、容量素子121が反転層を形成する電圧値を含む範囲とすることが好ましい。本実施の形態では電圧範囲を−2Vから+2Vとし、0.1Vステップで電圧を走査させた。C−V特性図である図10を参照して、選択した評価セルの信号配線105へ印加する電圧範囲において反転層を形成する電圧値を含むように設定することにより、出力されるキャパシタ容量値が走査電圧差に対して最大変化を示す点における接線と走査電圧軸との交点Vdij(i=1,2,…,p、j=1,2,…,q)が、容量素子121が反転層の形成を示す指標となる。
すなわち、まずp×q個の2次元に配置した各評価セルに対して、最小の印加電圧である最小走査電圧Vdminから、最大の印加電圧である最大走査電圧Vdmaxまでを走査電圧ステップVdstepごとに、各走査電圧Vdkとして電圧を印加する。ここで、添字のkは1からnの整数であり、nは以下の式から算出される数字であり、ステップ数に対応するものである。
Figure 2008153274
本実施の形態2では、Vdstepとして0.1Vを用いたが、これに限定されるものではない。ここで、各走査電圧Vdkに対して得られるキャパシタ容量Ckの走査電圧差ΔCk、すなわち本実施の形態2においては走査電圧0.1Vの変化に対するキャパシタ容量Ckの走査電圧差ΔCkは以下の式から算出される。
Figure 2008153274
ここで、図10を参照して、キャパシタ容量Ckが走査電圧差に対して最大変化を示す点、つまりキャパシタ容量Ckの走査電圧差ΔCkの最大値を示す点、すなわちC-V特性最大変化点115を求め、C-V特性最大変化点115における接線と走査電圧軸との交点Vdijを求める。隣接する評価セルのVdijの差分や、配置した評価セルのVdijの均一性を比較、評価することによって、多結晶半導体膜の膜質の広範囲な領域における安定性やばらつきを電気的に評価することができる。
本実施の形態2における評価結果およびその領域における結晶粒の観察結果の一例を図11に示す。図11(a)は、本実施の形態2にかかる評価セルから得られたVdijの分布のグラフであり、該グラフ内においてマルで囲んだ領域116は、距離の変化に伴いVdijが急激に変化する領域である。すなわち、領域116は隣接する評価セルのVdijの差分が大きい領域を示している。一方、領域117で示した領域は、距離の変化に伴うVdijの変化が大きくない領域である。また、領域116、領域117の位置における多結晶半導体膜の結晶粒の観察結果であるSEM写真を各々、図11(b)、図11(c)に示している。ただし、図11においては、簡単のため、実施の形態1と同様に1次元方向に配置した評価セルから得られた評価結果としているが、2次元的に配置してもよいのは当然である。
グラフ内の領域116、117と図11(b)、11(c)の比較から、図11(b)のように結晶粒径ばらつきが大きい場合には、領域116のように隣接する評価セルから得られたVdijの差分が大きい傾向が見られ、この実施の形態2で示す評価装置にて電気的に評価した結果が多結晶半導体膜の膜質を反映していることが分かる。これにより、例えば、線状やスリット状に集光されたレーザー光13をある方向にスキャンすることによりシリコン等の半導体膜を多結晶化した場合には、そのスキャン方向と垂直な方向を含むように評価セルを配列することにより、線やスリットに沿った方向のレーザー光エネルギー分布等が結晶化のばらつき等に及ぼす影響を把握できるので、最適化に寄与させることも可能である。
本実施の形態2においては、評価セルとして薄膜トランジスタだけではなく容量素子を直列に接続したものである。そのため、薄膜トランジスタの短チャネル効果といったドレイン側からの電界の影響などの外乱要因を少なくして、多結晶半導体膜の評価を高精度に行うことができる。
実施の形態に係る評価装置を示す構成図である。 実施の形態に係る多結晶半導体薄膜の評価装置を示す等価回路図である。 実施の形態1に係る評価セルの構成を示す等価回路図である。 実施の形態1に係る評価セルを構成する薄膜トランジスタの断面図である。 実施の形態1により得られた評価結果を示す図である。 実施の形態1にかかる評価セルを構成する薄膜トランジスタの製造方法を示す断面模式図である。 実施の形態1にかかる評価セルを構成する薄膜トランジスタの製造方法を示す断面模式図である。 実施の形態2に係る評価セルの構成を示す等価回路図である。 実施の形態2に係る評価セルを構成する薄膜トランジスタと容量素子との断面図である。 実施の形態2に係る評価方法を説明する図である。 実施の形態2により得られた評価結果を示す図である。
符号の説明
1 絶縁性基板、2 SiN膜、3 SiO膜、4 多結晶半導体膜、
5 ゲート絶縁膜、6 ゲート電極、7 層間絶縁膜、8 コンタクトホール、
9 コンタクトホール、10 ソース電極、11 ドレイン電極、
12 非晶質半導体膜、13 レーザー光、14 上部電極、
15 コンタクトホール、16 コンタクトホール、
17 ドレイン接続電極、18 信号取り出し電極、
101 評価セル、102 走査配線用入力端子パッド、
103 信号配線用入力端子パッド、104 信号取り出し配線用出力端子パッド、
105 信号配線、106 信号取り出し配線、107 走査配線、
108 評価セル配置領域、109 信号出力バッファ、
110 信号配線デコーダ、111 走査配線デコーダ
112、113、114 領域
115 C-V特性最大変化点、116、117 領域、
120 薄膜トランジスタ
121 容量素子

Claims (11)

  1. 絶縁性基板と、
    前記絶縁性基板上に配置されて、薄膜トランジスタを各々備えた複数の評価セルと、
    電気信号を前記の各素子に印加するための第1の配線と、
    前記の各素子から電気出力を取り出すための第2の配線と、
    走査配線とを備え、
    前記複数の評価セルが各々、前記第1の配線と前記第2の配線と前記走査配線とに
    電気的に接続されることにより前記複数の評価セルが各々接続され、
    前記第2の配線から延在する端子パッドが前記絶縁性基板上に設けられている
    ことを特徴とする評価装置。
  2. 前記評価セルは、さらに容量素子を備えることを特徴とする請求項1に記載の評価装置。
  3. 前記評価セルは、2次元配置されていることを特徴とする請求項1または2に記載の評価装置。
  4. 前記評価セルは、多結晶半導体膜を用いて作製した前記薄膜トランジスタを備えることを特徴とする請求項1ないし3のいずれかに記載の評価装置。
  5. 前記多結晶半導体膜は多結晶シリコン膜であることを特徴とする請求項4に記載の評価装置。
  6. 前記多結晶半導体膜は、非晶質半導体膜にレーザー光を照射することにより多結晶化されたことを特徴とする請求項4または5に記載の評価装置。
  7. 請求項1ないし6のいずれかに記載の評価装置を用いて、
    前記第1の配線を介して前記薄膜トランジスタに電圧を印加する工程と、
    前記走査配線を介して前記薄膜トランジスタに、複数の電圧値の電圧を印加する工程と、
    前記複数の電圧値の電圧の印加に対して前記評価セルから各々出力される電気信号を前記第2の配線を介して測定する工程と、
    を含むことを特徴とする評価方法。
  8. 請求項1ないし6のいずれかに記載の評価装置を用いて、
    前記走査配線に電圧を印加する工程と、
    前記第1の配線を介して前記薄膜トランジスタに、複数の電圧値の電圧を印加する工程と、
    前記複数の電圧の印加に対して前記評価セルから各々出力される電気信号を前記第2の配線を介して測定する工程と、
    を含むことを特徴とする評価方法。
  9. 請求項7または8に記載の評価方法において、前記評価セルから出力される電気信号とは、電流、キャパシタ容量のいずれかであることを特徴とする評価方法。
  10. 請求項1ないし6のいずれかに記載の評価装置を用いて、
    前記第1の配線を介して前記薄膜トランジスタに電圧を印加する工程と、
    前記走査配線を介して前記薄膜トランジスタに、複数の電圧値の電圧を印加する工程と、
    前記複数の電圧値の電圧の印加に対して前記評価セルから各々出力される電流値を前記第2の配線を介して測定する工程と、
    前記各々出力される電流値の差分を前記複数の電圧値の差分で除した値を算出する工程と、を含むことを特徴とする評価方法。
  11. 請求項1ないし6のいずれかに記載の評価装置を用いて、
    前記走査配線を介して前記薄膜トランジスタに電圧を印加する工程と、
    前記第1の配線を介して前記薄膜トランジスタに、複数の電圧値の電圧を印加する工程と、
    前記複数の電圧の印加に対する前記容量素子の前記キャパシタ容量を前記第2の配線を介して測定する工程と、を含むことを特徴とする評価方法。
JP2006336942A 2006-12-14 2006-12-14 評価装置およびその評価装置を用いた評価方法 Pending JP2008153274A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006336942A JP2008153274A (ja) 2006-12-14 2006-12-14 評価装置およびその評価装置を用いた評価方法
TW096144744A TW200836282A (en) 2006-12-14 2007-11-26 Evaluation device and evaluation method using evaluation device
US11/946,426 US20080290892A1 (en) 2006-12-14 2007-11-28 Evaluation device and evaluation method using evaluation device
KR1020070128135A KR20080055652A (ko) 2006-12-14 2007-12-11 평가 장치 및 그 평가 장치를 사용한 평가 방법
CNA200710305133XA CN101207139A (zh) 2006-12-14 2007-12-14 评价装置及使用此评价装置的评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006336942A JP2008153274A (ja) 2006-12-14 2006-12-14 評価装置およびその評価装置を用いた評価方法

Publications (1)

Publication Number Publication Date
JP2008153274A true JP2008153274A (ja) 2008-07-03

Family

ID=39567162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006336942A Pending JP2008153274A (ja) 2006-12-14 2006-12-14 評価装置およびその評価装置を用いた評価方法

Country Status (5)

Country Link
US (1) US20080290892A1 (ja)
JP (1) JP2008153274A (ja)
KR (1) KR20080055652A (ja)
CN (1) CN101207139A (ja)
TW (1) TW200836282A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6218718B2 (ja) * 2014-10-22 2017-10-25 三菱電機株式会社 半導体評価装置及びその評価方法
CN110824736B (zh) * 2018-08-08 2024-04-16 天马日本株式会社 液晶面板的显示品质下降的评价方法及其装置

Also Published As

Publication number Publication date
TW200836282A (en) 2008-09-01
KR20080055652A (ko) 2008-06-19
US20080290892A1 (en) 2008-11-27
CN101207139A (zh) 2008-06-25

Similar Documents

Publication Publication Date Title
TWI538278B (zh) 有機發光二極體顯示裝置及製造其之方法
JP2000174282A (ja) 半導体装置
JP2005244230A (ja) 異なるポリシリコングレインサイズの領域を有するポリシリコン層の形成方法、液晶ディスプレイ装置及びその製造方法
US7101740B2 (en) Electronic devices comprising bottom-gate TFTs and their manufacture
JPH10233511A (ja) 薄膜トランジスタ装置及び薄膜トランジスタ装置の製造方法並びに液晶表示装置
JP5987174B2 (ja) 薄膜トランジスタ装置
US6847069B2 (en) Thin-film semiconductor device, manufacturing method of the same and image display apparatus
US7923725B2 (en) Semiconductor device and a method of manufacturing the same
JP2008153274A (ja) 評価装置およびその評価装置を用いた評価方法
JPH08234233A (ja) アレイ
JP7055285B2 (ja) 半導体装置、表示装置、半導体装置の製造方法及び表示装置の製造方法
KR100689318B1 (ko) 다결정 박막트랜지스터의 제조방법
US8319225B2 (en) Display device and manufacturing method thereof
US20060091388A1 (en) Display device and method for manufacturing the same
JP5013302B2 (ja) 半導体装置の製造方法、半導体装置、電気光学装置および電子機器
JP2005175237A (ja) 薄膜半導体装置の製造方法
JP2009210681A (ja) 表示装置及びその製造方法
KR101392330B1 (ko) 평판표시패널 및 그 제조방법
JP2003015105A (ja) 画像表示装置
JPH09283438A (ja) 多結晶半導体薄膜、その形成方法、多結晶半導体tft及びtft基板
Seok et al. Edge Cut Process for Reducing Ni Content at Channel Edge Region in Metal Induced Lateral Crystallization Poly-Si TFTs
JP2000277740A (ja) アクティブマトリクス基板の検査方法、および半導体装置の製造方法
JP2009224396A (ja) 薄膜トランジスタ基板、およびその製造方法、並びに表示装置
JPH11135796A (ja) 液晶表示装置
JP2005259865A (ja) 半導体装置、半導体装置の製造方法、電気光学装置