JP2008141023A - 超音波洗浄装置及び基板洗浄方法 - Google Patents

超音波洗浄装置及び基板洗浄方法 Download PDF

Info

Publication number
JP2008141023A
JP2008141023A JP2006326419A JP2006326419A JP2008141023A JP 2008141023 A JP2008141023 A JP 2008141023A JP 2006326419 A JP2006326419 A JP 2006326419A JP 2006326419 A JP2006326419 A JP 2006326419A JP 2008141023 A JP2008141023 A JP 2008141023A
Authority
JP
Japan
Prior art keywords
substrate
cleaning
oscillator
ultrasonic
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006326419A
Other languages
English (en)
Other versions
JP4763585B2 (ja
Inventor
Mamoru Kurashina
守 倉科
Masayuki Kato
雅之 加藤
Tatsuro Kishida
達郎 喜志多
Wataru Kaneda
渉 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006326419A priority Critical patent/JP4763585B2/ja
Publication of JP2008141023A publication Critical patent/JP2008141023A/ja
Application granted granted Critical
Publication of JP4763585B2 publication Critical patent/JP4763585B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

【課題】効率よく且つ確実に基板を洗浄する。
【解決手段】超音波洗浄装置10は、洗浄液14に超音波を伝動し、洗浄液14に浸漬されたウエハ基板33を洗浄する超音波洗浄装置であり、ウエハ基板33を洗浄液14に超音波を伝動する振動板12に対向させ、超音波の定在波の腹の位置にウエハ基板33を保持する保持手段と、ウエハ基板33を振動板12に対し水平方向に楕円揺動または円揺動する揺動手段と、を備える。これにより、被洗浄基板であるウエハ基板33に対し、効率よく且つ均一に超音波を与え、基板洗浄効率や洗浄の確実性を向上させ、被洗浄基板面内に生じる洗浄力分布を減少させ、短時間で確実に被洗浄基板を洗浄することができる。
【選択図】図1

Description

本発明は超音波洗浄装置及び基板洗浄方法に関する。
従来から、半導体基板等を洗浄する手法の一つとして超音波洗浄技術が利用されている。中でも超音波洗浄装置は、半導体基板の溶液処理、リンス、リフトオフ等の洗浄に用いられ、半導体素子を製造する上で重要な装置である。
この超音波洗浄装置は、超音波振動を発生させる発振機、発振機からの周波数信号を受け振動する発振子(振動子エレメント)、発振子の振動を洗浄槽に伝える振動板、洗浄媒体である洗浄液、そして、洗浄液を収容し、実際に基板を洗浄する洗浄槽から主に構成されている。そして、超音波洗浄装置の洗浄原理は、洗浄槽内の洗浄液に発振子からの超音波が発振され、洗浄液内に無数の小さい真空泡(以下、キャビテーション)が発生する。そして、キャビテーションが破裂する際に生じる衝撃波が洗浄液に浸漬された基板の表面に与えられ、基板上に付着された異物がその衝撃波によって除去されるというものである。
キャビテーションについては、超音波の周波数が高くなるに従い、発生量が減少するため、近年では、リフトオフなどの強力な洗浄力を必要とする分野では、周波数の低い領域(具体的には、20〜40kHz)で洗浄が行われるのが一般的になっている。
ところが、超音波の周波数が低周波になる程、超音波の波長が大きくなるため、洗浄槽における出射波と反射波で合成される定在波の間隔が大きくなり、洗浄槽内の振動板からの距離により洗浄力の斑が生じる。
これに対し、従来から、基板の一部分が節の位置で恒常的に洗浄される現象を避けるため、被洗浄基板を洗浄槽内で揺動したり、洗浄液を撹拌したりすることで、被洗浄物と定在波の相対的な位置をシフトさせ、洗浄物内に発生する洗浄ムラを低減することが常習的に行われている。
また、最近では、振動板と液面との距離を変動させ、最適洗浄位置を変動させることにより洗浄力の斑をより均一化する洗浄技術(例えば、特許文献1参照)や、振動板と液面との距離の変動と共に周波数を変動させ、最適洗浄位置を変動させることにより洗浄力の斑をより均一化する洗浄技術が報告されている(例えば、特許文献2参照)。
一方、複数個の発振子を洗浄槽の外部に配置し、洗浄槽内の洗浄力の斑を解消しようとする方法も報告されている(例えば、特許文献3,4参照)。
特開2003−1205号公報 特開平08−229525号公報 特開2002−126668号公報 特開2003−209086号公報
しかしながら、特許文献1,2では、最適洗浄位置を変動させることにより任意の位置における洗浄力の分布は均一化するが、それに相反して、被洗浄基板が定在波の節の部分に位置される機会も増えるため、洗浄力自体は分散して低下する。このため洗浄力の斑は解消できるものの、大幅な洗浄時間の短縮が図られていない。
また、特許文献3,4では、複数の発振子が配置されているものの、振動板の中の超音波エレメントの配置や被洗浄基板の洗浄槽内での配置する位置まで最適化したものではなく、場所による洗浄力を槽内で平均化したにすぎない。特に、発明者の事前の調査では、複数の発振子が配置されていても、実際には振動板に振動を伝動する発振子の直上で洗浄力が比較的高いことが判明し、発振子の配置構成が洗浄力に影響を与えることが分かっている。
本発明はこのような点に鑑みてなされたものであり、発振子の配置を工夫することで、洗浄槽内に振動子からの距離ではっきり規定される明確な定在波を発生させ、強力な洗浄力を持つ定在波の腹の位置で、絶えず被洗浄基板を洗浄することで、短時間で且つ確実に被洗浄基板を洗浄する超音波洗浄装置及び基板洗浄方法を提供するものである。
本発明では上記課題を解決するために、図1に例示する構成で実現可能な超音波洗浄装置10が提供される。本発明の超音波洗浄装置10は、洗浄液14に超音波を伝動し、洗浄液14に浸漬されたウエハ基板33を洗浄する超音波洗浄装置であり、ウエハ基板33を洗浄液14に超音波を伝動する振動板12に対向させて、ウエハ基板33を保持する保持手段と、ウエハ基板33を振動板12に対し水平方向に楕円揺動または円揺動する揺動手段と、を有し、振動板12に、超音波を発生させる複数の発振子がハニカム構造を形成して設置されていることを特徴とする。
図1に示すような超音波洗浄装置10によれば、洗浄液14内にウエハ基板33が洗浄液14に超音波を伝動する振動板12に対向するように設置され、ウエハ基板33が保持される。振動板12には、超音波を発生させる複数の発振子13a,13b,13c,13d,13e,13f,13gがハニカム構造を形成して設置されている。そして、ウエハ基板33が振動板12に対し水平方向に楕円揺動または円揺動によって揺動される。
また、本発明では上記課題を解決するために、洗浄液に超音波を伝動し、前記洗浄液に浸漬された基板を洗浄する基板洗浄方法において、前記基板を前記洗浄液に前記超音波を伝動する振動板に対向させて、前記基板を保持するステップと、保持された前記基板を前記振動板に対し水平方向に楕円揺動または円揺動するステップと、を有することを特徴とする基板洗浄方法が提供される。
このような基板洗浄方法によれば、洗浄液に超音波を伝動し、洗浄液に浸漬された基板を洗浄する基板洗浄方法において、基板が洗浄液に超音波を伝動する振動板に対向するように、基板が保持され、保持された基板が振動板に対し水平方向に楕円揺動または円揺動によって揺動される。
本発明では、洗浄液に超音波を伝動し、洗浄液に浸漬された基板を洗浄する超音波洗浄装置及び基板洗浄方法において、基板を洗浄液に超音波を伝動する振動板に対向させて、基板を保持し、基板を振動板に対し水平方向に楕円揺動または円揺動させた。振動板には、超音波を発生させる複数の発振子をハニカム構造が形成するように設置させた。
これにより、被洗浄基板に効率よく且つ均一に超音波が与えられ、基板洗浄効率や洗浄の確実性を向上させることができる。また、被洗浄基板面内に生じる洗浄力分布を減少させ、短時間且つ確実に被洗浄基板を洗浄することができる。
以下、本発明の実施の形態を、図面を参照して詳細に説明する。本発明では、振動板に設置された発振子の配列と被洗浄基板の揺動方法に特徴がある。最初に、超音波洗浄装置の基本構成について説明する。
図1は超音波洗浄装置の基本構成を説明する模式図であり、(A)はその要部断面模式図、(B)は要部上面模式図である。ここで、(A)は、(B)のA−A線の位置の断面図である。
超音波洗浄装置10は、洗浄槽11と、洗浄槽11の底部に設けられた振動板12と、振動板12に接触するように、複数の発振子13a,13b,13c,13d,13e,13f,13g(振動子エレメント)が備えられている。また、洗浄槽11内には、洗浄液14が充填されている。
複数の発振子13a,13b,13c,13d,13e,13f,13gには、発振子13a,13b,13c,13d,13e,13f,13gに超音波振動を伝導させる超音波発振機20が接続され、超音波発振機20は制御ユニット21によって制御されている。このような超音波洗浄装置10によれば、超音波発振機20によって超音波信号が発生し、超音波発振機20から受けた超音波信号によって、複数の発振子13a,13b,13c,13d,13e,13f,13gが振動し、その振動が振動板12に伝動される。そして、振動板12の振動によって、洗浄液14内に超音波が印加され、洗浄液14内に超音波の定在波が発生する。
そして、洗浄槽11の側部には、被洗浄基板を洗浄液14内で揺動するための駆動部30が設置されている。この駆動部30からは、例えば、L字状のアーム31が延出され、アーム31の一部が洗浄液14に浸漬され、その先端に支持枠32が設置されている。そして、支持枠32内に、被洗浄基板であるウエハ基板33を搭載すると、振動板12に対向するようにウエハ基板33が設置される。
ここで、ウエハ基板33は、駆動部30によって振動板12から所定の位置に調整、保持され、振動板12に対して水平方向に楕円揺動または円揺動することができる(後述)。尚、駆動部30は、制御ユニット21によって制御されている。また、洗浄液14の液面の高さも、制御ユニット21によって制御されている。
また、上述したように超音波洗浄の基本原理によれば、超音波による洗浄力は、その定在波の腹の部分で最もキャビテーションが多く発生するため、超音波の定在波の腹の部分で最も効率よくウエハ基板33を洗浄することができる。従って、洗浄力は振動板12の上面12aからウエハ基板33の洗浄面までの距離に大きく依存する。
そこで、超音波洗浄装置10においては、所定の超音波の定在波を洗浄液14内に立てるために、超音波の定在波の波長をλとしたときに、振動板12の上面12aから洗浄液14の液面14aまでの距離を(1/2)・λの整数倍となるように、液面14aが制御ユニット21によって調整される。さらに、ウエハ基板33の洗浄面が超音波の定在波の腹の位置に保持するために、振動板12の上面12aからウエハ基板33の洗浄面までの距離を(1/4)・λの奇数倍となるように、制御ユニット21、駆動部30によって調整される。
また、洗浄力は、振動板12に振動を伝動する発振子の直上に被洗浄基板がある場合に洗浄効率が高く、その配置構成が洗浄力に影響を与える(後述)。従って、本発明においては、発振子の出力に無駄がなく、且つ被洗浄基板に対して均一に振動を与える配置構造として、複数の発振子をハニカム構造に配置した構成が提供される。
図示するように、発振子13a,13b,13c,13d,13e,13f,13gについては、発振子13aが中心に設置され、その周囲に発振子13b,13c,13d,13e,13f,13gが設置されている。このようなハニカム構造によれば、発振子13a,13b,13c,13d,13e,13f,13gの相互の間隔は全て均等である。
仮に、発振子を正方形の頂点に配置したような格子状に配置すると、発振子自体が所定の面積を有しているため、当該正方形の対角線の交点領域に隙間が発生し、発振子同士を密に配置できない。また、仮に、一つの発振子の周囲に5個以下の発振子を配置した場合は、その周囲に配置した5個の発振子同士の距離が上記ハニカム構造を構成する場合よりも長くなる。また、一つの発振子の周囲に7個以上の発振子を配置した場合は、その周囲に配置した7個の発振子と中心にある当該発振子との距離がハニカム構造を構成する場合よりも長くなる。
一方、上述したハニカム構造では、全ての発振子13a,13b,13c,13d,13e,13f,13gの間隔が等間隔になり、発振子を密に配置できる。
このように、発振子13a,13b,13c,13d,13e,13f,13gをハニカム構造に配置することにより、全ての発振子13a,13b,13c,13d,13e,13f,13gの間隔が均等で、密に配置することができる。その結果、発振子の出力に無駄がなく、且つ被洗浄基板に対して均一に振動を与えることができる。
また、ウエハ基板33と発振子13a,13b,13c,13d,13e,13f,13gの大きさの関係については、ウエハ基板33の洗浄面の直径をR1とし、発振子13a,13b,13c,13d,13e,13f,13gのそれぞれの直径をR2としたときに、ウエハ基板33を揺動させても、その洗浄面がハニカム構造を形成した発振子13a,13b,13c,13d,13e,13f,13gの直上の領域に収まるように、R1は、2×R2の値以下の関係にある。また、それぞれの発振子13a,13b,13c,13d,13e,13f,13gは、同位相で発振している。これにより、均一性のよい超音波の定在波を洗浄液14内に印加させることができる。
尚、上記の超音波洗浄装置10の各構成要素のサイズは、一例として、振動板12の大きさが220×220mmで、洗浄槽11の容量が220×220×200mmである。また、超音波の周波数は20〜100kHzの範囲で調整することができ、例えば、40kHz(洗浄液14中の伝搬速度として1400m/s)である。超音波の総出力は、600W(発振子1個相当で86W)である。また、振動板12の上面12aからの洗浄液14の液面14aまでの距離は、105mmである。そして、ウエハ基板33の洗浄面を振動板の表面から44mmの位置に設置させている。発振子13a,13b,13c,13d,13e,13f,13gの直径は55mmで、それぞれの間隔は、2.5mmである。
また、洗浄液14として、例えば、市販のレジスト除去溶液(クラリアントジャパン製AZ−リムーバ)を用い、洗浄液14は、室温から70℃までの所定の温度に設定されている。また、ウエハ基板33は、例えば、4秒に1回の周期で、洗浄液14中で揺動する。
このように超音波洗浄装置10は、ウエハ基板33を洗浄液14に超音波を伝動する振動板12に対向させ、超音波の定在波の腹の位置にウエハ基板33の洗浄面を保持する保持手段と、ウエハ基板33を振動板12に対し水平方向に楕円揺動または円揺動する揺動手段と、を備えている。そして、振動板12には、超音波を発生させる複数の発振子がハニカム構造を形成して設置されている。
このような超音波洗浄装置10によれば、被洗浄基板であるウエハ基板33に効率よく且つ均一に超音波が与えられ、基板洗浄効率や洗浄の確実性を向上させることができる。また、被洗浄基板面内に生じる洗浄力分布を減少させ、短時間で確実に被洗浄基板を洗浄することができる。
次に、超音波洗浄装置10の基本構成を参照しながら、基板洗浄方法について説明する。
図2は基板洗浄方法のフロー図である。先ず、洗浄槽11に洗浄液14を充填した後(ステップS1)、制御ユニット21によって、超音波発振機20に超音波信号を発生させ、ハニカム構造に配置された発振子13a,13b,13c,13d,13e,13f,13gを振動させる。そして、発振子13a,13b,13c,13d,13e,13f,13gから振動板12に振動を伝動させ、洗浄液14内に超音波を印加する(ステップS2)。このとき、洗浄液14の液面14aは、超音波の定在波の波長をλとすると、(1/2)・λの整数倍になるように制御ユニット21によって調整される。
そして、被洗浄基板であるウエハ基板33を支持枠32に設置し、ウエハ基板33の洗浄面を超音波の定在波の腹の位置に調整、保持する(ステップS3)。このとき、ウエハ基板33の洗浄面の位置が(1/4)・λの奇数倍の位置になるように制御ユニット21、駆動部30によって調整される。
次に、ウエハ基板33を振動板12に対し水平方向に揺動する(ステップS4)。揺動は楕円揺動または円揺動で行う。
揺動の方法を図3、図4に示す。図3は楕円揺動の方法を説明する図であり、図4は円揺動の方法を説明する図である。
楕円揺動は、図3に示すように、ハニカム構造の中心に配置された発振子13a(第1の発振子)の中心点と発振子13aの両端に配置された発振子13e(第2の発振子)及び発振子13b(第3の発振子)の中心点を通る中心線A(第1の中心線)と発振子13eの外周線及び発振子13bの外周線とが交差する交点の中、発振子13aの中心までの距離が最短となる発振子13eの外周線上の交点A(第1の交点)及び発振子13bの外周線上の交点B(第2の交点)と、発振子13aの中心を通り、中心線Aと直交する中心線B(第2の中心線)と発振子13aの外周線とが交差する交点C(第3の交点)及び交点D(第4の交点)の4点を通る楕円A上にウエハ基板33の中心部が位置するように、ウエハ基板33が上述した振動板に対し水平方向に公転させて揺動を行う。
また、円揺動は、図4に示すように、中心に位置する発振子13aの外周線の上にウエハ基板33の中心部が位置するように、ウエハ基板33を上述した振動板に対し水平方向に公転させて揺動を行う。
そして、所定の時間での超音波の印加、揺動を行った後、ウエハ基板33の洗浄を完了させる(ステップS5)。
このように、基板洗浄方法では、ウエハ基板33を洗浄液14に超音波を伝動する振動板12に対向させ、超音波の定在波の腹の位置にウエハ基板33の洗浄面を保持し、ウエハ基板33を振動板12に対し水平方向に楕円揺動または円揺動する。
このような基板洗浄方法によれば、被洗浄基板であるウエハ基板33に効率よく且つ均一に超音波が与えられ、基板洗浄効率や洗浄の確実性を向上させることができる。また、被洗浄基板面内に生じる洗浄力分布を減少させ、短時間で確実に被洗浄基板を洗浄することができる。
尚、ステップS2とステップS3の順序は、特にこの順序に限らない。ウエハ基板33の揺動を行う前に、ウエハ基板33表面の位置が(1/4)・λの奇数倍の位置にあればよい。
次に、超音波洗浄装置10を用いた基板洗浄方法の効果について説明する。ここでは、その効果を確認するために、半導体製造プロセスで、最も強力な洗浄力を必要とするリフトオフを一例に、超音波洗浄装置10の洗浄力について比較検討した。
図5はリフトオフに用いる模擬サンプルの要部構成を説明する図である。
模擬サンプル40用の基板として、鏡面仕上げされた、直径が5インチのシリコンウエハ基板41を用いた。そして、シリコンウエハ基板41上に、市販のフォトレジスト(クラリアントジャパン製AZP4620)及び現像液(クラリアントジャパン製AZ400Kデベロッパ−)を用いて、フォトリソグラフィにより合計33660個のレジストパターン42を形成した。
ここで、レジストパターン42の膜厚は6μmで、レジストパターン42の最小パターンとして、レジストパターン42の上面が9×3(μm)の長方形であるライン(不図示)がシリコンウエハ基板41上に形成されている。また、最大パターンとして、レジストパターン42の上面が300×200(μm)の長方形であるライン(不図示)がシリコンウエハ基板41上に形成されている。さらに、レジストパターン42上に、膜厚が500μmのAl23(アルミナ)膜43をスパッタリング法によって成膜した。このようなパターン形成されたサンプルをリフトオフ用の模擬サンプル40とした。尚、ここで作製した模擬サンプル40と上述したウエハ基板33との口径は同一である。
評価の方法は、図1に示す超音波洗浄装置10を用いて、上記条件によって図2に示す手順で超音波洗浄を行った。具体的には、同一の模擬サンプル40を用いて、発振子の配置及び揺動方法を変えて、リフトオフを行った。そして、それぞれの模擬サンプル40について、全てのレジストパターン42の33660個の中、リフトオフされていないレジストパターンの数をリフトオフ残率(%)として算出し、超音波処理した時間とリフトオフ残率との関係をプロットリングした。
ここで、正常にリフトオフする部分では、洗浄液14に超音波が印加されることによって、レジストパターン42がその上に形成したAl23膜43と共に剥離し、レジストパターン42間に成膜したAl23膜43がシリコンウエハ基板41上に残存する。一方、リフトオフが不充分な部分では、レジストパターン42は完全に剥離せず、シリコンウエハ基板41上に残存する。このような残存した部分のレジストパターンの数をカウントした。以下に、リフトオフの結果を説明する。
<実施例1>
実施例1においては、図3に示す発振子13a,13b,13c,13d,13e,13f,13gの配置と揺動によって模擬サンプル40のリフトオフを行った。即ち、実施例1では、ハニカム構造に配置させた発振子13a,13b,13c,13d,13e,13f,13g上で、模擬サンプル40を楕円揺動によって公転させた。
リフトオフの結果を図6に示す。図6は処理時間とリフトオフ残率の関係であり、(A)は処理時間とリフトオフ残率の関係を説明する表、(B)は処理時間とリフトオフ残率の関係を説明するグラフである。ここで、(A)に示す表中の処理時間の単位は分(min)であり、実施例1乃至7の欄に掲げられた数値はリフトオフ残率(%)を示している。
実施例1では、処理時間が4分でリフトオフ残率が0%になり、模擬サンプル40に形成した全てのレジストパターンが除去された。
<実施例2>
実施例2においては、図4に示す発振子13a,13b,13c,13d,13e,13f,13gの配置と揺動によって模擬サンプル40のリフトオフを行った。即ち、実施例2では、ハニカム構造に配置させた発振子13a,13b,13c,13d,13e,13f,13g上で、発振子13aの外周線上に模擬サンプル40の中心部が位置するように模擬サンプル40を円揺動によって公転させた。
リフトオフの結果を図6に示す。実施例2では、処理時間が6分でリフトオフ残率が0%になり、模擬サンプル40に形成した全てのレジストパターンが除去された。
<実施例3>
実施例3では、ハニカム構造に配置させた発振子上で、模擬サンプル40を振動させながら揺動した。
実施例3における発振子の配置と揺動を図7に示す。図7は実施例3における発振子の配置と揺動方法を説明する図である。上述したように、ハニカム構造に配置させた発振子13a,13b,13c,13d,13e,13f,13g上で、模擬サンプル40の中心部が図中に示す矢印A上に位置するように振動させた。尚、振動は4秒に1回の周期で行った。
リフトオフの結果を図6に示す。実施例3では、処理時間が2分で模擬サンプル40に形成した全てのレジストパターンのおよそ半分が除去されたものの、その後、レジストパターンの剥離が鈍化し、処理時間が20分を経ても、リフトオフ残率は0%に到達せず、レジストパターンが完全に除去されなかった。特に、図7に示す矢印A上で揺動させたため、例えば、発振子13aと発振子13eとの隙間、または発振子13aと発振子13bとの隙間の直上の部分で、レジストパターンが残存する傾向にあった。
<実施例4>
実施例4では、一つの発振子の周囲に5個の発振子を配置させた構成で模擬サンプル40を公転させて揺動させた。
実施例4における発振子の配置と揺動を図8に示す。図8は実施例4における発振子の配置と揺動方法を説明する図である。上述したように、中心に一つの発振子13aを配置し、その周囲に5個の発振子50a,50b,50c,50d,50eを配置させた構成で、図3に示す楕円Aと同じ軌道上に模擬サンプル40の中心部が位置するように、模擬サンプル40を楕円揺動によって公転させた。尚、公転は4秒に1回の周期で行った。
リフトオフの結果を図6に示す。実施例4では、処理時間が12分でリフトオフ残率が0%になり、模擬サンプル40に形成した全てのレジストパターンが除去された。但し、リフトオフ残率が0%になる時間は、実施例1の3倍、実施例2の2倍に増加した。特に、外周に配置させた発振子50a,50b,50c,50d,50e同士の距離が実施例1,2の場合に比べ離れたため、模擬サンプル40の外周部において、レジストパターンが除去され難い傾向にあった。
<実施例5>
実施例5では、一つの発振子の周囲に5個の発振子を配置させた構成で揺動した。
実施例5における発振子の配置と揺動を図9に示す。図9は実施例5における発振子の配置と揺動方法を説明する図である。上述したように、中心に一つの発振子13aを配置し、その周囲に5個の発振子50a,50b,50c,50d,50eを配置させた構成で、発振子13aの外周線上に模擬サンプル40の中心部が位置するように模擬サンプル40を円揺動によって公転させた。尚、公転は4秒に1回の周期で行った。
リフトオフの結果を図6に示す。実施例5では、処理時間が14分でリフトオフ残率が0%になり、模擬サンプル40に形成した全てのレジストパターンが除去された。但し、実施例4に比べると、リフトオフ残率が0%になる時間がさらに2分増加した。特に、外周に配置させた発振子50a,50b,50c,50d,50e同士の距離が実施例1,2に比べ離れたため、模擬サンプル40の外周部において、レジストパターンが除去され難い傾向にあった。
<実施例6>
実施例6では、一つの発振子の周囲に5個の発振子を配置させた構成で揺動し、模擬サンプル40を振動させながら揺動した。
実施例6における発振子の配置と揺動を図10に示す。図10は実施例6における発振子の配置と揺動方法を説明する図である。上述したように、中心に一つの発振子13aを配置し、その周囲に5個の発振子50a,50b,50c,50d,50eを配置させた構成で、模擬サンプル40の中心部が図中に示す矢印A上に位置するように模擬サンプル40を振動させた。尚、振動は4秒に1回の周期で行った。
リフトオフの結果を図6に示す。実施例6では、処理時間が6分で模擬サンプル40に形成した全てのレジストパターンのおよそ半分が除去されたものの、その後、レジストパターンの剥離が鈍化し、処理時間が20分を経ても、リフトオフ残率は0%に到達せず、レジストパターンが完全に除去されなかった。特に、図10に示す矢印A上で揺動させたため、例えば、発振子13aと発振子50dとの隙間の直上の部分で、レジストパターンが残存する傾向にあった。
<実施例7>
実施例7においては、一つの発振子の周囲に5個の発振子を配置させ、模擬サンプル40を揺動せずにリフトオフを行った。
実施例7における発振子の配置を図11に示す。図11は実施例7における発振子の配置を説明する図である。上述したように、中心に一つの発振子13aを配置し、その周囲に5個の発振子50a,50b,50c,50d,50eを配置させた構成で、発振子13a,50a,50b,50c,50d,50e上に模擬サンプル40を位置させ、模擬サンプル40を不動のままリフトオフを行った。
リフトオフの結果を図6に示す。実施例7では、処理時間が6分で模擬サンプル40に形成した全てのレジストパターンのおよそ半数個程度がシリコンウエハ基板から除去されたものの、その後は、レジスト残存率が減少しない傾向にあった。特に、8分を経過してからのレジスト残率は、実施例の中で最も高かった。
また、従来の方法のように、例えば、節の位置での恒常的な洗浄を避けるために、模擬サンプル40を図1に示す振動板12に対し、垂直方向に揺動させた場合は、最適洗浄位置が変動する。従って、模擬サンプル40は、定在波の節に位置する機会が増え、実施例7の結果よりさらにリフトオフ残率が上昇すると推測できる。よって、実施例1,2については、最適洗浄位置を変動させる従来の方法よりも、著しく洗浄力が向上していると推測できる。
このように、複数の発振子を振動板の下に配置させた場合は、発振子の直上で洗浄力が高くなり、その配置と基板の揺動によって洗浄力が著しく変動することが分かった。この場合、発振子をハニカム構造に配置し、実施例1で説明した楕円揺動または実施例2で説明した円揺動を施すことにより、被洗浄基板に対し効率よく且つ均一に超音波が与えられ、基板洗浄効率や洗浄の確実性が大幅に向上することが分かった。また、実施例1及び実施例2によれば、被洗浄基板面内に生じる洗浄力分布が減少し、より短時間で被洗浄基板を洗浄することが可能になった。
尚、上記の実施例1,2について著しく洗浄力が向上していることから、揺動は、図3に示す楕円A上または図4に示す発振子13aの外周上に模擬サンプル40の中心部を完全に位置させる必要はなく、発振子13aの外側と楕円Aで囲まれた領域内の上に模擬サンプル40の中心部が位置するように、模擬サンプル40を公転させて揺動させてもよい。
また、図1に示す超音波洗浄装置10では、振動板12を洗浄槽11の底部に配置し、さらに、振動板12には複数の発振子13a,13b,13c,13d,13e,13f,13gを接触させるように配置しているが、振動板12については、この位置に配置するとは限らない。振動板12については、洗浄槽11の側面に配置させてもよい。この場合、洗浄槽11内部の幅は、洗浄槽11の側面から超音波を印加するため、超音波の定在波の波長をλとするとき、(1/2)・λの整数倍に設計される。
そして、被洗浄基板については、洗浄液14の液面14aに対し垂直に浸漬され、振動板から被洗浄基板の洗浄面までの距離が超音波の定在波の腹の位置に設置されるように、洗浄面が(1/4)・λの奇数倍の位置に保持されて、上記楕円揺動または上記円揺動によって被洗浄基板が洗浄される。
(付記1) 洗浄液に超音波を伝動し、前記洗浄液に浸漬された基板を洗浄する超音波洗浄装置において、
前記基板を前記洗浄液に前記超音波を伝動する振動板に対向させて、前記基板を保持する保持手段と、
前記基板を前記振動板に対し水平方向に楕円揺動または円揺動する揺動手段と、を有し、
前記振動板に、前記超音波を発生させる複数の発振子がハニカム構造を形成して設置されていることを特徴とする超音波洗浄装置。
(付記2) 前記ハニカム構造においては、一つの前記発振子を中心に配置し、中心に配置された前記発振子の周囲に、複数の前記発振子が周設され、全ての前記発振子同士が互いに等間隔で配置されていることを特徴とする付記1記載の超音波洗浄装置。
(付記3) 前記楕円揺動においては、前記ハニカム構造の中心に配置された第1の発振子の中心点と前記第1の発振子の両端に配置された第2の発振子及び第3の発振子の中心点とを通る第1の中心線と前記第2の発振子の外周線及び前記第3の発振子の外周線とが交差する交点の中、前記第1の発振子の中心までの距離が最短となる前記第2の発振子の外周線上の第1の交点及び前記第3の発振子の外周線上の第2の交点と、前記第1の発振子の中心を通り、前記第1の中心線と直交する第2の中心線と前記第1の発振子の外周線とが交差する第3の交点及び第4の交点との4点を通る楕円上に前記基板の中心部が位置するように、前記基板が前記振動板に対し水平方向に公転することを特徴とする付記1または2記載の超音波洗浄装置。
(付記4) 前記円揺動においては、前記ハニカム構造の中心に配置された前記発振子の外周線上に前記基板の中心部が位置するように、前記基板が前記振動板に対し水平方向に公転することを特徴とする付記1または2記載の超音波洗浄装置。
(付記5) 前記基板の洗浄面の第1の直径が前記発振子の第2の直径の2倍以下であることを特徴とする付記1乃至4のいずれか一項に記載の超音波洗浄装置。
(付記6) 洗浄液に超音波を伝動し、前記洗浄液に浸漬された基板を洗浄する基板洗浄方法において、
前記基板を前記洗浄液に前記超音波を伝動する振動板に対向させて、前記基板を保持するステップと、
保持された前記基板を前記振動板に対し水平方向に楕円揺動または円揺動するステップと、
を有することを特徴とする基板洗浄方法。
(付記7) 前記振動板の内部に、前記超音波を発生させる複数の発振子がハニカム構造を形成して設置されていることを特徴とする付記6記載の基板洗浄方法。
(付記8) 前記ハニカム構造においては、一つの前記発振子を中心に配置し、中心に配置された前記発振子の周囲に、複数の前記発振子が周設され、全ての前記発振子同士が互いに等間隔で配置されていることを特徴とする付記6または7記載の基板洗浄方法。
(付記9) 前記楕円揺動においては、前記ハニカム構造の中心に配置された第1の発振子の中心点と前記第1の発振子の両端に配置された第2の発振子及び第3の発振子の中心点とを通る第1の中心線と前記第2の発振子の外周線及び前記第3の発振子の外周線とが交差する交点の中、前記第1の発振子の中心までの距離が最短となる前記第2の発振子の外周線上の第1の交点及び前記第3の発振子の外周線上の第2の交点と、前記第1の発振子の中心を通り、前記第1の中心線と直交する第2の中心線と前記第1の発振子の外周線とが交差する第3の交点及び第4の交点との4点を通る楕円上に前記基板の中心部が位置するように、前記基板が前記振動板に対し水平方向に公転することを特徴とする付記6乃至8のいずれか一項に記載の基板洗浄方法。
(付記10) 前記円揺動においては、前記ハニカム構造の中心に配置された前記発振子の外周線上に前記基板の中心部が位置するように、前記基板が前記振動板に対し水平方向に公転することを特徴とする付記6乃至8のいずれか一項に記載の基板洗浄方法。
(付記11) 前記基板の洗浄面の第1の直径が前記発振子の第2の直径の2倍以下であることを特徴とする付記6乃至10のいずれか一項に記載の基板洗浄方法。
超音波洗浄装置の基本構成を説明する模式図であり、(A)はその要部断面模式図、(B)は要部上面模式図である。 基板洗浄方法のフロー図である。 楕円揺動の方法を説明する図である。 円揺動の方法を説明する図である。 リフトオフに用いる模擬サンプルの要部構成を説明する図である。 処理時間とリフトオフ残率の関係であり、(A)は処理時間とリフトオフ残率の関係を説明する表、(B)は処理時間とリフトオフ残率の関係を説明するグラフである。 実施例3における発振子の配置と揺動方法を説明する図である。 実施例4における発振子の配置と揺動方法を説明する図である。 実施例5における発振子の配置と揺動方法を説明する図である。 実施例6における発振子の配置と揺動方法を説明する図である。 実施例7における発振子の配置を説明する図である。
符号の説明
10 超音波洗浄装置
11 洗浄槽
12 振動板
13a,13b,13c,13d,13e,13f,13g,50a,50b,50c,50d,50e 発振子
14 洗浄液
20 超音波発振機
21 制御ユニット
30 駆動部
31 アーム
32 支持枠
33 ウエハ基板
40 模擬サンプル
41 シリコンウエハ基板
42 レジストパターン
43 Al23

Claims (6)

  1. 洗浄液に超音波を伝動し、前記洗浄液に浸漬された基板を洗浄する超音波洗浄装置において、
    前記基板を前記洗浄液に前記超音波を伝動する振動板に対向させて、前記基板を保持する保持手段と、
    前記基板を前記振動板に対し水平方向に楕円揺動または円揺動する揺動手段と、を有し、
    前記振動板に、前記超音波を発生させる複数の発振子がハニカム構造を形成して設置されていることを特徴とする超音波洗浄装置。
  2. 前記ハニカム構造においては、一つの前記発振子を中心に配置し、中心に配置された前記発振子の周囲に、複数の前記発振子が周設され、全ての前記発振子同士が互いに等間隔で配置されていることを特徴とする請求項1記載の超音波洗浄装置。
  3. 前記楕円揺動においては、前記ハニカム構造の中心に配置された第1の発振子の中心点と前記第1の発振子の両端に配置された第2の発振子及び第3の発振子の中心点とを通る第1の中心線と前記第2の発振子の外周線及び前記第3の発振子の外周線とが交差する交点の中、前記第1の発振子の中心までの距離が最短となる前記第2の発振子の外周線上の第1の交点及び前記第3の発振子の外周線上の第2の交点と、前記第1の発振子の中心を通り、前記第1の中心線と直交する第2の中心線と前記第1の発振子の外周線とが交差する第3の交点及び第4の交点との4点を通る楕円上に前記基板の中心部が位置するように、前記基板が前記振動板に対し水平方向に公転することを特徴とする請求項1または2記載の超音波洗浄装置。
  4. 前記円揺動においては、前記ハニカム構造の中心に配置された前記発振子の外周線上に前記基板の中心部が位置するように、前記基板が前記振動板に対し水平方向に公転することを特徴とする請求項1または2記載の超音波洗浄装置。
  5. 前記基板の洗浄面の第1の直径が前記発振子の第2の直径の2倍以下であることを特徴とする請求項1乃至4のいずれか一項に記載の超音波洗浄装置。
  6. 洗浄液に超音波を伝動し、前記洗浄液に浸漬された基板を洗浄する基板洗浄方法において、
    前記基板を前記洗浄液に前記超音波を伝動する振動板に対向させて、前記基板を保持するステップと、
    保持された前記基板を前記振動板に対し水平方向に楕円揺動または円揺動するステップと、
    を有することを特徴とする基板洗浄方法。
JP2006326419A 2006-12-04 2006-12-04 超音波洗浄装置及び基板洗浄方法 Expired - Fee Related JP4763585B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006326419A JP4763585B2 (ja) 2006-12-04 2006-12-04 超音波洗浄装置及び基板洗浄方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006326419A JP4763585B2 (ja) 2006-12-04 2006-12-04 超音波洗浄装置及び基板洗浄方法

Publications (2)

Publication Number Publication Date
JP2008141023A true JP2008141023A (ja) 2008-06-19
JP4763585B2 JP4763585B2 (ja) 2011-08-31

Family

ID=39602176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006326419A Expired - Fee Related JP4763585B2 (ja) 2006-12-04 2006-12-04 超音波洗浄装置及び基板洗浄方法

Country Status (1)

Country Link
JP (1) JP4763585B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152668A (ja) * 2011-01-24 2012-08-16 Sawa Corporation 付着物除去装置
CN103223405A (zh) * 2012-01-30 2013-07-31 硅电子股份公司 清洗方法
KR101743224B1 (ko) 2016-06-14 2017-06-15 윤종수 저주파 수평 진동을 이용한 amoled 공정용 세정장치
CN108714595A (zh) * 2018-05-31 2018-10-30 珠海和丰智能设备有限公司 探头仿生清洗机构
CN110935686A (zh) * 2019-11-27 2020-03-31 北京工业大学 悬吊式超声波—低频振动联合清洗方法与装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470589C1 (ru) * 2011-10-27 2012-12-27 Федеральное государственное бюджетное учреждение "Московский научно-исследовательский институт глазных болезней имени Гельмгольца" Министерства здравоохранения и социального развития Российской Федерации Иммерсионная среда для проведения объемной эхографии орбиты при анофтальме и субатрофии глаза и способ проведения объемной эхографии орбиты при анофтальме и субатрофии глаза

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148821A (ja) * 1984-12-24 1986-07-07 Hitachi Ltd 処理装置
JPH05243203A (ja) * 1992-02-28 1993-09-21 Fujitsu Ltd 超音波洗浄装置
JPH11307495A (ja) * 1998-04-22 1999-11-05 Shin Etsu Handotai Co Ltd ブラシ洗浄装置及びワーク洗浄システム
WO2000027552A1 (en) * 1998-11-11 2000-05-18 Applied Materials, Inc. Continuous cleaning megasonic tank with reduced duty cycle transducers
WO2005044440A2 (en) * 2003-11-05 2005-05-19 The Crest Group, Inc. Ultrasonic apparatus with multiple frequency transducers
JP2005191511A (ja) * 2003-12-02 2005-07-14 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2006035139A (ja) * 2004-07-28 2006-02-09 Ptc Engineering:Kk 超音波洗浄装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148821A (ja) * 1984-12-24 1986-07-07 Hitachi Ltd 処理装置
JPH05243203A (ja) * 1992-02-28 1993-09-21 Fujitsu Ltd 超音波洗浄装置
JPH11307495A (ja) * 1998-04-22 1999-11-05 Shin Etsu Handotai Co Ltd ブラシ洗浄装置及びワーク洗浄システム
WO2000027552A1 (en) * 1998-11-11 2000-05-18 Applied Materials, Inc. Continuous cleaning megasonic tank with reduced duty cycle transducers
WO2005044440A2 (en) * 2003-11-05 2005-05-19 The Crest Group, Inc. Ultrasonic apparatus with multiple frequency transducers
JP2005191511A (ja) * 2003-12-02 2005-07-14 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2006035139A (ja) * 2004-07-28 2006-02-09 Ptc Engineering:Kk 超音波洗浄装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152668A (ja) * 2011-01-24 2012-08-16 Sawa Corporation 付着物除去装置
CN103223405A (zh) * 2012-01-30 2013-07-31 硅电子股份公司 清洗方法
JP2013157443A (ja) * 2012-01-30 2013-08-15 Siltronic Ag 洗浄方法
KR101743224B1 (ko) 2016-06-14 2017-06-15 윤종수 저주파 수평 진동을 이용한 amoled 공정용 세정장치
CN108714595A (zh) * 2018-05-31 2018-10-30 珠海和丰智能设备有限公司 探头仿生清洗机构
CN108714595B (zh) * 2018-05-31 2023-09-15 珠海和丰智能设备有限公司 探头仿生清洗机构
CN110935686A (zh) * 2019-11-27 2020-03-31 北京工业大学 悬吊式超声波—低频振动联合清洗方法与装置
CN110935686B (zh) * 2019-11-27 2021-03-23 北京工业大学 悬吊式超声波—低频振动联合清洗方法

Also Published As

Publication number Publication date
JP4763585B2 (ja) 2011-08-31

Similar Documents

Publication Publication Date Title
KR101571685B1 (ko) 초음파 세정 장치 및 초음파 세정 방법
JP4763585B2 (ja) 超音波洗浄装置及び基板洗浄方法
JP4934739B2 (ja) 超音波洗浄装置及び超音波洗浄方法
JP4242677B2 (ja) ウェーハ洗浄システム
JP2010046590A (ja) 超音波洗浄装置
JPH0855827A (ja) ウェーハカセットおよびこれを使用した洗浄装置
JP2019145672A (ja) 洗浄装置
JP2003031540A (ja) 超音波洗浄ユニット、超音波洗浄装置、超音波洗浄方法、半導体装置の製造方法、及び液晶表示装置の製造方法
KR20190062526A (ko) 반도체 웨이퍼를 세정하는 장치 및 방법
JP2007027241A (ja) 超音波洗浄装置
JP2009125645A (ja) 超音波洗浄装置及び超音波洗浄方法
KR100952087B1 (ko) 패터닝된 기판의 메가소닉 세정을 위한 방법 및 장치
JPH0234923A (ja) 超音波洗浄装置
JP4533406B2 (ja) 超音波洗浄装置及び超音波洗浄方法
JP2007311379A (ja) 超音波洗浄装置
JP2010082621A (ja) 超音波洗浄装置
JP2006281012A (ja) 基板洗浄装置、基板洗浄方法、及び基板の製造方法
JP4123746B2 (ja) 流体処理装置
JPS59142885A (ja) 超音波処理方法およびその装置
JP4358781B2 (ja) 半導体装置の製造方法
JP2015126167A (ja) 基板洗浄装置および基板洗浄方法
JP3307869B2 (ja) 多槽式超音波洗浄装置
KR20020051405A (ko) 웨이퍼 세정 방법
JP5685881B2 (ja) 超音波洗浄方法
JP2005235897A (ja) 基板洗浄装置及び基板洗浄方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees