JP2008133456A - Adhesive composition for semiconductor, adhesive sheet for semiconductor, and semiconductor apparatus - Google Patents

Adhesive composition for semiconductor, adhesive sheet for semiconductor, and semiconductor apparatus Download PDF

Info

Publication number
JP2008133456A
JP2008133456A JP2007276491A JP2007276491A JP2008133456A JP 2008133456 A JP2008133456 A JP 2008133456A JP 2007276491 A JP2007276491 A JP 2007276491A JP 2007276491 A JP2007276491 A JP 2007276491A JP 2008133456 A JP2008133456 A JP 2008133456A
Authority
JP
Japan
Prior art keywords
adhesive
semiconductors
semiconductor
adhesive composition
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007276491A
Other languages
Japanese (ja)
Other versions
JP5364991B2 (en
Inventor
Takahiro Tokuyasu
孝寛 徳安
Keiichi Hatakeyama
恵一 畠山
Mika Tanji
美香 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007276491A priority Critical patent/JP5364991B2/en
Publication of JP2008133456A publication Critical patent/JP2008133456A/en
Application granted granted Critical
Publication of JP5364991B2 publication Critical patent/JP5364991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adhesive composition for semiconductors having low melt viscosity and good adhesion strength and making it possible to improve the connection reliability of a semiconductor apparatus, an adhesive sheet for semiconductors, and a semiconductor apparatus obtained using them. <P>SOLUTION: This adhesive composition for semiconductors is an adhesive composition containing a thermoset resin and a filler, wherein the blending ratio of the filler to the thermoset resin ranges from 30 to 100 parts by mass to 100 parts by mass of the thermoset resin and the thermoset resin comprises (A) a high-molecular-weight component having a crosslinkable functional group, a weight average molecular weight ranging from 100,000 to 600,000, and a glass transition temperature ranging from -50 to 50°C, (B) a polyfunctional epoxy resin with a molecular weight of 500 or more, and (C) a phenol resin at a mass ratio of (A):(B):(C)=15 to 40:5 to 15:35 to 55. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体装置の製造に使用される半導体用接着剤組成物、半導体用接着シート、及び、それらを用いて製造される半導体装置に関する。   The present invention relates to an adhesive composition for a semiconductor used for manufacturing a semiconductor device, an adhesive sheet for a semiconductor, and a semiconductor device manufactured using them.

半導体素子をはじめとする各種電子部品を搭載した実装基板として最も重要な特性の一つとして信頼性がある。その中でも、熱疲労に対する接続信頼性は実装基板を用いた機器の信頼性に直接関係するため非常に重要な項目である。この接続信頼性を低下させる原因として、熱膨張係数の異なる各種材料を用いていることから生じる熱応力が挙げられる。具体的には、半導体素子の熱膨張係数が約4ppm/℃と小さいのに対して、電子部品を実装する配線板の熱膨張係数が15ppm/℃以上と大きいことから、これらを組み合わせた場合には熱衝撃に対して熱ひずみが発生し、その熱ひずみによって熱応力が発生することがある。   Reliability is one of the most important characteristics as a mounting board on which various electronic components such as semiconductor elements are mounted. Among them, the connection reliability against thermal fatigue is a very important item because it is directly related to the reliability of the equipment using the mounting substrate. As a cause of lowering the connection reliability, there is a thermal stress generated by using various materials having different thermal expansion coefficients. Specifically, the thermal expansion coefficient of the semiconductor element is as small as about 4 ppm / ° C., whereas the thermal expansion coefficient of the wiring board on which the electronic component is mounted is as large as 15 ppm / ° C. or more. The thermal strain is generated by thermal shock, and thermal stress may be generated by the thermal strain.

また、近年、チップを多段に積層したスタックドMCP(Multi Chip Package)が普及している。このようなパッケージにおいては、チップの接着面に空隙を発生させることなくチップを実装することが、接続信頼性向上のための課題の一つとなっている。特に、配線などを有する基板上にチップを積層する場合、この基板表面の凹凸を十分に埋め込む埋込性がパッケージの接続信頼性の確保に重要とされている。その一方で、最近の半導体装置の小型化、薄型化に伴い基板及びウエハの薄型化が進んでおり、上述したような熱応力に起因して素子の反りなどが発生しやくなっている。そのため、より低温・低荷重での実装が強く求められている。   In recent years, a stacked MCP (Multi Chip Package) in which chips are stacked in multiple stages has become widespread. In such a package, mounting a chip without generating a gap on the bonding surface of the chip is one of the problems for improving connection reliability. In particular, when a chip is stacked on a substrate having wiring or the like, the embedding property of sufficiently embedding unevenness on the surface of the substrate is important for ensuring the connection reliability of the package. On the other hand, along with recent miniaturization and thinning of semiconductor devices, thinning of substrates and wafers has progressed, and warping of elements is likely to occur due to the above-described thermal stress. Therefore, mounting at lower temperature and lower load is strongly demanded.

しかし、低温・低荷重の圧着実装のみで上記の凹凸を十分埋め込むことが難しいため、従来は、接着シート付きチップを基板上に熱圧着して固定し、パッケージ封止工程での熱と圧力で凹凸を埋め込む方法が主流であった。このような方法に用いられる接着シートとしては、例えば、特許文献1に記載されているようなエポキシ樹脂、フェノール樹脂及びアクリル共重合体を含む接着フィルムなどが知られている。   However, since it is difficult to sufficiently embed the above unevenness only by low temperature and low load crimp mounting, conventionally, the chip with the adhesive sheet is fixed by thermocompression bonding on the substrate, and the heat and pressure in the package sealing process The method of embedding irregularities was the mainstream. As an adhesive sheet used in such a method, for example, an adhesive film including an epoxy resin, a phenol resin, and an acrylic copolymer as described in Patent Document 1 is known.

特開2002−220576号公報JP 2002-220576 A

ところで、上記従来技術においては、以下の問題点が存在する。すなわち、スタックドMCPは、携帯電話、携帯オ−ディオ機器用のメモリパッケージとして利用されているが、近時、携帯電話等の多機能化に伴ってパッケージの高密度化・高集積化がより一層進行しているため、チップの多段化やパッケージの薄型化が更に必要となっている。しかし、このようなチップの多段化は、圧着及びワイヤボンディング工程など熱処理を必要とする工程を増加させ、封止工程までに接着剤の熱硬化を促進することになる。その結果、基板配線に由来する凹凸などの埋込性が低下し、封止工程を経た後でも空隙が残り、十分な接続信頼性が得られなくなる場合がある。   By the way, the following problems exist in the above prior art. In other words, stacked MCPs are used as memory packages for mobile phones and mobile audio devices, but recently, with the increasing functionality of mobile phones and the like, the density and integration of packages has been further increased. Due to the progress, it is necessary to further increase the number of chips and reduce the thickness of the package. However, such multi-stage chip increases the number of processes that require heat treatment such as crimping and wire bonding processes, and promotes thermosetting of the adhesive before the sealing process. As a result, the embedding property such as unevenness derived from the substrate wiring is lowered, and a gap remains even after the sealing process, and sufficient connection reliability may not be obtained.

また一方で、チップサイズの多様化により、パッケージ高集積化を目的としてサイズが大きいチップを搭載するパッケージもある。しかし、大きいチップを搭載する場合、封止工程によりチップ内部の空隙を完全に排除することは難しく、チップ端部に残った空隙がパッケージの接続信頼性を低下させてしまうことがある。   On the other hand, due to diversification of chip sizes, there are also packages on which large-sized chips are mounted for the purpose of high package integration. However, when a large chip is mounted, it is difficult to completely eliminate the void inside the chip by the sealing process, and the void remaining at the end of the chip may reduce the connection reliability of the package.

なお、接着剤の溶融粘度を小さくすることにより、接着剤の凹凸追従性を上げて空隙を低減する方法が考えられる。しかし、本発明者らの検討によると、上記従来の接着フィルムの溶融粘度を低下させるために単に高分子量成分の分子量を小さくする方法では、パッケージの接続信頼性に重要な接着強度も低下してしまうことが判明している。   In addition, the method of raising the uneven | corrugated followable | trackability of an adhesive agent and reducing a space | gap by making the melt viscosity of an adhesive agent small can be considered. However, according to the study by the present inventors, the method of simply reducing the molecular weight of the high molecular weight component in order to reduce the melt viscosity of the conventional adhesive film also reduces the adhesive strength, which is important for the connection reliability of the package. It has been found that.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、低溶融粘度であるとともに接着強度に優れ、半導体装置の接続信頼性の向上を可能とする半導体用接着剤組成物、半導体用接着シート、及び、これらを用いて得られる半導体装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and has a low melt viscosity and excellent adhesive strength, and can improve the connection reliability of a semiconductor device and a semiconductor. It is an object to provide an adhesive sheet for use, and a semiconductor device obtained using these.

上記課題を解決するため本発明は、熱硬化性樹脂及びフィラーを含有する接着剤組成物であって、フィラーの配合割合が、熱硬化性樹脂100質量部に対して30〜100質量部であり、且つ、熱硬化性樹脂として、(A)架橋性官能基を有し、重量平均分子量が10万〜60万でありガラス転移温度が−50℃〜50℃である高分子量成分、(B)分子量500以上の多官能エポキシ樹脂、及び、(C)フェノール樹脂を質量比で、(A):(B):(C)=15〜40:5〜15:35〜55の割合で含む半導体用接着剤組成物を提供する。   In order to solve the above problems, the present invention is an adhesive composition containing a thermosetting resin and a filler, and the blending ratio of the filler is 30 to 100 parts by mass with respect to 100 parts by mass of the thermosetting resin. And (A) a high molecular weight component having a crosslinkable functional group, a weight average molecular weight of 100,000 to 600,000 and a glass transition temperature of −50 ° C. to 50 ° C., (B) For semiconductors containing a polyfunctional epoxy resin having a molecular weight of 500 or more and (C) phenol resin in a mass ratio of (A) :( B) :( C) = 15-40: 5-15: 35-55 An adhesive composition is provided.

本発明の半導体用接着剤組成物は、熱硬化性樹脂及びフィラーを上記特定の割合で含有し、且つ、熱硬化性樹脂としての上記(A)〜(C)成分を上記特定の割合で含有することにより、低溶融粘度でありながら優れた接着強度を発現することができる。このような本発明の半導体用接着剤組成物によれば、硬化前は良好な流動性により配線基板などの支持部材や半導体チップの凹凸を十分埋め込むことができ、硬化後は有機基板などの支持部材やシリコンチップなどに対して高い接着強度を発揮し得ることから、実装基板の接続信頼性の向上を図ることが可能となる。   The adhesive composition for a semiconductor of the present invention contains the thermosetting resin and the filler in the specific ratio, and contains the components (A) to (C) as the thermosetting resin in the specific ratio. By doing so, excellent adhesive strength can be expressed while having a low melt viscosity. According to such an adhesive composition for a semiconductor of the present invention, it is possible to sufficiently embed unevenness of a support member such as a wiring board or a semiconductor chip with good fluidity before curing, and support of an organic substrate or the like after curing. Since high adhesive strength can be exhibited with respect to a member, a silicon chip, etc., it becomes possible to improve the connection reliability of the mounting substrate.

また、本発明の半導体用接着剤組成物によれば、低温(特には、100〜120℃以下)での圧着実装のみで基板などの支持部材又は半導体チップの凹凸を十分埋め込むことができる。更に、本発明の半導体用接着剤組成物によれば、硬化後には優れた耐熱性及び耐湿性を得ることができることから、半導体装置の耐リフロー性や高温高湿下における接続信頼性の向上を図ることが可能となる。   Moreover, according to the adhesive composition for semiconductors of this invention, the unevenness | corrugation of support members, such as a board | substrate, or a semiconductor chip can fully be embedded only by crimping mounting at low temperature (especially 100-120 degrees C or less). Furthermore, according to the adhesive composition for a semiconductor of the present invention, it is possible to obtain excellent heat resistance and moisture resistance after curing, so that the reflow resistance of the semiconductor device and the connection reliability under high temperature and high humidity can be improved. It becomes possible to plan.

本発明の半導体用接着剤組成物は、上記フィラーとして、平均粒径が異なる2種以上のフィラーを含むことが好ましい。この場合、低溶融粘度であるとともに硬化後には優れた接着強度が得られるという特性を十分保持することが可能となる。   It is preferable that the adhesive composition for semiconductors of this invention contains 2 or more types of fillers from which an average particle diameter differs as said filler. In this case, it is possible to sufficiently retain the characteristics of having a low melt viscosity and an excellent adhesive strength after curing.

また、本発明の半導体用接着剤組成物は、上記の効果をより確実に得る観点から、平均粒径が0.1〜1.0μmの範囲内にある第1のフィラー、及び、一次粒径の平均粒径が0.005〜0.03μmの範囲内にある第2のフィラーを含むことが好ましい。   Moreover, the adhesive composition for semiconductors of this invention is the 1st filler in which the average particle diameter exists in the range of 0.1-1.0 micrometer, and a primary particle diameter from a viewpoint which acquires said effect more reliably. It is preferable that the 2nd filler which exists in the range whose average particle diameter is 0.005-0.03 micrometer is included.

また、本発明の半導体用接着剤組成物は、150℃以上で重合反応により高分子量化する熱重合性化合物を更に含有することが好ましい。これにより、溶融粘度を下げることができるため、フィルムの流動性を向上させることができる。また、有機基板への接着力も向上する。   Moreover, it is preferable that the adhesive composition for semiconductors of this invention further contains the thermopolymerizable compound which becomes high molecular weight by a polymerization reaction at 150 degreeC or more. Thereby, since melt viscosity can be lowered | hung, the fluidity | liquidity of a film can be improved. Moreover, the adhesive force to the organic substrate is also improved.

本発明の半導体用接着剤組成物は、硬化前の80℃における溶融粘度が700Pa・s以上5000Pa・s以下であることが好ましい。   The adhesive composition for a semiconductor of the present invention preferably has a melt viscosity at 80 ° C. before curing of 700 Pa · s to 5000 Pa · s.

また、本発明の半導体用接着剤組成物は、有機基板に対する硬化後の接着強度が3.0MPa以上であることが好ましい。   Moreover, it is preferable that the adhesive strength for semiconductors of this invention is 3.0 MPa or more of the adhesive strength after hardening with respect to an organic substrate.

また、本発明は、上記本発明の半導体用接着剤組成物をフィルム状に成形してなる半導体用接着シートを提供する。   Moreover, this invention provides the adhesive sheet for semiconductors formed by shape | molding the adhesive composition for semiconductors of the said invention in the shape of a film.

また、本発明は、半導体素子と、該半導体素子を搭載する支持部材と、半導体素子及び支持部材間に設けられ、半導体素子及び支持部材を接着する接着部材と、を備え、接着部材は、上記本発明の半導体用接着剤組成物の硬化物である半導体装置を提供する。   The present invention also includes a semiconductor element, a support member for mounting the semiconductor element, and an adhesive member that is provided between the semiconductor element and the support member and adheres the semiconductor element and the support member. Provided is a semiconductor device which is a cured product of the adhesive composition for a semiconductor of the present invention.

本発明によれば、低溶融粘度であるとともに接着強度に優れ、半導体装置の接続信頼性の向上を可能とする半導体用接着剤組成物、半導体用接着シート、及び、これらを用いて得られる半導体装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is low melt viscosity, is excellent in adhesive strength, and can improve the connection reliability of a semiconductor device, the adhesive composition for semiconductors, the adhesive sheet for semiconductors, and the semiconductor obtained using these An apparatus can be provided.

以下、場合により図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。なお、各図における寸法比は、説明のため誇張している部分があり、必ずしも実際の寸法比とは一致しない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as the case may be. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Note that the dimensional ratio in each drawing is exaggerated for the sake of explanation, and does not necessarily match the actual dimensional ratio.

図1は、本発明の半導体用接着シートの好適な一実施形態を示す模式断面図である。図1に示した半導体用接着シート1は、支持体20と、支持体20上に設けられた接着剤層10と、で構成される。接着剤層10は、本発明の半導体用接着剤組成物からなる。本発明の半導体用接着シートは、接着剤層10上の支持体20の反対側の面を保護フィルムで被覆してもよい。   FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the adhesive sheet for semiconductor of the present invention. The semiconductor adhesive sheet 1 shown in FIG. 1 includes a support 20 and an adhesive layer 10 provided on the support 20. The adhesive layer 10 is made of the adhesive composition for semiconductors of the present invention. In the adhesive sheet for semiconductor of the present invention, the opposite surface of the support 20 on the adhesive layer 10 may be covered with a protective film.

先ず、本発明の半導体用接着剤組成物について説明する。   First, the semiconductor adhesive composition of the present invention will be described.

本発明の半導体用接着剤組成物は、熱硬化性樹脂及びフィラーを含有する接着剤組成物であって、フィラーの配合割合が、熱硬化性樹脂100質量部に対して30〜100質量部であり、且つ、熱硬化性樹脂として、(A)架橋性官能基を有し、重量平均分子量が10万〜60万でありガラス転移温度が−50℃〜50℃である高分子量成分、(B)分子量500以上の多官能エポキシ樹脂、及び、(C)フェノール樹脂を質量比で、(A):(B):(C)=15〜40:5〜15:35〜55の割合で含むことを特徴とする。   The adhesive composition for semiconductor of the present invention is an adhesive composition containing a thermosetting resin and a filler, and the blending ratio of the filler is 30 to 100 parts by mass with respect to 100 parts by mass of the thermosetting resin. And (A) a high molecular weight component having a crosslinkable functional group, a weight average molecular weight of 100,000 to 600,000 and a glass transition temperature of −50 ° C. to 50 ° C. ) A polyfunctional epoxy resin having a molecular weight of 500 or more and (C) a phenol resin in a mass ratio of (A) :( B) :( C) = 15-40: 5-15: 35-55 It is characterized by.

上記高分子量成分(A)としては、エポキシ基、アルコール性またはフェノール性水酸基、カルボキシル基などの架橋性官能基を有するポリイミド樹脂、(メタ)アクリル樹脂、ウレタン樹脂、ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、フェノキシ樹脂、変性ポリフェニレンエーテル樹脂等が挙げられる。ただし、これらに限定されるものではない。   Examples of the high molecular weight component (A) include polyimide resins having crosslinkable functional groups such as epoxy groups, alcoholic or phenolic hydroxyl groups, and carboxyl groups, (meth) acrylic resins, urethane resins, polyphenylene ether resins, and polyetherimide resins. , Phenoxy resin, modified polyphenylene ether resin, and the like. However, it is not limited to these.

本発明で用いる高分子量成分(A)としては、グリシジルアクリレート又はグリシジルメタクリレートなどの官能性モノマーを含有するモノマーを重合して得た、重量平均分子量が10万〜60万であるエポキシ基含有(メタ)アクリル共重合体などが好ましい。更に、(メタ)アクリル共重合体としては、(メタ)アクリル酸エステル共重合体、アクリルゴムなどを使用することができ、アクリルゴムがより好ましい。アクリルゴムは、アクリル酸エステルを主成分とし、主として、ブチルアクリレートとアクリロニトリルなどの共重合体や、エチルアクリレートとアクリロニトリルなどの共重合体などからなるゴムである。   As the high molecular weight component (A) used in the present invention, an epoxy group-containing compound (meta) having a weight average molecular weight of 100,000 to 600,000 obtained by polymerizing a monomer containing a functional monomer such as glycidyl acrylate or glycidyl methacrylate is used. ) Acrylic copolymer is preferred. Furthermore, as the (meth) acrylic copolymer, a (meth) acrylic acid ester copolymer, acrylic rubber or the like can be used, and acrylic rubber is more preferable. Acrylic rubber is a rubber mainly composed of an acrylate ester and mainly composed of a copolymer such as butyl acrylate and acrylonitrile, a copolymer such as ethyl acrylate and acrylonitrile, or the like.

高分子量成分(A)のガラス転移温度Tgは−50℃〜50℃の範囲内であることが必要である。高分子量成分のTgが50℃を超えると、半導体用接着シートの柔軟性が低くなりすぎ、ウエハにラミネートする際の充分な密着性が得られにくくなる傾向にある。一方、高分子量成分のTgが−50℃未満であると、半導体用接着シートの柔軟性が高くなりすぎるため、半導体ウエハダイシング時に接着シートが切断し難くなり、バリの発生によりダイシング性が悪化する場合がある。   The glass transition temperature Tg of the high molecular weight component (A) needs to be in the range of −50 ° C. to 50 ° C. If the Tg of the high molecular weight component exceeds 50 ° C., the flexibility of the adhesive sheet for semiconductor becomes too low, and sufficient adhesion when laminated on the wafer tends to be difficult to obtain. On the other hand, if the Tg of the high molecular weight component is less than −50 ° C., the flexibility of the adhesive sheet for semiconductor becomes too high, so that the adhesive sheet is difficult to cut during dicing of the semiconductor wafer, and the dicing property deteriorates due to the generation of burrs. There is a case.

また、高分子量成分(A)の重量平均分子量は、10万〜60万の範囲内であることが必要であるが、好ましくは20万以上50万以下である。高分子量成分の重量平均分子量が20万未満であると、接着剤樹脂組成物のフィルム成形性が悪化したり、接着シートの接着力や耐熱性の低下を引き起こす場合があり、重量平均分子量が50万を超えると未硬化の接着シートの流動性が低下する場合がある。   Moreover, although the weight average molecular weight of a high molecular weight component (A) needs to exist in the range of 100,000-600,000, Preferably it is 200,000 or more and 500,000 or less. When the weight average molecular weight of the high molecular weight component is less than 200,000, the film moldability of the adhesive resin composition may be deteriorated, or the adhesive force and heat resistance of the adhesive sheet may be lowered, and the weight average molecular weight is 50. If it exceeds 10,000, the fluidity of the uncured adhesive sheet may decrease.

なお、本発明において、重量平均分子量とは、ゲルパーミュエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレン検量線を用いて換算した値を意味する。   In the present invention, the weight average molecular weight means a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.

また、本発明で用いる高分子量成分(A)は、半導体ウエハダイシング時に接着シートの切断が容易になり樹脂くずが発生し難くなる点、未硬化の接着シートの流動性が高くなる点、並びに、接着力及び耐熱性が高くなる点から、Tgが−20℃〜40℃であり且つ重量平均分子量が10万〜60万であるものが好ましく、Tgが−10℃〜40℃であり且つ重量平均分子量が20万〜50万であるものがより好ましい。   In addition, the high molecular weight component (A) used in the present invention is such that the adhesive sheet is easily cut at the time of semiconductor wafer dicing and resin waste is less likely to be generated, the fluidity of the uncured adhesive sheet is increased, and From the viewpoint of high adhesive strength and heat resistance, those having a Tg of −20 ° C. to 40 ° C. and a weight average molecular weight of 100,000 to 600,000 are preferable, and the Tg is −10 ° C. to 40 ° C. Those having a molecular weight of 200,000 to 500,000 are more preferred.

分子量500以上の多官能エポキシ樹脂(B)としては、硬化して接着作用を有するものであれば特に限定されず、例えば、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂などを使用することができる。また、多官能エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環含有エポキシ樹脂または脂環式エポキシ樹脂など、一般に知られているものを適用することができる。   The polyfunctional epoxy resin (B) having a molecular weight of 500 or more is not particularly limited as long as it is cured and has an adhesive action. For example, a novolac epoxy resin such as a phenol novolac epoxy resin or a cresol novolac epoxy resin Can be used. Moreover, what is generally known, such as a polyfunctional epoxy resin, a glycidyl amine type epoxy resin, a heterocyclic ring-containing epoxy resin, or an alicyclic epoxy resin, can be applied.

本発明の半導体用接着剤組成物は、多官能エポキシ樹脂(B)として、下記一般式(1)で表わされ、分子量800以上であるエポキシ樹脂を含有することが好ましい。   The adhesive composition for semiconductor of the present invention preferably contains an epoxy resin represented by the following general formula (1) and having a molecular weight of 800 or more as the polyfunctional epoxy resin (B).

Figure 2008133456


式(1)中、Rは水素原子、ハロゲン原子、直鎖状、分岐状若しくは環状のアルキル基、アラルキル基、アルケニル基、水酸基、又は、アリール基を示し、lは1〜3の整数を示し、mは2〜4の整数を示す。
Figure 2008133456


In the formula (1), R 1 represents a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group, an aralkyl group, an alkenyl group, a hydroxyl group, or an aryl group, and l represents an integer of 1 to 3. M represents an integer of 2 to 4.

また、上記一般式(1)で表され、分子量800以上である多官能エポキシ樹脂は、85℃、85%RHの恒温恒湿槽に48時間投入後の吸水率が2質量%以下で、熱重量分析計(TGA)で測定した350℃での加熱質量減少率(昇温速度:5℃/min,雰囲気:窒素)が5質量%未満のものが好ましく使用できる。このような多官能エポキシ樹脂としては、例えば、東都化成(株)製のYDCNシリーズなどが挙げられる。   In addition, the polyfunctional epoxy resin represented by the general formula (1) and having a molecular weight of 800 or more has a water absorption of 2% by mass or less after being put into a constant temperature and humidity chamber at 85 ° C. and 85% RH for 48 hours. Those having a heating mass reduction rate (heating rate: 5 ° C./min, atmosphere: nitrogen) at 350 ° C. measured by a gravimetric analyzer (TGA) of less than 5% by mass can be preferably used. Examples of such polyfunctional epoxy resins include YDCN series manufactured by Toto Kasei Co., Ltd.

本発明の半導体用接着剤組成物は、分子量500以上の多官能エポキシ樹脂を必須成分として含有するが、硬化物の耐熱性を更に向上させる観点から、一般式(1)で表され、分子量が800〜3000である多官能エポキシ樹脂が含有されることが特に好ましい。   The adhesive composition for a semiconductor of the present invention contains a polyfunctional epoxy resin having a molecular weight of 500 or more as an essential component. From the viewpoint of further improving the heat resistance of the cured product, the adhesive composition for a semiconductor is represented by the general formula (1) and has a molecular weight. It is especially preferable that the polyfunctional epoxy resin which is 800-3000 is contained.

また、本発明の半導体用接着剤組成物においては、Bステージ状態でのフィルムの可撓性を高める観点から、分子量500以上の多官能エポキシ樹脂(B)以外のエポキシ樹脂として、分子量500未満のエポキシ樹脂が更に含有されることが好ましく、分子量400以下のエポキシ樹脂が更に含有されることがより好ましい。このようなエポキシ樹脂としては、ビスフェノールA型又はビスフェノールF型エポキシ樹脂といった二官能エポキシ樹脂などが好適に用いられる。   Moreover, in the adhesive composition for semiconductors of this invention, from a viewpoint of improving the flexibility of the film in a B-stage state, as an epoxy resin other than the polyfunctional epoxy resin (B) having a molecular weight of 500 or more, the molecular weight is less than 500. It is preferable that an epoxy resin is further contained, and it is more preferable that an epoxy resin having a molecular weight of 400 or less is further contained. As such an epoxy resin, a bifunctional epoxy resin such as bisphenol A type or bisphenol F type epoxy resin is preferably used.

本発明の半導体用接着剤組成物は、フェノール樹脂(C)として、下記一般式(2)で表わされるフェノール樹脂を含有することが好ましい。   It is preferable that the adhesive composition for semiconductors of this invention contains the phenol resin represented by following General formula (2) as a phenol resin (C).

Figure 2008133456


式(2)中、Rは水素原子、ハロゲン原子、直鎖状、分岐状若しくは環状のアルキル基、アラルキル基、アルケニル基、水酸基、又は、アリール基を示し、qは1〜3の整数を示し、繰り返し単位の数を示すpは1〜50の範囲の整数を示す。
Figure 2008133456


In the formula (2), R 2 represents a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group, an aralkyl group, an alkenyl group, a hydroxyl group, or an aryl group, and q is an integer of 1 to 3. P indicating the number of repeating units is an integer in the range of 1-50.

また、上記一般式(2)で表されるフェノール樹脂は、85℃、85%RHの恒温恒湿槽に48時間投入後の吸水率が2質量%以下で、熱重量分析計(TGA)で測定した350℃での加熱質量減少率(昇温速度:5℃/min,雰囲気:窒素)が5質量%未満のものが好ましく使用できる。このような一般式(2)で表されるフェノール樹脂として代表的なものに、三井化学(株)製のミレックスXLC−シリーズ及びXLシリーズなどがある。   In addition, the phenol resin represented by the general formula (2) has a water absorption rate of 2% by mass or less after being put into a constant temperature and humidity chamber of 85 ° C. and 85% RH for 48 hours, and is measured by a thermogravimetric analyzer (TGA). The measured heating mass reduction rate at 350 ° C. (temperature increase rate: 5 ° C./min, atmosphere: nitrogen) is preferably less than 5% by mass. Typical examples of such a phenol resin represented by the general formula (2) include the Mirex XLC-series and XL series manufactured by Mitsui Chemicals.

本発明の半導体用接着剤組成物におけるエポキシ樹脂とフェノール樹脂との配合割合は、エポキシ当量と水酸基当量との当量比が0.70/0.30〜0.30/0.70となるように設定するのが好ましく、0.65/0.35〜0.35/0.65となるように設定するのがより好ましく、0.60/0.40〜0.40/0.60となるように設定するのがさらに好ましく、0.60/0.40〜0.50/0.50となるように設定するのが特に好ましい。エポキシ当量と水酸基当量との当量比が上記範囲外であると、接着シートの硬化性が劣る、又は、未硬化の接着シートの粘度が高くなり流動性に劣る傾向にある。   The compounding ratio of the epoxy resin and the phenol resin in the adhesive composition for semiconductor of the present invention is such that the equivalent ratio of epoxy equivalent and hydroxyl equivalent is 0.70 / 0.30 to 0.30 / 0.70. It is preferable to set the value, more preferably 0.65 / 0.35 to 0.35 / 0.65, and 0.60 / 0.40 to 0.40 / 0.60. Is more preferable, and it is particularly preferable to set it to be 0.60 / 0.40 to 0.50 / 0.50. When the equivalent ratio of the epoxy equivalent and the hydroxyl equivalent is outside the above range, the curability of the adhesive sheet is inferior, or the viscosity of the uncured adhesive sheet is increased and the fluidity tends to be inferior.

本発明の半導体用接着剤組成物にはフィラーが含有されており、これにより、Bステージ状態における接着シートのダイシング性の向上、接着シートの取扱い性の向上、熱伝導性の向上、溶融粘度の調整、チクソトロピック性の付与、接着力の向上を図ることが可能となっている。   The semiconductor adhesive composition of the present invention contains a filler, thereby improving the dicing property of the adhesive sheet in the B-stage state, improving the handling property of the adhesive sheet, improving the thermal conductivity, and improving the melt viscosity. It is possible to adjust, impart thixotropic properties, and improve adhesion.

本発明で用いるフィラーとしては、無機フィラーが好ましい。無機フィラーとしては特に制限は無く、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ、窒化アルミニウム、ほう酸アルミウイスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ、アンチモン酸化物などが使用できる。また、これらは単体あるいは2種類以上を混合して使用することもできる。   The filler used in the present invention is preferably an inorganic filler. The inorganic filler is not particularly limited, and examples thereof include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, aluminum nitride, aluminum borate whisker, and boron nitride. Crystalline silica, amorphous silica, antimony oxide, and the like can be used. These can be used alone or in combination of two or more.

また、上記の無機フィラーのうち、熱伝導性向上の観点からは、アルミナ、窒化アルミニウム、窒化ホウ素、結晶性シリカ、非晶性シリカ等を用いることが好ましい。また、溶融粘度の調整やチクソトロピック性の付与の点からは、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ、結晶性シリカ、非晶性シリカ等を用いることが好ましい。また、ダイシング性の向上の観点からは、アルミナ、シリカを用いることが好ましい。   Of the above inorganic fillers, alumina, aluminum nitride, boron nitride, crystalline silica, amorphous silica and the like are preferably used from the viewpoint of improving thermal conductivity. In terms of adjusting melt viscosity and imparting thixotropic properties, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, crystalline silica It is preferable to use amorphous silica or the like. From the viewpoint of improving dicing properties, it is preferable to use alumina or silica.

フィラーの含有割合は、接着シートのダイシング性が向上する点、接着シートの硬化後の貯蔵弾性率が170℃で20〜1000MPaになりワイヤボンディング性が良好となる点から、熱硬化性樹脂100質量部に対して30〜100質量部であることが必要であり、さらには35〜100質量部であることが好ましい。   The content of the filler is such that the dicing property of the adhesive sheet is improved, the storage elastic modulus after curing of the adhesive sheet is 20 to 1000 MPa at 170 ° C., and the wire bonding property is improved, and the thermosetting resin 100 mass. It is necessary that it is 30-100 mass parts with respect to a part, Furthermore, it is preferable that it is 35-100 mass parts.

また、フィラーの含有量が大きすぎると、フィルム成形性の悪化、未硬化の接着シートの流動性低下、接着剤の貯蔵弾性率の過剰な上昇、接着力の低下を引き起こしやすくなるため、フィラーの含有割合は、熱硬化性樹脂100質量部に対して80質量部以下であることが好ましい。一方、フィラーの含有量が小さいと、半導体ウエハダイシング時に樹脂バリが発生しやすくなり、また接着力が低下する傾向にあるため、フィラーの含有割合は、熱硬化性樹脂100質量部に対して35質量部以上であることが好ましい。   Further, if the filler content is too large, it tends to cause deterioration of film moldability, decrease in fluidity of an uncured adhesive sheet, excessive increase in storage elastic modulus of adhesive, and decrease in adhesive strength. It is preferable that a content rate is 80 mass parts or less with respect to 100 mass parts of thermosetting resins. On the other hand, if the filler content is small, resin burrs are likely to occur during semiconductor wafer dicing, and the adhesive force tends to decrease. Therefore, the filler content is 35 parts per 100 parts by mass of the thermosetting resin. It is preferable that it is more than a mass part.

本発明の半導体用接着剤組成物は、上記フィラーとして、平均粒径が異なる2種以上のフィラーを含むことが好ましい。この場合、単一のフィラーを使用した場合に比べて、成膜前の原料混合物の粘度上昇若しくは低下を防止することが容易となり、良好な成膜性が得られやすくなるとともに、接着シートの硬化後には優れた接着強度を得られやすくなる。   It is preferable that the adhesive composition for semiconductors of this invention contains 2 or more types of fillers from which an average particle diameter differs as said filler. In this case, compared to the case where a single filler is used, it becomes easier to prevent an increase or decrease in the viscosity of the raw material mixture before film formation, and good film formability can be easily obtained, and the adhesive sheet is cured. It becomes easy to obtain excellent adhesive strength later.

また、本発明の半導体用接着剤組成物は、上記の効果をより確実に得る観点から、平均粒径が0.1〜1.0μmの範囲内にある第1のフィラー、及び、一次粒径の平均粒径が0.005〜0.03μmの範囲内にある第2のフィラーを含むことが好ましい。さらには、ビーズミル処理によりシクロヘキサノンへ第1のフィラーを分散させた分散液をアセトン中へ滴下し、これを用いて測定した第1のフィラーの分散液中の平均粒径が0.1〜1.0μmであることが好ましい。また、同様にして測定した第2のフィラーの分散液の平均粒径が0.05〜0.3μmであることが好ましい。   Moreover, the adhesive composition for semiconductors of this invention is the 1st filler in which the average particle diameter exists in the range of 0.1-1.0 micrometer, and a primary particle diameter from a viewpoint which acquires said effect more reliably. It is preferable that the 2nd filler which exists in the range whose average particle diameter is 0.005-0.03 micrometer is included. Further, a dispersion in which the first filler is dispersed in cyclohexanone by bead mill treatment is dropped into acetone, and the average particle size in the dispersion of the first filler measured using this is 0.1 to 1. It is preferably 0 μm. Moreover, it is preferable that the average particle diameter of the dispersion liquid of the 2nd filler measured similarly is 0.05-0.3 micrometer.

更に、本発明の半導体用接着剤組成物は、上記の効果をより確実に得る観点から、平均粒径が0.1〜1.0μmの範囲内にあり且つ99%以上の粒子が粒径0.1〜1.0μmの範囲内に分布する第1のフィラー、及び、一次粒径の平均粒径が0.005〜0.03μmの範囲内にあり且つ99%以上の粒子が粒径0.005〜0.1μmの範囲内に分布する第2のフィラーを含むことが好ましい。   Furthermore, the adhesive composition for semiconductors of the present invention has an average particle diameter in the range of 0.1 to 1.0 μm and 99% or more of the particles have a particle diameter of 0 from the viewpoint of obtaining the above effect more reliably. The first filler distributed within the range of 0.1 to 1.0 μm, and the average primary particle size within the range of 0.005 to 0.03 μm and 99% or more of the particles have a particle size of 0.00. It is preferable that the 2nd filler distributed in the range of 005-0.1 micrometer is included.

また、本発明の半導体用接着剤組成物は、150℃以上で重合反応により高分子量化する熱重合性化合物を更に含有することが好ましい。   Moreover, it is preferable that the adhesive composition for semiconductors of this invention further contains the thermopolymerizable compound which becomes high molecular weight by a polymerization reaction at 150 degreeC or more.

150℃以上で重合反応により高分子量化する熱重合性化合物としては、例えば、酸素存在下、高温で加熱すると高分子量化する多官能(メタ)アクリレートモノマー等が挙げられ、日本化薬(株)製のKAYARAD DPHAなどを用いることができる。   Examples of the thermopolymerizable compound that increases in molecular weight by a polymerization reaction at 150 ° C. or higher include polyfunctional (meth) acrylate monomers that increase in molecular weight when heated at high temperature in the presence of oxygen. Nippon Kayaku Co., Ltd. For example, KAYARAD DPHA manufactured by KK can be used.

本発明の半導体用接着剤組成物における上記熱重合性化合物の含有割合は、熱硬化性樹脂100質量部に対して3〜10質量部であることが好ましい。含有割合が高すぎると未硬化接着シートのべたつきが高くなる傾向がある。   It is preferable that the content rate of the said thermopolymerizable compound in the adhesive composition for semiconductors of this invention is 3-10 mass parts with respect to 100 mass parts of thermosetting resins. When the content ratio is too high, the stickiness of the uncured adhesive sheet tends to increase.

また、本発明の半導体用接着剤組成物は、上述の熱硬化性樹脂(高分子量成分(A)、エポキシ樹脂(B)、(B)以外のエポキシ樹脂及びフェノール樹脂(C))、フィラー、熱重合性化合物以外に、硬化促進剤、触媒、添加剤、カップリング剤等を更に含んでいてもよい。   Moreover, the adhesive composition for semiconductors of the present invention comprises the above-mentioned thermosetting resin (high molecular weight component (A), epoxy resin (B), epoxy resin other than (B) and phenol resin (C)), filler, In addition to the thermopolymerizable compound, it may further contain a curing accelerator, a catalyst, an additive, a coupling agent and the like.

また、本発明の半導体用接着剤組成物は、硬化前の80℃における溶融粘度が700Pa・s以上6000Pa・s以下であることが好ましく、700Pa・s以上5000Pa・s以下がより好ましく、1000Pa・s以上1900Pa・s以下が更に好ましい。   In addition, the semiconductor adhesive composition of the present invention preferably has a melt viscosity at 80 ° C. before curing of 700 Pa · s to 6000 Pa · s, more preferably 700 Pa · s to 5000 Pa · s, and more preferably 1000 Pa · s. More preferably, it is s or more and 1900 Pa · s or less.

また、本発明の半導体用接着剤組成物は、有機基板(例えば、銅張り積層板「E−697FG」(日立化成(株)製、400μm厚)に回路形成し、「AUS308」(太陽インキ(株)製)で被覆したもの)に対する硬化後の接着強度が、3.0MPa以上であることがより好ましい。   Moreover, the adhesive composition for semiconductors of the present invention forms a circuit on an organic substrate (for example, copper-clad laminate “E-697FG” (manufactured by Hitachi Chemical Co., Ltd., 400 μm thickness)), and “AUS308” (solar ink ( It is more preferable that the adhesive strength after curing with respect to those coated with (made by Co., Ltd.) is 3.0 MPa or more.

支持体20としては、特に制限はなく、例えば、ポリエステルフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエーテルナフタレートフィルム、メチルペンテンフィルム等が挙げられる。   There is no restriction | limiting in particular as the support body 20, For example, a polyester film, a polypropylene film, a polyethylene terephthalate film, a polyimide film, a polyetherimide film, a polyether naphthalate film, a methylpentene film etc. are mentioned.

半導体用接着シート1は、例えば、以下の方法により作製することができる。先ず、上述の本発明の半導体用接着剤組成物を構成する各成分を有機溶媒中で混合、混練してワニスを調製し、このワニスの層を支持体20上に形成させ、加熱により乾燥することにより半導体用接着シート1を得ることができる。また、ワニス層の乾燥後に支持体20を除去して、接着剤層10のみから構成される半導体用接着シートとしてもよい。上記の混合、混練は、通常の攪拌機、らいかい機、三本ロール、ボールミル等の分散機を適宜、組み合わせて行うことができる。上記の加熱乾燥の条件は、使用した溶媒が充分に揮散する条件であれば特に制限はないが、通常60℃〜200℃で、0.1〜90分間加熱して行う。   The adhesive sheet 1 for semiconductors can be produced, for example, by the following method. First, each component constituting the above-described semiconductor adhesive composition of the present invention is mixed and kneaded in an organic solvent to prepare a varnish, and a layer of this varnish is formed on the support 20 and dried by heating. Thereby, the adhesive sheet 1 for semiconductors can be obtained. Alternatively, the support 20 may be removed after the varnish layer is dried to form an adhesive sheet for a semiconductor composed only of the adhesive layer 10. The above mixing and kneading can be carried out by appropriately combining dispersers such as ordinary stirrers, crackers, three rolls, and ball mills. The heating and drying conditions are not particularly limited as long as the used solvent is sufficiently volatilized, but the heating is usually performed at 60 to 200 ° C. for 0.1 to 90 minutes.

上記ワニスの調製に用いる有機溶媒は、材料を均一に溶解、混練又は分散できるものであれば制限はなく、従来公知のものを使用することができる。このような溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、Nメチルピロリドン、トルエン、キシレン等が挙げられる。乾燥速度が速く、価格が安い点でメチルエチルケトン、シクロヘキサノンなどを使用することが好ましい。   The organic solvent used for the preparation of the varnish is not particularly limited as long as the material can be uniformly dissolved, kneaded or dispersed, and conventionally known ones can be used. Examples of such a solvent include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, dimethylformamide, dimethylacetamide, N methylpyrrolidone, toluene, xylene, and the like. It is preferable to use methyl ethyl ketone, cyclohexanone, etc. in terms of fast drying speed and low price.

接着剤層10の厚みは、基板の配線回路や下層のチップに付設された金ワイヤ等の凹凸を充填するため、10〜250μmであることが好ましい。この厚みが10μmよりも薄いと、凹凸の充填性が十分得られ難くなる他、応力緩和効果や接着性が低下する傾向があり、250μmよりも厚いと経済的でなくなる上に、半導体装置の小型化の要求に応えることが困難となる傾向にある。更に、接着剤層10の厚みは、十分な接着性が得られるとともに半導体装置を薄型化できる点から、20〜100μmがより好ましく、40〜80μmが更に好ましい。   The thickness of the adhesive layer 10 is preferably 10 to 250 μm in order to fill unevenness such as a gold wire attached to the wiring circuit of the substrate or the lower chip. If the thickness is less than 10 μm, it is difficult to obtain sufficient filling of the unevenness, and the stress relaxation effect and adhesiveness tend to be reduced. If the thickness is more than 250 μm, it is not economical and the semiconductor device is small. It tends to be difficult to respond to the demands for making it easier. Furthermore, the thickness of the adhesive layer 10 is more preferably 20 to 100 μm, and even more preferably 40 to 80 μm, from the viewpoint that sufficient adhesiveness can be obtained and the semiconductor device can be thinned.

ダイシング性が優れる点から、接着剤層10の硬化前(Bステージ状態)の25℃における貯蔵弾性率は200〜6000MPaであることが好ましい。更に、この貯蔵弾性率は、ダイシング性に優れ、かつ半導体ウエハとの密着性が優れる点で、200〜2000MPaであることがより好ましい。また、接着剤層10の硬化前(Bステージ状態)の80℃における貯蔵弾性率は0.0001〜10MPaであることが好ましい。この場合、半導体ウエハへのラミネート性がより良好なものとなる。また、特に半導体ウエハへの密着性が高い点で、80℃における貯蔵弾性率は0.001〜5MPaであることがより好ましい。   From the viewpoint of excellent dicing properties, the storage elastic modulus at 25 ° C. before curing of the adhesive layer 10 (B stage state) is preferably 200 to 6000 MPa. Furthermore, the storage elastic modulus is more preferably 200 to 2000 MPa in terms of excellent dicing properties and excellent adhesion to a semiconductor wafer. Moreover, it is preferable that the storage elastic modulus in 80 degreeC before hardening of the adhesive bond layer 10 (B stage state) is 0.0001-10MPa. In this case, the laminating property to the semiconductor wafer becomes better. In particular, the storage elastic modulus at 80 ° C. is more preferably 0.001 to 5 MPa in terms of high adhesion to a semiconductor wafer.

また、良好なワイヤボンディング性を得る観点から、接着剤層10の硬化後(Cステージ状態)の170℃における貯蔵弾性率は、20〜1000MPaであることが好ましい。   Further, from the viewpoint of obtaining good wire bonding properties, the storage elastic modulus at 170 ° C. after curing of the adhesive layer 10 (C-stage state) is preferably 20 to 1000 MPa.

接着剤層10の貯蔵弾性率は、動的粘弾性測定装置(UBM社製「Rheogel−E4000」)を用いて、サンプルサイズ:長さ20mm、幅4mm、温度範囲:−30〜200℃、昇温速度3℃/min、引張りモード、10Hz、自動静荷重の測定条件で測定される。   The storage elastic modulus of the adhesive layer 10 was measured using a dynamic viscoelasticity measuring device (“Rheogel-E4000” manufactured by UBM), sample size: length 20 mm, width 4 mm, temperature range: −30 to 200 ° C. It is measured under the measurement conditions of a temperature rate of 3 ° C./min, a tensile mode, 10 Hz, and an automatic static load.

接着剤層10の硬化前の80℃における溶融粘度は700Pa・s以上6000Pa・s以下であることが好ましく、700Pa・s以上5000Pa・s以下がより好ましく、1000Pa・s以上1900Pa・s以下が更に好ましい。なお、80℃における溶融粘度は、平行板プラストメーター法に基づいて、温度80℃、荷重3kgfの条件下、3秒間圧着した際の面積の変化から計算された値で示される。   The melt viscosity at 80 ° C. before curing of the adhesive layer 10 is preferably 700 Pa · s or more and 6000 Pa · s or less, more preferably 700 Pa · s or more and 5000 Pa · s or less, and further preferably 1000 Pa · s or more and 1900 Pa · s or less. preferable. The melt viscosity at 80 ° C. is represented by a value calculated from the change in area when pressed for 3 seconds under the conditions of a temperature of 80 ° C. and a load of 3 kgf based on the parallel plate plastometer method.

また、接着剤層10の硬化後の有機基板に対する接着強度が、3MPa以上であることがより好ましい。この接着強度は、以下の手順で測定された値を意味する。先ず、接着剤層10を400μm厚の半導体ウエハに60℃で貼り付けし、5.0mm角にダイシングする。個片化したサンプルをレジストAUS308を塗布した基板上に、温度120℃、荷重250gfの条件で1秒間圧着する。次に、サンプルを圧着した基板を、120℃で1時間、及び170℃で3時間のステップキュアにより硬化させる。このようにして作製した実装基板を85℃、60RH%の条件下に168時間放置する。その後、即座に250℃のダイシェア強度を測定し、これを接着強度とする。   Moreover, it is more preferable that the adhesive strength of the adhesive layer 10 to the organic substrate after curing is 3 MPa or more. This adhesive strength means a value measured by the following procedure. First, the adhesive layer 10 is bonded to a semiconductor wafer having a thickness of 400 μm at 60 ° C. and diced to 5.0 mm square. The separated sample is pressure-bonded on a substrate coated with resist AUS308 for 1 second under conditions of a temperature of 120 ° C. and a load of 250 gf. Next, the substrate to which the sample is bonded is cured by step curing at 120 ° C. for 1 hour and 170 ° C. for 3 hours. The mounting board thus produced is left for 168 hours under the conditions of 85 ° C. and 60 RH%. Thereafter, the die shear strength at 250 ° C. is immediately measured, and this is used as the adhesive strength.

本発明の半導体用接着剤組成物及び半導体用接着シートは、それ自体で用いても構わないが、他の一実施態様として、本発明の半導体用接着剤組成物からなる接着剤層を従来公知のダイシングテープ上に設けてなるダイシング・ダイボンディング一体型接着シートとして用いることもできる。この場合、半導体ウエハへのラミネート工程が一回で済むことから、作業を更に効率化することが可能となる。図2は、本実施形態の接着シートの構成を示す模式断面図である。図2に示される接着シート2は、ダイシングテープ30と、ダイシングテープ30上に設けられ、本発明の半導体用接着剤組成物からなる接着剤層10とを備えて構成されている。   The adhesive composition for semiconductors and the adhesive sheet for semiconductors of the present invention may be used as such, but as another embodiment, an adhesive layer comprising the adhesive composition for semiconductors of the present invention is conventionally known. It can also be used as a dicing / die bonding integrated adhesive sheet provided on the dicing tape. In this case, since the laminating process on the semiconductor wafer is performed only once, the work can be made more efficient. FIG. 2 is a schematic cross-sectional view showing the configuration of the adhesive sheet of the present embodiment. The adhesive sheet 2 shown in FIG. 2 includes a dicing tape 30 and an adhesive layer 10 provided on the dicing tape 30 and made of the adhesive composition for a semiconductor of the present invention.

本実施形態で使用するダイシングテープとしては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルムなどのプラスチックフィルム等が挙げられる。また、これらのプラスチックフィルムには、必要に応じてプライマー塗布、UV処理、コロナ放電処理、研磨処理、エッチング処理等の表面処理を行ってもよい。   Examples of the dicing tape used in the present embodiment include a plastic film such as a polytetrafluoroethylene film, a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, and a polyimide film. In addition, these plastic films may be subjected to surface treatment such as primer application, UV treatment, corona discharge treatment, polishing treatment, and etching treatment as necessary.

ダイシングテープは粘着性を有することが好ましく、上述のプラスチックフィルムに粘着性を付与したものを用いてもよいし、上述のプラスチックフィルムの片面に粘着剤層を設けてもよい。この粘着剤層は、液状成分の比率、高分子量成分のTgを調整することによって得られる適度なタック強度を有する樹脂組成物を塗布乾燥することで形成可能である。   The dicing tape preferably has adhesiveness, and the above-mentioned plastic film provided with adhesiveness may be used, or an adhesive layer may be provided on one side of the above-mentioned plastic film. This pressure-sensitive adhesive layer can be formed by applying and drying a resin composition having an appropriate tack strength obtained by adjusting the ratio of the liquid component and the Tg of the high molecular weight component.

接着シート2を半導体装置の製造に用いる場合、接着剤層10は、ダイシング時には半導体素子が飛散しない粘着力を有し、その後ピックアップ時にはダイシングテープから容易に剥離できることが好ましい。例えば、接着剤層の粘着性が高すぎるとピックアップが困難になることがある。そのため、適宜、接着剤層のタック強度を調節することが好ましい。その方法としては、接着剤層の室温におけるフローを上昇させると粘着強度及びタック強度も上昇する傾向があり、一方、フローを低下させれば粘着強度及びタック強度も低下する傾向があることを利用すればよい。具体的には、フローを上昇させるには、例えば、可塑剤の含有量の増加、粘着付与剤含有量の増加等の方法がある。逆にフローを低下させるには、前記化合物の含有量を減らせばよい。前記可塑剤としては、例えば、単官能のアクリルモノマー、単官能エポキシ樹脂、液状エポキシ樹脂、アクリル系樹脂、エポキシ系のいわゆる希釈剤等が挙げられる。   When the adhesive sheet 2 is used for manufacturing a semiconductor device, it is preferable that the adhesive layer 10 has an adhesive force that prevents the semiconductor elements from scattering during dicing, and can be easily peeled off from the dicing tape during pickup. For example, if the adhesive layer is too sticky, picking up may be difficult. Therefore, it is preferable to appropriately adjust the tack strength of the adhesive layer. As its method, the adhesive strength and tack strength tend to increase when the flow of the adhesive layer at room temperature increases, while the adhesive strength and tack strength tend to decrease when the flow decreases. do it. Specifically, to increase the flow, for example, there are methods such as increasing the plasticizer content and increasing the tackifier content. Conversely, in order to reduce the flow, the content of the compound may be reduced. Examples of the plasticizer include monofunctional acrylic monomers, monofunctional epoxy resins, liquid epoxy resins, acrylic resins, and epoxy-based so-called diluents.

ダイシングテープ上に接着剤層を設ける方法としては、印刷のほか、予め作成した接着剤層をダイシングテープ上にプレス、ホットロールラミネートする方法が挙げられるが、連続的に製造でき、効率が良い点でホットロールラミネートによって接着剤層を設ける方法が好ましい。   As a method of providing an adhesive layer on a dicing tape, in addition to printing, a method of pressing an adhesive layer prepared in advance on a dicing tape and hot roll laminating can be mentioned. A method of providing an adhesive layer by hot roll lamination is preferred.

ダイシングテープの膜厚は、特に制限はなく、接着剤層の膜厚や接着シートの用途によって適宜、当業者の知識に基づいて定められるものであるが、経済性がよく、フィルムの取扱い性が良い点で60〜150μmが好ましく、70〜130μmがより好ましい。   The film thickness of the dicing tape is not particularly limited, and is determined based on the knowledge of those skilled in the art as appropriate depending on the film thickness of the adhesive layer and the application of the adhesive sheet. 60-150 micrometers is preferable at a good point, and 70-130 micrometers is more preferable.

次に、上記接着シート2を用いる半導体装置の製造方法について説明する。   Next, a method for manufacturing a semiconductor device using the adhesive sheet 2 will be described.

図3(a)〜(d)及び図4は、接着シート2を用いる半導体装置の製造方法の好適な一実施形態を説明するための断面図である。本実施形態の半導体装置の製造方法は、上述の粘接着シート2の接着剤層を半導体ウエハに貼り付ける貼り付け工程(ウエハラミネート工程)と、半導体ウエハ及び接着剤層をダイシングすることにより接着剤層が付着した半導体素子を得るダイシング工程と、接着剤層が付着した半導体素子をダイシングテープからピックアップするピックアップ工程と、半導体素子を接着剤層を介して半導体素子搭載用の支持部材に接着する接着工程とを備える。以下、図面を参照しながら、各工程について説明する。   FIGS. 3A to 3D and FIG. 4 are cross-sectional views for explaining a preferred embodiment of a method for manufacturing a semiconductor device using the adhesive sheet 2. The manufacturing method of the semiconductor device according to the present embodiment includes a bonding process (wafer laminating process) in which the adhesive layer of the above-mentioned adhesive sheet 2 is bonded to a semiconductor wafer, and dicing the semiconductor wafer and the adhesive layer together. A dicing process for obtaining a semiconductor element having an adhesive layer attached thereto, a pickup process for picking up the semiconductor element having an adhesive layer attached thereto from a dicing tape, and the semiconductor element being bonded to a support member for mounting the semiconductor element through the adhesive layer. An adhesion step. Hereinafter, each process will be described with reference to the drawings.

(貼り付け工程)
先ず、図3(a)に示されるように、半導体ウエハWの主面に、接着剤層10を介して接着シート2を貼り付ける。
(Attaching process)
First, as shown in FIG. 3A, the adhesive sheet 2 is attached to the main surface of the semiconductor wafer W via the adhesive layer 10.

なお、本実施形態に係る接着シートを用いた半導体装置の製造において用いられる半導体ウエハWとしては、単結晶シリコンの他、多結晶シリコン、各種セラミック、ガリウム砒素などの化合物半導体などが挙げられる。   The semiconductor wafer W used in the manufacture of the semiconductor device using the adhesive sheet according to this embodiment includes single crystal silicon, polycrystalline silicon, various ceramics, and compound semiconductors such as gallium arsenide.

接着シート2を半導体ウエハWに貼り付ける温度、即ちラミネート温度は、0〜90℃が好ましく、15〜80℃がより好ましく、20〜70℃がさらにより好ましい。ラミネート温度が90℃を超えると接着シート貼り付け後の半導体ウエハの反りが大きくなる傾向がある。また、ダイシングテープとともに貼り付ける場合は、室温(25℃)〜40℃で行うことが好ましい。   The temperature at which the adhesive sheet 2 is attached to the semiconductor wafer W, that is, the laminating temperature, is preferably 0 to 90 ° C, more preferably 15 to 80 ° C, and even more preferably 20 to 70 ° C. When the laminating temperature exceeds 90 ° C., the warp of the semiconductor wafer after the adhesive sheet is attached tends to increase. Moreover, when affixing with a dicing tape, it is preferable to carry out at room temperature (25 degreeC)-40 degreeC.

なお、接着シート2の代わりに本発明の半導体用接着剤組成物をフィルム状に成形してなる接着シートを用いる場合、先ず、半導体ウエハに接着シートを貼り合わせた後、次いで接着シートの半導体ウエハと反対側の面にダイシングテープを貼り合わせればよい。また、接着シート2の代わりに上記半導体用接着シート1を用いる場合、半導体ウエハに接着シートを貼り合わせた後、支持体20を剥離し、次いで接着剤層10の半導体ウエハと反対側の面にダイシングテープを貼り合わせればよい。これらの場合の接着シート、ダイシングテープを貼り付けるラミネート温度は、上記温度であることが好ましい。   In addition, when using the adhesive sheet formed by shape | molding the adhesive composition for semiconductors of this invention into a film form instead of the adhesive sheet 2, after bonding an adhesive sheet to a semiconductor wafer first, the semiconductor wafer of an adhesive sheet is then used. What is necessary is just to affix a dicing tape on the surface on the opposite side. When the semiconductor adhesive sheet 1 is used instead of the adhesive sheet 2, the adhesive sheet is bonded to the semiconductor wafer, the support 20 is peeled off, and then the adhesive layer 10 is placed on the surface opposite to the semiconductor wafer. A dicing tape may be attached. The laminating temperature for attaching the adhesive sheet and dicing tape in these cases is preferably the above temperature.

(ダイシング工程)
次に、図3(b)に示されるように、半導体ウエハW及び接着剤層10をダイシングする。このとき、ダイシングテープ30を途中までダイシングするとしてもよい。ダイシングは、回転刃又はレーザーで行うことができる。
(Dicing process)
Next, as shown in FIG. 3B, the semiconductor wafer W and the adhesive layer 10 are diced. At this time, the dicing tape 30 may be diced halfway. Dicing can be performed with a rotary blade or a laser.

(ピックアップ工程)
ダイシング工程の後、図3(c)に示されるように、ダイシングテープ30をエキスパンド(拡張)することにより、切断により得られた各半導体素子40を互いに離間させつつ、ダイシングテープ30側からピックアップツール42(ニードルなどの突き上げ或いはスライド式のユニット)などにより、粘接着層10aとダイシングテープ30の剥離を促進し、接着剤層付き半導体素子40を吸引コレット44で吸引してピックアップする。なお、接着剤層付き半導体素子40は、半導体素子Waと粘接着層10aとを有する。また、半導体素子Waは半導体ウエハWを分割して得られるものであり、接着剤層10aは接着剤層10を分割して得られるものである。ピックアップ工程では、必ずしもエキスパンドを行わなくてもよいが、エキスパンドすることによりピックアップ性をより向上させることができる。
(Pickup process)
After the dicing step, as shown in FIG. 3C, the dicing tape 30 is expanded (expanded) so that the semiconductor elements 40 obtained by cutting are separated from each other, and the pick-up tool is used from the dicing tape 30 side. 42 (push-up of a needle or a slide-type unit) or the like promotes peeling of the adhesive layer 10a and the dicing tape 30, and the semiconductor element 40 with the adhesive layer is sucked and picked up by the suction collet 44. The semiconductor element 40 with an adhesive layer includes a semiconductor element Wa and an adhesive layer 10a. The semiconductor element Wa is obtained by dividing the semiconductor wafer W, and the adhesive layer 10a is obtained by dividing the adhesive layer 10. In the pick-up process, it is not always necessary to perform expansion, but the pick-up performance can be further improved by expanding.

また、ニードル42による突き上げも必要に応じて行うことが好ましい。さらに、極薄ウエハに対しても十分なピックアップ性を確保する観点から、例えば、2段又は3段ピックアップ法を行ってもよい。   Further, it is preferable that the needle 42 is pushed up as necessary. Furthermore, from the viewpoint of ensuring sufficient pickup performance even for an ultra-thin wafer, for example, a two-stage or three-stage pickup method may be performed.

また、本実施形態においては、吸引コレット44以外の方法によって半導体素子40の
ピックアップを行うこともできる。
In the present embodiment, the semiconductor element 40 can be picked up by a method other than the suction collet 44.

(接着工程)
接着剤層付き半導体素子40をピックアップした後、図3(d)に示されるように、接着剤層付き半導体素子40を、熱圧着により、接着剤層10aを介して半導体素子搭載用の支持部材50に接着する。
(Adhesion process)
After picking up the semiconductor element 40 with the adhesive layer, as shown in FIG. 3D, the semiconductor element 40 with the adhesive layer is bonded to the semiconductor element mounting support member via the adhesive layer 10a by thermocompression bonding. Adhere to 50.

圧着のための荷重は、0.001〜1MPaであることが好ましく、0.01〜0.5MPaであることがより好ましく、0.01〜0.3MPaであることが更により好ましい。荷重が0.001MPa未満であるとボイドが発生し耐熱性が低下する傾向があり、1MPaを超えるとチップが破損する傾向がある。   The load for pressure bonding is preferably 0.001 to 1 MPa, more preferably 0.01 to 0.5 MPa, and still more preferably 0.01 to 0.3 MPa. If the load is less than 0.001 MPa, voids are generated and the heat resistance tends to be reduced, and if it exceeds 1 MPa, the chip tends to be damaged.

また、加熱温度は、60〜240℃であることが好ましく、80〜180℃であることがより好ましい。60℃未満であると凹凸の埋込性が低下する傾向があり、240℃を超えると基板などの支持部材が変形し、反りが大きくなる傾向がある。加熱方法としては、加熱した熱板に支持部材又は半導体素子を接触させる、赤外線又はマイクロ波を支持部材又は半導体素子に照射する、熱風を吹きかける等の方法が挙げられる。本実施形態においては、被着体である支持部材、接着剤層付き半導体素子、又はその両方を加熱することが望ましい。   Moreover, it is preferable that it is 60-240 degreeC, and, as for heating temperature, it is more preferable that it is 80-180 degreeC. When the temperature is lower than 60 ° C., the embedding property of the unevenness tends to be lowered, and when the temperature exceeds 240 ° C., the support member such as the substrate is deformed and warpage tends to increase. Examples of the heating method include a method of bringing a supporting member or a semiconductor element into contact with a heated hot plate, irradiating the supporting member or the semiconductor element with infrared rays or microwaves, and blowing hot air. In this embodiment, it is desirable to heat the support member which is an adherend, the semiconductor element with an adhesive layer, or both.

接着剤層付き半導体素子40を接着剤層10aを介して支持部材50上に搭載した後、再び、接着層付き半導体素子40を、熱圧着により、接着剤層10aを介して半導体素子Waに接着するとしてもよい。これにより、複数の半導体素子Waを支持部材50上に搭載することができる。この場合、接着剤層10aの熱履歴は大きくなるが、本実施形態に係る接着剤層10aによれば、半導体素子Waと支持部材50との接着性を十分維持することができる。   After mounting the semiconductor element 40 with the adhesive layer on the support member 50 through the adhesive layer 10a, the semiconductor element 40 with the adhesive layer is again bonded to the semiconductor element Wa through the adhesive layer 10a by thermocompression bonding. You may do that. Thereby, a plurality of semiconductor elements Wa can be mounted on the support member 50. In this case, the thermal history of the adhesive layer 10a is increased, but the adhesiveness between the semiconductor element Wa and the support member 50 can be sufficiently maintained according to the adhesive layer 10a according to the present embodiment.

続いて、図4に示されるように、必要に応じて半導体素子Waと支持部材50とをワイヤボンディング60により電気的に接続することが好ましい。このとき、半導体素子Wa、接着剤層10a及び支持部材50は、所定温度で所定時間加熱される。さらに、ワイヤボンディングにより接続した後、必要に応じて半導体素子Waを樹脂封止することが好ましい。このとき、樹脂封止材70を支持部材50の表面(半導体搭載面)に形成するが、支持部材50の半導体搭載面とは反対側の面にも樹脂封止材を形成するとしてもよい。   Subsequently, as shown in FIG. 4, it is preferable to electrically connect the semiconductor element Wa and the support member 50 by wire bonding 60 as necessary. At this time, the semiconductor element Wa, the adhesive layer 10a, and the support member 50 are heated at a predetermined temperature for a predetermined time. Furthermore, after connecting by wire bonding, the semiconductor element Wa is preferably resin-sealed as necessary. At this time, the resin sealing material 70 is formed on the surface (semiconductor mounting surface) of the support member 50, but the resin sealing material may be formed on the surface of the support member 50 opposite to the semiconductor mounting surface.

以上の工程を経ることにより、接着シート2を用いて半導体装置100を製造することができる。このようにして得られる半導体装置100は、半導体素子及び支持部材を接着する接着部材として上述した本発明の半導体用接着剤組成物の硬化物を有することから、接続信頼性に優れ、特には高温高湿条件下での接続信頼性が優れている。   Through the above steps, the semiconductor device 100 can be manufactured using the adhesive sheet 2. The semiconductor device 100 obtained in this way has a cured product of the above-described adhesive composition for a semiconductor of the present invention as an adhesive member for adhering a semiconductor element and a support member, and thus has excellent connection reliability, particularly high temperature. Excellent connection reliability under high humidity conditions.

以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
エポキシ樹脂「YDCN−700−10」(東都化成(株)製、クレゾールノボラック型エポキシ樹脂、エポキシ当量210)6.2質量部、フェノール樹脂「ミレックスXLC−LL」(三井化学(株)製商品名、フェノール樹脂、水酸基当量175)51.8質量部、エポキシ樹脂「YDF−8170C」(東都化成(株)製商品名、ビスフェノールF型エポキシ樹脂、エポキシ当量159、分子量312)41.9質量部、シリカフィラーの分散液である「SC2050−HLG」(アドマテックス(株)製商品名、平均粒径0.500μm)81.5質量部、及び、シリカフィラーである「アエロジルR972」(日本アエロジル(株)製商品名、一次粒径の平均粒径0.016μm)2.9質量部からなる組成物にシクロヘキサノンを加え、攪拌混合し、均一な組成物とした。
(Example 1)
6.2 parts by mass of epoxy resin “YDCN-700-10” (manufactured by Tohto Kasei Co., Ltd., cresol novolac type epoxy resin, epoxy equivalent 210), phenol resin “Mirex XLC-LL” (trade name, manufactured by Mitsui Chemicals, Inc.) , Phenol resin, hydroxyl group equivalent 175) 51.8 parts by mass, epoxy resin “YDF-8170C” (trade name, manufactured by Tohto Kasei Co., Ltd., bisphenol F type epoxy resin, epoxy equivalent 159, molecular weight 312) 41.9 parts by mass, 81.5 parts by mass of “SC2050-HLG” (trade name, manufactured by Admatechs Co., Ltd., average particle size 0.500 μm) which is a dispersion of silica filler, and “Aerosil R972” which is silica filler (Nippon Aerosil Co., Ltd.) ) Product name, average particle size of primary particle size 0.016 μm) Cyclohexanone in a composition comprising 2.9 parts by mass The mixture was stirred and mixed to obtain a uniform composition.

これに、アクリルゴム「HTR−860P−230k」(帝国化学産業(株)製商品名、重量平均分子量23万)23.0質量部、カップリング剤としての「NUC A−1160」(日本ユニカー(株)製商品名、γ−ウレイドプロピルトリエトキシシラン)0.3質量部及び「NUC A−189」(日本ユニカー(株)製商品名、γ−メルカプトプロピルトリメトキシシラン)0.6質量部、並びに、硬化促進剤としての「キュアゾール2PZ−CN」(四国化成(株)製商品名、1−シアノエチル−2−フェニルイミダゾール)0.1質量部を加え、均一になるまで攪拌混合した。更にこれを100メッシュのフィルターでろ過し、真空脱泡することにより、接着剤組成物のワニスを得た。   To this, 23.0 parts by mass of acrylic rubber “HTR-860P-230k” (trade name, Teikoku Chemical Industry Co., Ltd., weight average molecular weight 230,000), “NUC A-1160” (Nihon Unicar ( Co., Ltd. product name, γ-ureidopropyltriethoxysilane) 0.3 parts by mass and “NUC A-189” (trade name, γ-mercaptopropyltrimethoxysilane) manufactured by Nippon Unicar Co., Ltd. In addition, 0.1 part by mass of “Curazole 2PZ-CN” (trade name, 1-cyanoethyl-2-phenylimidazole, manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator was added and mixed with stirring until uniform. Furthermore, this was filtered with a 100-mesh filter and vacuum degassed to obtain an adhesive composition varnish.

このワニスを、厚さ38μmの離型処理したポリエチレンテレフタレート(PET)フィルム上に塗布し、140℃で5分間加熱することにより乾燥して、Bステージ状態の接着剤層(膜厚40μm)がPETフィルム上に形成された接着シートを得た。   This varnish is applied on a polyethylene terephthalate (PET) film having a thickness of 38 μm, and dried by heating at 140 ° C. for 5 minutes, so that the B-stage adhesive layer (film thickness 40 μm) is PET. An adhesive sheet formed on the film was obtained.

(実施例2)
実施例1の組成物において、熱硬化性化合物である「KAYARAD DPHA」(日本化薬(株)製商品名、ジペンタエリスリトールヘキサアクリレート)8.4質量部を更に配合し、「アエロジルR972」を配合せず、各成分の配合割合を表1の実施例2に示すように変更した以外は、実施例1と同様の工程を経て接着シートを作製した。
(Example 2)
In the composition of Example 1, 8.4 parts by mass of “KAYARAD DPHA” (trade name, manufactured by Nippon Kayaku Co., Ltd., dipentaerythritol hexaacrylate) which is a thermosetting compound was further blended, and “Aerosil R972” was added. The adhesive sheet was produced through the same process as Example 1 except not mix | blending and having changed the mixture ratio of each component as shown in Example 2 of Table 1. FIG.

(実施例3)
実施例1の組成物において、熱硬化性化合物である「KAYARAD DPHA」(日本化薬(株)製商品名、ジペンタエリスリトールヘキサアクリレート)8.3質量部を更に配合し、各成分の配合割合を表1の実施例3に示すように変更した以外は、実施例1と同様の工程を経て接着シートを作製した。
(Example 3)
In the composition of Example 1, 8.3 parts by mass of “KAYARAD DPHA” (trade name, manufactured by Nippon Kayaku Co., Ltd., dipentaerythritol hexaacrylate), which is a thermosetting compound, was further blended, and the blending ratio of each component The adhesive sheet was produced through the process similar to Example 1 except having changed as shown in Example 3 of Table 1.

(実施例4及び5)
実施例1の組成物において、「アエロジルR972」を配合せず、各成分の配合割合を表2の実施例4、5に示すように変更した以外は、実施例1と同様の工程を経て接着シートを作製した。
(Examples 4 and 5)
In the composition of Example 1, “Aerosil R972” was not blended, and the blending ratio of each component was changed as shown in Examples 4 and 5 of Table 2, followed by the same steps as in Example 1 for adhesion. A sheet was produced.

(比較例1)
実施例1の組成物において、「アエロジルR972」を配合せず、各成分の配合割合を表2の比較例1に示すように変更した以外は、実施例1と同様の工程を経て接着シートを作製した。
(Comparative Example 1)
In the composition of Example 1, "Aerosil R972" was not blended, and the adhesive sheet was subjected to the same steps as in Example 1 except that the blending ratio of each component was changed as shown in Comparative Example 1 of Table 2. Produced.

(比較例2)
実施例1の組成物において、各成分の配合割合を表2の比較例2に示すように変更した以外は、実施例1と同様の工程を経て接着シートを作製した。
(Comparative Example 2)
In the composition of Example 1, an adhesive sheet was produced through the same steps as in Example 1 except that the blending ratio of each component was changed as shown in Comparative Example 2 of Table 2.

Figure 2008133456
Figure 2008133456

Figure 2008133456
Figure 2008133456

[溶融粘度の測定]
実施例1〜5及び比較例1、2の接着シートについて、Bステージ状態の接着剤層の溶融粘度を平行板プラストメーター法に基づいて以下の手順で測定した。先ず、3枚の接着剤層を60℃で貼り合わせて膜厚120μmのフィルムとし、これを直径6mmの円形に打ち抜いた。得られた円形のフィルムを厚さ150μmのスライドガラス2枚の間に挟み、測定用サンプルとした。圧着時に所定の温度に設定できる圧着機を使用して、測定用サンプルを温度80℃、3kgfの荷重で3秒間圧着した。このときの圧着によるフィルムの面積の変化から溶融粘度を計算した。得られた結果を表3に示す。
[Measurement of melt viscosity]
For the adhesive sheets of Examples 1 to 5 and Comparative Examples 1 and 2, the melt viscosity of the adhesive layer in the B stage state was measured by the following procedure based on the parallel plate plastometer method. First, three adhesive layers were bonded at 60 ° C. to form a film having a thickness of 120 μm, and this was punched into a circle having a diameter of 6 mm. The obtained circular film was sandwiched between two glass slides having a thickness of 150 μm to obtain a measurement sample. Using a crimping machine that can be set to a predetermined temperature during crimping, the measurement sample was crimped for 3 seconds at a temperature of 80 ° C. and a load of 3 kgf. The melt viscosity was calculated from the change in the area of the film due to the pressure bonding at this time. The obtained results are shown in Table 3.

[接着強度の測定]
実施例1〜5及び比較例1、2の接着シートについて、以下の手順により接着強度を測定した。まず、接着シートの接着剤層を400μm厚の半導体ウエハに60℃で貼り合わせ、5.0mm角にダイシングすることにより、個片化した接着剤層付き半導体チップを得た。次に、接着剤層付き半導体チップを、レジスト「AUS308」を塗布した基板上に、加熱温度120℃、荷重250gfの条件で1秒間圧着して半導体装置のサンプルを作成した。続いて、120℃/1時間及び170℃/1時間のステップキュアによりサンプルの接着剤層を硬化させた。次に、硬化後の半導体装置のサンプルを85℃、60RH%条件下に168時間放置した。その後、即座に、サンプルの250℃のダイシェア強度を測定し、これを接着強度とした。得られた結果を表3に示す。
[Measurement of adhesive strength]
About the adhesive sheet of Examples 1-5 and Comparative Examples 1 and 2, adhesive strength was measured with the following procedures. First, the adhesive layer of the adhesive sheet was bonded to a semiconductor wafer having a thickness of 400 μm at 60 ° C. and diced to 5.0 mm square to obtain individual semiconductor chips with an adhesive layer. Next, the semiconductor chip with the adhesive layer was pressure-bonded on a substrate coated with the resist “AUS308” for 1 second under the conditions of a heating temperature of 120 ° C. and a load of 250 gf to prepare a semiconductor device sample. Subsequently, the adhesive layer of the sample was cured by step curing at 120 ° C./1 hour and 170 ° C./1 hour. Next, the sample of the semiconductor device after curing was left under conditions of 85 ° C. and 60 RH% for 168 hours. Immediately thereafter, the die shear strength at 250 ° C. of the sample was measured and used as the adhesive strength. The obtained results are shown in Table 3.

[耐リフロー性評価試験]
実施例1〜5及び比較例1、2の接着シートの耐リフロー性を以下の手順により評価した。まず、接着シートを75μm厚のウエハに60℃で貼り合わせ、7.5mm角にダイシングすることにより、個片化した接着剤層付き半導体チップを得た。次に、接着剤層付き半導体チップを、レジスト「AUS308」(太陽インキ(株)製)を塗布した基板上に、加熱温度120℃、荷重0.05MPaの条件で1秒間圧着して半導体装置のサンプルを作成した。次に、このサンプルに対して、120℃、60分間の加熱処理を施し、続いて、ワイヤーボンド相当の熱処理を行い、モールド用封止材(日立化成工業製、商品名「CEL−9700HF」)にてモールドし、175℃で5時間硬化させてパッケージとした。次に、このパッケージをJEDEC所定の吸湿条件で吸湿させた後、IRリフロー炉にて260℃リフロー(最大温度265℃)を3回通過させ、パッケージの破損や厚みの変化、界面の剥離等が1個も観察されない条件のうち最も厳しい吸湿条件をもって耐リフロー性のレベルとした。このときのJEDEC所定の吸湿条件とは、温度30℃、湿度60%の恒温恒湿槽にて192時間パッケージを吸湿させた条件をレベル3とする。同様に85℃、60%、168時間の条件をレベル2とする。得られた結果を表3に示す。
[Reflow resistance evaluation test]
The reflow resistance of the adhesive sheets of Examples 1 to 5 and Comparative Examples 1 and 2 was evaluated by the following procedure. First, the adhesive sheet was bonded to a 75 μm-thick wafer at 60 ° C. and diced to 7.5 mm square to obtain individual semiconductor chips with an adhesive layer. Next, a semiconductor chip with an adhesive layer is pressure-bonded on a substrate coated with a resist “AUS308” (manufactured by Taiyo Ink Co., Ltd.) for 1 second under conditions of a heating temperature of 120 ° C. and a load of 0.05 MPa. A sample was created. Next, this sample was subjected to a heat treatment at 120 ° C. for 60 minutes, followed by a heat treatment equivalent to wire bonding, and a mold sealing material (trade name “CEL-9700HF” manufactured by Hitachi Chemical Co., Ltd.). And cured at 175 ° C. for 5 hours to obtain a package. Next, after absorbing this package under JEDEC's prescribed moisture absorption conditions, it was passed through 260 ° C reflow (maximum temperature 265 ° C) three times in an IR reflow oven, causing damage to the package, changes in thickness, peeling of the interface, etc. The most severe moisture absorption condition among the conditions in which none was observed was regarded as the reflow resistance level. The JEDEC predetermined moisture absorption condition at this time is defined as level 3 where the package is moisture absorbed for 192 hours in a constant temperature and humidity chamber having a temperature of 30 ° C. and a humidity of 60%. Similarly, level 2 is a condition of 85 ° C., 60%, and 168 hours. The obtained results are shown in Table 3.

Figure 2008133456
Figure 2008133456

表3に示した結果から明らかなように、本発明に係る接着シート(実施例1〜5)は、比較例1〜2の接着シートと比較して、低溶融粘度と高接着強度とがより高水準でバランスされていることが確認された。また、本発明に係る接着シート(実施例1〜5)は、硬化後、高温高湿条件下に晒された場合であっても十分な接着強度を示すことが分かった。更に、本発明に係る接着シート(実施例1〜5)は、耐リフロー性に優れていることが確認された。本発明に係る半導体用接着剤組成物および半導体用接着シートによれば、半導体装置の信頼性の向上を図ることが可能である。   As is clear from the results shown in Table 3, the adhesive sheets according to the present invention (Examples 1 to 5) have lower melt viscosity and higher adhesive strength than the adhesive sheets of Comparative Examples 1 and 2. It was confirmed that the balance was high. Moreover, even if it was a case where the adhesive sheet (Examples 1-5) based on this invention was exposed to high temperature, high humidity conditions after hardening, it turned out that sufficient adhesive strength is shown. Furthermore, it was confirmed that the adhesive sheets (Examples 1 to 5) according to the present invention are excellent in reflow resistance. According to the adhesive composition for semiconductor and the adhesive sheet for semiconductor according to the present invention, it is possible to improve the reliability of the semiconductor device.

本発明の半導体用接着シートの好適な一実施形態を示す模式断面図である。It is a schematic cross section which shows suitable one Embodiment of the adhesive sheet for semiconductors of this invention. 本発明の半導体用接着シートの好適な他の実施形態を示す模式断面図である。It is a schematic cross section which shows other suitable embodiment of the adhesive sheet for semiconductors of this invention. 本発明に係る半導体用接着シートを用いる半導体装置の製造方法の好適な一実施形態を説明するための断面図である。It is sectional drawing for demonstrating suitable one Embodiment of the manufacturing method of the semiconductor device using the adhesive sheet for semiconductors concerning this invention. 本発明の半導体装置の好適な一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing a preferred embodiment of a semiconductor device of the present invention.

符号の説明Explanation of symbols

1,2…半導体用接着シート、10…接着剤層、20…支持体、30…ダイシングテープ、40…接着剤層付き半導体素子、50…支持部材、60…ワイヤボンディング、70…樹脂封止材、100…半導体装置。 DESCRIPTION OF SYMBOLS 1, ... Semiconductor adhesive sheet, 10 ... Adhesive layer, 20 ... Support, 30 ... Dicing tape, 40 ... Semiconductor element with adhesive layer, 50 ... Support member, 60 ... Wire bonding, 70 ... Resin sealing material , 100... Semiconductor device.

Claims (8)

熱硬化性樹脂及びフィラーを含有する接着剤組成物であって、
前記フィラーの配合割合が、前記熱硬化性樹脂100質量部に対して30〜100質量部であり、且つ、
前記熱硬化性樹脂として、(A)架橋性官能基を有し、重量平均分子量が10万〜60万でありガラス転移温度が−50℃〜50℃である高分子量成分、(B)分子量500以上の多官能エポキシ樹脂、及び、(C)フェノール樹脂を質量比で、(A):(B):(C)=15〜40:5〜15:35〜55の割合で含む、半導体用接着剤組成物。
An adhesive composition containing a thermosetting resin and a filler,
The blending ratio of the filler is 30 to 100 parts by mass with respect to 100 parts by mass of the thermosetting resin, and
As the thermosetting resin, (A) a high molecular weight component having a crosslinkable functional group, a weight average molecular weight of 100,000 to 600,000 and a glass transition temperature of −50 ° C. to 50 ° C., (B) a molecular weight of 500 Adhesion for semiconductors containing the above polyfunctional epoxy resin and (C) phenol resin in a mass ratio of (A) :( B) :( C) = 15-40: 5-15: 35-55 Agent composition.
前記フィラーとして、平均粒径が異なる2種以上のフィラーを含む、請求項1に記載の半導体用接着剤組成物。   The adhesive composition for semiconductor according to claim 1, comprising two or more fillers having different average particle diameters as the filler. 平均粒径が0.1〜1.0μmの範囲内にある第1のフィラー、及び、一次粒径の平均粒径が0.005〜0.03μmの範囲内にある第2のフィラーを含む、請求項1に記載の半導体用接着剤組成物。   Including a first filler having an average particle diameter in the range of 0.1 to 1.0 μm and a second filler having an average particle diameter of the primary particle diameter in the range of 0.005 to 0.03 μm. The adhesive composition for semiconductors of Claim 1. 150℃以上で重合反応により高分子量化する熱重合性化合物を更に含有する、請求項1〜3のいずれか一項に記載の半導体用接着剤組成物。   The adhesive composition for semiconductors as described in any one of Claims 1-3 which further contains the thermopolymerizable compound which becomes high molecular weight by a polymerization reaction at 150 degreeC or more. 硬化前の80℃における溶融粘度が700Pa・s以上5000Pa・s以下である、請求項1〜4のいずれか一項に記載の半導体用接着剤組成物。   The adhesive composition for semiconductors as described in any one of Claims 1-4 whose melt viscosity in 80 degreeC before hardening is 700 Pa.s or more and 5000 Pa.s or less. 有機基板に対する硬化後の接着強度が3.0MPa以上である、請求項1〜5のいずれか一項に記載の半導体用接着剤組成物。   The adhesive composition for semiconductors as described in any one of Claims 1-5 whose adhesive strength after hardening with respect to an organic substrate is 3.0 Mpa or more. 請求項1〜4のいずれか一項に記載の半導体用接着剤組成物をフィルム状に成形してなる接着剤層を備える、半導体用接着シート。   The adhesive sheet for semiconductors provided with the adhesive bond layer formed by shape | molding the adhesive composition for semiconductors as described in any one of Claims 1-4 in a film form. 半導体素子と、該半導体素子を搭載する支持部材と、前記半導体素子及び前記支持部材間に設けられ、前記半導体素子及び前記支持部材を接着する接着部材と、を備え、
前記接着部材は、請求項1〜6のいずれか一項に記載の半導体用接着剤組成物の硬化物である、半導体装置。
A semiconductor element; a support member for mounting the semiconductor element; and an adhesive member that is provided between the semiconductor element and the support member and bonds the semiconductor element and the support member.
The said adhesive member is a semiconductor device which is a hardened | cured material of the adhesive composition for semiconductors as described in any one of Claims 1-6.
JP2007276491A 2006-10-24 2007-10-24 Adhesive composition for semiconductor, adhesive sheet for semiconductor, and semiconductor device Active JP5364991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007276491A JP5364991B2 (en) 2006-10-24 2007-10-24 Adhesive composition for semiconductor, adhesive sheet for semiconductor, and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006288717 2006-10-24
JP2006288717 2006-10-24
JP2007276491A JP5364991B2 (en) 2006-10-24 2007-10-24 Adhesive composition for semiconductor, adhesive sheet for semiconductor, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2008133456A true JP2008133456A (en) 2008-06-12
JP5364991B2 JP5364991B2 (en) 2013-12-11

Family

ID=39558505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007276491A Active JP5364991B2 (en) 2006-10-24 2007-10-24 Adhesive composition for semiconductor, adhesive sheet for semiconductor, and semiconductor device

Country Status (1)

Country Link
JP (1) JP5364991B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116531A (en) * 2008-10-15 2010-05-27 Hitachi Chem Co Ltd Adhesive composition, adhesive layer, and multilayer package
JP2010135765A (en) * 2008-10-28 2010-06-17 Hitachi Chem Co Ltd Semiconductor adhesive sheet, dicing tape integrated type semiconductor adhesive sheet, and semiconductor device
JP2010263134A (en) * 2009-05-11 2010-11-18 Ricoh Co Ltd Flexible electronic circuit board, method of manufacturing the same, and image display apparatus
JP2011167748A (en) * 2010-02-22 2011-09-01 Panasonic Electric Works Co Ltd Method of cutting resin sheet
JP2011178858A (en) * 2010-02-26 2011-09-15 Sekisui Chem Co Ltd Resin composition and formed article
JP2011202177A (en) * 2009-09-30 2011-10-13 Sekisui Chem Co Ltd Adhesive for semiconductor bonding, adhesive film for semiconductor bonding, method for mounting semiconductor chip, and semiconductor device
JP2012062422A (en) * 2010-09-17 2012-03-29 Sekisui Chem Co Ltd Resin composition and molded body
JP2012153819A (en) * 2011-01-27 2012-08-16 Lintec Corp Adhesive composition and adhesive sheet
JP2013006899A (en) * 2011-06-22 2013-01-10 Hitachi Chemical Co Ltd Adhesive film and semiconductor device using the same
JP2013010849A (en) * 2011-06-29 2013-01-17 Hitachi Chemical Co Ltd Adhesion member for semiconductor, dicing/die bonding integral type adhesion member using the same, and method for manufacturing semiconductor device
WO2016136774A1 (en) * 2015-02-24 2016-09-01 リンテック株式会社 Film-like adhesive agent, adhesive sheet, and method for manufacturing semiconductor device
WO2019245026A1 (en) * 2018-06-21 2019-12-26 日立化成株式会社 Thermosetting resin composition, prepreg, laminated sheet, printed-wiring board and semiconductor package, and method for producing thermosetting resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322457A (en) * 2001-04-26 2002-11-08 Tomoegawa Paper Co Ltd Adhesive composition for semiconductor device and adhesive sheet therefor
WO2005103180A1 (en) * 2004-04-20 2005-11-03 Hitachi Chemical Co., Ltd. Adhesive sheet, semiconductor device and process for producing semiconductor device
JP2006073982A (en) * 2004-09-02 2006-03-16 Sumitomo Bakelite Co Ltd Semiconductor adhesive film and semiconductor device using the same
JP2006100784A (en) * 2004-09-02 2006-04-13 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor use and semiconductor device using this film
JP2006183020A (en) * 2004-04-20 2006-07-13 Hitachi Chem Co Ltd Adhesive sheet, semiconductor device, and method for producing the semiconductor device
JP2007302881A (en) * 2006-04-11 2007-11-22 Hitachi Chem Co Ltd Adhesive composition and adhesive sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322457A (en) * 2001-04-26 2002-11-08 Tomoegawa Paper Co Ltd Adhesive composition for semiconductor device and adhesive sheet therefor
WO2005103180A1 (en) * 2004-04-20 2005-11-03 Hitachi Chemical Co., Ltd. Adhesive sheet, semiconductor device and process for producing semiconductor device
JP2006183020A (en) * 2004-04-20 2006-07-13 Hitachi Chem Co Ltd Adhesive sheet, semiconductor device, and method for producing the semiconductor device
JP2006073982A (en) * 2004-09-02 2006-03-16 Sumitomo Bakelite Co Ltd Semiconductor adhesive film and semiconductor device using the same
JP2006100784A (en) * 2004-09-02 2006-04-13 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor use and semiconductor device using this film
JP2007302881A (en) * 2006-04-11 2007-11-22 Hitachi Chem Co Ltd Adhesive composition and adhesive sheet

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116531A (en) * 2008-10-15 2010-05-27 Hitachi Chem Co Ltd Adhesive composition, adhesive layer, and multilayer package
JP2010135765A (en) * 2008-10-28 2010-06-17 Hitachi Chem Co Ltd Semiconductor adhesive sheet, dicing tape integrated type semiconductor adhesive sheet, and semiconductor device
JP2010263134A (en) * 2009-05-11 2010-11-18 Ricoh Co Ltd Flexible electronic circuit board, method of manufacturing the same, and image display apparatus
JP2011202177A (en) * 2009-09-30 2011-10-13 Sekisui Chem Co Ltd Adhesive for semiconductor bonding, adhesive film for semiconductor bonding, method for mounting semiconductor chip, and semiconductor device
JP2011167748A (en) * 2010-02-22 2011-09-01 Panasonic Electric Works Co Ltd Method of cutting resin sheet
JP2011178858A (en) * 2010-02-26 2011-09-15 Sekisui Chem Co Ltd Resin composition and formed article
JP2012062422A (en) * 2010-09-17 2012-03-29 Sekisui Chem Co Ltd Resin composition and molded body
JP2012153819A (en) * 2011-01-27 2012-08-16 Lintec Corp Adhesive composition and adhesive sheet
JP2013006899A (en) * 2011-06-22 2013-01-10 Hitachi Chemical Co Ltd Adhesive film and semiconductor device using the same
JP2013010849A (en) * 2011-06-29 2013-01-17 Hitachi Chemical Co Ltd Adhesion member for semiconductor, dicing/die bonding integral type adhesion member using the same, and method for manufacturing semiconductor device
WO2016136774A1 (en) * 2015-02-24 2016-09-01 リンテック株式会社 Film-like adhesive agent, adhesive sheet, and method for manufacturing semiconductor device
JPWO2016136774A1 (en) * 2015-02-24 2017-11-30 リンテック株式会社 Film adhesive, adhesive sheet, and method for manufacturing semiconductor device
JP2020098918A (en) * 2015-02-24 2020-06-25 リンテック株式会社 Film glue, adhesive sheet and manufacturing method for semiconductor device
WO2019245026A1 (en) * 2018-06-21 2019-12-26 日立化成株式会社 Thermosetting resin composition, prepreg, laminated sheet, printed-wiring board and semiconductor package, and method for producing thermosetting resin composition
CN112313281A (en) * 2018-06-21 2021-02-02 昭和电工材料株式会社 Thermosetting resin composition, prepreg, laminate, printed wiring board, semiconductor package, and method for producing thermosetting resin composition
JPWO2019245026A1 (en) * 2018-06-21 2021-08-02 昭和電工マテリアルズ株式会社 Method for manufacturing thermosetting resin composition, prepreg, laminated board, printed wiring board and semiconductor package, and thermosetting resin composition
JP7420071B2 (en) 2018-06-21 2024-01-23 株式会社レゾナック Thermosetting resin composition, prepreg, laminate, printed wiring board, semiconductor package, and method for producing thermosetting resin composition
CN112313281B (en) * 2018-06-21 2024-03-29 株式会社力森诺科 Thermosetting resin composition, prepreg, laminated board, printed wiring board, semiconductor package, and method for producing thermosetting resin composition

Also Published As

Publication number Publication date
JP5364991B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5364991B2 (en) Adhesive composition for semiconductor, adhesive sheet for semiconductor, and semiconductor device
JP5157229B2 (en) Adhesive sheet
JP6133542B2 (en) Film adhesive, adhesive sheet and semiconductor device
JP5736899B2 (en) Film adhesive, adhesive sheet and semiconductor device
JP4816871B2 (en) Adhesive sheet, semiconductor device, and method of manufacturing semiconductor device
JP5428423B2 (en) Semiconductor device and film adhesive
JP5380806B2 (en) Adhesive sheet, integrated sheet, semiconductor device, and method for manufacturing semiconductor device
WO2005103180A1 (en) Adhesive sheet, semiconductor device and process for producing semiconductor device
JP5834662B2 (en) Film adhesive, adhesive sheet, semiconductor device and manufacturing method thereof
JP2009120830A (en) Adhesive sheet, semiconductor device using the same, and method for manufacturing the device
JP5532575B2 (en) Adhesive sheet
JP4957064B2 (en) Semiconductor device and manufacturing method thereof
JP5691244B2 (en) Film adhesive, adhesive sheet and semiconductor device
JP6222395B1 (en) Film adhesive and dicing die bonding integrated adhesive sheet
JP5476673B2 (en) Adhesive sheet
JP5499772B2 (en) Adhesive member for semiconductor, adhesive composition for semiconductor, adhesive film for semiconductor, laminate and method for producing semiconductor device
JP2012153851A (en) Semiconductor device and film-shaped adhesive
JP7067570B2 (en) Manufacturing method of semiconductor devices, film-like adhesives and adhesive sheets
JP6443521B2 (en) Film adhesive and dicing die bonding integrated adhesive sheet
JP5272284B2 (en) Adhesive sheet, semiconductor device, and method of manufacturing semiconductor device
JP6662074B2 (en) Adhesive film
JP2009267321A (en) Adhesive sheet, one-piece sheet, semiconductor device, and method of manufacturing semiconductor device
JP6768188B2 (en) Adhesive composition for adhesive film and its manufacturing method
JP2017165981A (en) Film-like adhesive and dicing die bonding integrated adhesive sheet
JP2010132884A (en) Adhesive sheet and semiconductor element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R151 Written notification of patent or utility model registration

Ref document number: 5364991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350